
[Re] Parameterized Explainer for Graph Neural Network

Anonymous Author(s)
Affiliation
Address
email

Reproducibility Summary1

Scope of Reproducibility2

In this work we perform a replication study of the paper Parameterized Explainer for Graph Neural Network. The3

replication experiment focuses on three main claims: (1) Is it possible to reimplement the proposed method in a different4

framework? (2) Do the main claims with respect to the GNNExplainer hold? (3) Is the used evaluation method a valid5

method for explaining the classification decision by Graph Neural Networks?6

Methodology7

The authors’ TensorFlow code was largely used as starting point for our reimplementation in PyTorch. However, large8

parts of the evaluation setup were missing and differences were found between the listed configurations in the paper and9

the code. As a result, our codebase contains a large portion of novel code and introduces a different method for tracking10

experimental configurations. Using the new codebase all experiments are replicated. In addition to this, a short ablation11

study is performed.12

Results13

Due to numerous inconsistencies between code and paper, it is not possible to replicate the original results using the14

paper alone. With help of the original codebase, a number of the original results can be retrieved. The main comparison15

claim of the paper, to improve over the preceding GNNExplainer, does hold. However, after performing the replication16

experiments, some questions regarding the validity of the used evaluation setup in the original paper remain.17

What was easy18

The method proposed by the authors for explaining the Graph Neural Networks is easy to comprehend and intuitive.19

Re-implementation of the method is straightforward using a modern deep learning framework. The datasets used for20

the experimental setup were all provided together with their codebase.21

What was difficult22

The main difficulty arose from the difference between the experimental configurations discussed in the paper and23

implemented in the code. There were a number of small inconsistencies (eg. incorrect hyperparameter settings), but24

also some major ones (eg. using batch-normalization in training mode during evaluation). This issue was worsened by25

the fractured reporting of configurations in the code.26

Communication with original authors27

Contact was made with the authors on two occasions. During the first exchange the authors confirmed a number of28

clarifying questions and confirmed that the configurations as presented in the codebase were to be used instead of29

those provided in the paper. In the second exchange our reservations concerning the used experimental evaluation were30

conveyed to the authors. The authors did not share our concerns.31

Submitted to ML Reproducibility Challenge 2020. Do not distribute.



1 Introduction32

Graph Neural Networks (GNNs) emerged as state-of-the-art models in machine learning, capturing both graph structure33

and node features through recursively incorporating a graph’s previous node information. GNNs are able to deliver34

state-of-the-art performances in matters such as graph/node classification and link prediction.35

As for most Neural Networks, the ’reasoning’ towards classification inside GNNs is not intuitive to humans. The authors36

of the paper GNNExplainer: Generating Explanations for Graph Neural Networks [9] address this problem and try37

to solve it by introducing GNNEXPLAINER; an optimization task that maximizes the mutual information between a38

GNN’s prediction and a distribution of possible sub-graph structures. The GNNExplainer’s algorithm can identify the39

sub-graph and node structure responsible for a given classification. Based on the work done in [9], Luo, D. et al. claim40

to have further developed GNNExplainer in their paper Parameterized Explainer for Graph Neural Network [5]. The41

paper introduces PGEXPLAINER; a general parameterized explainer that applies to any GNN based models in both42

transductive and inductive settings.43

The authors of the paper first formulate the learning objective of PGExplainer. Using the same datasets as [9], they44

claim to outperform GNNExplainer up to 24.7% in Area under the ROC Curve (AUC) [4] score. Furthermore the45

authors state that PGExplainer can speed up computations up to 108 times faster than GNNExplainer. These and further46

claims made in the PGExplainer paper will be evaluated in this report by replicating and extending the performed47

evaluation in a replication study.48

Scope of reproducibility The focus of our reproducibility study is on the experimental comparison between the49

PGExplainer and the preceding GNNExplainer. The authors of the original PGExplainer paper include a number of50

other benchmarks in their evaluation, but focus their comparison primarily on the GNNExplainer. For this reason it51

makes sense for us to do the same.52

In contrast to the original paper, we will base our entire comparison on reimplementations of both methods. In the53

original paper, the authors partly copy the results from the GNNExplainer and partly use their own re-implementation54

to obtain the GNNExplainer scores. In communication the authors stated that the decision to partly copy the results was55

made due to lackluster results in their own re-implementation. As the quality of an explanation is highly dependent on56

the model it aims to explain, we believe that it would be beneficial to re-implement both methods in the same framework57

and perform their evaluation on equal footing. We will use PyTorch as the framework for doing so.58

For the reimplementation of the PGExplainer the authors’ own TensorFlow-based codebase provided in their paper59

will be used as the main starting-point. However, during inspection of the codebase, we found that there are a number60

of significant differences between the configurations used for both the trained models that we wish to explain and61

the PGExplainer itself between what is described in the paper and what is actually implemented in the code. After62

discussing with the authors, the conclusion was reached that the configurations used in the code should serve as the63

starting point for the replication. Part of our reproduction experiment will focus on validating if these are indeed the64

correct configurations. In short, our replication experiment aims to validate the following aspects of the original paper.65

(a) Given the original codebase and configuration files provided therein, is it possible to reimplement the PGEx-66

plainer method using a different framework? And if so, are the provided configurations sufficient to obtain the67

presented quantitative, qualitative and efficiency results.68

(b) The authors claim that their PGExplaimer greatly improves over the previously proposed GNNExplainer. We69

aim to validate that this claim holds with both methods evaluated using the same framework and evaluation.70

(c) Evaluation of explanation methods is notoriously hard. We wish to validate if the evaluation method used in71

the original paper is a sound approach for doing so.72

The remainder of this work will be structured as follows. In the next section we will provide the needed background on73

the PGExplainer. Following this, we will provide a short overview of the codebase accompanying this reproduction. In74

section 4, we will discuss the original experimental setup in depth and highlight some key components not discussed75

in the original paper. Section 5 will present the replicated results and compare them to the original paper. Based on76

the highlighted components in section 4 and some results presented in section 5, section 6 will raise some question77

regarding the evaluation setup used. In the last section, we will summarize our replication.78

2 PGExplainer79

The authors start by dividing an input graph Go in two subgraphs, such that Go = Gs + ∆G. Gs represents the80

explanatory graph that makes important contributions towards the graph classification, while ∆G represents the81

2



remainder of the initial graph. The main task therefore is to find the optimal subgraph Gs. This is achieved through82

Mutual Information (MI) maximization:83

max
Gs

MI (Yo, Gs) = H (Yo)−H (Yo | G = Gs) , (1)

Which uses the GNN’s classification prediction Yo and its input Go. The MI maximization is done by deducting the84

conditional entropy from the marginal entropy. Which is equivalent to minimizing the conditional entropy.85

To avoid having an exploding exponential amount of candidates, the authors assume the explanatory graphs used are86

Gilbert random graphs [3], where selections of edges from the original input graph Go are conditionally independent to87

each other. Using relaxation, the learning objective is rewritten as88

min
Gs

EGs
[H (Yo | G = Gs)] ≈ min

Θ
EGs∼q(Θ) [H (Yo | G = Gs)] , (2)

where q(Θ) is the distribution of the parameterized explanatory graph. Each graph edge obtains a continuous variable89

in range (0, 1).90

A random graph Ĝs is sampled from edge distributions and fed to the trained GNN model obtaining prediction Ŷs.91

Following [9], the authors modify the conditional entropy with cross-entropy H(Yo, Ŷs), where Ŷs is the prediction of92

the GNN model with Ĝs as input. Using Monte Carlo approximation, the learning objective becomes93

min
Ω
− 1

K

K∑
k=1

C∑
c=1

PΦ (Y = c | G = Go) logPΦ

(
Y = c | G = Ĝ(k)

s

)
, (3)

with Φ as the parameters in the trained GNN, K as the number of sampled graphs, C as the number of labels and Ĝ
(k)
s94

the k-th sampled graph, parameterized by Ω.95

Furthermore, PGExplainer is used to collectively provide explainations for multiple instances I. The authors present96

the learning objective of this set of instances as follows.97

min
Ψ
−
∑
i∈I

K∑
k=1

C∑
c=1

PΦ

(
Y = c | G = G(i)

o

)
logPΦ

(
Y = c | G = Ĝ(i,k)

s

)
(4)

Here Ψ are parameters in the explanation network, G(i) the input graph and Ĝ(i,k) the k-th sampled graph for the i-th98

instance. Using the above, the authors consider two explainer instances; one for node classification and one for graph99

classification. Both cases use a MLP parameterized by Ψ.100

3 Reimplementation of code101

This section shortly summarizes the main structure of the code accompanying this reproducibility check and provides102

the information needed to reproduce the experiments presented. Our reimplementation of the PGExplainer is based on103

the PyTorch [6] framework. More specifically, it uses the third party extension of PyTorch for Graph Neural Networks104

called PyTorch-Geometric [2].105

The codebase is structured for the two main tasks performed in this paper; training the GNNs that will be explained106

by the PGExplainer and performing a replication of the original experiments. Additional scripts are included for107

performing the evaluations presented in the appendix. Each script is self-contained, handling things such as loading108

the dataset, loading the correct model and setting the hyperparameters. Each of these things are predefined in json109

configuration files. For sections directly related to a part of the codebase we have added a link to the corresponding110

module on GitHub. (Links will be added after review)111

3.1 Experiment configuration files [configs/selector.py]112

The codebase contains a large number of predefined configuration files. These configuration files are the main working113

horse for making the experiments presented in this work reproducible. There are two different types of configurations,114

one for each of the two main tasks mentioned previously. Shared between tasks is the common occurrence of the dataset,115

model and seed used. If a task is to be performed a number of times to achieve an average, the seed is replaced with a116

list of seeds. A full description of the configuration file setup can be found in Appendix A.117

As these configuration files provide a reliable source for all relevant information needed to perform our evaluation,118

we will—for the remainder of this paper—only disclose the information needed to comprehend the experiment. For119

3



details irrelevant to understanding the results—e.g. the used learning rate and specific framework versions—we refer to120

the provided configuration and codebase1. We understand that this breaks the papers self-containment. However, we121

believe that regarding the balance between page restrictions and replicability completeness, separating the concern of122

replicability from paper to codebase is the correct way to go. A single source of replicability information also prevents123

inconsistencies between the paper and the code base. As the paper under consideration will highlight, this is a concern.124

4 Experiment Setup125

In this section we will introduce the setup of the experimental evaluation performed by the authors of the PGExplainer.126

While replicating their evaluation, we found that a number of steps were making assumptions that were not well127

documented. This includes the samples used for calculating the AUC score. In this section we will spend time on these128

steps. Additionally, some minor mistakes made in the original evaluation were rectified during our reproduction. These129

changes will also be highlighted here.130

The experimental setup used by the authors of the PGExplainer follows that of the GNNExplainer [9] with a number of131

extensions. To clarify, the authors’ proposed method serves the purpose of explaining the classification decision of a132

GNN. Hence, the experiments used to evaluate the PGExplainer focus on the explanations provided by the PGExplainer133

for the underlying model. Specifically, the evaluation is repeated for six different datasets, and thus, for six different134

underlying models. The six datasets span two different classification tasks; node-classification and graph-classification.135

4.1 Datasets [datasets/dataset_loaders.py]136

The node classification task is performed using four synthetic datasets (a-d). All of which are first introduced in the137

GNNExplainer paper [9]. The graph classification task is performed using two datasets (e-f), one synthetic and one real.138

A reoccurring concept in all synthetic datasets is the so called motif. Motifs are highly structured subgraphs—e.g. 9139

nodes connected in a 2D grid. These subgraphs are then expanded by attaching them to a randomly generated graph of140

a different structural form—e.g. Barabasi-Albert (BA) graph [1] or trees. Motifs play a crucial role in determining141

ground-truth explanations for our evaluations, as we will see later.142

(a) The BA-Shapes dataset consists of single base BA-graph with 300 nodes, 80 “house”-structured motifs—each143

attached to random BA nodes—and some extra randomly added edges. (b) BA-Community closely resembles BA-144

Shapes, connecting two BA-Shapes and utilizing a Gaussian distributions for each BA-Shape to sample node features.145

(c) Tree-Cycles adopts an 8-level balanced binary tree as the base graph with a set of 80 six-node cycle motifs attached146

to randomly selected nodes. (d) The Tree-Grids dataset is similar to Tree-Cycles, replacing cycle motifs with 3× 3 grid147

motifs. (e) The authors constructed the BA-2motifs dataset consisting of 1000 BA graphs. Half of the graphs contain148

"house" motifs, the other half contain five-node cycle motifs attached to the BA graph. These two types of graphs serve149

as the two classes for the dataset. (f) The real-life Mutagenicity dataset copied from [9], consisting of 4337 molecule150

graphs. These should be classified as either mutagenic or nonmutagenic.151

4.2 Model [models/GNN_paper.py]152

There are a number of large differences between the implementation of the models trained for each dataset and how153

they are described in the paper. These changes are different between the node and graph classification tasks.154

Node classification The authors describe the model for node classification to be three consecutive Graph Convolution155

layers feeding directly into the fully connected classification. The model in the codebase however first concatenates the156

three intermediate outputs of the Graph Convolution layers before using this enlarged embedding as the input for the157

fully connected classification layer. The coded version of the models is similar to what is used for evaluation in the158

GNNExplainer paper [9]. To keep the evaluation consistent, we will therefore use the coded model version instead of159

the one described in the paper for our evaluation. Moreover, we were not able to get the model described in the paper to160

train to the same accuracy using the provided hyperparameters.161

In addition to the architecture change, we found the node classification models to use an undocumented batch162

normalization layer after the first and second Graph Convolution layer. Unfortunately, the original codebase contained163

an error that resulted in these batch-normalization layers being kept in training mode during evaluation. This observation164

was confirmed by the authors in communication and has since been resolved. In the same communication the authors165

expressed that to be able to reproduce their results, the batch normalization layers will have to be kept in training mode.166

1https://www.github.com/code_will_be_added_after_review

4

https://www.github.com/code_will_be_added_after_review


We believe that this will compromise the usability of our reproducibility experiment and therefore decided to remove167

the batch normalization layers all together. For completeness full replication of the authors evaluation with a model168

containing batch normalization is included in Appendix B.169

Graph classification The graph classification models are more in line with the models described in the paper than170

the node classification models. The difference is the use of both max and mean pooling over the output of the final171

Graph Convolution layer. These two pooling types are concatenated to form inputs for fully connected layers.172

4.3 Evaluation metrics [tasks/replication.py]173

For each dataset, the explanations are evaluated using three broad categories; quantitative, qualitative and efficiency.174

4.3.1 Quantitative evaluation [evaluation/AUCEvaluation.py]175

For each dataset the explanations provided by the PGExplainer are compared to ground-truth explanations. These176

ground-truths describe for each sample which edges should or should not be included in the explanation. Using this177

methodology, the quantitative evaluation can be performed similar to a binary classification task. For this reason, the178

authors present the quantitative score using the AUC scoring metric.179

Ground Truth For node classification the ground-truth explanation is determined globally—i.e. for all node samples180

the edges have the same ground-truth explanation label. Specifically, for each edge it is determined if the two nodes it181

connects are part of a motif. When this is the case, the edge is labelled as positive for the ground-truth explanation.182

Otherwise, the edge is labelled as negative for the ground-truth explanation. For graph classifications this is dependent183

on the dataset used and how the ground-truth explanations are generated. For the BA-2motif dataset, being synthetic,184

this is done the same way as for the node datasets. The only difference being that the process is repeated for every graph185

in the dataset. As there are no motifs defined for the Mutagenicity dataset, the ground-truth labels can not be defined186

based on them. Instead, for this dataset edge labels are used, as provided by the original dataset repository2.187

AUC score With the explanation mask provided by the PGExplainer and the ground-truths defined as above, the AUC188

score can be computed. However, there are a few important notes to consider when computing the AUC score. First, for189

the node classification datasets, the explanation mask is only determined for a 3-hop graph around each node. This is190

done because the GCN model only contains three layers. Second, only the nodes that are part of a motif are used in the191

AUC computation. This is because there is no real definition of ground-truth for the nodes outside the motifs. This192

evaluation design choice is further discussed in Sec. 6. Third, for the BA-2Motif dataset only a subset of the graphs is193

used to determine the AUC score, this is done to reduce computation time. Lastly, for the Mutagenicity dataset only the194

mutagenic graphs have a valid ground-truth interpretation. Hence, the AUC is determine using only these graphs. Of195

these four considerations, only the last is mentioned in the original paper.196

Comparison The authors compare their method against four baselines; a gradient-based model (GRAD) [9], a graph197

attention network (ATT) [8] and Gradient [7]. With the exception of the scores presented for the graph-classification198

datasets, the scores presented are reused from the PGExplainer paper (see Table 4). In communication with the authors,199

it was mentioned that the reimplementation of these explainers by the authors had resulted in lackluster results. For this200

reason the decision was made to use the original scores by the original authors.201

For our replication of the evaluation we focus our comparison on the GNNExplainer. This method is the most similar202

and was a major inspiration for the PGExplainer. In contrast the the original evaluation, we do perform the comparison203

using our own re-implementation of the GNNExplainer. Our re-implementation of this method is largely inspired by204

the implementation in the PyTorch Geometric library. The main difference is that our re-implementation is adapted to205

also work with graph-classification datasets. This is not possible with the plain PyTorch Geometric implementation.206

4.3.2 Qualitative evaluation [utils/plotting.py]207

In order to obtain a visualisation of the chosen sub-graph the system takes as input the ground truth labels and the208

mask provided by the Explainer. Given the mask, two thresholds are calculated, one for importance to the explanation209

and one to determine which other elements to plot for the sub-graph. Then, using these thresholds all nodes that210

have an interesting enough weight are selected. Following this, only nodes that are in a direct sub-graph together the211

node-to-be-explained are selected. When drawing the explanation for the graph classification this sub-graph is selected212

using the top-k edges. The original evaluation sets k to be the number of edges in the defining motif for the synthetic213

2https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

5



Node Classification Graph Classification
Accuracy BA-Shapes BA-Community Tree-Cycles Tree-Grid BA-2motifs Mutagenicity

Training 0.97 0.90 0.94 0.96 1.00 0.82
Validation 1.00 0.75 0.98 0.99 1.00 0.82

Testing 1.00 0.72 0.94 0.99 0.99 0.81
Table 1: Accuracies of the trained model without batch-normalization. The accuracies are obtained using early stopping.

datasets. These edges are plotted with a colour coding in accordance to their weight, where darker edges have higher214

weights in the mask than the lighter edges. Finally, the nodes that are connected to the previously plotted edges are215

plotted and colour coded by their ground-truth label.216

4.3.3 Efficiency evaluation [evaluation/EfficiencyEvaluation.py]217

In the paper, the authors only compare the efficiency of their PGExplainer to the GNNExplainer. Unfortunately, we were218

unable to extract the exact method for doing so from both the paper and the provided codebase. Our implementation is219

therefore mainly our own design.220

We compute the inference time as the average over ten runs. During each run we measure the times it takes to explain221

all samples that are also used for the quantitative evaluation. This time is divided by the number of samples explained222

to get the final inference time per sample in milliseconds. Note that, similar to the paper, for the evaluation of the223

PGExplainer only the time to explain each sample is considered. On the other hand, for the GNNExplainer the time224

required to train the explainer is also taken into account because it has to be retrained for each sample.225

5 Results226

5.1 Model training [experiment_models_training.ipynb]227

In Tab. 1 the final accuracies for all 6 trained models are provided. Note that these are the accuracies of the models228

that will be explained by the two explainers, not the explanation accuracy of the explainers themselves. For most of229

the models, using the configurations found in the code, we achieve results comparable to the results presented in the230

paper. The two exceptions being the BA-Community and the Mutagenicity models. Both of these score lower then their231

original counterpart.232

Logically this difference could be contributed to the difference in the use of batch normalization. Where the original233

model in the PGExplainer paper did use batch normalization where we do not. However, as the results presented in234

Tab. 5 show, replication with the original batch normalization yields the same reduced accuracies. We hypothesise that235

therefore the difference might be the result of an undocumented use of weight regularization. We observed that in the236

original training script the configuration exist to use L2-weight regularization, but it is not used.237

5.1.1 Replicability study [experiment_replication.ipynb]238

Quantitative Quantitatively there is a large difference in the reported AUC scores and what we were able to achieve239

using the specified configurations for the PGExplainer. Only for BA-Shapes a AUC equal or higher then the presented240

AUC score was observed. However, BA-Shapes did require some minor modifications to the configurations to get it to241

work. With the temperature parameter set as originally presented in the code, the evaluation crashed. Only when the242

temperature was changed to the configuration as presented in the paper we were able to run the evaluation. Similarly,243

with the configuration as described in the code, the PGExplainer produces the opposite of the expected result for244

the BA-2Motifs dataset. This is reflected both quantitatively and qualitatively. However, it should be noted that the245

same drop in AUC score between our implementation and the one originally reported score can also be seen for the246

GNNExplainer. Due to this, the reported improvement of the PGExplainer over the GNNExplainer remains valid.247

We believe that the difference seen between the AUC scores originally reported for the two explainers and what we248

observed during our reproduction might be the result of the undocumented effect of the entropy/size regularizations and249

used temperature. Based on empirical observations we found that the final AUC score is highly dependent on these250

three hyperparameters. A small follow-up ablation study presented in Tab. 5.1.1 confirms this.251

Qualitative The replicated qualitative evaluation is very similar to the original results. PGExplainer is very capable252

of finding the motifs in the graphs and highlighting their edges. The same holds for the GNNExplainer.253

6



Node Classification Graph Classification
BA-Shapes BA-Community Tree-Cycles Tree-Grid BA-2motifs Mutagenicity

Visualization (qualitative)

PGExplainer

GNNExplainer
Explanation AUC (quantitative

Original 0.963 ± 0.011 0.945 ± 0.019 0.987 ± 0.007 0.907 ± 0.014 0.926 ± 0.021 0.873 ± 0.013
PGExplainer 0.999 ± 0.000 0.825 ± 0.040 0.760 ± 0.014 0.679 ± 0.008 0.133 ± 0.046 0.843 ± 0.084

GNNExplainer 0.742 ± 0.006 0.708 ± 0.004 0.540 ± 0.017 0.714 ± 0.002 0.499 ± 0.004 0.587 ± 0.002
Improvement 34.6% 16.5% 40.7% -4.9% -375.2% 43.6%

Inference Time (ms) (efficiency)
PGExplainer 3.58 5.23 0.45 0.54 0.33 2.05

GNNExplainer 58.80 91.81 52.81 65.54 5.21 12.32
Speedup 16x 17x 117x 121x 16x 6x

Table 2: Replicated experimental results from the quantitative, qualitative and efficiency study. The original scores
are copied from the paper directly. As the authors of the PGExplainer paper did not report the seeds used for the
10 validation results, we were unable to replicate these results using the authors own codebase. For the qualitative
visualization the samples are handpicked similar to the original paper. Node colors represent the node labels (if all
colours are the same the nodes are unlabeled). Darkness of the edges signals importance for the final classification
decision. In case of the node-classification datasets the bigger node is the one for which the classification is being
explained. For the quantitative explanation the average AUC score for the PGExplainer and GNNExplainer and the
standard deviation is given. The "original" row reports the PGExplainer AUC score from the original paper. The
inference time reported represents the time needed to explain a single sample in milliseconds.

Reg. Size
10 1 0.1 0.01 0.001 0.0001

Entropy

10 0.761 ± 0.014 0.761 ± 0.014 0.762 ± 0.014 0.713 ± 0.156 0.628 ± 0.221 0.634 ± 0.239
1 0.761 ± 0.014 0.760 ± 0.014 0.760 ± 0.015 0.683 ± 0.154 0.700 ± 0.247 0.708 ± 0.226
0.1 0.761 ± 0.014 0.760 ± 0.014 0.758 ± 0.015 0.565 ± 0.246 0.747 ± 0.209 0.764 ± 0.214
0.01 0.761 ± 0.014 0.760 ± 0.014 0.758 ± 0.015 0.551 ± 0.249 0.748 ± 0.216 0.776 ± 0.210
0.001 0.761 ± 0.014 0.760 ± 0.014 0.758 ± 0.015 0.547 ± 0.253 0.753 ± 0.216 0.763 ± 0.211

Table 3: Results of a small ablation study on the effect of the size and entropy regularization on the AUC score. The
ablation study is performed using the Tree-Cycles dataset and follows the setup of the quantitative evaluation. It
averages over 10 runs. The results show that the regularization has a large effect on both the quantitative quality of the
explanations and their consistency. The best score is shown in bold. [experiment_ablation.ipynb]

The main observed difference is the Mutagenicity dataset. In our replication, only two edges are darkened in contrast to254

the ten edges darkened in the original paper. However, this difference is created artificially by a difference in the k255

value reported in the paper and used in the code. While this difference therefore does not tell us anything about the256

quality of the explanation, it does show the importance of the k hyperparameter. This is further discussed in the Sec. 6.257

Efficiency In terms of efficiency, the reimplemention results are consistent with the claims of the authors. The use of258

different frameworks between the original implementation and our reimplementation makes a direct comparison of the259

result is ill advised, but the speedup between the PGExplainer and the GNNExplainer is consistent.260

6 Ground truth explanations for Graph Explanations261

For the evaluation of the PGExplainer the authors made use of predefined ground-truth explanations. These explanations262

are made possible by the use of synthetic datasets, generated based on the notion of motifs. In this section we express263

some concerns with regards to the use of motifs for generating ground-truth explanations.264

7



No ground-truth outside motif In the case of the node classification datasets the definition of the ground-truth265

explanation is only valid for a small number of nodes within a graph; those within a motif. In essence, for nodes outside266

the motifs, the ground-truth explanation is an empty graph—i.e. all surrounding edges have to be excluded from the267

explanation to achieve the maximum score. The same is true for non-mutagenic graphs in the Mutagenicity dataset.268

This is incompatible with the PGExplainers approach to determine its explanation. An empty graph can never produce269

the same explanation as the original graph, hence it will never be the explanation provided by the PGExplainer.270

The authors overcome this issue by excluding all nodes outside the motifs from their quantitative evaluation. However,271

this reduces the explanation task of the node classification datasets to a much simpler problem. For nodes outside the272

motif, the explanation has to be based on the absence instead of presence of edges. Solving these issues satisfactorily273

would require a new definition for the ground-truths for graph datasets. For example, in the case of the tree-cycle274

dataset, one could define the ground-truth of a node outside a motif to be the entire 7-hop subgraph as this would be the275

minimal number of steps to take before one can conclude that no cycles have been formed. We, however, believe this to276

be outside the scope of this replication.277

Qualitative evaluation dependent on knowing size of motif The PGExplainer gives as output a mask that describes278

for each edge in the graph the probability of it being important for the models classification decision. To turn this into279

a visualizable explanations the top-k edges are selected from each mask, i.e only the k edges that have the highest280

influence on the models classification decision are considered part of the explanation. As a result, k is a crucial281

hyperparameter for obtaining a visual explanation. If k is set too high, the explanation could contain edges that actually282

only contribute to the final decision marginally. If k is set too low, the explanation could be missing important parts of283

the graph. This difference in visual explanation quality was also empirically observed in the difference between the284

original and our explanations for the Mutagenicity dataset.285

As mentioned in the experimental setup of the qualitative evaluation, the authors, and preceding works, set the value of286

k in the evaluation based on the amount of edges in the defining motif. However, this is not a possibility outside of287

the synthetic evaluation datasets. Hence, for real world applicability of the proposed explanation method a different288

approach has to be found to find k. For this reason, we believe that evaluating the quality of the explanations based289

using k preset to the number of edges in the synthetic dataset is an aspect to reconsider.290

In essence, both the k-parameter and the earlier mentioned number of edges selected for the ground-truth can be291

considered as hyperparameters for the evaluation pipeline. By selecting a specific value for these parameters the292

evaluation can become biased towards assigning high credibility to explanations that have a specific characteristic. By293

performing an extensive search over these hyperparameters the results of the explanation evaluation can potentially be294

improved. In Sec. C of the appendix we present a short study on how these hyperparameters can influence the final295

results of the evaluation.296

7 Conclusion297

In this work, we have presented a replication of the paper Parameterized Explainer for Graph Neural Network. The298

replication experiments have lead us to a number of conclusions. First, based on the paper alone, it is difficult to299

replicate the presented results. The main contributing factor is the discrepancy between the provided details in the paper300

and those in the codebase. Based on communication with the authors, we conclude that the hyperparameter settings301

presented in the paper are oversimplified. For the method to work, more hyperparameter tuning is needed then the paper302

suggests. This is validated by our ablation study.303

Second, even with the provided codebase, replication of the presented results is still arduous. With the configurations304

pulled from the codebase used in our re-evaluation, we still found lackluster results for a number of the datasets. We305

accredit this problem mainly to the structure of the codebase itself. The code is overly convoluted with the experiment306

configurations being overridden in numerous locations. Due to this, it is unclear if the configurations we found in the307

codebase are those that generated the results presented in the original paper.308

Lastly, as discussed in Sec. 6, we are uncertain if the evaluation based on synthetic datasets as used in the evaluation is309

valid. However, we can not contribute this issue to only the authors’ paper as it is also used in other graph explanation310

papers, including the GNNExplainer. In addition to showing that these issues exists, our extended evaluation presented311

in appendix Sec C showed that it is not trivial to solve them based on the current definition of a ground-truth explanation312

for motif graphs. Rethinking the evaluation for Graph Neural Networks Explainers is therefore important future work.313

8



References314

[1] A.-L. Barabasi and R. Albert. Emergence of scaling in random networks. Science, 286(5439):509–512, 1999.315

[2] M. Fey and J. E. Lenssen. Fast graph representation learning with pytorch geometric. CoRR, abs/1903.02428, 2019.316

[3] E. N. Gilbert. Random graphs. Annals of Mathematical Statistics, 30(4):1141–1144, 1959.317

[4] J. A. Hanley and B. J. McNeil. The meaning and use of the area under a receiver operating characteristic (roc)318

curve. Radiology, 143(1):29–36, Apr. 1982.319

[5] D. Luo, W. Cheng, D. Xu, W. Yu, B. Zong, H. Chen, and X. Zhang. Parameterized explainer for graph neural320

network. volume 33. 2020.321

[6] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,322

A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,323

and S. Chintala. Pytorch: An imperative style, high-performance deep learning library. In Advances in Neural324

Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.325

[7] P. E. Pope, S. Kolouri, M. Rostami, C. E. Martin, and H. Hoffmann. Explainability methods for graph convolutional326

neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages327

10772–10781, 2019.328

[8] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph attention networks. arXiv329

preprint arXiv:1710.10903, 2017.330

[9] Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec. Gnnexplainer: Generating explanations for graph neural331

networks. In Advances in neural information processing systems, pages 9244–9255, 2019.332

9



Appendices333

A Original data and results PGExplainer334

Table 4: Visual representations of the datasets, results and the performance evaluations [5]. Note: The AUC scores for
GRAD and ATT inside Tree-Grid are incorrectly copied by the authors and should be swapped (as indicated by
the red arrows).

B Direct replication of PGExplainer with BatchNorm activated model335

Here we present a replication experiment similar to the one presented in our replication work. However, as discussed336

in in the main work, the models used in the original paper contained two batch-normalization layers. These layers337

were incorrectly kept in training mode during evaluation. In the replication results presented here, the same batch-338

normalization setup was used for the node-classification models.339

B.1 Results340

Model training Tab. 5 shows that the accuracies of the models trained using the batch normalization are very similar341

to those used in the main paper. The BA-Community dataset still shows the same issues with overfitting as are discussed342

in the main paper.343

Quantitative Quantitatively there is a significant difference between the explanations of the PGExplainer for models344

trained with or without batch normalization. However, the main conclusion based on these results remain the same. The345

10



Node Classification
Accuracy BA-Shapes BA-Community Tree-Cycles Tree-Grid

Training 0.98 0.94 0.96 0.96
Validation 0.99 0.74 0.99 0.98

Testing 1.00 0.71 0.97 0.99
Table 5: Accuracies for models trained with batch-normalization. For evaluation of the validation and test dataset
batch-normalization is kept in training mode. This is similar to the original paper.

Node Classification
BA-Shapes BA-Community Tree-Cycles Tree-Grid

Visualization

Original

No batch-norm

With batch-norm
Explanation AUC
Original 0.963 ± 0.011 0.945 ± 0.019 0.987 ± 0.007 0.907 ± 0.014
No batch-norm 0.999 ± 0.000 0.825 ± 0.040 0.760 ± 0.014 0.679 ± 0.008
With batch-norm 0.977 ± 0.006 0.970 ± 0.006 0.534 ± 0.186 0.649 ± 0.045
Inference Time (ms)
No batch-norm 3.58 5.23 0.45 0.54
With batch-norm 3.56 5.29 0.40 0.47

Table 6: Replicated experimental results from the quantitative, qualitative and efficiency study. For the qualitative
visualization the samples are handpicked similar to the original paper. Node colors represent the node labels (if all
colours are the same the nodes are unlabeled). Darkness of the edges signals importance for the final classification
decision. In case of the node-classification datasets, the bigger node is the one for which the classification is being
explained. For the quantitative explanation the average AUC score and standard deviation is given. The "original" row
reports the PGExplainer AUC score from the original paper. The inference time reported represents the time needed to
explain a single sample in milliseconds.

replication experiments show that using the configuration provided in the codebase it is not possible to directly replicate346

the results presented in the paper.347

Qualitative No consistent significant difference in the visualized explanations can be observed between the two348

explained models.349

Efficiency The time required to explain the classification decision of a single node in the graph is consistent between350

the models trained with and without batch normalization.351

C Extended replication352

In this extend replication we perform a simple experiment considering the issues raised in Sec. 3. Specifically, we redo353

the quantitative evaluation of the synthetic node-classification using all test nodes instead of only those located in a354

motif. The model used for the explanation and the definition of the ground truth remains the same.355

11



Node Classification
BA-Shapes BA-Community Tree-Cycles Tree-Grid

Explanation AUC
PGExplainer 0.974 ± 0.005 0.576 ± 0.024 0.748 ± 0.014 0.790 ± 0.009
GNNExplainer 0.508 ± 0.008 0.555 ± 0.002 0.482 ± 0.014 0.608 ± 0.009

Table 7: Results of the extended replication study. For each explanation model both the AUC score over ten runs and
the corresponding standard deviation is given.

C.1 Results356

Quantitatively the PGExplainer scores significantly worse in the extended replication than during the original replication357

(see Tab. 7). This is a direct result of performing the evaluation over the entire test set instead of only the nodes within a358

motif. The ground-truth for nodes outside the motif and the method used by both the GNNExplainer by PGExplainer359

are simply incompatible.360

Nevertheless, the improvement claimed by the authors of the PGExplainer over the GNNExplainer is still visible.361

Considering all datasets, the PGExplainer consistently outperforms the GNNExplainer by a significant margin.362

D Configuration363

Configuration files are used to provide a stable, flexible and reproducible way to run the experiments.364

D.1 Model configuration files365

The first type of configuration is the model configuration as seen in Fig. 1, which contains (from top to bottom) the366

parameters required for training a GNN model. dataset assigns which dataset the model has to train on, paper defines367

which paper the model is build on (either PG, GNN or TAG), lr is the learning rate, epochs is the amount of epochs368

used for training and clip_max is the parameter to which determines at what point the gradient is clipped. Additionally369

the file includes early_stopping which defines the amount of epochs with no improvement that are required to enact370

early stopping of training, seed which defines the seed used for training and eval_enabled which determines whether371

the model uses it’s eval mode.

Figure 1: Example of model config file in JSON format

372

D.2 Explainer configuration files373

The second type of configuration is the explainer configuration an example of which is shown in Fig. 2, these configura-374

tion files contain all parameters required to train an explainer and perform the the replication experiment using them.375

It includes the following parameters: dataset defines the dataset that the model that is to be explained is trained on.376

model is the type of model that has to be explainer, explainer is the implementation of the explainer (either PG or377

GNN). The configuration also contains the learning rate and number of training epochs (lr and epochs respectively).378

As well as sample_bias which determines the sample bias, the parameters reg_size and reg_ent that determine the379

size loss and entropy loss coefficients respectively, the temperatures, seeds the seeds used for training, eval_enabled380

12



if the model uses evaluation mode and thres_snip and thres_min which define the thresholds for the interesting and381

sub-graph edges related to the drawing of the result explanations.

Figure 2: Example of explainer configuration file in JSON format
382

13


	Introduction
	PGExplainer
	Reimplementation of code
	Experiment configuration files [configs/selector.py]

	Experiment Setup
	Datasets [datasets/dataset_loaders.py]
	Model [models/GNN_paper.py]
	Evaluation metrics [tasks/replication.py]
	Quantitative evaluation [evaluation/AUCEvaluation.py]
	Qualitative evaluation [utils/plotting.py]
	Efficiency evaluation [evaluation/EfficiencyEvaluation.py]


	Results
	Model training [experiment_models_training.ipynb]
	Replicability study [experiment_replication.ipynb]


	Ground truth explanations for Graph Explanations
	Conclusion
	Original data and results PGExplainer
	Direct replication of PGExplainer with BatchNorm activated model
	Results

	Extended replication
	Results

	Configuration
	Model configuration files
	Explainer configuration files


