Aligning Context and Formulas: Multi-Stage Fine-Tuning
for Large Language Models with A Novel Dataset ContextFormulasS0K

Anonymous ACL submission

Abstract

Mathematics plays a crucial role in scien-
tific research. However, it is never easy to
formulate a problem using mathematical for-
mulas, even for senior researchers. Fine-
tuning pre-trained models on mathematical
datasets to facilitate research has become a
widely adopted approach. Although there are
numerous mathematical datasets, only high-
quality datasets could enhance the pre-trained
model for a deep insight into formulas be-
cause mathematics is a precise discipline. To
address this, we propose the ContextFormu-
las50K dataset, which consists of mathemati-
cal formulas paired with their contextual text.
Based on this dataset, we fine-tune two pre-
trained models (i.e. LLaMA-8B-Instruct and
Mistral-7B) to generate precise formulas for
research work. But in this task, there emerges
the information bottleneck problem, which
means the parameter scale expands much
faster than performance. To overcome this
problem, we introduce a Multi-Stage Fine-
Tuning(MSFT) approach to equip large lan-
guage models (LLMs) with better mathemati-
cal comprehension. Specifically, there are three
stages in our model, and by progressively in-
serting plug-and-play modules, model perfor-
mance could be enhanced at each stage, which
means our method effectively alleviates infor-
mation bottlenecks. Experimental results show
that our model effectively improves mathemat-
ical comprehension and achieves state-of-the-
art performance in the formula generation task,
outperforming multiple commercial baselines
(i.e., GPT-4, GPT-40, and Claude-3.5-sonnet).

1 Introduction

The rise and rapid development of interdisciplinary
fields have created challenges, particularly for re-
searchers unfamiliar with complex mathematics.
An appropriate formulation could effectively con-
vey the methodology precisely both in the research
process and in scientific writing. However, mathe-

matical formulas in scientific papers can be particu-
larly perplexing for individuals, such as economists
and psychologists, especially for those with limited
experience in mathematical modeling.

To overcome this obstacle, we intend to apply
large language models (LLMs)(Zhao et al., 2024)
for formula generation. Therefore, we fine-tune
pre-trained models(Devlin et al., 2019; Liu et al.,
2019; Raffel et al., 2020; Ding et al., 2023) with
our contributed high-quality dataset ContextFor-
mulas50K(CF50K), which consists of a formula
paired with its surrounding contexts. However,
we encounter information bottleneck problem,
which means the parameter scale expands much
faster than performance. To solve this issue, with
the parameter-efficient fine-tuning(PEFT) method-
ology(Houlsby et al., 2019; Li and Liang, 2021a;
Huetal., 2021; Ben Zaken et al., 2022), we propose
a novel framework that Multi-Stage Fine-Tuning
(MSFT). Specifically, we apply multiple stages to
train our inserted modules, and by incrementally
inserting modules at each stage, LLM gradually
demonstrates superior comprehension of complex
mathematical formulas.

In addition, there are three stages, and our ap-
proach involves training plug-and-play modules at
each stage. On the one hand, when there is no for-
mula in our input, our trained modules would not
be inserted, which means that our method produces
no side effect for models just to process text. On
the other hand, when formula comes across the
input, we then insert our trained modules to com-
prehend mathematics, which demonstrates a novel
methodology to enhance large language models
Jor a particular data type basically without knowl-
edge loss (French, 1999; Kirkpatrick et al., 2017).
In this way, the performance for textual queries
would not be affected by our fine-tuning process,
while LLM can comprehend mathematics via our
methodology without a side effect.

Experimental results show that our model im-

proves mathematical comprehension effectively
and achieves state-of-the-art performance against
multiple commercial models (i.e., GPT-4, GPT-
4o(Brown et al., 2020; OpenAl et al., 2024) and
Claude-3.5-sonnet) in the task of formula genera-
tion.

Our contributions are threefold:

* We introduce a dataset for mathematic com-
prehension, ContextFormulasS0K (CF50K),
consisting of mathematical formulas and their
surrounding texts. This dataset facilitates the
formula generation task. To our best knowl-
edge, this is the first dataset of its own type.

* We propose our novel Multi-Stage Fine-
Tuning(MSFT) method, where each stage
trains a plug-and-play module for a spe-
cific stage-wise task. This approach signifi-
cantly addresses the information bottleneck
problem, and achieves state-of-the-art per-
formance even against commercial products
(i.e., GPT-4, GPT-40, and Claude-3.5-sonnet)
in complex mathematical comprehension and
formula generation.

* We propose a plug-and-play methodology that
only brings our fine-tuning modules to work
when the formula is concerned. This means
that the performance for textual queries would
not be affected by our fine-tuning process,
which is novel in parameter-efficient fine-
tuning approaches.

2 Related Work
2.1 Datasets

In recent years, the availability of specialized
datasets in various mathematical fields has played
an irreplaceable role in advancing cutting-edge
research in areas such as economics and sociol-
ogy. One notable example is im2latex-100k, which
contains 100, 000 images of mathematical formu-
las along with their corresponding IATEX code.
This dataset aims to facilitate the image-to-text
generation task for handwritten mathematical for-
mulas and is widely used to train and evaluate
formula recognition. A similar effort is Formu-
laNet(Schmitt-Koopmann et al., 2022), a high-
quality dataset for mathematical formula detec-
tion (MFD)(Zanibbi and Blostein, 2012), which
makes significant progress in annotating simple
formulas. The dataset MATH(Hendrycks et al.,

2021) contains nearly 10, 000 mathematical com-
petition problems with detailed solutions, aimed
at mathematical reasoning and explanation. The
Math23K(Ling et al., 2017) dataset is used for train-
ing and evaluating machine learning models to au-
tomatically solve mathematical problems, partic-
ularly in expression reasoning and formula gener-
ation. Ape210K(Zhao et al., 2020), a large-scale
collection of Chinese elementary school math prob-
lems, far exceeds Math23K in size and offers a
higher diversity of problem templates. Compared
with Math23K, Ape210K requires the model to
have common knowledge. Similarly, AQuA(Ling
et al., 2017), which generates question-answer
reasoning tasks, helps models progressively de-
rive the final answer to mathematical problems,
aiding in the learning of arithmetic programs.
MathQA(Amini et al., 2019) extends AQuA by
introducing a new representational language to ac-
curately model the operational procedures of each
problem, improving both performance and inter-
pretability. These datasets are still unable to share
a focus on deep mathematical understanding and
are not capable of supporting formula generation
tasks. In contrast, we propose ContextFormu-
1asS0K(CF50K), specifically designed for formula
generation through context understanding. Our
dataset aims to prepare LLMs for mathematical
comprehension based on textual descriptions. To
our best knowledge, our dataset is the first of its
own type, providing a benchmark for future studies.

2.2 Parameter-Efficient Fine-Tuning

As the scale of pre-trained language models
expands rapidly, parameter-efficient fine-tuning
(PEFT) has become a key technique to reduce
the high computational and storage costs of train-
ing large models. Traditional fine-tuning re-
quires adjusting all model parameters, which in-
curs significant overhead. To address this, vari-
ous PEFT methods have been proposed to mini-
mize resource usage while preserving model per-
formance. Adapter(Houlsby et al., 2019) inserts
lightweight, learnable modules in each layer, ad-
justing only the parameters of the inserted modules
to avoid full parameter fine-tuning costs. Adapter-
Fusion(Pfeiffer et al., 2021) combines several
Adapters, enhancing adaptability for multi-task
learning. Prefix-tuning(Li and Liang, 2021b) ma-
nipulates pre-designed prefixes to control model
behavior. Other approaches, such as Prompt Tun-
ing(Lester et al., 2021), optimize input prompts

There is an equivalent
characterisation of the transfinite
diameter, namely the logarithmic
capacity.

)=

STAGE I (Formula Generation)

Training Set {(,) =

Example sample of the ContextFormulas50K Dataset

)y OF =1

A key property of a harmonic
1 function is that it attains its
() O maximum and minimum on the
boundary of its domain.

STAGE Il (Formula Reconstruction)
Training Set : {(, D= L

STAGE IIT (Next Subformula Generation)
Y=

Set of Formulas {

@ Divided by Computation Priority

Set of Subformulas |

e
B

Training Set = {(-

+1

Figure 1: ContextFormulaS0K(CF50K) Example. As shown in the part above the double horizontal line, each
sample in CF50K is a triplet (context before formula, formula, context after formula), where the i-th sample is
displayed. For the part below the double horizontal line, the diagram shows how the CF50K samples are transformed
into different training sets in each stage of MSFT. Each training set consists of (input;, label;) pairs based on the

objectives of that stage.

instead of model parameters, and BitFit(Ben Za-
ken et al., 2022) adjusts only the bias parameters
for lower overhead. LoRA(Hu et al., 2021) uses
low-rank decomposition of weight matrices, adjust-
ing only a small portion of parameters, reducing
fine-tuning costs while improving efficiency and
performance. The variants like QLoRA(Dettmers
et al., 2024) further optimize memory and compu-
tation through quantization, while HyperLoRA(Lv
et al., 2024) refines the low-rank strategy for better
results. MixLoRA(Shen et al., 2024) achieves a
zero-shot generalization improvement by dynami-
cally adjusting low-rank adaptation matrices to ad-
dress task interference in multimodal tasks. LoRA-
Flow(Wang et al., 2024) improves the adaptability
and performance of LoRA in generative tasks by us-
ing dynamic fusion weights. LoORAMoE(Dou et al.,
2024) uses low-rank adapters and a router network
to enhance the performance of downstream tasks
while preventing the forgetting of world knowl-
edge. These innovations further demonstrate the
high potential and efficiency of PEFT, particularly
in large-scale pre-trained models, offering cost-
effective solutions for a wide range of tasks. In this
paper, we propose a novel fine-tuning paradigm,

Multi-Stage Fine-Tuning (MSFT), applied to the
CF50K dataset. This approach trains plug-and-
play modules to alleviate information bottlenecks
during training, for better mathematical compre-
hension.

3 ContextFormulas50K Dataset

To obtain a large-scale and high-quality set of math-
ematical formulas, we choose to use the bulk down-
load method through the official AWS(Amazon
Web Services) servers to retrieve IATEX source pa-
pers from the open-access platform arXiv. Then,
we carefully select 5, 000 mathematical papers that
are rich in formulas. Therefore, the samples in our
dataset are more authentic and accurate.

After acquiring the I&IEX source code, we
apply regex matching to extract mathemati-
cal formulas. For example, these patterns
include the beginning and ending tags such
as \begin{equation} and \end{equation},
\begin{align} and \end{align}. To obtain the
context of each formula, we annotate the context
of each formula as the text around this formula.
If there is no other formula in this paragraph, we
define the entire paragraph as the context, or we

define the text from the formula to the previous
or next formula as the context, which may cause
the context of the formula to overlap. To create a
high-quality dataset, we exclude samples with con-
text lengths shorter than 32 tokens, which cannot
provide sufficient information to understand one
formula. Thus, each sample in our dataset con-
sists of a triplet: (context before formula, formula,
context after formula), as shown in Figure 1. In ad-
dition, we analyze the co-occurrence of operators
as shown in Appendix B by using a heat map of
the conditional probabilities.

4 Multi-Stage Fine-Tuning

Initially, we designed our model Multi-Stage
Fine-Tuning(MSFT) based on LoRA, see Fig-
ure 2(a). However, LoRA presents information
bottleneck problem. To solve this problem, we
introduce two additional sequential fine-tuning
stages, namely Dual-plugin and Quad-plugin.

4.1 Dual-Plugin

Our goal is to alleviate the information bottleneck
encountered in traditional parameter-efficient fine-
tuning. To achieve this, we propose the Dual-
plugin (D-plugin, see Figure 2(b)). The introduc-
tion of this module does not alter the parameters
of the first-stage trained modules but inserts a pair
of new weight matrices between two original pro-
jection matrices of LoRA, which constitute our
D-plugin. A training set is composed of pairing
the formulas, Dy : {(x, yi) }i=1,.. N, Where x; and
y; represent the formula of the same sample in our
dataset(see Figure 1), and N denotes the total num-
ber of samples.

We demonstrate LoRA in Figure 2(a) and la-
bel the parameter matrices as L, € R¥*"1 and
Liown € R™*4 where 7 is the rank of the LoORA
module and d is the dimension of h,. For each
hidden state hq € R? after attention and concate-
nation in Transformer (Vaswani, 2017), it under-
goes a matrix transformation during forward prop-
agation(see Figure 2(b)), as shown in the following
equation:

hout = Wpre hatt + LupDudeownLdown hatt (1)

where h,,; represents the new hidden state after
passing through the concatenated modules, and
Wpre € R%%d denotes the pre-trained weight
matrix that is concatenated, D,, € R™*" and
Dgown € R™*™ represent the pair of projection

matrices inserted into the Ly, and Lgg,,, weight
matrices during this stage, with r is the intermedi-
ate dimension of D-plugin.

The second stage aims at formula structure. Dur-
ing the training of D-plugin, we freeze the parame-
ters of the base model and the LoORA modules in our
first stage. We only train the D-plugin projection
matrices. This allows us to achieve a plug-and-play
module by training only the new parameters 6p,
without affecting the performance of any previous
work. Therefore, we set the auto-regressive for-
mula generation task as the training objective. The
objective is to optimize the following formula:

|yl

X Y > 10 (Paytasm) (v | 2.y<0))
(2.9)~Dy t=1
(2)

where Dy is our constructed pair dataset(see the
STAGE 1II section of figure 1) and $; means all
model parameters, including LoRA modules, after
first-stage fine-tuning. For all other symbols and
process, we follow (Hu et al., 2021), where we
freeze @, and only fine-tuning 6p.

4.2 Quad-Plugin

Despite the performance improvements from our
two-stage fine-tuning, we intend to analyze the sub-
structure of formulas based on computation priority.
Thus, our model can generate more mathematically
coherent formulas. By the word of computation
priority, we mean that x shall be computed before
+ normally in a mathematical formula. Therefore,
we introduce the Quad-Plugin (Q-plugin) module,
which consists of another pair of weight matrices,
Qdown € R™*™ and Q,, € R™*" between the
D-plugin with a residual connection. Q-plugin en-
codes the priority information of the formula into
the final stage of fine-tuning. We transform the
formulas in our sample into sequences based on
computation priority, and then we formulate our
training objective as the Seq2Seq learning frame-
work based on the sequences. Thus, we prepare
the data D3 : {(%, zi—1) }i=1,...,m, Where it means
the next part z; of a formula and its preceding part
zi—1(see Figure 1).

The forward propagation path(see Figure 2(c))
for each hidden state h,y; after attention and con-
catenation in Transformer (Vaswani, 2017) is as
follows:

hD = DdownLdoumhatt (3)

/ stage I \
]

adan

e -/
[\
7

Pretrained
Weights

x

R

Pretrained
Weights

)
N
(a)

Figure 2: Schematic diagram of Multi-Stage Fine-Tuning (MSFT). The deep blue modules in the figure are
frozen during fine-tuning, while the orange modules are the ones to be trained. W,,,.. represents the pre-trained
module. (a) In the first stage, LoRA fine-tuning introduces two projection matrices, Ly, and Lq,y,, Which are
parallel to the pre-trained module. (b) In the second stage, our designed D-plugin is inserted between the original
LoRA layers, consisting of a pair of new weight matrices, D,,;, and D g, (c) In the third stage, the Q-plugin is
added via a residual connection between the D-plugin, composed of another pair of new matrices, Q gown and Q..
Additionally, hgt, hr,,...» D, and he,: represent the hidden states of each token after the matrix transformations.

hout = Wprehatt + LupDup(hD + QudeownhD)

“4)
where hp € R™ is the hidden state after pass-
ing through the L ;,,,, module of LoRA and the
upward projection matrix D g,y of D-plugin. In
Equation 4, the term inside the parentheses rep-
resents the residual connection(He et al., 2016)
applied to hp. The meanings of the remaining
symbols are the same as those in the previous sub-
section, and the training objective is also the same:

|y]

max Z Zlog (P¢2+A¢(9Q) (yt | %?J<t)>

(z,y)~Dy t=1
(&)

where D3 refers to the dataset we constructed (as
shown in the STAGE III part of Figure 1) and
¢ represents the parameters introduced in this
stage. @, represents all model parameters, includ-
ing LoRA modules and D-plugin, after two-stage
fine-tuning. For all other symbols and process, we
follow (Hu et al., 2021), where we freeze ®5 and
only fine-tuning 0.

5 Experiments

In this section, we outline a series of experiments
performed on the CF50K dataset, aimed at generat-
ing mathematical formulas. Our experiments based
on two pre-trained models with our method MSFT
reveal the effectiveness of our model. Additionally,

we perform ablation experiments to further validate
the effectiveness of our approach.

5.1 Setup

The task involves providing the model with con-
text to generate a mathematical formula. The com-
plex structure of mathematical formulas often leads
to longer training times in resource-constrained
environments. To address this, we construct a
smaller dataset, CFSK, which is also used for
performance validation and ablation experiments.
We conduct three stages of fine-tuning on the full
CF50K dataset, based on two pre-trained models,
namely LLaMA3-8B-Instruct and Mistral-7B. Our
fine-tuning hyperparameters vary across different
stages, due to different training objectives. Please
refer to our Appendix C for details. In the first
stage, we apply the PEFT method LoRA, illus-
trated in Figure 2(a). To strike a balance between
fine-tuning performance and the parameter scale,
we explore the rank r; illustrated in Figure 2(a)
from the set {8, 16, 32, 64} and we find the setting
of 11 = 64 achieves the best performance. We
choose the scale factor, a special hyper-parameter
of LoRA, from the set {8, 16, 32, 64, 128}, with
128 chosen as the best setting. The second stage
introduces D-plugin. The internal dimension 79
of D-plugin illustrated in Figure 2(b) is set to 512
chosen from {64,128,256,512}. In the third stage,
we use the identical experimental setup but with

Model Trainable Param. Evaluation Metrics

Param. New/Total BLEU(t) sBLEU({) Rouge-1(f) WER(]) CER(])
LLaMA3-8B-Insruct
Baseline - - 7.9540.01 7.0140.04 0.1540.01 5.671x001 2:4510.01
w/ LoRA 55M 0.67% 10.20:5;)_10 10~01i0.06 0.20i001 4‘32:“)_07 2~30i0A05
w/ LoRA+D-plugin 63M 0.78% 12.7810'04 11.851()'07 0.231()'01 3.2410'03 1.67:&0‘03
w/ LoRA+D-plugin+Q-plugin 67M 0.83% 13~05i0.04 12.0410'07 0.2410'00 3~15i0.04 1.61i0'03
Mistral-7B
Baseline - - 5.80+0.03 6.73+0.03 0.1540.00 9691005 5.20x0.01
w/ LoRA 55M 0.75% 13.3210.11 10.2140.04 0.2210.00 2.60+0.02 1.6340.09
w/ LORA+D-plllgill 63M 0.86% 18.8110'02 15~77i0.16 0.32:‘:0'00 1.2410'01 0.83:{:0‘01
w/ LoRA+D-plugin+Q-plugin 67M 0.92% 20.0410,04 16.60i0,10 0-33i0.01 1426i0.01 0.85i0,01

Mainstream Commercial Models

GPT-4 - - 12.50 7.16 0.18 2.48 1.28
GPT-40 - - 13.90 8.05 0.21 2.23 1.18
Claude-3.5-sonnet - - 14.09 9.05 0.22 1.58 1.00

Table 1: Model Performance Comparison. The table presents the performance of LLaMA3-8B-Insruct and Mistral-
7B after sequentially inserting the LoRA, D-plugin, and Q-plugin modules. The symbol "w/" indicates the insertion
of the module. BLEU, sBLEU, Rouge-1, WER, and CER are chosen as evaluation metrics, with each experiment
repeated five times to report the mean and standard deviation. Additionally, commercial models GPT-4, GPT-4o,
and Claude-3.5-sonnet are included for comparison, and the results of a single experiment are also shown.

an internal dimension r3 of the Q-plugin set to 32,
see Figure 2(c).

5.2 Results

A set of assessment metrics is required to eval-
uate the performance of formula generation. To
our best knowledge, there is currently no per-
fect method for accurately measuring performance.
Therefore, we adopt the approach from Math-
Bridge (Jung et al., 2024), utilizing five classic
evaluation metrics for natural language genera-
tion: BLEU, sBLEU(sacreBLEU), Rouge-1, WER
(Word Error Rate), and CER (Character Error Rate).
As shown in Table 1, we present the initial per-
formance evaluations of two pre-trained models:
LLaMA3-8B-Instruct and Mistral-7B, along with
the evaluation results after each stage of the MSFT.
We list the number of parameters required for train-
ing at each fine-tuning stage and their respective
proportions relative to the total parameter scale.
Our MSFT method demonstrates significant
performance improvements in each fine-tuning
stage. Taking LLaMA3-8B-Instruct as an example,
after the initial LoRA fine-tuning, the performance
shows an preliminary improvement, with its av-
erage BLEU scoring 10.20 and sBLEU reaching
10.01. Following the insertion of the trained D-
plugin, the BLEU and sBLEU scores increased
by 25% and 43%, respectively, and the WER and
CER decreased by 23% and 26%, respectively. Af-
ter the third stage of fine-tuning, with the insertion

of Q-plugin, all metrics have improved further and
the evaluation metrics are now close to those of
commercial models(e.g., GPT-4). Mistral-7B pro-
vides the same insights as our first base model and,
after applying MSFT, achieves BLEU and sBLEU
scores 2.45% and 1.46x higher than its baseline, out-
performing even GPT-40 and Claude-3.5-sonnet,
both of which are known for their strong mathemat-
ical reasoning capabilities.

The D-plugin and Q-plugin effectively ad-
dress the information bottleneck problem en-
countered during LoRA fine-tuning. In the
LoRA fine-tuning stage, we observe that when
the intermediate dimension of the LoORA module
reaches 64, further increasing this hyperparam-
eter causes the model size to grow much faster
than the improvement in performance, thus result-
ing in the information bottleneck problem. How-
ever, after introducing the D-plugin, which only
accounts for 17% of the total parameters added
in the LoRA stage, a noticeable performance im-
provement is achieved. Despite this, D-plugin still
encounters the information bottleneck problem.
Adding the Q-plugin, which contributes only 7%
of the total parameters introduced by the LoRA
module, further improves the performance. Ul-
timately, the final BLEU and sBLEU scores in-
crease by 28% and 20%, respectively, compared
to the LoRA stage, successfully mitigating the
information bottleneck problem.

D-plugin D-plugin Q-plugin Trainable

Evaluation Metrics

(=512) (=640) (=32) ¥ param. ~BLEU({) sBLEU(]) Rouge-(}) WER() CERQ)
X X X X 55M 10931010 10.78+012 0.221000 3.921+0.03 2.13+0.02
v X X v 63M 10.3140.22 10.4719.28 0.2110.00 4.0540.08 2.3410.04
v X v v 67TM 11672026 11.034015 0.224001 3.072003 1731002
X v X X 67TM 13.641019 12534011 0.260010 247+01a 1341000
v X X X 63M 14.6440.17 12.8610.26 0.274+0.01 2.2510.03 1.2640.01
Ve X Ve X 67M 17.6741923 13.861027 0.304001 1.621001 0.97+0.03

Table 2: Comparison of single-stage and multi-stage fine-tuning results. In this table, a "v'" under the D-plugin,
and Q-plugin columns indicates whether the corresponding module was inserted, with the internal dimension
of each module shown in parentheses below. All comparative experiments conducted here have undergone the
first stage of MSFT with LoRA fine-tuning at a rank of 64. "TFS" stands for "training from scratch," indicating
whether these modules were trained together from scratch, corresponding to single-stage fine-tuning. We evaluate
model performance using BLEU, sBLEU, Rouge-1, WER, and CER metrics, and also compare the total number of

parameters added in different configurations.

STAGE Joint Evaluation Metrics
Learning BLEU(t) sBLEU(T) Rouge-1(1)
1 v 12.5540.23 11.8610.25 0.2410.00
I X 14.6410.17 12.861026 0.27+0.01
III v 14.1419.48 12.7410.14 0.2640.01
111 X 17.671023 13.861027 0.3040.01

Table 3: Impact of Joint Learning (JL). The table
presents the results of JL in the second and third fine-
tuning stages, with the intermediate dimension of D-
plugin set to 512 and Q-plugin to 32. Evaluation met-
rics include BLEU, sBLEU, and Rouge-1. Additional
metrics and JL comparisons under different intermedi-
ate dimensions are provided in Appendix E.

5.3 Ablation Study

In this subsection, we choose LLaMA3-8B-Instruct
as the base model on the small-scale CF5K dataset
to verify that the performance improvement in for-
mula generation is indeed attributed to the MSFT.

To demonstrate that stage-by-stage fine-tuning
can address the information bottleneck problem
and that our D-plugin and Q-plugin are plug-and-
play, we conduct two types of comparative experi-
ments. First, we designed a joint learning experi-
ment that adds new modules during fine-tuning and
updates the parameters along with those trained in
previous stages. Specifically, in the second stage
of fine-tuning, both the LoORA modules and the D-
plugin are trained together. Similarly, in the third
stage, LORA modules, D-plugin, and the Q-plugin
are trained simultaneously. The results of these
experiments are shown in Table 3. Directly insert-
ing the two modules into the model for evaluation
results in significantly better performance across
all metrics than joint learning. This demonstrates
the plug-and-play capability of the D-plugin and

Q-plugin.

We also conduct single-stage fine-tuning by in-
serting multiple modules into the base model at the
beginning and training from scratch. In contrast
to the previous experiment, in this experiment, we
mainly compare single-stage fine-tuning and multi-
stage fine-tuning, which means the performance of
where both modules are trained together was eval-
uated against where D-plugin and Q-plugin were
added sequentially. The results are shown in Ta-
ble 2. They indicate that the independently trained
D-plugin and Q-plugin modules in MSFT outper-
form the single-stage fine-tuning approach where
both modules are trained together. Furthermore,
we examine the scenario where the intermediate
dimension of D-plugin is set to 640. Although
not incorporating Q-plugin in, the total number of
additional parameters in this setting is comparable
to the configuration where D-plugin has an inter-
mediate dimension of 512 with Q-plugin added.
These findings demonstrate that the performance
improvement introduced by the plug-and-play mod-
ules is not solely attributed to an increase in the
parameter scale. In contrast, simply increasing the
intermediate dimension of D-plugin leads to a de-
crease in performance, indicating the appearance of
the information bottleneck problem. However,
incorporating Q-plugin effectively mitigates this
issue, resulting in a substantial performance boost.

5.4 Case Study

We select two samples from CFS0K as examples
and choose three outputs from the LLaMA3-8B-
Instruct model to demonstrate its formula genera-
tion ability after MSFT. For each example, we also
select the output from GPT-40 for comparison, as

-

Example 1 Model: Liama3-8B-Instruct(after MSFT)
Objective: Formula Generation Outputl: — % 1(_) 20). L 5 1)
Input:There is an equivalent characterisation of _1 1

Output2: == —
the transfinite diameter, namely the logarithmic ipu) 2 (0) =1
capacity.A key property of a harmonic function Output3:) = 00 9
is that it attains its maximum and minimum on
the boundary of its domain. Model: GPT-40
Label: ()= ——— () () Output: lim | = ()=0

) O =1
Example 2 Model: Llama3-8B-Instruct(after MSFT)
Objective: Formula Generation Outputl: -1 -
: -0
Input: For k = 3 this gives . =6.17.Then . _ \/_ -1
: . Output2: =
can be asymptotically transformed into -

with rate 1 and strong converse exponent at Output3: ()= Vi- + D
most =—

Model: GPT-40
Label: = O

Output: L, ==

Figure 3: Outputs of two CF50K samples. The figure presents the results from LLaMA3-8B-Instruct after
applying MSFT on two different samples. Each sample shows three outputs, with the output of GPT-40 used for
comparison. More formula generation results and output formulas from the original pre-trained model can be found

in Appendix F.

shown in Figure 3.

The MSFT method helps the pre-trained
model generate more accurate mathematical op-
erators. In sample 1, the operators [, log and the
reciprocal operation, as well as the) and the mul-
tiplication operator in sample 2, all appear in the
three outputs of the LLaMA3-8B-Instruct model af-
ter MSFT. Although there are differences in these
output formulas, they all include the operators men-
tioned above. This is because the MSFT method
helps the model learn more detailed internal struc-
tures of formulas, including operators, enabling it
to better capture the operator information embed-
ded in the context when generating formulas.

When the input text contains mathematical
formulas, GPT-40 might overlook implicit math-
ematical symbols in context. In sample 1, where
no explicit mathematical symbols appear, GPT-
40 generates a formula close to the label. How-
ever, in sample 2, where the input context contains
mathematical formulas like rqg 7w ~ 6.17 and
r = —log q, GPT-40 tends to produce an output
like rgHz—w =~ —logq. In this case, the mathe-
matical symbols in the output are mostly derived
from the explicit formulas in the context. The pres-
ence of these explicit mathematical formulas makes

GPT-40 pay more attention to the mathematical
symbols appearing in the context, while potentially
neglecting the hidden mathematical symbols em-
bedded within the text. More formula generation
results and output formulas from the original pre-
trained model can be found in Appendix F.

6 Conclusion

We introduce (ContextFormulas50K)CF50K, a
mathematical formula dataset with contexts, and
propose Multi-Stage Fine-Tuning (MSFT) to gen-
erate formulas based on context. MSFT progres-
sively trains plug-and-play D-plugin and Q-plugin
modules to mitigate the information bottleneck
problem, improving formula generation perfor-
mance. Extensive evaluations were conducted on
two pre-trained models, including performance as-
sessments and ablation studies. The results demon-
strate that these plug-and-play modules signifi-
cantly enhance model performance, with LLaMA3-
8B-Instruct and Mistral-7B even achieving results
comparable to GPT-4, GPT-40, and Claude-3.5-
sonnet, validating the effectiveness of MSFT. We
expect our contributed CFS50K dataset to serve as
a new benchmark to evaluate formula generation
capabilities with our novel method MSFT.

Limitations

Our experiments confirm that pre-trained models
significantly improve their ability to generate well-
formed mathematical formulas after training in the
CF50K dataset using the MSFT approach. How-
ever, due to time and resource constraints, we have
not yet explored the applicability of MSFT to other
downstream NLP tasks, which remains a direction
for future research. Furthermore, since CFS0K
is derived from cutting-edge mathematical litera-
ture, models trained on this dataset can achieve
greater improvements in formula generation within
advanced mathematical domains compared to basic
mathematical problems. In the future, we plan to
expand the scope and scale of CF50K to address
this limitation.

References

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik
Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. 2019. MathQA: Towards interpretable math
word problem solving with operation-based for-
malisms. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
2357-2367, Minneapolis, Minnesota. Association for
Computational Linguistics.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel.
2022. BitFit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 1-9, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information
Processing Systems, 36.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei,
Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. 2023.
Parameter-efficient fine-tuning of large-scale pre-
trained language models. Nature Machine Intelli-
gence, 5(3):220-235.

Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Wei
Shen, Limao Xiong, Yuhao Zhou, Xiao Wang, Zhi-
heng Xi, Xiaoran Fan, Shiliang Pu, Jiang Zhu, Rui
Zheng, Tao Gui, Qi Zhang, and Xuanjing Huang.
2024. LoRAMOoE: Alleviating world knowledge for-
getting in large language models via MoE-style plu-
gin. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1932—-1945, Bangkok,
Thailand. Association for Computational Linguistics.

Robert M French. 1999. Catastrophic forgetting in con-
nectionist networks. Trends in cognitive sciences,

3(4):128-135.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification.
In Proceedings of the IEEE international conference
on computer vision, pages 1026-1034.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770—
778.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational conference on machine learning, pages
2790-2799. PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Kyudan Jung, Sieun Hyeon, Jeong Youn Kwon, Nam-
Joon Kim, Hyun Gon Ryu, Hyuk-Jae Lee, and Jaey-
oung Do. 2024. Mathbridge: A large corpus dataset
for translating spoken mathematical expressions into
latex formulas for improved readability. arXiv
preprint arXiv:2408.07081.

https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2024.acl-long.106
https://doi.org/10.18653/v1/2024.acl-long.106
https://doi.org/10.18653/v1/2024.acl-long.106
https://doi.org/10.18653/v1/2024.acl-long.106
https://doi.org/10.18653/v1/2024.acl-long.106

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017. Over-
coming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences,
114(13):3521-3526.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045-3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Xiang Lisa Li and Percy Liang. 2021a. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582—
4597, Online. Association for Computational Lin-
guistics.

Xiang Lisa Li and Percy Liang. 2021b. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 158—167, Vancouver,
Canada. Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. Preprint, arXiv:1907.11692.

Chuancheng Lv, Lei Li, Shitou Zhang, Gang Chen, Fan-
chao Qi, Ningyu Zhang, and Hai-Tao Zheng. 2024.
HyperLoRA: Efficient cross-task generalization via
constrained low-rank adapters generation. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2024, pages 16376-16393, Miami, Florida,
USA. Association for Computational Linguistics.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, Red Avila, et al. 2024. Gpt-4
technical report. Preprint, arXiv:2303.08774.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.

AdapterFusion: Non-destructive task composition
for transfer learning. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
487-503, Online. Association for Computational Lin-
guistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,

21(140):1-67.

Felix M Schmitt-Koopmann, Elaine M Huang, Hans-
Peter Hutter, Thilo Stadelmann, and Alireza Darvishy.
2022. Formulanet: A benchmark dataset for mathe-
matical formula detection. IEEE Access, 10:91588—
91596.

Ying Shen, Zhiyang Xu, Qifan Wang, Yu Cheng, Wen-
peng Yin, and Lifu Huang. 2024. Multimodal in-
struction tuning with conditional mixture of LoRA.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 637-648, Bangkok, Thailand.
Association for Computational Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems.

Hanging Wang, Bowen Ping, Shuo Wang, Xu Han, Yun
Chen, Zhiyuan Liu, and Maosong Sun. 2024. LoRA-
flow: Dynamic LoRA fusion for large language mod-
els in generative tasks. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 12871—
12882, Bangkok, Thailand. Association for Compu-
tational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Richard Zanibbi and Dorothea Blostein. 2012. Recogni-
tion and retrieval of mathematical expressions. Inter-
national Journal on Document Analysis and Recog-
nition (IJDAR), 15:331-357.

https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2024.findings-emnlp.956
https://doi.org/10.18653/v1/2024.findings-emnlp.956
https://doi.org/10.18653/v1/2024.findings-emnlp.956
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2024.acl-long.38
https://doi.org/10.18653/v1/2024.acl-long.38
https://doi.org/10.18653/v1/2024.acl-long.38
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://doi.org/10.18653/v1/2024.acl-long.695
https://doi.org/10.18653/v1/2024.acl-long.695
https://doi.org/10.18653/v1/2024.acl-long.695
https://doi.org/10.18653/v1/2024.acl-long.695
https://doi.org/10.18653/v1/2024.acl-long.695
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yinggian Min, Be-
ichen Zhang, Junjie Zhang, Zican Dong, Yifan Du,
Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao
Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang
Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen.
2024. A survey of large language models. Preprint,
arXiv:2303.18223.

Wei Zhao, Mingyue Shang, Yang Liu, Liang Wang, and
Jingming Liu. 2020. Ape210k: A large-scale and
template-rich dataset of math word problems. arXiv
preprint arXiv:2009.11506.

A Ethics Statement

Our dataset samples are sourced from the latest
scientific literature on arXiv. We obtained these
documents through bulk download via the Ama-
zon Web Services(AWS) platform, a paid service
officially recommended by arXiv as a legitimate
method for accessing full-text papers. Furthermore,
since our dataset is derived from arXiv, a reputable
pre-print platform, and we have implemented sensi-
tive word detection, we ensure that our dataset con-
tains no sensitive content, and the proposed MSFT
approach does not introduce any social risks or
negative impacts.

B Mathematical Symbols of CFS50K

To obtain a clear overall understanding of CFS0K,
we conducted a statistical analysis of symbols, in-
cluding operators and special characters, in the
mathematical formula of each sample. We ana-
lyzed the co-occurrence of operators as shown in
Figure 4. Due to the large variety of symbols in the
dataset, the figure does not display all mathemati-
cal symbols. Instead, we selected the most frequent
and representative ones. Using a heat map of con-
ditional probabilities, we observe the relationships
between different symbols. The symbols =, +,
and — appear much more frequently with other
symbols than other mathematical symbols, which
aligns with typical mathematical formulas. This
further demonstrates the validity of our dataset.

C Experimental Details

We conduct all experiments on the PyTorch(Paszke
etal., 2019) framework, with all pre-trained models
sourced from the Hugging Face(Wolf et al., 2020)
platform. In each training phase of MSFT, we use
the AdamW optimizer and a learning rate sched-
uler with cosine decay and a warm-up period of
one epoch, starting with an initial learning rate of

11

Stage Dataset Train Valid Test
Main Experiment

I CF50K 47868 2519 1559

II CF50K 47868 2519 1559

I CF5K 56900 1161 495

Ablation Experiment

I CF5K 4755 250 495

II CF5K 4755 250 495

I CF5K 56900 1161 495

Table 4: Experimental Dataset Partition. We present
the datasets used in both the main experiment and the
ablation experiment, along with the partitioning of the
training, validation, and test sets. Due to time and re-
source constraints, we created a smaller subset, CF5K,
which has no sample overlap with CF50K.

10~*, and a warm-up period of one epoch. The
first two stages are trained for 10 epochs, while
the third stage is trained for 20 epochs. Further-
more, the maximum input length of the model is set
to 512, while the output length for mathematical
formulas is set to 384. For LLaMA3-8B-Instruct
and Mistral-7B, we integrated the MSFT method
by adding the modules introduced to the original
Wi, Wy, Wy, and W, components of the Trans-
former(Vaswani, 2017) architecture. Apart from
using CF50K, we also use a mini-version of this
dataset, CF5K, in our experiments. And these two
datasets do not have overlapping samples. The par-
tition of the dataset for training, validation, and test
sets in different stages of MSFT is shown in the
table 4. Since each stage has distinct training ob-
jectives, the partitioning strategy differs even when
the data originates from the same dataset. The up-
ward projection matrix of D-plugin is initialized
using Kaiming initialization (He et al., 2015) with
a = 0.01, where a is the key hyper-parameter,
while the downward projection matrix is initialized
with zeros. In the third stage, both weight matri-
ces are initialized using Kaiming initialization with
a=+/5.

All experiments are conducted on NVIDIA RTX
A6000. To reduce the randomness in the model
outputs, each experiment is repeated five times and
we calculate the mean and standard deviation of
the results. A full MSFT training on CF50K takes
approximately one week.

D Pre-trained Models

In the experiments, we utilized two pre-trained
models: LLaMA3-8B-Instruct and Mistral-7B.
This section provides a brief introduction to these

https://arxiv.org/abs/2303.18223

STAGE Intermediate Joint Evaluation Metrics
Dimension Learning BLEU(f) sBLEU({) Rouge-1(f) WER(]) CER(])
I 64 v 9.1040.97 9.0940.37 0.19+0.00 5144011 2.6740.03
1I 64 X 9.87j:0_24 8.88:5:0.28 0.21;&0_00 3.94:|:0_20 1.92:5:0.07
11 128 Ve 9.4610.24 9~57i0.14 0.2010,01 4-67i0,16 2~35i0.05
1I 128 X 10.60;&).29 9.79j;0.14 0-22:l:0.01 3.68:|:0_11 1.83:5:0,04
I 256 v 10.63+0.20 9.3040.12 0.20+0.01 3.644+018 1.8940.07
I 256 X 12.0249.36 11.2240.37 0.2419.01 3.0040.17 1.5740.06
I 512 v 12.5540.93 11.86+9.95 0.24+9.00 2.894006 1.5740.02
I 512 X 14.64 o917 12.861026 0.271001 2.251003 1.264001
111 16 v 13.354097 12.3440.17 0.2540.01 2474002 1.3840.03
III 16 X 16.64:|:0.36 13.49:|:0_17 0-29:t0.01 1.74:|:0_04 1.02:‘:0.03
III 32 v 14.1440.48 12.7440.14 0.26+0.01 2.464007 1.3540.04
III 32 X 17670923 13.861027 0.304001 1.621001 0.971003
III 64 v 13.66i0.25 12~20:|:0.16 0.26:(:0_00 2.44:|:0_02 1.37:5:0.01
III 64 X 17114991 13.7249.15 0.2940.01 1.741008 1.0240.03
I 128 v 13'40:|:0.11 12.33:|:0_32 0.26:(:0_00 2.47:|:0_12 1.41:5:0.02
111 128 X 14.6540.26 13.9240.11 0.2710.01 2.3540.02 1.30+0.03

Table 5: Impact of Joint Learning (JL). The table presents the results of JL in the second and third fine-tuning
stages. Evaluation metrics include BLEU, sBLEU, Rouge-1, WER, and CER. We compare the intermediate
dimension 7, of the D-plugin across {64, 128, 256, 512} and the intermediate dimension 73 of the Q-plugin across

{16, 32, 64, 128}.

models.

¢ LLaMAZ3-8B-Instruct(Touvron et al., 2023)
is a large-scale instruction-tuned language
model developed by Meta, featuring 8 billion
parameters. As an improved version of its
predecessors, it has been trained with a fo-
cus on instruction-following tasks, leveraging
both supervised fine-tuning and reinforcement
learning. The model benefits from enhanced
Transformer architecture and extensive pre-
training on diverse, high-quality datasets. It
has demonstrated strong performance in var-
ious natural language processing tasks, par-
ticularly in reasoning, code generation, and
mathematical problem-solving, making it a
powerful tool for research and practical appli-
cations.

Mistral-7B(Jiang et al., 2023) is a powerful 7-
billion-parameter language model developed
by Mistral Al. We use the Mistral-7B-Instruct-
v0.2 version. It is designed to achieve high
efficiency and strong performance in various
natural language processing tasks. Compared
to other models of similar scale, Mistral-7B in-
corporates architectural optimizations that en-
hance its reasoning ability, fluency, and adapt-
ability. Trained on a diverse and high-quality

12

dataset, it excels in code generation, logical
inference, and mathematical problem solving.
Its balance between model size and computa-
tional efficiency makes it well suited for both
research and real-world applications.

E Ablation Study

We conducted Joint Learning(JL) experiments on
LLaMA3-8B-Instruct that progressively integrate
new modules during fine-tuning while updating pa-
rameters alongside those optimized in earlier stages.
Specifically, in the second fine-tuning stage, both
the LoRA module and the D-plugin are jointly
trained. Likewise, in the third stage, training is per-
formed simultaneously on LoRA, D-plugin, and
Q-plugin.

We compare the intermediate dimension ry of
the D-plugin across {64, 128, 256, 512} and the
intermediate dimension r3 of the Q-plugin across
{16, 32, 64, 128}. The evaluation is carried out
using BLEU, sBLEU, Rouge-1, WER, and CER.
The results of these experiments are presented in
Table 5. All performance metrics are observed to
degrade after JL is applied, indicating the need to
freeze the modules trained in previous stages at
each step. This further validates the effectiveness
of the MSFT approach.

F Case Study

In this section, we provide a detailed analysis of
two sample outputs from CF50K. Using LLaMA3-
8B-Instruct as the baseline, we present three out-
puts from the original model and five from MSFT-
enhanced models, with GPT-40 outputs included
for comparison, as shown in Figures 5 and Fig-
ures 6. Observing these results, we find that mod-
els fine-tuned with MSFT demonstrate a signifi-
cantly improved ability to generate well-structured
mathematical formulas, often closely matching the
ground-truth labels. This validates the effective-
ness of our dataset and the MSFT approach in
supporting scientific research, particularly in the
construction of mathematical formulas.

13

Math Symbols Co-occurrence Heatmap (Conditional Probability)

"

0.200

0.175

0.150

0.125

0.100

, T EEXSCTCHADAMCSCTEYX -~ DI NMm OI< ™K

-0.075

X

-0.050

-0.025

-=0.000

"m

aBsz(nGLKAuvfnparu¢xww+-x+=¢<>sszIzn=Ea

R Il M TIMe— g 8 VIN v At

Figure 4: Co-occurrence heatmap of mathematical symbols in CFS0K, which illustrates the relationship between
mathematical symbols (including operators and unknown parameters). The heatmap illustrates the co-occurrence
frequency of these symbols using their conditional probabilities. The deep red grid means a stronger correlation.
For instance, the darkest red grids of the grids correspond to the symbols =, +, and —, which indicates that these
symbols frequently co-occur with other symbols.

14

(A
Example 1 Model: Llama3-8B-Instruct(before MISFT)
Outputl: ()
Text before the formula:There is an equivalent T— ()= a 1
characterisation of the transfinite diameter, utputs: o0 - ()
namely the logarithmic capacity. Output3: ()= - (.)+ % 2 2 (| - |)
- 0

Formula: () S ﬁ () ()
Text after the formula:A key property of a feistel s Do £ 12 Ml i el
harmonic function is that it attains its maximum Qutput1: =1 —20 20). , 1)
and minimum on the boundary of its domain. 2 1 R 1

@ OutputZ: () = 2— () Tl

. —)
Objective: Formula Generation Output3: =40
— 1 _
Input:There is an equivalent characterisation of ~ OUtPut4: ()= | |
the transfinite diameter, namely the logarithmic = Qutput5: = — Iog(i) D @
) . S 1)
capacity.A key property of a harmonic function is
that it attains its maximum and minimum on the
boundary of its domain. Model: GPT-40
1 o
Label: = _ Output: lim = =0
abel: () S5 O O ouw m =1 Q)
- %

Figure 5: CF50K Sample Output 1. This figure presents three outputs from the LLaMA3-8B-Instruct pre-
trained model, along with five outputs enhanced by MSFT. Additionally, one output from GPT-40 is included for

comparison.
4 A
Example 2 Model: Llama3-8B-Instruct(before MISFT)
1 2
Text before the formula: el g @ () =
Fork =3 thisgives . =6.17. Output2: Il O- Ol=-
2 = O) . 3
Formula: Output3: ., —
Text after the formula: e 3.8B-Instruct{after MSFT)
Then can be asymptotically transformed into odel: tlamas-eL-instruct{after
with rate 1 and strong converse exponent at Outputl: =1 _—01
most =— v a0
Output2: = o
v oupuz: ()= I 4V D
Objective: Formula Generation Outputd: =
Input:For k = 3 this gives = 6.17. Then =t
can be asymptotically transformed into with Output5: = v
rate 1 and strong converse exponent at most
- Model: GPT-40
Label: = O
Output: L ==
S J

Figure 6: CF50K Sample Output 2. This figure presents three outputs from the LLaMA3-8B-Instruct pre-
trained model, along with five outputs enhanced by MSFT. Additionally, one output from GPT-4o0 is included for

comparison.

15

	Introduction
	Related Work
	Datasets
	Parameter-Efficient Fine-Tuning

	ContextFormulas50K Dataset
	Multi-Stage Fine-Tuning
	Dual-Plugin
	Quad-Plugin

	Experiments
	Setup
	Results
	Ablation Study
	Case Study

	Conclusion
	Ethics Statement
	Mathematical Symbols of CF50K
	Experimental Details
	Pre-trained Models
	Ablation Study
	Case Study

