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Abstract001

Mathematics plays a crucial role in scien-002
tific research. However, it is never easy to003
formulate a problem using mathematical for-004
mulas, even for senior researchers. Fine-005
tuning pre-trained models on mathematical006
datasets to facilitate research has become a007
widely adopted approach. Although there are008
numerous mathematical datasets, only high-009
quality datasets could enhance the pre-trained010
model for a deep insight into formulas be-011
cause mathematics is a precise discipline. To012
address this, we propose the ContextFormu-013
las50K dataset, which consists of mathemati-014
cal formulas paired with their contextual text.015
Based on this dataset, we fine-tune two pre-016
trained models (i.e. LLaMA-8B-Instruct and017
Mistral-7B) to generate precise formulas for018
research work. But in this task, there emerges019
the information bottleneck problem, which020
means the parameter scale expands much021
faster than performance. To overcome this022
problem, we introduce a Multi-Stage Fine-023
Tuning(MSFT) approach to equip large lan-024
guage models (LLMs) with better mathemati-025
cal comprehension. Specifically, there are three026
stages in our model, and by progressively in-027
serting plug-and-play modules, model perfor-028
mance could be enhanced at each stage, which029
means our method effectively alleviates infor-030
mation bottlenecks. Experimental results show031
that our model effectively improves mathemat-032
ical comprehension and achieves state-of-the-033
art performance in the formula generation task,034
outperforming multiple commercial baselines035
(i.e., GPT-4, GPT-4o, and Claude-3.5-sonnet).036

1 Introduction037

The rise and rapid development of interdisciplinary038

fields have created challenges, particularly for re-039

searchers unfamiliar with complex mathematics.040

An appropriate formulation could effectively con-041

vey the methodology precisely both in the research042

process and in scientific writing. However, mathe-043

matical formulas in scientific papers can be particu- 044

larly perplexing for individuals, such as economists 045

and psychologists, especially for those with limited 046

experience in mathematical modeling. 047

To overcome this obstacle, we intend to apply 048

large language models (LLMs)(Zhao et al., 2024) 049

for formula generation. Therefore, we fine-tune 050

pre-trained models(Devlin et al., 2019; Liu et al., 051

2019; Raffel et al., 2020; Ding et al., 2023) with 052

our contributed high-quality dataset ContextFor- 053

mulas50K(CF50K), which consists of a formula 054

paired with its surrounding contexts. However, 055

we encounter information bottleneck problem, 056

which means the parameter scale expands much 057

faster than performance. To solve this issue, with 058

the parameter-efficient fine-tuning(PEFT) method- 059

ology(Houlsby et al., 2019; Li and Liang, 2021a; 060

Hu et al., 2021; Ben Zaken et al., 2022), we propose 061

a novel framework that Multi-Stage Fine-Tuning 062

(MSFT). Specifically, we apply multiple stages to 063

train our inserted modules, and by incrementally 064

inserting modules at each stage, LLM gradually 065

demonstrates superior comprehension of complex 066

mathematical formulas. 067

In addition, there are three stages, and our ap- 068

proach involves training plug-and-play modules at 069

each stage. On the one hand, when there is no for- 070

mula in our input, our trained modules would not 071

be inserted, which means that our method produces 072

no side effect for models just to process text. On 073

the other hand, when formula comes across the 074

input, we then insert our trained modules to com- 075

prehend mathematics, which demonstrates a novel 076

methodology to enhance large language models 077

for a particular data type basically without knowl- 078

edge loss (French, 1999; Kirkpatrick et al., 2017). 079

In this way, the performance for textual queries 080

would not be affected by our fine-tuning process, 081

while LLM can comprehend mathematics via our 082

methodology without a side effect. 083

Experimental results show that our model im- 084
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proves mathematical comprehension effectively085

and achieves state-of-the-art performance against086

multiple commercial models (i.e., GPT-4, GPT-087

4o(Brown et al., 2020; OpenAI et al., 2024) and088

Claude-3.5-sonnet) in the task of formula genera-089

tion.090

Our contributions are threefold:091

• We introduce a dataset for mathematic com-092

prehension, ContextFormulas50K (CF50K),093

consisting of mathematical formulas and their094

surrounding texts. This dataset facilitates the095

formula generation task. To our best knowl-096

edge, this is the first dataset of its own type.097

• We propose our novel Multi-Stage Fine-098

Tuning(MSFT) method, where each stage099

trains a plug-and-play module for a spe-100

cific stage-wise task. This approach signifi-101

cantly addresses the information bottleneck102

problem, and achieves state-of-the-art per-103

formance even against commercial products104

(i.e., GPT-4, GPT-4o, and Claude-3.5-sonnet)105

in complex mathematical comprehension and106

formula generation.107

• We propose a plug-and-play methodology that108

only brings our fine-tuning modules to work109

when the formula is concerned. This means110

that the performance for textual queries would111

not be affected by our fine-tuning process,112

which is novel in parameter-efficient fine-113

tuning approaches.114

2 Related Work115

2.1 Datasets116

In recent years, the availability of specialized117

datasets in various mathematical fields has played118

an irreplaceable role in advancing cutting-edge119

research in areas such as economics and sociol-120

ogy. One notable example is im2latex-100k, which121

contains 100, 000 images of mathematical formu-122

las along with their corresponding LATEX code.123

This dataset aims to facilitate the image-to-text124

generation task for handwritten mathematical for-125

mulas and is widely used to train and evaluate126

formula recognition. A similar effort is Formu-127

laNet(Schmitt-Koopmann et al., 2022), a high-128

quality dataset for mathematical formula detec-129

tion (MFD)(Zanibbi and Blostein, 2012), which130

makes significant progress in annotating simple131

formulas. The dataset MATH(Hendrycks et al.,132

2021) contains nearly 10, 000 mathematical com- 133

petition problems with detailed solutions, aimed 134

at mathematical reasoning and explanation. The 135

Math23K(Ling et al., 2017) dataset is used for train- 136

ing and evaluating machine learning models to au- 137

tomatically solve mathematical problems, partic- 138

ularly in expression reasoning and formula gener- 139

ation. Ape210K(Zhao et al., 2020), a large-scale 140

collection of Chinese elementary school math prob- 141

lems, far exceeds Math23K in size and offers a 142

higher diversity of problem templates. Compared 143

with Math23K, Ape210K requires the model to 144

have common knowledge. Similarly, AQuA(Ling 145

et al., 2017), which generates question-answer 146

reasoning tasks, helps models progressively de- 147

rive the final answer to mathematical problems, 148

aiding in the learning of arithmetic programs. 149

MathQA(Amini et al., 2019) extends AQuA by 150

introducing a new representational language to ac- 151

curately model the operational procedures of each 152

problem, improving both performance and inter- 153

pretability. These datasets are still unable to share 154

a focus on deep mathematical understanding and 155

are not capable of supporting formula generation 156

tasks. In contrast, we propose ContextFormu- 157

las50K(CF50K), specifically designed for formula 158

generation through context understanding. Our 159

dataset aims to prepare LLMs for mathematical 160

comprehension based on textual descriptions. To 161

our best knowledge, our dataset is the first of its 162

own type, providing a benchmark for future studies. 163

2.2 Parameter-Efficient Fine-Tuning 164

As the scale of pre-trained language models 165

expands rapidly, parameter-efficient fine-tuning 166

(PEFT) has become a key technique to reduce 167

the high computational and storage costs of train- 168

ing large models. Traditional fine-tuning re- 169

quires adjusting all model parameters, which in- 170

curs significant overhead. To address this, vari- 171

ous PEFT methods have been proposed to mini- 172

mize resource usage while preserving model per- 173

formance. Adapter(Houlsby et al., 2019) inserts 174

lightweight, learnable modules in each layer, ad- 175

justing only the parameters of the inserted modules 176

to avoid full parameter fine-tuning costs. Adapter- 177

Fusion(Pfeiffer et al., 2021) combines several 178

Adapters, enhancing adaptability for multi-task 179

learning. Prefix-tuning(Li and Liang, 2021b) ma- 180

nipulates pre-designed prefixes to control model 181

behavior. Other approaches, such as Prompt Tun- 182

ing(Lester et al., 2021), optimize input prompts 183
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Figure 1: ContextFormula50K(CF50K) Example. As shown in the part above the double horizontal line, each
sample in CF50K is a triplet (context before formula, formula, context after formula), where the i-th sample is
displayed. For the part below the double horizontal line, the diagram shows how the CF50K samples are transformed
into different training sets in each stage of MSFT. Each training set consists of (inputi, labeli) pairs based on the
objectives of that stage.

instead of model parameters, and BitFit(Ben Za-184

ken et al., 2022) adjusts only the bias parameters185

for lower overhead. LoRA(Hu et al., 2021) uses186

low-rank decomposition of weight matrices, adjust-187

ing only a small portion of parameters, reducing188

fine-tuning costs while improving efficiency and189

performance. The variants like QLoRA(Dettmers190

et al., 2024) further optimize memory and compu-191

tation through quantization, while HyperLoRA(Lv192

et al., 2024) refines the low-rank strategy for better193

results. MixLoRA(Shen et al., 2024) achieves a194

zero-shot generalization improvement by dynami-195

cally adjusting low-rank adaptation matrices to ad-196

dress task interference in multimodal tasks. LoRA-197

Flow(Wang et al., 2024) improves the adaptability198

and performance of LoRA in generative tasks by us-199

ing dynamic fusion weights. LoRAMoE(Dou et al.,200

2024) uses low-rank adapters and a router network201

to enhance the performance of downstream tasks202

while preventing the forgetting of world knowl-203

edge. These innovations further demonstrate the204

high potential and efficiency of PEFT, particularly205

in large-scale pre-trained models, offering cost-206

effective solutions for a wide range of tasks. In this207

paper, we propose a novel fine-tuning paradigm,208

Multi-Stage Fine-Tuning (MSFT), applied to the 209

CF50K dataset. This approach trains plug-and- 210

play modules to alleviate information bottlenecks 211

during training, for better mathematical compre- 212

hension. 213

3 ContextFormulas50K Dataset 214

To obtain a large-scale and high-quality set of math- 215

ematical formulas, we choose to use the bulk down- 216

load method through the official AWS(Amazon 217

Web Services) servers to retrieve LATEX source pa- 218

pers from the open-access platform arXiv. Then, 219

we carefully select 5, 000 mathematical papers that 220

are rich in formulas. Therefore, the samples in our 221

dataset are more authentic and accurate. 222

After acquiring the LATEX source code, we 223

apply regex matching to extract mathemati- 224

cal formulas. For example, these patterns 225

include the beginning and ending tags such 226

as \begin{equation} and \end{equation}, 227

\begin{align} and \end{align}. To obtain the 228

context of each formula, we annotate the context 229

of each formula as the text around this formula. 230

If there is no other formula in this paragraph, we 231

define the entire paragraph as the context, or we 232
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define the text from the formula to the previous233

or next formula as the context, which may cause234

the context of the formula to overlap. To create a235

high-quality dataset, we exclude samples with con-236

text lengths shorter than 32 tokens, which cannot237

provide sufficient information to understand one238

formula. Thus, each sample in our dataset con-239

sists of a triplet: (context before formula, formula,240

context after formula), as shown in Figure 1. In ad-241

dition, we analyze the co-occurrence of operators242

as shown in Appendix B by using a heat map of243

the conditional probabilities.244

4 Multi-Stage Fine-Tuning245

Initially, we designed our model Multi-Stage246

Fine-Tuning(MSFT) based on LoRA, see Fig-247

ure 2(a). However, LoRA presents information248

bottleneck problem. To solve this problem, we249

introduce two additional sequential fine-tuning250

stages, namely Dual-plugin and Quad-plugin.251

4.1 Dual-Plugin252

Our goal is to alleviate the information bottleneck253

encountered in traditional parameter-efficient fine-254

tuning. To achieve this, we propose the Dual-255

plugin (D-plugin, see Figure 2(b)). The introduc-256

tion of this module does not alter the parameters257

of the first-stage trained modules but inserts a pair258

of new weight matrices between two original pro-259

jection matrices of LoRA, which constitute our260

D-plugin. A training set is composed of pairing261

the formulas, D2 : {(xi, yi)}i=1,..,N , where xi and262

yi represent the formula of the same sample in our263

dataset(see Figure 1), and N denotes the total num-264

ber of samples.265

We demonstrate LoRA in Figure 2(a) and la-266

bel the parameter matrices as Lup ∈ Rd×r1 and267

Ldown ∈ Rr1×d, where r1 is the rank of the LoRA268

module and d is the dimension of hatt. For each269

hidden state hatt ∈ Rd after attention and concate-270

nation in Transformer (Vaswani, 2017), it under-271

goes a matrix transformation during forward prop-272

agation(see Figure 2(b)), as shown in the following273

equation:274

hout = Wprehatt+LupDupDdownLdownhatt (1)275

where hout represents the new hidden state after276

passing through the concatenated modules, and277

Wpre ∈ Rd×d denotes the pre-trained weight278

matrix that is concatenated, Dup ∈ Rr1×r2 and279

Ddown ∈ Rr2×r1 represent the pair of projection280

matrices inserted into the Lup and Ldown weight 281

matrices during this stage, with r2 is the intermedi- 282

ate dimension of D-plugin. 283

The second stage aims at formula structure. Dur- 284

ing the training of D-plugin, we freeze the parame- 285

ters of the base model and the LoRA modules in our 286

first stage. We only train the D-plugin projection 287

matrices. This allows us to achieve a plug-and-play 288

module by training only the new parameters θD, 289

without affecting the performance of any previous 290

work. Therefore, we set the auto-regressive for- 291

mula generation task as the training objective. The 292

objective is to optimize the following formula: 293

max
θD

∑
(x,y)∼D2

|y|∑
t=1

log
(
PΦ1+∆Φ(θD) (yt | x, y<t)

)
(2) 294

where D2 is our constructed pair dataset(see the 295

STAGE II section of figure 1) and Φ1 means all 296

model parameters, including LoRA modules, after 297

first-stage fine-tuning. For all other symbols and 298

process, we follow (Hu et al., 2021), where we 299

freeze Φ1 and only fine-tuning θD. 300

4.2 Quad-Plugin 301

Despite the performance improvements from our 302

two-stage fine-tuning, we intend to analyze the sub- 303

structure of formulas based on computation priority. 304

Thus, our model can generate more mathematically 305

coherent formulas. By the word of computation 306

priority, we mean that × shall be computed before 307

+ normally in a mathematical formula. Therefore, 308

we introduce the Quad-Plugin (Q-plugin) module, 309

which consists of another pair of weight matrices, 310

Qdown ∈ Rr3×r2 and Qup ∈ Rr2×r3 between the 311

D-plugin with a residual connection. Q-plugin en- 312

codes the priority information of the formula into 313

the final stage of fine-tuning. We transform the 314

formulas in our sample into sequences based on 315

computation priority, and then we formulate our 316

training objective as the Seq2Seq learning frame- 317

work based on the sequences. Thus, we prepare 318

the data D3 : {(zi, zi−1)}i=1,··· ,M , where it means 319

the next part zi of a formula and its preceding part 320

zi−1(see Figure 1). 321

The forward propagation path(see Figure 2(c)) 322

for each hidden state hatt after attention and con- 323

catenation in Transformer (Vaswani, 2017) is as 324

follows: 325

hD = DdownLdownhatt (3) 326
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Figure 2: Schematic diagram of Multi-Stage Fine-Tuning (MSFT). The deep blue modules in the figure are
frozen during fine-tuning, while the orange modules are the ones to be trained. Wpre represents the pre-trained
module. (a) In the first stage, LoRA fine-tuning introduces two projection matrices, Lup and Ldown, which are
parallel to the pre-trained module. (b) In the second stage, our designed D-plugin is inserted between the original
LoRA layers, consisting of a pair of new weight matrices, Dup and Ddown. (c) In the third stage, the Q-plugin is
added via a residual connection between the D-plugin, composed of another pair of new matrices, Qdown and Qup.
Additionally, hatt, hLdown

, hD, and hout represent the hidden states of each token after the matrix transformations.

327
hout = Wprehatt +LupDup(hD +QupQdownhD)

(4)328

where hD ∈ Rr2 is the hidden state after pass-329

ing through the Ldown module of LoRA and the330

upward projection matrix Ddown of D-plugin. In331

Equation 4, the term inside the parentheses rep-332

resents the residual connection(He et al., 2016)333

applied to hD. The meanings of the remaining334

symbols are the same as those in the previous sub-335

section, and the training objective is also the same:336

max
θQ

∑
(x,y)∼D3

|y|∑
t=1

log
(
PΦ2+∆Φ(θQ) (yt | x, y<t)

)
(5)337

where D3 refers to the dataset we constructed (as338

shown in the STAGE III part of Figure 1) and339

θQ represents the parameters introduced in this340

stage. Φ2 represents all model parameters, includ-341

ing LoRA modules and D-plugin, after two-stage342

fine-tuning. For all other symbols and process, we343

follow (Hu et al., 2021), where we freeze Φ2 and344

only fine-tuning θQ.345

5 Experiments346

In this section, we outline a series of experiments347

performed on the CF50K dataset, aimed at generat-348

ing mathematical formulas. Our experiments based349

on two pre-trained models with our method MSFT350

reveal the effectiveness of our model. Additionally,351

we perform ablation experiments to further validate 352

the effectiveness of our approach. 353

5.1 Setup 354

The task involves providing the model with con- 355

text to generate a mathematical formula. The com- 356

plex structure of mathematical formulas often leads 357

to longer training times in resource-constrained 358

environments. To address this, we construct a 359

smaller dataset, CF5K, which is also used for 360

performance validation and ablation experiments. 361

We conduct three stages of fine-tuning on the full 362

CF50K dataset, based on two pre-trained models, 363

namely LLaMA3-8B-Instruct and Mistral-7B. Our 364

fine-tuning hyperparameters vary across different 365

stages, due to different training objectives. Please 366

refer to our Appendix C for details. In the first 367

stage, we apply the PEFT method LoRA, illus- 368

trated in Figure 2(a). To strike a balance between 369

fine-tuning performance and the parameter scale, 370

we explore the rank r1 illustrated in Figure 2(a) 371

from the set {8, 16, 32, 64} and we find the setting 372

of r1 = 64 achieves the best performance. We 373

choose the scale factor, a special hyper-parameter 374

of LoRA, from the set {8, 16, 32, 64, 128}, with 375

128 chosen as the best setting. The second stage 376

introduces D-plugin. The internal dimension r2 377

of D-plugin illustrated in Figure 2(b) is set to 512 378

chosen from {64,128,256,512}. In the third stage, 379

we use the identical experimental setup but with 380
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Model Trainable Param. Evaluation Metrics
Param. New/Total BLEU(↑) sBLEU(↑) Rouge-1(↑) WER(↓) CER(↓)

LLaMA3-8B-Insruct
Baseline - - 7.95±0.01 7.01±0.04 0.15±0.01 5.67±0.01 2.45±0.01

w/ LoRA 55M 0.67% 10.20±0.10 10.01±0.06 0.20±0.01 4.32±0.07 2.30±0.05

w/ LoRA+D-plugin 63M 0.78% 12.78±0.04 11.85±0.07 0.23±0.01 3.24±0.03 1.67±0.03

w/ LoRA+D-plugin+Q-plugin 67M 0.83% 13.05±0.04 12.04±0.07 0.24±0.00 3.15±0.04 1.61±0.03

Mistral-7B
Baseline - - 5.80±0.03 6.73±0.03 0.15±0.00 9.69±0.05 5.20±0.01

w/ LoRA 55M 0.75% 13.32±0.11 10.21±0.04 0.22±0.00 2.60±0.02 1.63±0.09

w/ LoRA+D-plugin 63M 0.86% 18.81±0.02 15.77±0.16 0.32±0.00 1.24±0.01 0.83±0.01

w/ LoRA+D-plugin+Q-plugin 67M 0.92% 20.04±0.04 16.60±0.10 0.33±0.01 1.26±0.01 0.85±0.01

Mainstream Commercial Models
GPT-4 - - 12.50 7.16 0.18 2.48 1.28
GPT-4o - - 13.90 8.05 0.21 2.23 1.18
Claude-3.5-sonnet - - 14.09 9.05 0.22 1.58 1.00

Table 1: Model Performance Comparison. The table presents the performance of LLaMA3-8B-Insruct and Mistral-
7B after sequentially inserting the LoRA, D-plugin, and Q-plugin modules. The symbol "w/" indicates the insertion
of the module. BLEU, sBLEU, Rouge-1, WER, and CER are chosen as evaluation metrics, with each experiment
repeated five times to report the mean and standard deviation. Additionally, commercial models GPT-4, GPT-4o,
and Claude-3.5-sonnet are included for comparison, and the results of a single experiment are also shown.

an internal dimension r3 of the Q-plugin set to 32,381

see Figure 2(c).382

5.2 Results383

A set of assessment metrics is required to eval-384

uate the performance of formula generation. To385

our best knowledge, there is currently no per-386

fect method for accurately measuring performance.387

Therefore, we adopt the approach from Math-388

Bridge (Jung et al., 2024), utilizing five classic389

evaluation metrics for natural language genera-390

tion: BLEU, sBLEU(sacreBLEU), Rouge-1, WER391

(Word Error Rate), and CER (Character Error Rate).392

As shown in Table 1, we present the initial per-393

formance evaluations of two pre-trained models:394

LLaMA3-8B-Instruct and Mistral-7B, along with395

the evaluation results after each stage of the MSFT.396

We list the number of parameters required for train-397

ing at each fine-tuning stage and their respective398

proportions relative to the total parameter scale.399

Our MSFT method demonstrates significant400

performance improvements in each fine-tuning401

stage. Taking LLaMA3-8B-Instruct as an example,402

after the initial LoRA fine-tuning, the performance403

shows an preliminary improvement, with its av-404

erage BLEU scoring 10.20 and sBLEU reaching405

10.01. Following the insertion of the trained D-406

plugin, the BLEU and sBLEU scores increased407

by 25% and 43%, respectively, and the WER and408

CER decreased by 23% and 26%, respectively. Af-409

ter the third stage of fine-tuning, with the insertion410

of Q-plugin, all metrics have improved further and 411

the evaluation metrics are now close to those of 412

commercial models(e.g., GPT-4). Mistral-7B pro- 413

vides the same insights as our first base model and, 414

after applying MSFT, achieves BLEU and sBLEU 415

scores 2.45× and 1.46× higher than its baseline, out- 416

performing even GPT-4o and Claude-3.5-sonnet, 417

both of which are known for their strong mathemat- 418

ical reasoning capabilities. 419

The D-plugin and Q-plugin effectively ad- 420

dress the information bottleneck problem en- 421

countered during LoRA fine-tuning. In the 422

LoRA fine-tuning stage, we observe that when 423

the intermediate dimension of the LoRA module 424

reaches 64, further increasing this hyperparam- 425

eter causes the model size to grow much faster 426

than the improvement in performance, thus result- 427

ing in the information bottleneck problem. How- 428

ever, after introducing the D-plugin, which only 429

accounts for 17% of the total parameters added 430

in the LoRA stage, a noticeable performance im- 431

provement is achieved. Despite this, D-plugin still 432

encounters the information bottleneck problem. 433

Adding the Q-plugin, which contributes only 7% 434

of the total parameters introduced by the LoRA 435

module, further improves the performance. Ul- 436

timately, the final BLEU and sBLEU scores in- 437

crease by 28% and 20%, respectively, compared 438

to the LoRA stage, successfully mitigating the 439

information bottleneck problem. 440
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D-plugin D-plugin Q-plugin TFS Trainable Evaluation Metrics
(r=512) (r=640) (r=32) Param. BLEU(↑) sBLEU(↑) Rouge-1(↑) WER(↓) CER(↓)

✗ ✗ ✗ ✗ 55M 10.93±0.10 10.78±0.12 0.22±0.00 3.92±0.03 2.13±0.02

✓ ✗ ✗ ✓ 63M 10.31±0.22 10.47±0.28 0.21±0.00 4.05±0.08 2.34±0.04

✓ ✗ ✓ ✓ 67M 11.67±0.26 11.03±0.18 0.22±0.01 3.07±0.03 1.73±0.02

✗ ✓ ✗ ✗ 67M 13.64±0.19 12.53±0.11 0.26±0.10 2.47±0.14 1.34±0.02

✓ ✗ ✗ ✗ 63M 14.64±0.17 12.86±0.26 0.27±0.01 2.25±0.03 1.26±0.01

✓ ✗ ✓ ✗ 67M 17.67±0.23 13.86±0.27 0.30±0.01 1.62±0.01 0.97±0.03

Table 2: Comparison of single-stage and multi-stage fine-tuning results. In this table, a "✓" under the D-plugin,
and Q-plugin columns indicates whether the corresponding module was inserted, with the internal dimension
of each module shown in parentheses below. All comparative experiments conducted here have undergone the
first stage of MSFT with LoRA fine-tuning at a rank of 64. "TFS" stands for "training from scratch," indicating
whether these modules were trained together from scratch, corresponding to single-stage fine-tuning. We evaluate
model performance using BLEU, sBLEU, Rouge-1, WER, and CER metrics, and also compare the total number of
parameters added in different configurations.

STAGE Joint Evaluation Metrics
Learning BLEU(↑) sBLEU(↑) Rouge-1(↑)

II ✓ 12.55±0.23 11.86±0.25 0.24±0.00

II ✗ 14.64±0.17 12.86±0.26 0.27±0.01

III ✓ 14.14±0.48 12.74±0.14 0.26±0.01

III ✗ 17.67±0.23 13.86±0.27 0.30±0.01

Table 3: Impact of Joint Learning (JL). The table
presents the results of JL in the second and third fine-
tuning stages, with the intermediate dimension of D-
plugin set to 512 and Q-plugin to 32. Evaluation met-
rics include BLEU, sBLEU, and Rouge-1. Additional
metrics and JL comparisons under different intermedi-
ate dimensions are provided in Appendix E.

5.3 Ablation Study441

In this subsection, we choose LLaMA3-8B-Instruct442

as the base model on the small-scale CF5K dataset443

to verify that the performance improvement in for-444

mula generation is indeed attributed to the MSFT.445

To demonstrate that stage-by-stage fine-tuning446

can address the information bottleneck problem447

and that our D-plugin and Q-plugin are plug-and-448

play, we conduct two types of comparative experi-449

ments. First, we designed a joint learning experi-450

ment that adds new modules during fine-tuning and451

updates the parameters along with those trained in452

previous stages. Specifically, in the second stage453

of fine-tuning, both the LoRA modules and the D-454

plugin are trained together. Similarly, in the third455

stage, LoRA modules, D-plugin, and the Q-plugin456

are trained simultaneously. The results of these457

experiments are shown in Table 3. Directly insert-458

ing the two modules into the model for evaluation459

results in significantly better performance across460

all metrics than joint learning. This demonstrates461

the plug-and-play capability of the D-plugin and462

Q-plugin. 463

We also conduct single-stage fine-tuning by in- 464

serting multiple modules into the base model at the 465

beginning and training from scratch. In contrast 466

to the previous experiment, in this experiment, we 467

mainly compare single-stage fine-tuning and multi- 468

stage fine-tuning, which means the performance of 469

where both modules are trained together was eval- 470

uated against where D-plugin and Q-plugin were 471

added sequentially. The results are shown in Ta- 472

ble 2. They indicate that the independently trained 473

D-plugin and Q-plugin modules in MSFT outper- 474

form the single-stage fine-tuning approach where 475

both modules are trained together. Furthermore, 476

we examine the scenario where the intermediate 477

dimension of D-plugin is set to 640. Although 478

not incorporating Q-plugin in, the total number of 479

additional parameters in this setting is comparable 480

to the configuration where D-plugin has an inter- 481

mediate dimension of 512 with Q-plugin added. 482

These findings demonstrate that the performance 483

improvement introduced by the plug-and-play mod- 484

ules is not solely attributed to an increase in the 485

parameter scale. In contrast, simply increasing the 486

intermediate dimension of D-plugin leads to a de- 487

crease in performance, indicating the appearance of 488

the information bottleneck problem. However, 489

incorporating Q-plugin effectively mitigates this 490

issue, resulting in a substantial performance boost. 491

5.4 Case Study 492

We select two samples from CF50K as examples 493

and choose three outputs from the LLaMA3-8B- 494

Instruct model to demonstrate its formula genera- 495

tion ability after MSFT. For each example, we also 496

select the output from GPT-4o for comparison, as 497
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Example 1

Objective: Formula Generation

Input:There is an equivalent characterisation of 
the transfinite diameter, namely the logarithmic 
capacity.A key property of a harmonic function 
is that it attains its maximum and minimum on 
the boundary of its domain.

Label:  ��(�) =  ��� 1
�(�)�(�)|�−�|

��(�)��(�)

Model: Llama3-8B-Instruct(after MSFT)

Output1:      �� = 1
2
���   ��1(�)��2(�)

�−�� : �1, �2 ∈ ℳ+
1 (�) 

Output2:           �(�) = 1
2�

 �(�) ��� 1
|�−�|

��

Output3:           �(0) =  0
� 0

� ℎ(0)
�

����

Model: GPT-4o

Output:                 lim
�→0

 ���|� − �|��(�) = 0

Example 2

Objective: Formula Generation

Input: For k = 3 this gives ����→� ≈ 6.17.Then  
� can be asymptotically transformed into � 
with rate 1 and strong converse exponent at 
most � =− ��� �.

Label:                   �� =  �∈��
���(�)�

Model: Llama3-8B-Instruct(after MSFT)

Output1:                            � = 1
�
 �=0

�−1 �

Output2:                            � =  �=0
�−1���

Output3:           �(�) =  � ��( 1 − �� + �|�  �|)

Model: GPT-4o

Output:                           ����→� ≈ −��� �            

Figure 3: Outputs of two CF50K samples. The figure presents the results from LLaMA3-8B-Instruct after
applying MSFT on two different samples. Each sample shows three outputs, with the output of GPT-4o used for
comparison. More formula generation results and output formulas from the original pre-trained model can be found
in Appendix F.

shown in Figure 3.498

The MSFT method helps the pre-trained499

model generate more accurate mathematical op-500

erators. In sample 1, the operators
∫∫

, log and the501

reciprocal operation, as well as the
∑

and the mul-502

tiplication operator in sample 2, all appear in the503

three outputs of the LLaMA3-8B-Instruct model af-504

ter MSFT. Although there are differences in these505

output formulas, they all include the operators men-506

tioned above. This is because the MSFT method507

helps the model learn more detailed internal struc-508

tures of formulas, including operators, enabling it509

to better capture the operator information embed-510

ded in the context when generating formulas.511

When the input text contains mathematical512

formulas, GPT-4o might overlook implicit math-513

ematical symbols in context. In sample 1, where514

no explicit mathematical symbols appear, GPT-515

4o generates a formula close to the label. How-516

ever, in sample 2, where the input context contains517

mathematical formulas like rGHZ→W ≈ 6.17 and518

r = − log q, GPT-4o tends to produce an output519

like rGHZ→w ≈ − log q. In this case, the mathe-520

matical symbols in the output are mostly derived521

from the explicit formulas in the context. The pres-522

ence of these explicit mathematical formulas makes523

GPT-4o pay more attention to the mathematical 524

symbols appearing in the context, while potentially 525

neglecting the hidden mathematical symbols em- 526

bedded within the text. More formula generation 527

results and output formulas from the original pre- 528

trained model can be found in Appendix F. 529

6 Conclusion 530

We introduce (ContextFormulas50K)CF50K, a 531

mathematical formula dataset with contexts, and 532

propose Multi-Stage Fine-Tuning (MSFT) to gen- 533

erate formulas based on context. MSFT progres- 534

sively trains plug-and-play D-plugin and Q-plugin 535

modules to mitigate the information bottleneck 536

problem, improving formula generation perfor- 537

mance. Extensive evaluations were conducted on 538

two pre-trained models, including performance as- 539

sessments and ablation studies. The results demon- 540

strate that these plug-and-play modules signifi- 541

cantly enhance model performance, with LLaMA3- 542

8B-Instruct and Mistral-7B even achieving results 543

comparable to GPT-4, GPT-4o, and Claude-3.5- 544

sonnet, validating the effectiveness of MSFT. We 545

expect our contributed CF50K dataset to serve as 546

a new benchmark to evaluate formula generation 547

capabilities with our novel method MSFT. 548
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Limitations549

Our experiments confirm that pre-trained models550

significantly improve their ability to generate well-551

formed mathematical formulas after training in the552

CF50K dataset using the MSFT approach. How-553

ever, due to time and resource constraints, we have554

not yet explored the applicability of MSFT to other555

downstream NLP tasks, which remains a direction556

for future research. Furthermore, since CF50K557

is derived from cutting-edge mathematical litera-558

ture, models trained on this dataset can achieve559

greater improvements in formula generation within560

advanced mathematical domains compared to basic561

mathematical problems. In the future, we plan to562

expand the scope and scale of CF50K to address563

this limitation.564
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A Ethics Statement784

Our dataset samples are sourced from the latest785

scientific literature on arXiv. We obtained these786

documents through bulk download via the Ama-787

zon Web Services(AWS) platform, a paid service788

officially recommended by arXiv as a legitimate789

method for accessing full-text papers. Furthermore,790

since our dataset is derived from arXiv, a reputable791

pre-print platform, and we have implemented sensi-792

tive word detection, we ensure that our dataset con-793

tains no sensitive content, and the proposed MSFT794

approach does not introduce any social risks or795

negative impacts.796

B Mathematical Symbols of CF50K797

To obtain a clear overall understanding of CF50K,798

we conducted a statistical analysis of symbols, in-799

cluding operators and special characters, in the800

mathematical formula of each sample. We ana-801

lyzed the co-occurrence of operators as shown in802

Figure 4. Due to the large variety of symbols in the803

dataset, the figure does not display all mathemati-804

cal symbols. Instead, we selected the most frequent805

and representative ones. Using a heat map of con-806

ditional probabilities, we observe the relationships807

between different symbols. The symbols =, +,808

and − appear much more frequently with other809

symbols than other mathematical symbols, which810

aligns with typical mathematical formulas. This811

further demonstrates the validity of our dataset.812

C Experimental Details813

We conduct all experiments on the PyTorch(Paszke814

et al., 2019) framework, with all pre-trained models815

sourced from the Hugging Face(Wolf et al., 2020)816

platform. In each training phase of MSFT, we use817

the AdamW optimizer and a learning rate sched-818

uler with cosine decay and a warm-up period of819

one epoch, starting with an initial learning rate of820

Stage Dataset Train Valid Test
Main Experiment

I CF50K 47868 2519 1559
II CF50K 47868 2519 1559
III CF5K 56900 1161 495

Ablation Experiment
I CF5K 4755 250 495
II CF5K 4755 250 495
III CF5K 56900 1161 495

Table 4: Experimental Dataset Partition. We present
the datasets used in both the main experiment and the
ablation experiment, along with the partitioning of the
training, validation, and test sets. Due to time and re-
source constraints, we created a smaller subset, CF5K,
which has no sample overlap with CF50K.

10−4, and a warm-up period of one epoch. The 821

first two stages are trained for 10 epochs, while 822

the third stage is trained for 20 epochs. Further- 823

more, the maximum input length of the model is set 824

to 512, while the output length for mathematical 825

formulas is set to 384. For LLaMA3-8B-Instruct 826

and Mistral-7B, we integrated the MSFT method 827

by adding the modules introduced to the original 828

Wk, Wq, Wv, and Wo components of the Trans- 829

former(Vaswani, 2017) architecture. Apart from 830

using CF50K, we also use a mini-version of this 831

dataset, CF5K, in our experiments. And these two 832

datasets do not have overlapping samples. The par- 833

tition of the dataset for training, validation, and test 834

sets in different stages of MSFT is shown in the 835

table 4. Since each stage has distinct training ob- 836

jectives, the partitioning strategy differs even when 837

the data originates from the same dataset. The up- 838

ward projection matrix of D-plugin is initialized 839

using Kaiming initialization (He et al., 2015) with 840

a = 0.01, where a is the key hyper-parameter, 841

while the downward projection matrix is initialized 842

with zeros. In the third stage, both weight matri- 843

ces are initialized using Kaiming initialization with 844

a =
√
5. 845

All experiments are conducted on NVIDIA RTX 846

A6000. To reduce the randomness in the model 847

outputs, each experiment is repeated five times and 848

we calculate the mean and standard deviation of 849

the results. A full MSFT training on CF50K takes 850

approximately one week. 851

D Pre-trained Models 852

In the experiments, we utilized two pre-trained 853

models: LLaMA3-8B-Instruct and Mistral-7B. 854

This section provides a brief introduction to these 855
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STAGE Intermediate Joint Evaluation Metrics
Dimension Learning BLEU(↑) sBLEU(↑) Rouge-1(↑) WER(↓) CER(↓)

II 64 ✓ 9.10±0.27 9.09±0.37 0.19±0.00 5.14±0.11 2.67±0.03

II 64 ✗ 9.87±0.24 8.88±0.28 0.21±0.00 3.94±0.20 1.92±0.07

II 128 ✓ 9.46±0.24 9.57±0.14 0.20±0.01 4.67±0.16 2.35±0.05

II 128 ✗ 10.60±0.29 9.79±0.14 0.22±0.01 3.68±0.11 1.83±0.04

II 256 ✓ 10.63±0.20 9.30±0.12 0.20±0.01 3.64±0.18 1.89±0.07

II 256 ✗ 12.02±0.36 11.22±0.37 0.24±0.01 3.00±0.17 1.57±0.06

II 512 ✓ 12.55±0.23 11.86±0.25 0.24±0.00 2.89±0.06 1.57±0.02

II 512 ✗ 14.64±0.17 12.86±0.26 0.27±0.01 2.25±0.03 1.26±0.01

III 16 ✓ 13.35±0.27 12.34±0.17 0.25±0.01 2.47±0.02 1.38±0.03

III 16 ✗ 16.64±0.36 13.49±0.17 0.29±0.01 1.74±0.04 1.02±0.03

III 32 ✓ 14.14±0.48 12.74±0.14 0.26±0.01 2.46±0.07 1.35±0.04

III 32 ✗ 17.67±0.23 13.86±0.27 0.30±0.01 1.62±0.01 0.97±0.03

III 64 ✓ 13.66±0.25 12.20±0.16 0.26±0.00 2.44±0.02 1.37±0.01

III 64 ✗ 17.11±0.21 13.72±0.15 0.29±0.01 1.74±0.08 1.02±0.03

III 128 ✓ 13.40±0.11 12.33±0.32 0.26±0.00 2.47±0.12 1.41±0.02

III 128 ✗ 14.65±0.26 13.92±0.11 0.27±0.01 2.35±0.02 1.30±0.03

Table 5: Impact of Joint Learning (JL). The table presents the results of JL in the second and third fine-tuning
stages. Evaluation metrics include BLEU, sBLEU, Rouge-1, WER, and CER. We compare the intermediate
dimension r2 of the D-plugin across {64, 128, 256, 512} and the intermediate dimension r3 of the Q-plugin across
{16, 32, 64, 128}.

models.856

• LLaMA3-8B-Instruct(Touvron et al., 2023)857

is a large-scale instruction-tuned language858

model developed by Meta, featuring 8 billion859

parameters. As an improved version of its860

predecessors, it has been trained with a fo-861

cus on instruction-following tasks, leveraging862

both supervised fine-tuning and reinforcement863

learning. The model benefits from enhanced864

Transformer architecture and extensive pre-865

training on diverse, high-quality datasets. It866

has demonstrated strong performance in var-867

ious natural language processing tasks, par-868

ticularly in reasoning, code generation, and869

mathematical problem-solving, making it a870

powerful tool for research and practical appli-871

cations.872

• Mistral-7B(Jiang et al., 2023) is a powerful 7-873

billion-parameter language model developed874

by Mistral AI. We use the Mistral-7B-Instruct-875

v0.2 version. It is designed to achieve high876

efficiency and strong performance in various877

natural language processing tasks. Compared878

to other models of similar scale, Mistral-7B in-879

corporates architectural optimizations that en-880

hance its reasoning ability, fluency, and adapt-881

ability. Trained on a diverse and high-quality882

dataset, it excels in code generation, logical 883

inference, and mathematical problem solving. 884

Its balance between model size and computa- 885

tional efficiency makes it well suited for both 886

research and real-world applications. 887

E Ablation Study 888

We conducted Joint Learning(JL) experiments on 889

LLaMA3-8B-Instruct that progressively integrate 890

new modules during fine-tuning while updating pa- 891

rameters alongside those optimized in earlier stages. 892

Specifically, in the second fine-tuning stage, both 893

the LoRA module and the D-plugin are jointly 894

trained. Likewise, in the third stage, training is per- 895

formed simultaneously on LoRA, D-plugin, and 896

Q-plugin. 897

We compare the intermediate dimension r2 of 898

the D-plugin across {64, 128, 256, 512} and the 899

intermediate dimension r3 of the Q-plugin across 900

{16, 32, 64, 128}. The evaluation is carried out 901

using BLEU, sBLEU, Rouge-1, WER, and CER. 902

The results of these experiments are presented in 903

Table 5. All performance metrics are observed to 904

degrade after JL is applied, indicating the need to 905

freeze the modules trained in previous stages at 906

each step. This further validates the effectiveness 907

of the MSFT approach. 908
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F Case Study909

In this section, we provide a detailed analysis of910

two sample outputs from CF50K. Using LLaMA3-911

8B-Instruct as the baseline, we present three out-912

puts from the original model and five from MSFT-913

enhanced models, with GPT-4o outputs included914

for comparison, as shown in Figures 5 and Fig-915

ures 6. Observing these results, we find that mod-916

els fine-tuned with MSFT demonstrate a signifi-917

cantly improved ability to generate well-structured918

mathematical formulas, often closely matching the919

ground-truth labels. This validates the effective-920

ness of our dataset and the MSFT approach in921

supporting scientific research, particularly in the922

construction of mathematical formulas.923
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Math Symbols Co-occurrence Heatmap (Conditional Probability)
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Figure 4: Co-occurrence heatmap of mathematical symbols in CF50K, which illustrates the relationship between
mathematical symbols (including operators and unknown parameters). The heatmap illustrates the co-occurrence
frequency of these symbols using their conditional probabilities. The deep red grid means a stronger correlation.
For instance, the darkest red grids of the grids correspond to the symbols =, +, and −, which indicates that these
symbols frequently co-occur with other symbols.
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Example 1

Text before the formula:There is an equivalent 
characterisation of the transfinite diameter, 
namely the logarithmic capacity.

Formula:��(�) =  ��� 1
�(�)�(�)|�−�|

��(�)��(�)

Text after the formula:A key property of a 
harmonic function is that it attains its maximum 
and minimum on the boundary of its domain.

Objective: Formula Generation

Input:There is an equivalent characterisation of 
the transfinite diameter, namely the logarithmic 
capacity.A key property of a harmonic function is 
that it attains its maximum and minimum on the 
boundary of its domain.

Label:  ��(�) =  ��� 1
�(�)�(�)|�−�|

��(�)��(�)

Model: Llama3-8B-Instruct(after MSFT)

Output1:      �� = 1
2
���   ��1(�)��2(�)

�−�� : �1, �2 ∈ ℳ+
1 (�) 

Output2:           �(�) = 1
2�

 �(�) ��� 1
|�−�|

��

Output3:           �(0) =  0
�  0

� ℎ(0)
�

����

Output4:           �(�) =  1
2�

 ���|� − �|���

Output5:           � =  �
�
 log( 1

�(1,1)
)�(1)�(1)

Model: GPT-4o

Output:                 lim
�→0

 ���|� − �|��(�) = 0

Model: Llama3-8B-Instruct(before MSFT)

Output1:                           ��(�) ∝  ���

Output2:                   �∞(�) =  ���(− 1
�(�)

)

Output3:     �(�) =  − ����(�, �) + 1
2
�2���  �

2
( 1

|�− �0| )  

Figure 5: CF50K Sample Output 1. This figure presents three outputs from the LLaMA3-8B-Instruct pre-
trained model, along with five outputs enhanced by MSFT. Additionally, one output from GPT-4o is included for
comparison.

Example 2

Text before the formula:
For k = 3 this gives ����→� ≈ 6.17.

Formula:           �� =  �∈��
���(�)�

Text after the formula: 
Then  � can be asymptotically transformed into � 
with rate 1 and strong converse exponent at 

most � =− ��� �.

Objective: Formula Generation
Input:For k = 3 this gives ����→� ≈ 6.17. Then  
� can be asymptotically transformed into � with 
rate 1 and strong converse exponent at most �
=− ��� �.

Label:             �� =  �∈��
���(�)�

Model: Llama3-8B-Instruct(after MSFT)

Output1:                            � = 1
�
 �=0

�−1 �

Output2:                            � =  �=0
�−1 ���

Output3:           �(�) =  � ��( 1 − �� + �|�  �|)

Output4:                            � =   �=1
� ����

Output5:                        � ≈   �=1
� ��   �

Model: GPT-4o

Output:                       ����→� ≈− ��� �

   

Model: Llama3-8B-Instruct(before MSFT)

Output1:                 ���
�→∞

1
�
��� ����

� (�⨂�) 2 = �

Output2:            ���
�→∞

1
�
���|��(�) − ��(�)| ≤− ����

Output3:                              �=1
3 ��

��
���

 

Figure 6: CF50K Sample Output 2. This figure presents three outputs from the LLaMA3-8B-Instruct pre-
trained model, along with five outputs enhanced by MSFT. Additionally, one output from GPT-4o is included for
comparison.
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