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Abstract

Many important machine learning applications amount to solving minimax optimization
problems, and in many cases there is no access to the gradient information, but only the
function values. In this paper, we focus on such a gradient-free setting, and consider the
nonconvex-strongly-concave minimax stochastic optimization problem. In the literature,
various zeroth-order (i.e., gradient-free) minimax methods have been proposed, but none
of them achieve the potentially feasible computational complexity of O(ϵ−3) suggested by
the stochastic nonconvex minimization theorem. In this paper, we adopt the variance
reduction technique to design a novel zeroth-order variance reduced gradient descent ascent
(ZO-VRGDA) algorithm. We show that the ZO-VRGDA algorithm achieves the best known
query complexity of O(κ(d1 + d2)ϵ−3), which outperforms all previous complexity bounds by
orders of magnitude, where d1 and d2 denote the dimensions of the optimization variables
and κ denotes the condition number. In particular, with a new analysis technique that we
develop, our result does not rely on a diminishing or accuracy-dependent stepsize usually
required in the existing methods. To our best knowledge, this is the first study of zeroth-
order minimax optimization with variance reduction. Experimental results on the black-box
distributional robust optimization problem demonstrates the advantageous performance of
our new algorithm.1

1 Introduction

Minimax optimization has attracted significant growth of attention in machine learning as it captures
several important machine learning models and problems including generative adversarial networks (GANs)
Goodfellow et al. (2014), robust adversarial machine learning Madry et al. (2018), imitation learning Ho &
Ermon (2016), etc. Minimax optimization typically takes the following form:

min
x∈Rd1

max
y∈Rd2

f(x, y),where f(x, y) ≜
{
E[F (x, y; ξ)] (online case)
1
n

∑n
i=1 F (x, y; ξi) (finite-sum case)

(1)

where f(x, y) takes the expectation form if data samples ξ are taken in an online fashion, and f(x, y) takes
the finite-sum form if a dataset of training samples ξi for i = 1, . . . , n are given in advance.

This paper focuses on the nonconvex-strongly-concave minimax problem, in which f(x, y) is nonconvex with
respect to x for all y ∈ Rd2 , and f(x, y) is µ-strongly concave with respect to y for all x ∈ Rd1 . The problem
then takes the following equivalent form:

min
x∈Rd1

{
Φ(x) ≜ max

y∈Rd2
f(x, y)

}
, (2)

where the objective function Φ(·) in eq. (2) is nonconvex in general.

In many machine learning scenarios, minimax optimization problems need to be solved without access to the
gradient information, but only to the function values, e.g., in multi-agent reinforcement learning with bandit

1This paper was initially posted on arXiv in June 2020.
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Table 1: Comparison of gradient-free algorithms for nonconvex-strongly-concave minimax problems

Algorithm Estimator Stepsize Overall Complexity

ZO-min-max Liu et al. (2019) UniGE O(κ−1ℓ−1) O((dϵ−6)

ZO-SGDA Wang et al. (2020) GauGE O(κ−4ℓ−1) O(dκ5ϵ−4)

ZO-SGDMSA Wang et al. (2020) GauGE O(κ−1ℓ−1) O(dκ2ϵ−4 log( 1
ϵ
))

ZO-VRGDA (this work) GauGE O(κ−1ℓ−1) O(dκ3ϵ−3)
1 "UniGE" and "GauGE" stand for "Uniform smoothing Gradient Estimator" and

"Gaussian smoothing Gradient Estimator", respectively.
2 The complexity refers to the total number of queries of the function value.
3 We include only the complexity in the online case in the table, because many previous

studies did not consider the finite-sum case. We comment on the finite-sum case in
Section 4.

4 We define d = d1 + d2.

feedback Wei et al. (2017); Zhang et al. (2019) and robotics Wang & Jegelka (2017); Bogunovic et al. (2018).
Such scenarios have motivated the design of gradient-free (i.e., zeroth-order) algorithms, which solve the
problem by querying the function values. For nonconvex-strongly-concave minimax optimization, stochastic
gradient descent (SGD) type algorithms have been proposed, which use function values to form gradient
estimators in order to iteratively find the solution. In particular, Liu et al. (2019) studied a constrained
problem and proposed a ZO-min-max algorithm that achieves an ϵ-accurate solution with the function query
complexity of O((d1 + d2)ϵ−6). Wang et al. (2020) designed ZO-SGDA and ZO-SGDMSA, and between the
two algorithms ZO-SGDMA achieves the better function query complexity of O((d1 + d2)κ2ϵ−4 log(1/ϵ)).

Despite the previous progress, if we view the minimax problem as the nonconvex problem in eq. (2), the
lower bound on the computational complexity suggests that zeroth-order algorithms may potentially achieve
the query complexity of O((d1 + d2)ϵ−3). But none of the previous algorithms in the literature achieves such
a desirable rate. Thus, a fundamental question to ask here is as follows.

• Can we design a better gradient-free algorithm that outperforms all existing stochastic algorithms by orders
of magnitude, and can achieve the desired query complexity of O((d1 +d2)ϵ−3) suggested by the lower bound
of gradient-based algorithms?

This paper provides an affirmative answer to the above question together with the development of novel
analysis tools.

1.1 Main Contributions

We propose the first zeroth-order variance reduced gradient descent ascent (ZO-VRGDA) algorithm for
minimax optimization. ZO-VRGDA features gradient-free designs and adopts a nested-loop structure with the
recursive variance reduction method incorporated for both the inner- and outer-loop updates. In particular,
the outer loop adopts zeroth-order coordinate-wise estimators for accurate gradient estimation, and the
inner loop adopts zeroth-order Gaussian smooth estimators for efficient gradient estimation. This is the first
gradient-free variance reduced algorithm designed for minimax optimization.

We establish the convergence rate and the function query complexity for ZO-VRGDA for nonconvex-strongly-
concave achieves the best known query complexity of O((d1 +d2)κ3ϵ−3), which outperforms the existing state-
of-the-art (achieved by ZO-SGDMSA Wang et al. (2020)) in the case with ϵ ≤ κ−1. For the finite-sum case, we
show that ZO-VRGDA achieves an overall query complexity of O((d1 +d2)(κ2√

nϵ−2 +n)+d2(κ2 +κn) log(κ))
when n ≥ κ2, and O((d1 + d2)(κ2 + κn)κϵ−2) when n ≤ κ2. Our work provides the first convergence analysis
for gradient-free variance reduced algorithms for minimax optimization.

It is also instructive to compare our result with a concurrent work Huang et al. (2020), which proposed
an accelerated zeroth-order momentum descent ascent (Acc-ZOMDA) method for minimax optimization.
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The performance difference between our ZO-VRGDA and their Acc-ZOMDA is two folds. (a) The query
complexity of our ZO-VRGDA outperforms that of Acc-ZOMDA by a factor of (d1 + d2)1/2, which can be
significant in large dimensional problems such as the neural network training. (b) Rigorously speaking, our
result characterizes the exact convergence to an ϵ-accurate stationary point, whereas the convergence metric
in Huang et al. (2020) does not necessarily imply convergence to a stationary point.

From the technical standpoint, differently from the previous approach (e.g., Luo et al. (2020)), we develop a
new analysis framework for analyzing recursive variance reduced algorithms for minimax problems. Specifically,
the main challenge for our analysis lies in bounding two inter-connected stochastic error processes: tracking
error and gradient estimation error. The previous analysis forces those two error terms to be kept at ϵ-level
at the cost of inefficient initialization and ϵ-level small stepsize. In contrast, we develop new tools to capture
the coupling of the accumulative estimation error and tracking error over the entire algorithm execution, and
then establish their relationships with the accumulative gradient estimators to derive an overall convergence
bound. As a result, our ZO-VRGDA can adopt a more relaxed initialization and a large constant stepsize for
fast running speed, and still enjoy the theoretical convergence guarantee.

1.2 Related Work

Due to the vast number of studies on minimax optimization and on variance reduced algorithms, we include
below only the studies that are most relevant to this work.

Variance reduction methods for minimax optimization are inspired by those for conventional minimization
problems, including SAGA Defazio et al. (2014); Reddi et al. (2016), SVRG Johnson & Zhang (2013);
Allen-Zhu & Hazan (2016); Allen-Zhu (2017), SARAH Nguyen et al. (2017a;b; 2018), SPIDER Fang et al.
(2018), SpiderBoost Wang et al. (2019), etc. But the convergence analysis for minimax optimization is much
more challenging, and is typically quite different from its counterparts in minimization problems.

For strongly-convex-strongly-concave minimax optimization, Palaniappan & Bach (2016) applied SVRG and
SAGA to the finite-sum case and established a linear convergence rate, and Chavdarova et al. (2019) proposed
SVRE later to obtain a better bound. When the condition number of the problem is very large, Luo et al.
(2019) proposed a proximal point iteration algorithm to improve the performance of SAGA. For some special
cases, Du et al. (2017); Du & Hu (2019) showed that the linear convergence rate of SVRG can be maintained
without the strongly-convex or strongly concave assumption. Yang et al. (2020) applied SVRG to study the
minimax optimization under the two-sided Polyak-Lojasiewicz condition.

Nonconvex-strongly-concave minimax optimization is the focus of this paper. As we discuss at the beginning of
the introduction, SGD-type algorithms have been developed and studied, including SGDmax Jin et al. (2019),
PGSMD Rafique et al. (2018), and SGDA Lin et al. (2019). Xu et al. (2021) proposed alternative zeroth-order
GDA algorithms for solving both general smooth and block-wise nonsmooth nonconvex-concave minimax
problems. Chen et al. (2021b); Yang et al. (2020; 2022) established a global optimality guarantee for GDA
algorithms in nonconvex minimax optimization under special landscape assumptions. Chen et al. (2021a)
developed a cubic-regularized GDA algorithm for nonconvex minimax optimization, which is guaranteed
to escape the sub-optimal points. Several variance reduction methods have also been proposed to further
improve the performance, including PGSVRG Rafique et al. (2018), the SAGA-type algorithm for minimax
optimization Wai et al. (2019), and SREDA Luo et al. (2020). Particularly, SREDA has been shown in Luo
et al. (2020) to achieve the optimal complexity dependence on ϵ.

While SGD-type zeroth-order algorithms have been studied for minimax optimization, such as Menickelly &
Wild (2020); Roy et al. (2019) for convex-concave minimax problems and Liu et al. (2019); Wang et al. (2020)
for nonconvex-strongly-concave minimax problems, variance reduced algorithms have not been developed for
zeroth-order minimax optimization so far. This paper proposes the first such algorithm named ZO-VRGDA
for nonconvex-strongly-concave minimax optimization, and established its complexity performance which
outperforms the existing comparable algorithms (see Table 1).
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1.3 Notation

In this paper, we use ∥·∥2 to denote the Euclidean norm of vectors. For a finite set S, we denote its cardinality
as |S|. For a positive integer n, we denote [n] = {1, · · · , n}.

2 Preliminaries

We first introduce the gradient estimator that we use to design our gradient-free algorithm, and then describe
the technical assumptions that we take in our analysis.

2.1 Zeroth-order Gradient Estimator

We consider the Gaussian smoothed function Nesterov & Spokoiny (2017); Ghadimi & Lan (2013) defined as

fµ1(x, y) := Eν,ξF (x+ µ1ν, y, ξ),
fµ2(x, y) := Eω,ξF (x, y + µ2ω, ξ),

where νi ∼ N(0,1d1), ωi ∼ N(0,1d2) with 1d denoting the identity matrices with sizes d× d. Then, in order
to approximate the gradient of fµ1(x, y) and fµ2(x, y) with respect to x and y based on the function values,
the zeroth-order stochastic gradient estimators can be constructed as

Gµ1(x, y, νM1 , ξM) = 1
|M|

∑
i∈[|M|]

F (x+ µ1νi, y, ξi) − F (x, y, ξi)
µ1

νi, (3)

Hµ2(x, y, ωM2 , ξM) = 1
|M|

∑
i∈[|M|]

F (x, y + µ2ωi, ξi) − F (x, y, ξi)
µ2

ωi, (4)

where |M| = |M1| = |M2| denote the batchsize of samples. It can be shown that Gµ1(x, y, νM1 , ξM) and
Hµ2(x, y, ωM2 , ξM) are unbiased estimators of the true gradient of fµ1(x, y) and fµ2(x, y) with respect to x
and y Ghadimi & Lan (2013), respectively, i.e.,

EνM1 ,ξMGµ1(x, y, νM1 , ξM) = ∇xfµ1(x, y),
EωM2 ,ξMHµ2(x, y, ωM2 , ξM) = ∇yfµ2(x, y).

These zeroth-order gradient estimators are useful for us to design a gradient-free algorithm for minimax
optimization.

2.2 Technical Assumptions

We take the following standard assumptions for the minimax problem in eq. (1) or eq. (2), which have also
been adopted in Liu et al. (2019); Wang et al. (2020); Huang et al. (2020); Luo et al. (2020); Lin et al. (2019).
We slightly abuse the notation ξ below to represent the random index in both the online and finite-sum cases,
where in the finite-sum case, Eξ[·] is with respect to the uniform distribution over {ξ1, · · · , ξn}.
Assumption 1. The function Φ(·) is lower bounded, i.e., we have Φ∗ = infx∈Rd1 Φ(x) > −∞.
Assumption 2. The component function F has an averaged ℓ-Lipschitz gradient, i.e., for all (x, y), (x′, y′) ∈
Rd1 × Rd2 , we have Eξ

[
∥∇F (x, y; ξ) − ∇F (x′, y′; ξ)∥2

2
]

≤ ℓ2(∥x− x′∥2
2 + ∥y − y′∥2

2).
Assumption 3. The function f is µ-strongly-concave in y for any x ∈ Rd1 , and the component function F
is concave in y, i.e., for any x ∈ Rd1 , y, y′ ∈ Rd2 and ξ, we have

f(x, y) ≤ f(x, y′) + ⟨∇yf(x, y′), y − y′⟩ − µ

2 ∥y − y′∥2 ,

and

F (x, y; ξ) ≤ F (x, y′; ξ) +
〈
∇yF (x, y′; ξ), y − y′〉.
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Algorithm 1 ZO-VRGDA

1: Input: x0, initial accuracy ζ, learning rate α = Θ( 1
κℓ

), β = Θ( 1
ℓ
), batch size S1, S2 and periods q,m.

2: Initialization: y0 = ZO-iSARAH(−f(x0, ·), ζ) (detailed in Algorithm 2)
3: for t = 0, 1, ..., T − 1 do
4: if mod(k, q) = 0 then
5: draw S1 samples {ξ1, · · · , ξS1 }
6: vt = 1

S1

∑S1
i=1

∑d1
j=1

F (xt+δej ,yt,ξi)−F (xt−δej ,yt,ξi)
2δ

ej

7: ut = 1
S1

∑S1
i=1

∑d2
j=1

F (xt,yt+δej ,ξi)−F (xt,yt−δej ,ξi)
2δ

ej

8: where ej denotes the vector with j-th natural unit basis vector.
9: else

10: vt = ṽt−1,m̄t−1 , ut = ũt−1,m̄t−1

11: end if
12: xt+1 = xt − αvt

13: yt+1 = ZO-ConcaveMaximizer(t,m, S2,x, S2,y) (detailed in Algorithm 3)
14: end for
15: Output: x̂ chosen uniformly at random from {xt}T −1

t=0

Assumption 4. The gradient of each component function F (x, y; ξ) has a bounded variance, i.e., there exists
a constant σ > 0 such that for any (x, y) ∈ Rd1×d2 , we have

Eξ

[
∥∇F (x, y; ξ) − ∇f(x, y)∥2

2
]

≤ σ2.

Note that the above variance assumption is weaker than that of Acc-ZOMDA in Huang et al. (2020), because
Huang et al. (2020) directly requires the variance of the zeroth-order estimator to be bounded, which is
not easy to verify. In contrast, we require such a condition to hold only for the original stochastic gradient
estimator, which is standard in the optimization literature and can be satisfied easily in practice.

We define κ ≜ ℓ/µ as the condition number of the problem throughout the paper. The following structural
lemma developed in Lin et al. (2019) provides further information about Φ for nonconvex-strongly-concave
minimax optimization.
Lemma 1 (Lemma 3.3 of Lin et al. (2019)). Under Assumption 2 and 3, the function Φ(·) = maxy∈Rd2 f(·, y)
is (κ+ 1)ℓ-gradient Lipschitz and ∇Φ(x) = ∇xf(x, y∗(x)) is κ-Lipschitz, where y∗(·) = argminy∈Rd2 f(·, y).

We let L ≜ (1 + κ)ℓ denote the Lipschitz constant of ∇Φ(x). Since Φ is nonconvex in general, it is NP-hard
to find its global minimum. Our goal here is to develop a gradient-free zeroth-order stochastic gradient
algorithms that output an ϵ-stationary point as defined below.
Definition 1. The point x̄ is called an ϵ-stationary point of the differentiable function Φ if ∥∇Φ(x̄)∥2 ≤ ϵ,
where ϵ is a positive constant.

3 ZO-VRGDA: Zeroth-Order Variance Reduction Algorithm

In this section, we propose a new zeroth-order variance reduced gradient descent ascent (ZO-VRGDA)
algorithm to solve the minimax problem in eq. (1) or eq. (2). ZO-VRGDA (see Algorithm 1) adopts a
nested-loop structure, in which the parameters xt and yt are updated in a nested loop fashion: each update of
xt in the outer-loop is followed by (m+ 1) updates of yt over one entire inner loop. ZO-VRGDA incorporates
the variance reduction method for both the inner-loop and outer-loop updates, and features gradient-free
designs. We next describe the ZO-VRGDA algorithm in more detail as follows.

(a) The initialization of ZO-VRGDA (line 2 of Algorithm 1) utilizes a zeroth-order algorithm ZO-iSARAH
(see Algorithm 2), which adopts a first-order algorithm iSARAH and incorporates the zeroth-order gradient
estimators, to search an initialization y0 with predefined accuracy E[∥∇yf(x0, y0)∥2

2] ≤ ζ. In particular,
ZO-iSARAH uses a small batch of sampled function values to construct Gaussian estimators for approximating
gradients (line 10 of Algorithm 2), which is defined as
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Algorithm 2 ZO-iSARAH

1: Input: w̃0, learning rate γ > 0, inner loop size I, batch size B1 and B2
2: for t = 1, 2, ..., T do
3: w0 = w̃t−1
4: draw B1 samples {ξ1, · · · , ξB1 }
5: v0 = 1

B1

∑B1
i=1

∑d

j=1
P (w0+δej ,ξi)−P (w0−δej ,ξi)

2δ
ej

6: where ej denotes the vector with j-th natural unit basis vector.
7: w1 = w0 + γv0
8: for k = 1, 2, ..., I − 1 do
9: Draw minibatch sample M = {ξ1, · · · , ξB2 } and M1 = {ψ1, · · · , ψB2 }

10: vk = vk−1 + Ψτ (wk, ψM1 , ξM) − Ψτ (wk−1, ψM1 , ξM)
11: wk+1 = wk − γvk

12: end for
13: w̃t chosen uniformly at random from {wk}I

k=0
14: end for

Algorithm 3 ZO-ConcaveMaximizer(t,m, S2,x, S2,y)

1: Initialization: x̃t,−1 = xt, ỹt,−1 = yt, x̃t,0 = xt+1, ỹt,0 = yt, ṽt,−1 = vt, ũt,−1 = ut

2: Draw minibatch sample Mx = {ξ1, · · · , ξS2,x }, M1,x = {ν1, · · · , νS2,x } and M2,x = {ω1, · · · , ωS2,x }, and My =
{ξ1, · · · , ξS2,y }, M1,x = {ν1, · · · , νS2,y } and M2,y = {ω1, · · · , ωS2,y }

3: ṽt,0 = ṽt,−1 +G(x̃t,0, ỹt,0, νM1,x , ξMx ) −G(x̃t,−1, ỹt,−1, νM1,x , ξMx )
4: ũt,0 = ũt,−1 +H(x̃t,0, ỹt,0, ωM2,y , ξMy ) −H(x̃t,−1, ỹt,−1, ωM2,y , ξMy )
5: x̃t,1 = x̃t,0
6: ỹt,1 = ỹt,0 + βũt,0
7: for k = 1, 2, ...,m+ 1 do
8: Draw minibatch sample Mx = {ξ1, · · · , ξS2,x }, M1,x = {ν1, · · · , νS2,x } and M2,x = {ω1, · · · , ωS2,x }, and

My = {ξ1, · · · , ξS2,y }, M1,y = {ν1, · · · , νS2,y } and M2,y = {ω1, · · · , ωS2,y }
9: ṽt,k = ṽt,k−1 +Gµ1 (x̃t,k, ỹt,k, νM1,x , ξMx ) −Gµ1 (x̃t,k−1, ỹt,k−1, νM1,x , ξMx )

10: ũt,k = ũt,k−1 +Hµ2 (x̃t,k, ỹt,k, ωM2,y , ξMy ) −Hµ2 (x̃t,k−1, ỹt,k−1, ωM2,y , ξMy )
11: x̃t,k+1 = x̃t,k

12: ỹt,k+1 = ỹt,k + βũt,k

13: end for
output yt+1 = ỹt,m̃t with m̃t chosen uniformly at random from {0, 1, · · · ,m}

Ψτ (w,ψM1 , ξM) = 1
|M|

∑
i∈[|M|]

P (w + τψi, ξi) − P (w, ξi)
τ

ψi, (5)

where ψi ∼ N(0,1d).

(b) The outer-loop updates of xt is divided into epochs for variance reduction. Consider a certain outer-loop
epoch t = {(nt − 1)q, · · · , ntq − 1} (1 ≤ nt < ⌈T/q⌉ is a positive integer). At the beginning of such an
epoch, ZO-VRGDA utilizes a large batch S1 of the sampled function values to construct gradient-free
coordinate-wise estimators for gradient ∇xf(x, y) and ∇yf(x, y) (see lines 6 and 7 in Algorithm 1). Note that
the coordinate-wise gradient estimator is commonly taken in the zeroth-order variance reduced algorithms
such as in Ji et al. (2019); Fang et al. (2018) for minimization problems. The batch size S1 is set to be large
so that gradient estimators that recursively updated in each epoch can build on an accurate estimators (vt

and ut). In this way, the estimators recursively updated over the entire epoch will not deviate too much from
the exact gradients.

(c) For each outer-loop iteration, an inner loop of ZO-ConcaveMaximizer (see Algorithm 3) (line 13 of
ZO-VRGDA) uses the small batch S2,x and S2,y of sampled function values to construct a variance reduced
estimators for ∇xfµ1(x, y) and ∇yfµ2(x, y), respectively, as follows:

ṽt,k = ṽt,k−1 +Gµ1(x̃t,k, ỹt,k, νM1,x , ξMx) −Gµ1(x̃t,k−1, ỹt,k−1, νM1,x , ξMx)
ũt,k = ũt,k−1 +Hµ2(x̃t,k, ỹt,k, ωM2,y , ξMy ) −Hµ2(x̃t,k−1, ỹt,k−1, ωM2,y , ξMy ).
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where the estimators Gµ(·) and Hµ(·) are defined in Section 2.1. These zeroth-order gradient estimators are
then recursively updated through the inner loop. The batch size S2 is set at the same scale as epoch length q,
so that the accumulated error of the recursively updated estimators ṽt,k and ũt,k can be kept at a relatively
low level.

In addition to the above major gradient-free designs, ZO-VRGDA also features the following enhancements over
its first-order counterpart SREDA Luo et al. (2020). (a) ZO-VRGDA relaxes the initialization requirement
to be E[∥∇yf(x0, y0)∥2

2] ≤ κ−1, which requires only O(κ log κ) gradient estimations. This improves the
computational cost by a factor of Õ(κϵ−2). (b) ZO-VRGDA adopts a much larger and ϵ-independent stepsize
αt = α = O(1/(κℓ)) for xt so that each outer-loop update can make much bigger progress.

4 Convergence Analysis of ZO-VRGDA

In this section, we first present our convergence results for ZO-VRGDA and then provide a proof sketch for
our analysis.

4.1 Main Results

In order to analyze the convergence of ZO-VRGDA, we first provide the complexity analysis for the initialization
algorithm ZO-iSARAH. Since the initialization is applied to the variable y, with respect to which the objective
function is strongly concave. Hence, the initialization is equivalent to the following standard optimization
problem:

min
w∈Rd

p(w) ≜ E[P (w; ξ)], (6)

where P is average ℓ-gradient Lipschitz and convex, p is µ-strongly convex, and ξ is a random vector.

It turns out that the convergence of the zeroth-order recursive variance reduced algorithm ZO-iSARAH has
not been studied before for strongly convex optimization. We thus provide the first complexity result for
ZO-iSARAH to solve the problem in eq. (6) as follows.
Theorem 1. Apply ZO-iSARAH in Algorithm 2 to solve the strongly convex optimization problem in
eq. (6). Set γ = Θ(1/ℓ), B1 = Θ(1/ϵ), B2 = d, I = Θ(κ), T = Θ(log(1/ϵ)), δ = Θ(ϵ0.5/ℓd0.6), and
τ = min{ ϵ0.5

3ℓ(d+3)1.5 ,
√

2ϵ
5ℓµd }. Then, the output of Algorithm 2 satisfies

E[∥∇pτ (w̃T )∥2
2] ≤ ϵ,

with the total function query complexity given by

T · (I ·B2 + d ·B1) = O
(
d

(
κ+ 1

ϵ

)
log

(
1
ϵ

))
.

Since we require the initialization accuracy in Algorithm 1 to be κ−1, Theorem 1 indicates that the total
function query complexity of performing ZO-iSARAH in Algorithm 1 is O(d2κ log(1/κ)). Ignoring the
dependence on the dimension caused by zeroth-order estimator, our initialization complexity improves upon
its first-order counterpart SREDA Luo et al. (2020) by a factor of Õ(κϵ−2).

We next provide our main theorem as follows, which characterizes the query complexity of ZO-VRGDA for
finding a first-order stationary point of Φ(·) with ϵ accuracy.
Theorem 2. Apply ZO-VRGDA in Algorithm 1 to solve the online case of the problem eq. (1). Suppose
Assumptions 1-4 hold. Consider the following hyperparamter setting: ζ = κ−1, α = O(κ−1ℓ−1), β = O(ℓ−1),
q = O(ϵ−1), m = O(κ), S1 = O(σ2κ2ϵ−2), S2,x = O(d1κϵ

−1), S2,y = O(d2κϵ
−1), δ = O((d1 +d2)0.5κ−1ℓ−1ϵ),

µ1 = O(d−1.5
1 κ−2.5ℓ−1ϵ) and µ2 = O(d−1.5

2 κ−2.5ℓ−1ϵ). Then for T to be at least at the order of O(κϵ−2),
Algorithm 1 outputs x̂ such that

E[∥∇Φ(x̂)∥2] ≤ ϵ,

7



Under review as submission to TMLR

with the overall function query complexity given by

T · (S2,x + S2,y) ·m+
⌈
T

q

⌉
· S1 · (d1 + d2) + T0

= O
(
κ

ϵ2
· (d1 + d2)κ

ϵ
· κ

)
+ O

(
κ

ϵ
· κ

2

ϵ2
· (d1 + d2)

)
+ O (d2κ log(κ))

= O
(
(d1 + d2)κ3ϵ−3)

. (7)

Furthermore, ZO-VRGDA can also be applied to the finite-sum case of the problem eq. (1), by replacing the
large batch sample S1 used in line 6 of Algorithm 1 with the full set of samples. Then the following result
characterizes the query complexity in such a case.
Theorem 3. Apply ZO-VRGDA described above to solve the finite-sum case of the problem eq. (1). Suppose
Assumptions 1-4 hold. Under appropriate parameter settings given in Appendix E, the function query
complexity to attain an ϵ-stationary point is O((d1 + d2)(

√
nκ2ϵ−2 + n) + d2(κ2 + κn) log(κ)) for n ≥ κ2, and

O((d1 + d2)(κ2 + κn)ϵ−2) for n ≤ κ2.

Theorem 2 and Theorem 3 indicate that the query complexity of ZO-VRGDA matches the optimal dependence
on ϵ of the first-order algorithm for nonconvex optimization in Fang et al. (2018). The dependence on d1 and
d2 typically arises in zeroth-order algorithms due to the estimation of gradients with dimensions d1 and d2.
Furthermore, in the online case, ZO-VRGDA outperforms the best known query complexity dependence on ϵ
among the existing zeroth-order algorithms by a factor of O(1/ϵ). Including the conditional number κ into
consideration, ZO-VRGDA outperforms the best known query complexity achieved by ZO-SGDMA in the
case with ϵ ≤ κ−1 (see Table 1).

Theorem 2 and Theorem 3 provide the first convergence analysis and the query complexity for the zeroth-order
variance-reduced algorithms for minimax optimization. Furthermore, Theorem 3 provides the first query
complexity for the finite-sum zeroth-order minimax problems.

4.2 Outline of Technical Proof

Our analysis has the following two major novel developments. (a) We develop new tools to analyze the zeorth-
order estimator for variance reduced minimax algorithms. (b) More importantly, differently from the previous
approach (e.g., Luo et al. (2020)), we develop a new analysis framework for analyzing the recursive variance
reduced algorithms for minimax problems. At a high level, the previous analysis mainly focuses on bounding
two inter-related errors: tracking error δt = E[∥∇yf(xt, yt)∥2

2] that captures how well yt approximates
the optimal point y∗(xt) for a given xt, and gradient estimation error ∆t = E[∥vt − ∇xf(xt, yt)∥2

2 +
∥ut − ∇yf(xt, yt)∥2

2] that captures how well the stochastic gradient estimators approximate the true gradients.
In the previous analysis, those two error terms are forced to be at ϵ-level at the cost of inefficient initialization
and ϵ-level stepsize. In contrast, we develop tools to capture the coupling of the accumulative estimation
and tracking errors over the entire algorithm execution, and then establish their relationships with the
accumulative gradient estimators to derive the overall convergence bound. As a result, our ZO-VRGDA can
adopt a more relaxed initialization and a large constant stepsize for fast running speed, and still enjoy a
theoretical convergence guarantee.

Proof Sketch of Theorem 2. The proof of Theorem 2 consists of the following three steps.

Step 1: We start from the estimation error ∆′
t and tracking error δ′

t defined with respect to the
Gaussian smooth objective functions: ∆′

t = E[∥∇xfµ1(xt, yt) − vt∥2
2] + E[∥∇yfµ2(xt, yt) − ut∥2

2] and δ′
t =

E[∥∇yfµ2(xt, yt)∥2
2]. which is connected with ∆t and δt via the following inequalities:

∆t ≤ 2∆′
t + µ2

1
2 ℓ2(d1 + 3)3 + µ2

2
2 ℓ2(d2 + 3)3,

δt ≤ 2δ′
t + µ2

2
2 ℓ2(d2 + 3)3.

8
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We establish the relationship between ∆′
t and ∆′

t−1 as well as that between δ′
t and δ′

t−1 as follows:

∆′
t ≤ (1 +Θ(ϵ))∆′

t−1 +Θ(ϵ)δ′
t−1 +Θ(κ−2ϵ)E[∥vt−1∥2

2] +Θ(κ−2ϵ2), (8)

δ′
t ≤ 1

2δ
′
t−1 +Θ(1)∆′

t−1 +Θ(κ−2)E[∥vt−1∥2
2] +Θ(κ−5ϵ2). (9)

Step 2: Step 1 indicates that ∆′
t and δ′

t are strongly coupled with each other at each iteration. Then,
we need to decouple them so that we can characterize the effect of ∆′

t and δ′
t on the overall convergence

separately.

We first consider the accumulation of ∆′
t over one epoch. Although the value of ∆′

t increases within each
epoch (indicated by eq. (8)), the accumulation of this error can still be controlled via adjusting the mini-batch
sizes S1, S2 and epoch length q. Under an appropriate parameter setting, we can obtain the following bound:

∆′
t ≤ 2∆′

⌊t⌋q +Θ(ϵ)
t−1∑

p=⌊t⌋q

δ′
t−1 +Θ(κ−2ϵ)

t−1∑
p=⌊t⌋q

E[∥vt−1∥2
2] +Θ(κ−2ϵ).

Note that ∆′
⌊t⌋q is the estimation error of coordinate-wise estimator obtained at the beginning of each epoch,

which diminishes as the batch size S1 increases. Letting S1 = Θ(κ2/ϵ2) as specified in Theorem 2, we can
bound the accumulation of ∆′

t over the all iterations as

T −1∑
t=0

∆′
t ≤ Θ

(
1
κ

)
+Θ(1)

T −1∑
t=0

δ′
t +Θ

(
1
κ2

) T −1∑
t=0

E[∥vt∥2
2] +Θ(κ−1). (10)

Moreover, based on the contraction property of δ′
t provided in eq. (9), we derive the following bound for the

accumulation of δ′
t:

T −1∑
t=0

δ′
t ≤ 2δ′

0 +Θ(1)
T −1∑
t=0

∆′
t +Θ

(
1
κ2

) T −1∑
t=0

E[∥vt∥2
2] +Θ(κ−4). (11)

Combining eq. (10) and eq. (11), the upper bounds for
∑T −1

t=0 ∆′
t and

∑T −1
t=0 δ′

t can then be derived separately
as

T −1∑
t=0

∆′
t ≤ Θ

(
1
κ

)
+Θ(1)δ′

0 +Θ

(
1
κ2

) T −1∑
t=0

E[∥vt∥2
2], (12)

T −1∑
t=0

δ′
t ≤ Θ

(
1
κ

)
+Θ(1)δ′

0 +Θ

(
1
κ2

) T −1∑
t=0

E[∥vt∥2
2]. (13)

Step 3: Note that eq. (12) and eq. (13) alone are not sufficient to guarantee the boundness of accumulation
errors

∑T −1
t=0 ∆′

t and
∑T −1

t=0 δ′
t, as the upper bounds in eq. (12) and eq. (13) depend on an unknown error

term
∑T −1

t=0 E[∥vt∥2
2]. To handle this issue, we utilize the Lipschitz property of Φ(x) given in Assumption 2 to

obtain the following bound:(
α

2 − Lα2

2

) T −1∑
t=0

E[∥vt∥2
2] ≤ Φ(x0) − E[Φ(xT )] + 2ακ2

T −1∑
t=0

δ′
t + 2α

T −1∑
t=0

∆′
t + TΘ(ϵ−2κ4). (14)

Substituting eq. (12) and eq. (13) into eq. (14) and subtracting the residual terms on both sides yield the
following bound:

T −1∑
t=0

E[∥vt∥2
2] ≤ Θ(L(Φ(x0) − Φ∗)) +Θ(κ). (15)

9
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The upper bounds of
∑T −1

t=0 ∆′
t and

∑T −1
t=0 δ′

t can then be obtained by substituting eq. (15) into eq. (12) and
eq. (13).

To establish the convergence rate for E[∥∇Φ(x̂)∥2
2] = 1

T

∑T
t=0 E[∥∇Φ(xt)∥2

2], we note that

T −1∑
t=0

E[∥∇Φ(xt)∥2
2] ≤ 6κ2

T −1∑
t=0

δ′
t + 6

T −1∑
t=0

∆′
t + 3

T −1∑
t=0

E[∥vt∥2
2] +Θ(κ−2). (16)

Substituting the bounds on
∑T −1

t=0 E[∥vt∥2
2],

∑T −1
t=0 ∆′

t and
∑T −1

t=0 δ′
t into eq. (16), we obtain the convergence

rate for ZO-VRGDA.

5 Experiments

Our experiments focus on two types of comparisons: (a) we compare our ZO-VRGDA with other existing
zeroth-order stochastic algorithms and demonstrate the superior performance of ZO-VRGDA; (b) we compare
the performance of ZO-VRGDA with different inner-loop lengths.

Our experiments solve a distributionally robust optimization problem, which is commonly used for studying
minimax optimization Lin et al. (2019); Rafique et al. (2018). We conduct the experiments on three datasets
from LIBSVM Chang & Lin (2011). The details of the problem and the datasets are provided in Appendix A.
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Figure 1: Comparison of function query complexity among three algorithms.

Comparison among zeroth-order algorithms: We compare the performance of our proposed ZO-VRGDA
with that of two existing zeroth-order algorithms ZO-SGDA Wang et al. (2020) and ZO-SGDMSA Wang
et al. (2020) designed for nonconvex-strongly-concave minimax problems. For ZO-SGDA and ZO-SGDMSA,
as suggested by the corresponding theory, we set the mini-batch size B = Cd1/ϵ

2 and B = Cd2/ϵ
2 for

updating the variables x and y, respectively. For ZO-VRGDA, based on our theory, we set the mini-batch
size B = Cd1/ϵ and B = Cd2/ϵ for updating the variables x and y, and set S1 = n for the large batch, where
n is the number of data samples in the dataset. We set C = 0.1 and ϵ = 0.1 for all algorithms. We further
set the stepsize η = 0.01 for ZO-VRGDA and ZO-SGDMSA. Since ZO-SGDA is a two time-scale algorithm,
we set η = 0.01 as the stepsize for the fast time scale, and η/κ3 as the stepsize for slow time scale (based on
the theory) where κ3 = 10. It can be seen in Figure 1 that ZO-VRGDA substantially outperforms the other
two algorithms in terms of the function query complexity (i.e., the running time).

Comparison among different inner-loop length: We investigate how the inner-loop length affects the
overall convergence of ZO-VRGDA. We consider the following inner loop lengths {5, 10, 20, 50, 100}. It can be
seen in Figure 2 that ZO-VRGDA converges faster as we increase the inner-loop length m initially, and then
the convergence slows down as we further enlarge m beyond a certain threshold. This verifies the tradeoff
role that m plays, i.e., larger m attains a better optimized y but causes more queries. Figure 2 also illustrates
that the performance of ZO-VRGDA is fairly robust to the inner-loop length as long as m is not too large.
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Figure 2: Comparison of ZO-VRGDA with different inner-loop lengths.

6 Conclusion

In this work, we have proposed the first zeroth-order variance reduced algorithm ZO-VRGDA for solving
nonconvex-strongly-concave minimax optimization problems. The function query complexity of ZO-VRGDA
achieves the best dependence on the target accuracy compared to previously designed gradient-free algorithms.
We have also developed a novel analysis framework to characterize the convergence rate and the complexity,
which we expect to be also useful for studying various other stochastic minimax problems such as proximal,
momentum, and manifold optimization.
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A Specifications of Experiments

The distributionally robust optimization problem is formulated as follows:

min
x∈X

max
y∈Y

n∑
i=1

yifi(x) − r(y),

where X = {x ∈ Rd}, Y = {y ∈ Rn|
∑n

i=1 yi = 1, yi ≥ 0, i = 1, · · ·n}, r(y) = 10
∑n

i=1(yi − 1/n)2,
fi(x) = ϕ(l(x)) where ϕ(θ) = 2 log

(
1 + θ

2
)
, l(x; s, z) = log(1 + exp(−zx⊤s)), and (s, z) are the feature and

label pair of a data sample. It can be seen that the problem is a minimax problem with d1 = d and d2 = n.
Since the distributionally robust optimization aims at an unbalanced dataset, we pick the samples from
the original dataset and set the ratio between the number of negative labeled samples and the number of
positive labeled samples to be 1 : 4. Since the maximization over y is a constrained optimization problem, we
incorporate a projection step after updates of y for all algorithms.

The details of the datasets used for zeroth-order algorithms are listed in Table 2.

Table 2: Datasets used for zeroth-order algorithms

Datasets # of samples # of features # Pos: # Neg

mushrooms 200 112 1:4

w8a 100 300 1:4

a9a 150 123 1:4

B Technical Lemmas

B.1 Preliminary Lemmas

We first provide useful inequalities in convex optimization Nesterov (2013); Polyak (1963) and auxiliary
lemmas from Fang et al. (2018); Luo et al. (2020).
Lemma 2 (Nesterov (2013),Polyak (1963)). Suppose h(·) is convex and has ℓ-Lipschitz gradient. Then, we
have

⟨∇h(w) − ∇h(w′), w − w′⟩ ≥ 1
ℓ

∥∇h(w) − ∇h(w′)∥2
2 . (17)

Lemma 3 (Nesterov (2013),Polyak (1963)). Suppose h(·) is µ-strongly convex and has ℓ-Lipschitz gradient.
Let w∗ be the minimizer of h. Then for any w and w′, the following inequalities hold:

⟨∇h(w) − ∇h(w′), w − w′⟩ ≥ µℓ

µ+ ℓ
∥w − w′∥2

2 + 1
µ+ ℓ

∥∇h(w) − ∇h(w′)∥2
2 , (18)

∥∇h(w) − ∇h(w′)∥2 ≥ µ ∥w − w′∥2 , (19)
2µ(h(w) − h(w′)) ≤ ∥∇h(w)∥2

2 . (20)

Lemma 4 (Fang et al. (2018), Lemma 2). Suppose Assumption 4 hold. For any (x, y) ∈ Rd1 × Rd2 and
sample batch {ξ1, · · · , ξS}, let v = 1

S

∑S
i=1 ∇xF (x, y, ξi) and u = 1

S

∑S
i=1 ∇yF (x, y, ξi). We have

E[∥v − ∇xf(x, y)∥2
2] + E[∥u− ∇yf(x, y)∥2

2] ≤ σ2

S
.

Lemma 5 (Fang et al. (2018), Lemma 1). Let Vt be an estimator of B(zt) as

Vt = BS∗(zt) − BS∗(zt−1) + Vt−1,

14
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where BS∗ = 1
|S∗|

∑
Bi∈S∗

Bi satisfies

E[Bi(zt) − Bi(zt−1)|z0, · · · , zt−1] = E[Vt − Vt−1|z0, · · · , zt−1].

For all k = 1, · · · ,K, we have

E[∥Vt − Vt−1 − (BS∗(zt) − BS∗(zt−1))∥2
2] ≤ 1

S∗
E[∥Bi(zt) − Bi(zt−1)∥2

2 |z0, · · · , zt−1],

and

E[∥Vt − B(zt)|z0, · · · , zt−1∥2
2] ≤ ∥Vt−1 − B(zt−1)∥2

2 + 1
|S∗|

E[∥Bi(zt) − Bi(zt−1)∥2
2 |z0, · · · , zt−1].

Furthermore, if Bi is L-Lipschitz continuous in expectation, we have

E[∥Vt − B(zt)|z0, · · · , zt−1∥2
2] ≤ ∥Vt−1 − B(zt−1)∥2

2 + L2

|S∗|
E[∥zt − zt−1∥2

2 |z0, · · · , zt−1].

We provide the following lemmas to characterize the properties of Gaussian smoothed function and zeroth-
order Gaussian gradient estimator. Consider a function h(·): Rd → R. Let ν be a d-dimensional standard
Gaussian random vector and µ > 0 be the smoothing parameter. Then a smooth approximation of h(·) is
defined as hτ (x) = Eν [h(x+ τν)]. We have the following lemmas.
Lemma 6 (Nesterov & Spokoiny (2017), Section 2). If h(·) is convex, then hµ(·) is also a convex function.
Lemma 7 (Ghadimi & Lan (2013), Section 3.1). If h(·) has ℓ-Lipschitz gradient, then hµ(·) also has
ℓ-Lipschitz gradient.
Lemma 8 (Nesterov & Spokoiny (2017), Theorem 1). If h(·) has ℓ-Lipschitz gradient, then for all x ∈ Rd,
we have |h(x) − hτ (x)| ≤ τ2

2 ℓd.
Lemma 9 (Nesterov & Spokoiny (2017), Lemma 3). If h(·) has ℓ-Lipschitz gradient, then
∥∇xhτ (x) − ∇xh(x)∥2

2 ≤ τ2

4 ℓ
2(d+ 3)3.

The following lemma characterizes the estimation error of a zeroth-order coordinate-wise estimator with
batch size S1 in lines 6 and 7 in Algorithm 1.
Lemma 10. Suppose Assumption 2 and 4 hold. Suppose mod(t, q) = 0, and let ϵ(S1, δ) =
E[∥vt − ∇xfµ1(xt, yt)∥2

2] + E[∥ut − ∇yfµ2(xt, yt)∥2
2]. Then, we have

ϵ(S1, δ) ≤ (d1 + d2)ℓ2δ2

2 + 4σ2

S1
+ µ2

1
2 ℓ2(d1 + 3)3 + µ2

2
2 ℓ2(d2 + 3)3.

Proof. (B.56) and (B.57) in Fang et al. (2018) imply that

E[∥vt − ∇xf(xt, yt)∥2
2] ≤ d1ℓ

2δ2

2 + 2σ2

S1
, (21)

and

E[∥ut − ∇yf(xt, yt)∥2
2] ≤ d2ℓ

2δ2

2 + 2σ2

S1
. (22)

Then we proceed as follows:

E[∥vt − ∇xfµ1(xt, yt)∥2
2] + E[∥ut − ∇yfµ2(xt, yt)∥2

2]
≤ 2E[∥vt − ∇xf(xt, yt)∥2

2] + 2E[∥ut − ∇yf(xt, yt)∥2
2]

+ 2E[∥∇xfµ1(xt, yt) − ∇xf(xt, yt)∥2
2] + 2E[∥∇xfµ2(xt, yt) − ∇yf(xt, yt)∥2

2]
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(i)
≤ 2E[∥vt − ∇xf(xt, yt)∥2

2] + 2E[∥ut − ∇yf(xt, yt)∥2
2] + µ2

1
2 ℓ2(d1 + 3)3 + µ2

2
2 ℓ2(d2 + 3)3

(ii)
≤ (d1 + d2)ℓ2δ2 + 8σ2

S1
+ µ2

1
2 ℓ2(d1 + 3)3 + µ2

2
2 ℓ2(d2 + 3)3,

where (i) follows from Lemma 9, and (ii) follows from eq. (21) and eq. (22).

We denote

Gµ1(x, y, νi, ξi) = F (x+ µ1νi, y, ξi) − F (x, y, ξi)
µ1

νi

and

Hµ2(x, y, ωi, ξi) = F (x, y + µ2ωi, ξi) − F (x, y, ξi)
µ2

ωi

as unbiased estimators of ∇xfµ1(x, y) and ∇yfµ2(x, y), respectively. Then we have the following lemma.
Lemma 11. Suppose Assumption 2 holds, and suppose u1 and u2 are standard Gaussian random vector, i.e.,
νi ∼ N(0,1d1) and ωi ∼ N(0,1d2). Then, we have

E
[
∥Gµ1(x, y, νi, ξi) −Gµ1(x′, y, νi, ξi)∥

2
2

]
≤ 2(d1 + 4)ℓ2 ∥x− x′∥2

2 + 2µ2
1(d1 + 6)3ℓ2,

E
[
∥Gµ1(x, y, νi, ξi) −Gµ1(x, y′, νi, ξi)∥

2
2

]
≤ 2(d1 + 4)ℓ2 ∥y − y′∥2

2 + 2µ2
1(d1 + 6)3ℓ2,

and

E
[
∥Hµ2(x, y, νi, ξi) −Hµ2(x′, y, νi, ξi)∥

2
2

]
≤ 2(d2 + 4)ℓ2 ∥x− x′∥2

2 + 2µ2
2(d2 + 6)3ℓ2,

E
[
∥Hµ2(x, y, νi, ξi) −Hµ2(x, y′, νi, ξi)∥

2
2

]
≤ 2(d2 + 4)ℓ2 ∥y − y′∥2

2 + 2µ2
2(d2 + 6)3ℓ2.

Proof. The proof is similar to that of Lemma 3 in Fang et al. (2018). Here we provide the proof for
completeness. We will show how to upper bound the term E

[
∥Gµ1(x, y, ν1, ξ) −Gµ1(x′, y, ν1, ξ)∥2

2

]
here.

Then, the upper bounds on the remaining three terms can be obtained by following similar steps. We proceed
the bound as follows.

E
[
∥Gµ1(x, y, νi, ξi) −Gµ1(x, y′, νi, ξi)∥

2
2

]
= E

[∥∥∥∥F (x+ µ1νi, y, ξi) − F (x, y, ξi)
µ1

ν1 − F (x+ µ1νi, y
′, ξi) − F (x, y′, ξi)
µ1

ν1

∥∥∥∥2

2

]

= E

[∥∥∥∥∥F (x+ µ1νi, y, ξi) − F (x, y, ξi) − ⟨∇xF (x, y, ξi), µ1νi⟩
µ1

νi

− F (x+ µ1νi, y
′, ξi) − F (x, y′, ξi) − ⟨∇xF (x, y′, ξi), µ1νi⟩

µ1
νi

+ ⟨∇xF (x, y, ξi) − ∇xF (x, y′, ξi), νi⟩νi

∥∥∥∥∥
2

2

]

≤ 2E
[∥∥∥∥∥F (x+ µ1νi, y, ξi) − F (x, y, ξi) − ⟨∇xF (x, y, ξi), µ1νi⟩

µ1
νi

− F (x+ µ1νi, y
′, ξi) − F (x, y′, ξi) − ⟨∇xF (x, y′, ξi), µ1νi⟩

µ1
νi

∥∥∥∥∥
2

2

]
+ 2E

[
∥⟨∇xF (x, y, ξi) − ∇xF (x, y′, ξi), νi⟩νi∥

2
2

]
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≤ 4E
[∥∥∥∥∥F (x+ µ1νi, y, ξi) − F (x, y, ξi) − ⟨∇xF (x, y, ξi), µ1νi⟩

µ1
νi

∥∥∥∥∥
2

2

]

+ 4E
[∥∥∥∥∥F (x+ µ1νi, y

′, ξi) − F (x, y′, ξi) − ⟨∇xF (x, y′, ξi), µ1νi⟩
µ1

νi

∥∥∥∥∥
2

2

]
+ 2E

[
∥⟨∇xF (x, y, ξi) − ∇xF (x, y′, ξi), νi⟩νi∥

2
2

]
≤ 4E

[ ∣∣∣∣F (x+ µ1νi, y, ξi) − F (x, y, ξi) − ⟨∇xF (x, y, ξi), µ1νi⟩
µ1

∣∣∣∣2
∥νi∥2

2

]

+ 4E
[ ∣∣∣∣F (x+ µ1νi, y

′, ξi) − F (x, y′, ξi) − ⟨∇xF (x, y′, ξi), µ1νi⟩
µ1

∣∣∣∣2
∥νi∥2

2

]
+ 2E

[
∥⟨∇xF (x, y, ξi) − ∇xF (x, y′, ξi), νi⟩νi∥

2
2

]
(i)
≤ 2µ2

1ℓ
2E[∥νi∥2

2] + 2E
[

∥⟨∇xF (x, y, ξi) − ∇xF (x, y′, ξi), νi⟩νi∥
2
2

]
(ii)
≤ 2µ2

1ℓ
2E[∥νi∥2

2] + 2(d1 + 4)E
[

∥∇xF (x, y, ξi) − ∇xF (x, y′, ξi)∥
2
2

]
(iii)
≤ 2µ2

1(d1 + 6)3ℓ2 + 2(d1 + 4)ℓ2E
[

∥y − y′∥2
2

]
,

where (i) follows from the fact that for any a, a′ ∈ Rd1 and b ∈ Rd2 , we have

|F (a, b, ξi) − F (a′, b, ξi) − ⟨∇xF (a, b, ξi), a− a′⟩| ≤ ℓ

2 ∥a− a′∥2
2 ,

because F (a, b, ξ) has ℓ-Lipschitz continuous gradient; (ii) follows because

E[∥⟨a, νi⟩νi∥2
2] ≤ (d1 + 4) ∥a∥2

2 ,

obtained from (33) in Nesterov & Spokoiny (2017), and (iii) follows because E[∥νi∥2
2] ≤ (d1 + 6)3 in (17) of

Nesterov & Spokoiny (2017).

B.2 Useful Properties for Zeroth-Order Concave Maximizer

In this section, we show some properties for the zeroth-order concave maximizer in Algorithm 3. For simplicity,
for any given t ≥ 0, we define gt(y) = −f(xt+1, y) and gt,µ2(y) = −fµ2(xt+1, y). Lemma 6 and Lemma 7
imply that gt(·) is µ-strongly convex and has ℓ-Lipschitz gradient, and gt,µ2(·) is convex and has ℓ-Lipschitz
gradient. We also define ỹ∗

t = argminy gt(y). We can obtain the following two lemmas by following the same
steps in Luo et al. (2020)
Lemma 12 (Lemma 9 of Luo et al. (2020)). Consider Algorithm 3. We have

m∑
k=0

E[∥∇gt,µ2(ỹt,k)∥2
2] ≤ 2

β
E[gt,µ2(ỹt,0) − gt,µ2(ỹt,m+1)] +

m∑
k=0

E[∥∇gt,µ2(ỹt,k) − ũt,k∥2
2].

Lemma 13 (Lemma 11 of Luo et al. (2020)). Consider Algorithm 3 with any β ≤ 2
ℓ and k ≥ 1. We have

E[∥∇gt,µ2(ỹt,k) − ũt,k∥2
2] ≤ E[∥∇gt,µ2(ỹt,0) − ũt,0∥2

2] + ℓβ

2 − ℓβ
E[∥ũt,0∥2

2].

The following lemma characterizes the recursion of E[∥∇gt,µ2(ỹt,m̃t)∥
2
2] within each inner loop.

Lemma 14. Consider Algorithm 3. For any k ≥ 1 and β ≤ 1
ℓ , we have

E[∥∇gt,µ2(ỹt,m̃t)∥
2
2] ≤ 2

βµ(m+ 1)E[∥∇gt,µ2(ỹt,0)∥2
2] + E[∥∇gt,µ2(ỹt,0) − ũt,0∥2

2] + ℓβ

2 − ℓβ
E[∥ũt,0∥2

2]

+ 2
β(m+ 1)

(
µ2

2
4µℓ

2(d2 + 3)3 + µ2
2ℓd2

)
.
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Proof. Taking summation of the result of Lemma 13 over t = {0, · · ·m} yields
m∑

k=0
E[∥∇gt,µ2(ỹt,k) − ũt,k∥2

2] ≤ (m+ 1)E[∥∇gt,µ2(ỹt,0) − ũt,0∥2
2] + ℓβ(m+ 1)

2 − ℓβ
E[∥ũt,0∥2

2]. (23)

Combining eq. (23) with Lemma 12 yields
m∑

k=0
E[∥∇gt,µ2(ỹt,k)∥2

2] ≤ 2
β
E[gt,µ2(ỹt,0) − gt,µ2(ỹt,m+1)] + (m+ 1)E[∥∇gt,µ2(ỹt,0) − ũt,0∥2

2]

+ ℓβ(m+ 1)
2 − ℓβ

E[∥ũt,0∥2
2]. (24)

Dividing both sides of eq. (24) by m and recalling the definition of m̃t in the output of Algorithm 3 yield

E[∥∇gt,µ2(ỹt,m̃t)∥
2
2] ≤ 2

β(m+ 1)E[gt,µ2(ỹt,0) − gt,µ2(ỹt,m+1)] + E[∥∇gt,µ2(ỹt,0) − ũt,0∥2
2]

+ ℓβ

2 − ℓβ
E[∥ũt,0∥2

2]. (25)

We then bound the term E[gt,µ2(ỹt,0) − gt,µ2(ỹt,m+1)] as follows:

E[gt,µ2(ỹt,0) − gt,µ2(ỹt,m+1)]
= E[gt(ỹt,0) − gt(ỹt,m+1)] + E[gt,µ2(ỹt,0) − gt(ỹt,0)] + E[gt(ỹt,m+1) − gt,µ2(ỹt,m+1)]
≤ E[gt(ỹt,0) − gt(ỹt,m+1)] + E[|gt,µ2(ỹt,0) − gt(ỹt,0)|] + E[|gt,µ2(ỹt,m+1) − gt(ỹt,m+1)|]
(i)
≤ E[gt(ỹt,0) − gt(ỹt,m+1)] + µ2

2ℓd2

≤ E[gt(ỹt,0) − gt(ỹ∗
t )] + µ2

2ℓd2

(ii)
≤ 1

2µE[∥∇gt(ỹt,0)∥2
2] + µ2

2ℓd2

≤ 1
µ
E[∥∇gt,µ2(ỹt,0)∥2

2] + 1
µ
E[∥∇gt,µ2(ỹt,0) − ∇gt(ỹt,0)∥2

2] + µ2
2ℓd2

(iii)
≤ 1

µ
E[∥∇gt,µ2(ỹt,0)∥2

2] + µ2
2

4µℓ
2(d2 + 3)3 + µ2

2ℓd2, (26)

where (i) follows from Lemma 8, (ii) follows from eq. (20) in Lemma 3, and (iii) follows from Lemma 9.
Substituting eq. (26) into eq. (25) yields

E[∥∇gt,µ2(ỹt,m̃t
)∥2

2] ≤ 2
βµ(m+ 1)E[∥∇gt,µ2(ỹt,0)∥2

2] + E[∥∇gt,µ2(ỹt,0) − ũt,0∥2
2] + ℓβ

2 − ℓβ
E[∥ũt,0∥2

2]

+ 2
β(m+ 1)

(
µ2

2
4µℓ

2(d2 + 3)3 + µ2
2ℓd2

)
,

which completes the proof.

Lemma 15. Consider Algorithm 3. Let S2,y ≥ 16κ(d2 + 4)ℓβ and β ≤ 1
6ℓ . For any t > 0, we have

m∑
k=0

E[∥ũt,k∥2
2] ≤ 1

1 − b
E[∥ũt,0∥2

2] + m+ 1
1 − b

[
2µ2

2ℓκ

β
(d2 + 3)3 + 7µ2

2(d2 + 6)3ℓ2
]
,

where b = 1 − βµℓ
2(µ+ℓ) .

Proof. The update of Algorithm 3 implies that

E[∥ũt,k∥2
2 |Ft,k]
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= ∥ũt,k−1∥2
2 + 2E[⟨ũt,k−1, Hµ2(x̃t,k, ỹt,k, ωM2 , ξM) −Hµ2(x̃t,k−1, ỹt,k−1, ωM2 , ξM)⟩|Ft,k]

+ E[∥Hµ2(x̃t,k, ỹt,k, ωM2 , ξM) −Hµ2(x̃t,k−1, ỹt,k−1, ωM2 , ξM)∥2
2 |Ft,k]

= ∥ũt,k−1∥2
2 + 2

β
⟨ỹt,k − ỹt,k−1,∇yfµ2(x̃t,k, ỹt,k) − ∇yfµ2(x̃t,k−1, ỹt,k−1)⟩

+ E[∥Hµ2(x̃t,k, ỹt,k, ωM2 , ξM) −Hµ2(x̃t,k−1, ỹt,k−1, ωM2 , ξM)∥2
2 |Ft,k]

= ∥ũt,k−1∥2
2 + 2

β
⟨ỹt,k − ỹt,k−1,∇yf(x̃t,k, ỹt,k) − ∇yf(x̃t,k−1, ỹt,k−1)⟩

+ 2
β

⟨ỹt,k − ỹt,k−1,∇yfµ2(x̃t,k, ỹt,k) − ∇yf(x̃t,k, ỹt,k)⟩

+ 2
β

⟨ỹt,k − ỹt,k−1,∇yf(x̃t,k−1, ỹt,k−1) − ∇yfµ2(x̃t,k−1, ỹt,k−1)⟩

+ E[∥Hµ2(x̃t,k, ỹt,k, ωM2 , ξM) −Hµ2(x̃t,k−1, ỹt,k−1, ωM2 , ξM)∥2
2 |Ft,k]

(i)
≤ ∥ũt,k−1∥2

2 − 2
β

(
µℓ

µ+ ℓ
∥ỹt,k − ỹt,k−1∥2

2 + 1
µ+ ℓ

∥∇yf(x̃t,k, ỹt,k) − ∇yf(x̃t,k−1, ỹt,k−1)∥2
2

)
+ 2
β

(
µℓ

4(µ+ ℓ) ∥ỹt,k − ỹt,k−1∥2
2 + µ+ ℓ

µℓ
∥∇yfµ2(x̃t,k, ỹt,k) − ∇yf(x̃t,k, ỹt,k)∥2

2

)
+ 2
β

(
µℓ

4(µ+ ℓ) ∥ỹt,k − ỹt,k−1∥2
2 + µ+ ℓ

µℓ
∥∇yfµ2(x̃t,k−1, ỹt,k−1) − ∇yf(x̃t,k−1, ỹt,k−1)∥2

2

)
+ E[∥Hµ2(x̃t,k, ỹt,k, ωM2 , ξM) −Hµ2(x̃t,k−1, ỹt,k−1, ωM2 , ξM)∥2

2 |Ft,k]
(ii)
≤ ∥ũt,k−1∥2

2 − µℓ

β(µ+ ℓ) ∥ỹt,k − ỹt,k−1∥2
2 − 2

β(µ+ ℓ) ∥∇yf(x̃t,k, ỹt,k) − ∇yf(x̃t,k−1, ỹt,k−1)∥2
2

+ µ2
2ℓ(µ+ ℓ)
βµ

(d2 + 3)3 + E[∥Hµ2(x̃t,k, ỹt,k, ωM2 , ξM) −Hµ2(x̃t,k−1, ỹt,k−1, ωM2 , ξM)∥2
2 |Ft,k]

≤
(

1 − βµℓ

µ+ ℓ

)
∥ũt,k−1∥2

2 − 2
β(µ+ ℓ) ∥∇yf(x̃t,k, ỹt,k) − ∇yf(x̃t,k−1, ỹt,k−1)∥2

2

+ 2E[∥Hµ2(x̃t,k, ỹt,k, ωM2 , ξM) −Hµ2(x̃t,k−1, ỹt,k−1, ωM2 , ξM)
− (∇yfµ2(x̃t,k, ỹt,k) − ∇yfµ2(x̃t,k−1, ỹt,k−1))∥2

2|Ft,k]

+ 2E[∥∇yfµ2(x̃t,k, ỹt,k) − ∇yfµ2(x̃t,k−1, ỹt,k−1)∥2
2 |Ft,k] + µ2

2ℓ(µ+ ℓ)
βµ

(d2 + 3)3

≤
(

1 − βµℓ

µ+ ℓ

)
∥ũt,k−1∥2

2 − 2
β(µ+ ℓ) ∥∇yf(x̃t,k, ỹt,k) − ∇yf(x̃t,k−1, ỹt,k−1)∥2

2

+ 2E[∥Hµ2(x̃t,k, ỹt,k, ωM2 , ξM) −Hµ2(x̃t,k−1, ỹt,k−1, ωM2 , ξM)
− (∇yfµ2(x̃t,k, ỹt,k) − ∇yfµ2(x̃t,k−1, ỹt,k−1))∥2

2|Ft,k]
+ 6E[∥∇yf(x̃t,k, ỹt,k) − ∇yf(x̃t,k−1, ỹt,k−1)∥2

2 |Ft,k]
+ 6E[∥∇yf(x̃t,k−1, ỹt,k−1) − ∇yfµ2(x̃t,k−1, ỹt,k−1)∥2

2 |Ft,k]

+ 6E[∥∇yfµ2(x̃t,k, ỹt,k) − ∇yf(x̃t,k, ỹt,k)∥2
2 |Ft,k] + µ2

2ℓ(µ+ ℓ)
βµ

(d2 + 3)3

≤
(

1 − βµℓ

µ+ ℓ

)
∥ũt,k−1∥2

2 −
(

2
β(µ+ ℓ) − 6

)
∥∇yf(x̃t,k, ỹt,k) − ∇yf(x̃t,k−1, ỹt,k−1)∥2

2

+ 2
S2,y

E[∥Hµ2(x̃t,k, ỹt,k, ωi, ξi) −Hµ2(x̃t,k−1, ỹt,k−1, ωi, ξi)∥2
2 |Ft,k]

+ 3µ2
2ℓ

2(d2 + 3)3 + µ2
2ℓ(µ+ ℓ)
βµ

(d2 + 3)3

(iv)
≤

(
1 − βµℓ

µ+ ℓ

)
∥ũt,k−1∥2

2 + 2
S2,y

E[∥Hµ2(x̃t,k, ỹt,k, ωi, ξi) −Hµ2(x̃t,k−1, ỹt,k−1, ωi, ξi)∥2
2 |Ft,k]
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+ 3µ2
2ℓ

2(d2 + 3)3 + µ2
2ℓ(µ+ ℓ)
βµ

(d2 + 3)3

(v)
≤

(
1 − βµℓ

µ+ ℓ

)
∥ũt,k−1∥2

2 + 2
S2,y

[
2(d2 + 4)ℓ2β2 ∥ũt,k−1∥2

2 + 2µ2
2(d2 + 6)3ℓ2

]
+ 3µ2

2ℓ
2(d2 + 3)3 + µ2

2ℓ(µ+ ℓ)
βµ

(d2 + 3)3

=
(

1 − βµℓ

µ+ ℓ
+ 4
S2,y

(d2 + 4)ℓ2β2
)

∥ũt,k−1∥2
2

+ 4
S2,y

µ2
2(d2 + 6)3ℓ2 + 3µ2

2ℓ
2(d2 + 3)3 + µ2

2ℓ(µ+ ℓ)
βµ

(d2 + 3)3

(vi)
≤

(
1 − βµℓ

2(µ+ ℓ)

)
∥ũt,k−1∥2

2 + µ2
2ℓ(1 + κ)

β
(d2 + 3)3 + 7µ2

2(d2 + 6)3ℓ2. (27)

where (i) follows from eq. (18) in Lemma 3 and Young’s inequality, (ii) follows from Lemma 9, (iii) follows
from Lemma 1 in Fang et al. (2018), (iv) follows from the fact that 2

β(µ+ℓ) −6 > 0, (v) follows from Lemma 11,
and (vi) follows from the fact that 4

S2,y
(d2 + 4)ℓ2β2 ≤ βµℓ

2(µ+ℓ) . Taking expectation on both sides of eq. (27)
and applying eq. (27) iteratively yield

E[∥ũt,k∥2
2] ≤ bkE[∥ũt,0∥2

2] +
[

2µ2
2ℓκ

β
(d2 + 3)3 + 7µ2

2(d2 + 6)3ℓ2
] k−1∑

j=0
bj . (28)

Taking summation of eq. (28) over k = {0, · · ·m} yields

m∑
k=0

E[∥ũt,k∥2
2] ≤ E[∥ũt,0∥2

2]
m∑

k=0
bk +

[
2µ2

2ℓκ

β
(d2 + 3)3 + 7µ2

2(d2 + 6)3ℓ2
] m∑

k=0

k−1∑
j=0

bj

≤ 1
1 − b

E[∥ũt,0∥2
2] + m+ 1

1 − b

[
2µ2

2ℓκ

β
(d2 + 3)3 + 7µ2

2(d2 + 6)3ℓ2
]
,

which completes the proof.

C Proof of Theorem 1

Following steps similar to those in Lemmas 12-14, at the t-th outer-loop iteration, we obtain the following
convergence result for the inner loop:

E[∥∇pτ (w̃t)∥2
2]

≤ 2
γτ(I + 1)E[∥∇pτ (w0)∥2

2] + E[∥∇pτ (w0) − v0∥2
2] + ℓγ

2 − ℓγ
E[∥v0∥2

2]

+ 2
γ(I + 1)

(
τ2

4µℓ
2(d+ 3)3 + τ2ℓd

)
≤

(
2

γµ(I + 1) + 2ℓγ
2 − ℓγ

)
E[∥∇pτ (w0)∥2

2] +
(

1 + 2ℓγ
2 − ℓγ

)
E[∥∇pτ (w0) − v0∥2

2]

+ 2
γ(I + 1)

(
τ2

4µℓ
2(d+ 3)3 + τ2ℓd

)
. (29)

Then, following steps similar to those in Lemma 10, we can obtain

E[∥∇pτ (w0) − v0∥2
2] ≤ 2σ2

B1
+ dℓ2δ2

2 + τ2

2 ℓ
2(d+ 3)3. (30)
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Letting γ = 2
9ℓ , I = 36κ − 1, substituting eq. (30) into eq. (29), and recalling the fact that wI = w̃t and

w0 = w̃t−1 yield

E[∥∇pτ (w̃t)∥2
2] ≤ 1

2E[∥∇pτ (w̃t−1)∥2
2] + 5σ2

2B1
+ 5dℓ2δ2

8 + 11τ2

16 ℓ2(d+ 3)3 + τ2

4 ℓµd. (31)

Applying eq. (31) iteratively from t = T to 0 yields

E[∥∇pτ (w̃T )∥2
2] ≤ 1

2T
∥∇pτ (w̃0)∥2

2 + 5σ2

2B1

T −1∑
t=0

1
2t

+
(

5dℓ2δ2

8 + 11τ2

16 ℓ2(d+ 3)3 + τ2

4 ℓµd
) T −1∑

t=0

1
2t

≤ 1
2T

∥∇pτ (w̃0)∥2
2 + 5σ2

B1
+ 5dℓ2δ2

4 + 11τ2

8 ℓ2(d+ 3)3 + τ2

2 ℓµd. (32)

Letting T = log2
5∥∇pτ (w̃0)∥2

2
ϵ , B1 = 25σ2

ϵ , δ = 2ϵ0.5

5ℓd0.5 , and τ = min{ ϵ0.5

3ℓ(d+3)1.5 ,
√

2ϵ
5ℓµd }, we have

E[∥∇pτ (w̃T )∥2
2] ≤ ϵ.

The total sample complexity is given by

T · (I ·B2 + d ·B1) = O
(
d

(
κ+ 1

ϵ

)
log

(
1
ϵ

))
.

Extension to the finite-sum case: ZO-iSARAH in Algorithm 2 is also applicable to strongly-convex
optimization in the finite-sum case, where the objective function takes the form given by

min
w∈Rd

p(w) ≜ 1
n

n∑
i=1

P (w; ξi). (33)

To solve the problem in eq. (33), we slightly modify Algorithm 2 by replacing line 5 with the full gradient.
Following steps similar to those from eq. (29) to eq. (32), we have

E[∥∇pτ (w̃T )∥2
2] ≤ 1

2T
∥∇pτ (w̃0)∥2

2 + 5dℓ2δ2

4 + 11τ2

8 ℓ2(d+ 3)3 + τ2

2 ℓµd.

Letting T = log2
4∥∇pτ (w̃0)∥2

2
ϵ , δ = ϵ0.5

3ℓd0.5 , and τ = min{ ϵ0.5

3ℓ(d+3)1.5 ,
√

ϵ
2ℓµd }, we have

E[∥∇pτ (w̃T )∥2
2] ≤ ϵ.

The total sample complexity is given by

T · (I ·B2 + d · n) = O
(
d (κ+ n) log

(
1
ϵ

))
. (34)

Let P (·; ξ) = −F (x0, ·; ξ). Then we can conclude that the sample complexity for the initialization of
Algorithm 1 is given by O (d2κ log (κ)) in the online case, and is given by O (d2(κ+ n) log (κ)) in the
finite-sum case.

D Proof of Theorem 2

D.1 Proof of Supporting Lemmas

We define ∆′
t = E[∥∇xfµ1(xt, yt) − vt∥2

2] + E[∥∇yfµ2(xt, yt) − ut∥2
2], ∆̃′

t,k = E[∥∇xfµ1(x̃t,k, ỹt,k) − ṽt,k∥2
2] +

E[∥∇yfµ2(x̃t,k, ỹt,k) − ũt,k∥2
2], and δ′

t = E[∥∇yfµ2(xt, yt)∥2
2]. In this subsection, we establish the following

lemmas to characterize the relationship between ∆t and ∆′
t, and δt and δ′

t, and the recursive relationship of
∆′

t and δ′
t, which are crucial for the analysis of Theorem 2.
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Lemma 16. Suppose Assumption 2 holds. Then, for any 0 ≤ t ≤ T − 1, we have

∆t ≤ 2∆′
t + µ2

1
2 ℓ2(d1 + 3)3 + µ2

2
2 ℓ2(d2 + 3)3,

and

δt ≤ 2δ′
t + µ2

2
2 ℓ2(d2 + 3)3.

Proof. For the first inequality, we have

∆t = E[∥∇xf(xt, yt) − vt∥2
2] + E[∥∇yf(xt, yt) − ut∥2

2]
= E[∥∇xfµ1(xt, yt) − vt + ∇xf(xt, yt) − ∇xfµ1(xt, yt)∥2

2]
+ E[∥∇yfµ2(xt, yt) − ut + ∇yf(xt, yt) − ∇yfµ2(xt, yt)∥2

2]
≤ 2E[∥∇xfµ1(xt, yt) − vt∥2

2] + 2E[∥∇yfµ2(xt, yt) − ut∥2
2]

+ 2E[∥∇xf(xt, yt) − ∇xfµ1(xt, yt)∥2
2] + 2E[∥∇yf(xt, yt) − ∇yfµ2(xt, yt)∥2

2]
(i)
≤ 2∆′

t + µ2
1

2 ℓ2(d1 + 3)3 + µ2
2

2 ℓ2(d2 + 3)3,

where (i) follows from Lemma 9. For the second inequality, we have

δt = E[∥∇yf(xt, yt)∥2
2] = E[∥∇yfµ2(xt, yt) + ∇yf(xt, yt) − ∇yfµ2(xt, yt)∥2

2]
≤ 2E[∥∇yfµ2(xt, yt)∥2

2] + 2E[∥∇yf(xt, yt) − ∇yfµ2(xt, yt)∥2
2]

(i)
≤ 2δ′

t + µ2
2

2 ℓ2(d2 + 3)3,

where (i) follows from Lemma 9.

We provide the following two lemmas to characterize the relationship between δ′
t and δ′

t−1 as well as that
between ∆′

t and ∆′
t−1.

Lemma 17. Suppose Assumption 2 holds. Then, we have

∆′
t ≤

[
1 + 6ℓ2β2

1 − b

(
d1 + 4
S2,x

+ d2 + 4
S2,y

)]
∆′

t−1 + 6ℓ2β2

1 − b

(
d1 + 4
S2,x

+ d2 + 4
S2,y

)
δ′

t−1

+ 2ℓ2α2
(
d1 + 4
S2,x

+ d2 + 4
S2,y

) (
1 + 9ℓ2β2

1 − b

)
E[∥vt−1∥2

2] + π∆(d1, d2, µ1, µ2),

where b = 1 − βµℓ
2(µ+ℓ) and

π∆(d1, d2, µ1, µ2)

= 2ℓ2β2

1 − b

(
d1 + 4
S2,x

+ d2 + 4
S2,y

) {
6ℓ2

[
µ2

1(d1 + 6)3

S2,x
+ µ2

2(d2 + 6)3

S2,y

]
+ (m+ 1)

(2µ2
2ℓκ

β
(d2 + 3)3

+ 7µ2
2(d2 + 6)3ℓ2

)}
+ 2(m+ 2)µ2

1(d1 + 6)3ℓ2

S2,x
+ 2(m+ 2)µ2

2(d2 + 6)3ℓ2

S2,y
.

Moreover, if we let β = 2
13ℓ , m = 104κ− 1, S2,x ≥ 5600(d1 + 4) and S2,y ≥ 5600(d2 + 4), then we have

π∆(d1, d2, µ1, µ2) ≤ κ3ℓ2[µ2
1(d1 + 6)3 + µ2

2(d2 + 6)3].
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Proof. We proceed as follows:

∆′
t

= ∆̃′
t−1,m̄t−1

= E
[ ∥∥∇xfµ1(x̃t−1,m̃t−1 , ỹt−1,m̃t−1) − ṽt−1,m̃t−1

∥∥2
2

]
(i)
≤ E

[ ∥∥∇xfµ1(x̃t−1,m̃t−1−1, ỹt−1,m̃t−1−1) − ṽt−1,m̃t−1−1
∥∥2

2

]
+ 1
S2,x

E
[ ∥∥Gµ1(x̃t−1,m̃t−1 , ỹt−1,m̃t−1 , νi, ξi) −Gµ1(x̃t−1,m̃t−1−1, ỹt−1,m̃t−1−1, νi, ξi)

∥∥2
2

]
(ii)
≤ E

[ ∥∥∇xfµ1(x̃t−1,m̃t−1−1, ỹt−1,m̃t−1−1) − ṽt−1,m̃t−1−1
∥∥2

2

]
+ 1
S2,x

[
2(d1 + 4)ℓ2β2E[

∥∥ũt−1,m̃t−1−1
∥∥2

2] + 2µ2
1(d1 + 6)3ℓ2

]
, (35)

where (i) follows from Lemma 5, and (ii) follows from Lemma 11. Applying eq. (35) recursively yields

E
[ ∥∥∇xfµ1(x̃t−1,m̃t−1 , ỹt−1,m̃t−1) − ṽt−1,m̃t−1

∥∥2
2

]
≤ E

[
∥∇xfµ1(x̃t−1,0, ỹt−1,0) − ṽt−1,0∥2

2

]
+ 2(d1 + 4)ℓ2β2

S2,x

m̃t−1−1∑
k=0

E[∥ũt−1,k∥2
2]

+ 2m̃t−1µ
2
1(d1 + 6)3ℓ2

S2,x

≤ E
[

∥∇xfµ1(x̃t−1,0, ỹt−1,0) − ṽt−1,0∥2
2

]
+ 2(d1 + 4)ℓ2β2

S2,x

m∑
k=0

E[∥ũt−1,k∥2
2]

+ 2(m+ 1)µ2
1(d1 + 6)3ℓ2

S2,x
. (36)

Similarly, we obtain

E
[ ∥∥∇yfµ2(x̃t−1,m̃t−1 , ỹt−1,m̃t−1) − ũt−1,m̃t−1

∥∥2
2

]
≤ E

[
∥∇yfµ2(x̃t−1,0, ỹt−1,0) − ũt−1,0∥2

2

]
+ 2(d2 + 4)ℓ2β2

S2,y

m∑
k=0

E[∥ũt−1,k∥2
2]

+ 2(m+ 1)µ2
2(d2 + 6)3ℓ2

S2,y
. (37)

Combining eq. (36) and eq. (37) yields

∆′
t ≤ ∆̃′

t−1,0 +
(

2(d1 + 4)ℓ2β2

S2,x
+ 2(d2 + 4)ℓ2β2

S2,y

) m∑
k=0

E[∥ũt−1,k∥2
2]

+ 2(m+ 1)µ2
1(d1 + 6)3ℓ2

S2,x
+ 2(m+ 1)µ2

2(d2 + 6)3ℓ2

S2,y
. (38)

For ∆̃′
t−1,0, we obtain

∆̃′
t−1,0 = E[∥∇xfµ1(x̃t−1,0, ỹt−1,0) − ṽt−1,0∥2

2] + E[∥∇yfµ2(x̃t−1,0, ỹt−1,0) − ũt−1,0∥2
2]

(i)
≤ E[∥∇xfµ1(x̃t−1,−1, ỹt−1,−1) − ṽt−1,−1∥2

2] + E[∥∇yfµ2(x̃t−1,−1, ỹt−1,−1) − ũt−1,−1∥2
2]

+ 1
S2,x

E[∥G(x̃t,0, ỹt,0, νi, ξi) −G(x̃t,−1, ỹt,−1, νMi , ξi)∥2
2]
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+ 1
S2,y

E[∥H(x̃t,0, ỹt,0, νi, ξi) −H(x̃t,−1, ỹt,−1, νMi
, ξi)∥2

2]

(ii)
≤ ∆′

t−1 +
(

2(d1 + 4)ℓ2α2

S2,x
+ 2(d2 + 4)ℓ2α2

S2,y

)
E[∥vt−1∥2

2]

+ 2µ2
1(d1 + 6)3ℓ2

S2,x
+ 2µ2

2(d2 + 6)3ℓ2

S2,y
, (39)

where (i) follows from Lemma 5 and (ii) follows from Lemma 11. Substituting eq. (39) into eq. (38) yields

∆′
t ≤ ∆′

t−1 +
(

2(d1 + 4)ℓ2α2

S2,x
+ 2(d2 + 4)ℓ2α2

S2,y

)
E[∥vt−1∥2

2]

+
(

2(d1 + 4)ℓ2β2

S2,x
+ 2(d2 + 4)ℓ2β2

S2,y

) m∑
k=0

E[∥ũt−1,k∥2
2]

+ 2(m+ 2)µ2
1(d1 + 6)3ℓ2

S2,x
+ 2(m+ 2)µ2

2(d2 + 6)3ℓ2

S2,y

(i)
≤ ∆′

t−1 +
(

2(d1 + 4)ℓ2α2

S2,x
+ 2(d2 + 4)ℓ2α2

S2,y

)
E[∥vt−1∥2

2]

+ 2(m+ 2)µ2
1(d1 + 6)3ℓ2

S2,x
+ 2(m+ 2)µ2

2(d2 + 6)3ℓ2

S2,y

+ 2ℓ2β2

1 − b

(
d1 + 4
S2,x

+ d2 + 4
S2,y

) [
E[∥ũt,0∥2

2] + (m+ 1)
(

2µ2
2ℓκ

β
(d2 + 3)3 + 7µ2

2(d2 + 6)3ℓ2
)]

. (40)

where (i) follows from Lemma 15. We next bound the term E[∥ũt−1,0∥2
2] as follows:

E[∥ũt−1,0∥2
2]

= E[∥ũt−1,0 − ∇yfµ2(xt, yt−1) + ∇yfµ2(xt, yt−1) − ∇yfµ2(xt−1, yt−1) + ∇yfµ2(xt−1, yt−1)∥2
2]

≤ 3E[∥ũt−1,0 − ∇yfµ2(xt, yt−1)∥2
2] + 3E[∥∇yfµ2(xt, yt−1) − ∇yfµ2(xt−1, yt−1)∥2

2]
+ 3E[∥∇yfµ2(xt−1, yt−1)∥2

2]
(i)
≤ 3E[∥ũt−1,0 − ∇yfµ2(xt, yt−1)∥2

2] + 3ℓ2E[∥xt − xt−1∥2
2] + 3δ′

t−1

= 3E[∥ũt−1,0 − ∇yfµ2(x̃t−1,0, ỹt−1,0)∥2
2] + 3α2ℓ2E[∥vt−1∥2

2] + 3δ′
t−1

≤ 3∆̃′
t−1,0 + 3α2ℓ2E[∥vt−1∥2

2] + 3δ′
t−1

(ii)
≤ 3∆′

t−1 + 3δ′
t−1 +

[
3 + 6(d1 + 4)

S2,x
+ 6(d2 + 4)

S2,y

]
α2ℓ2E[∥vt−1∥2

2] + 6ℓ2
[
µ2

1(d1 + 6)3

S2,x
+ µ2

2(d2 + 6)3

S2,y

]
(iii)
≤ 3∆′

t−1 + 3δ′
t−1 + 9α2ℓ2E[∥vt−1∥2

2] + 6ℓ2
[
µ2

1(d1 + 6)3

S2,x
+ µ2

2(d2 + 6)3

S2,y

]
(41)

where (i) follows from Lemma 7, and (ii) follows from eq. (39), and (iii) follows from the fact that
S2,x ≥ 2(d1 + 4) and S2,y ≥ 2(d2 + 4). Substituting eq. (41) into eq. (40) yields

∆′
t ≤

[
1 + 6ℓ2β2

1 − b

(
d1 + 4
S2,x

+ d2 + 4
S2,y

)]
∆′

t−1 + 6ℓ2β2

1 − b

(
d1 + 4
S2,x

+ d2 + 4
S2,y

)
δ′

t−1

+ 2ℓ2α2
(
d1 + 4
S2,x

+ d2 + 4
S2,y

) (
1 + 9ℓ2β2

1 − b

)
E[∥vt−1∥2

2]

+ 2ℓ2β2

1 − b

(
d1 + 4
S2,x

+ d2 + 4
S2,y

) {
6ℓ2

[
µ2

1(d1 + 6)3

S2,x
+ µ2

2(d2 + 6)3

S2,y

]
+ (m+ 1)

(2µ2
2ℓκ

β
(d2 + 3)3

+ 7µ2
2(d2 + 6)3ℓ2

)}
+ 2(m+ 2)µ2

1(d1 + 6)3ℓ2

S2,x
+ 2(m+ 2)µ2

2(d2 + 6)3ℓ2

S2,y
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(i)
≤

[
1 + 6ℓ2β2

1 − b

(
d1 + 4
S2,x

+ d2 + 4
S2,y

)]
∆′

t−1 + 6ℓ2β2

1 − b

(
d1 + 4
S2,x

+ d2 + 4
S2,y

)
δ′

t−1

+ 2ℓ2α2
(
d1 + 4
S2,x

+ d2 + 4
S2,y

) (
1 + 9ℓ2β2

1 − b

)
E[∥vt−1∥2

2] + π∆(d1, d2, µ1, µ2), (42)

where (i) follows from the definition of π∆.

Lemma 18. Suppose Assumptions 2-3 hold. Let S2,x ≥ 2d1 + 8 and S2,y ≥ 2d1 + 8. Then, we have

δ′
t ≤

(
4

βµ(m+ 1) + 3ℓβ
2 − ℓβ

)
δ′

t−1 + 2 + 2ℓβ
2 − ℓβ

∆′
t−1 +

(
4ℓ2α2

βµ(m+ 1) + 2ℓ2α2 + 9ℓ3βα2

2 − ℓβ

)
E[∥vt−1∥2

2]

+ πδ(d1, d2, µ1, µ2),

where

πδ(d1, d2, µ1, µ2) = 2ℓ2(2 + 2ℓβ)
2 − ℓβ

(
µ2

1(d1 + 6)3

S2,x
+ µ2

2(d2 + 6)3

S2,y

)
+ 2
β(m+ 1)

(
µ2

2
4µℓ

2(d2 + 3)3 + µ2
2ℓd2

)
.

Furthermore, if we let β = 2
13ℓ , m = 104κ− 1, then we have

πδ(d1, d2, µ1, µ2) = 5
2µ

2
1ℓ

2(d1 + 6)3 + 3µ2
2ℓ

2(d2 + 6)3 + 1
8µ

2
2µℓd2.

Proof. Using the result in Lemma 14, and recalling the definition in Appendix B.2 that ∇gt,µ2(ỹt,m̃t
) =

∇yf(xt, yt) and ∇gt,µ2(ỹt,0) = ∇yfµ2(xt+1, yt), we have

δ′
t+1 ≤ 2

βµ(m+ 1)E[∥∇yfµ2(xt+1, yt)∥2
2] + E[∥∇gt,µ2(ỹt,0) − ũt,0∥2

2] + ℓβ

2 − ℓβ
E[∥ũt,0∥2

2]

+ 2
β(m+ 1)

(
µ2

2
4µℓ

2(d2 + 3)3 + µ2
2ℓd2

)
≤ 2
βµ(m+ 1)E[∥∇yfµ2(xt+1, yt)∥2

2] + ∆̃′
t,0 + ℓβ

2 − ℓβ
E[∥ũt,0∥2

2]

+ 2
β(m+ 1)

(
µ2

2
4µℓ

2(d2 + 3)3 + µ2
2ℓd2

)
≤ 4
βµ(m+ 1)E[∥∇yfµ2(xt+1, yt) − ∇yfµ2(xt, yt)∥2

2] + 4
βµ(m+ 1)E[∥∇yfµ2(xt, yt)∥2

2]

+ ∆̃′
t,0 + ℓβ

2 − ℓβ
E[∥ũt,0∥2

2] + 2
β(m+ 1)

(
µ2

2
4µℓ

2(d2 + 3)3 + µ2
2ℓd2

)
≤ 4ℓ2α2

βµ(m+ 1)E[∥vt∥2
2] + 4

βµ(m+ 1)δ
′
t + ∆̃′

t,0 + ℓβ

2 − ℓβ
E[∥ũt,0∥2

2]

+ 2
β(m+ 1)

(
µ2

2
4µℓ

2(d2 + 3)3 + µ2
2ℓd2

)
(i)
≤ 4ℓ2α2

βµ(m+ 1)E[∥vt∥2
2] + 4

βµ(m+ 1)δ
′
t

+∆′
t + 2ℓ2α2E[∥vt∥2

2] + 2ℓ2
(
µ2

1(d1 + 6)3

S2,x
+ µ2

2(d2 + 6)3

S2,y

)
+ ℓβ

2 − ℓβ

[
3∆′

t + 3δ′
t + 9ℓ2α2E[∥vt∥2

2] + 6ℓ2
(
µ2

1(d1 + 6)3

S2,x
+ µ2

2(d2 + 6)3

S2,y

)]
+ 2
β(m+ 1)

(
µ2

2
4µℓ

2(d2 + 3)3 + µ2
2ℓd2

)
=

(
4

βµ(m+ 1) + 3ℓβ
2 − ℓβ

)
δ′

t + 2 + 2ℓβ
2 − ℓβ

∆′
t +

(
4ℓ2α2

βµ(m+ 1) + 2ℓ2α2 + 9ℓ3βα2

2 − ℓβ

)
E[∥vt∥2

2]
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+ 2ℓ2(2 + 2ℓβ)
2 − ℓβ

(
µ2

1(d1 + 6)3

S2,x
+ µ2

2(d2 + 6)3

S2,y

)
+ 2
β(m+ 1)

(
µ2

2
4µℓ

2(d2 + 3)3 + µ2
2ℓd2

)
,

≤
(

4
βµ(m+ 1) + 3ℓβ

2 − ℓβ

)
δ′

t + 2 + 2ℓβ
2 − ℓβ

∆′
t +

(
4ℓ2α2

βµ(m+ 1) + 2ℓ2α2 + 9ℓ3βα2

2 − ℓβ

)
E[∥vt∥2

2]

+ πδ(d1, d2, µ1, µ2), (43)

where (i) follows from eq. (39) and eq. (41), and from the fact that S2,x ≥ 2d1 + 8 and S2,y ≥ 2d2 + 8. The
proof is completed by shifting the index in eq. (43) from t to t− 1.

D.2 Proof of Theorem 2

We first restate Theorem 2 as follows to include the specifics of the parameters.
Theorem 4 (Restate of Theorem 2 with parameter specifics). Let Assumptions 1,2,4,and 3 hold and apply
ZO-VRGDA in Algorithm 1 to solve the problem in eq. (1) with the following parameters:

ζ = 1
κ
, α = 1

24(κ+ 1)ℓ , β = 2
13ℓ , q = 2800κ

13ϵ(κ+ 1) ,

m = 104κ− 1, S2,x = 5600(d1 + 4)κ
ϵ

, S2,y = 5600(d2 + 4)κ
ϵ

,

S1 = 40320σ2κ2

ϵ2
, T = max{1728(κ+ 1)ℓΦ(x0) − Φ∗

ϵ2
,

810κ
ϵ2

},

δ = ϵ

71κℓ
√
d1 + d2

, µ1 = ϵ

71κ2.5ℓ(d1 + 6)1.5 , µ2 = ϵ

71κ2.5ℓ(d2 + 6)1.5 .

Algorithm 1 outputs x̂ satisfies that

E[∥∇Φ(x̂)∥2] ≤ ϵ

with at most O((d1 + d2)κ3ϵ−3) function queries.

Proof. By Lemma 1, the objective function Φ is L-smooth, which implies that

Φ(xt+1) ≤ Φ(xt) − α⟨∇xΦ(xt), vt⟩ + Lα2

2 ∥vt∥2
2

= Φ(xt) − α⟨∇xΦ(xt) − vt, vt⟩ − α ∥vt∥2
2 + Lα2

2 ∥vt∥2
2

(i)
≤ Φ(xt) + α

2 ∥∇xΦ(xt) − vt∥2
2 + α

2 ∥vt∥2
2 − α ∥vt∥2

2 + Lα2

2 ∥vt∥2
2

≤ Φ(xt) + α

2 ∥∇xΦ(xt) − vt∥2
2 −

(
α

2 − Lα2

2

)
∥vt∥2

2

≤ Φ(xt) + α ∥∇xΦ(xt) − ∇xf(xt, yt)∥2
2 + α ∥∇xf(xt, yt) − vt∥2

2 −
(
α

2 − Lα2

2

)
∥vt∥2

2

(ii)
≤ Φ(xt) + ακ2 ∥∇yf(xt, yt)∥2

2 + α ∥∇xf(xt, yt) − vt∥2
2 −

(
α

2 − Lα2

2

)
∥vt∥2

2 , (44)

where (i) follows from the fact that (−1)⟨∇xΦ(xt) − vt, vt⟩ ≤ 1
2 ∥∇xΦ(xt) − vt∥2

2 + 1
2 ∥vt∥2

2, and (ii) follows
from the fact that

∥∇xΦ(xt) − ∇xf(xt, yt)∥2
2 = ∥∇xf(xt, y

∗(xt)) − ∇xf(xt, yt)∥2
2 ≤ ℓ2 ∥y∗(xt) − yt∥2

2
eq. (19)

≤ ℓ2

µ2 ∥∇yf(xt, y
∗(xt)) − ∇yf(xt, yt)∥2

2 = κ2 ∥∇yf(xt, yt)∥2
2 .

Taking expectation on both sides of eq. (44) yields

E[Φ(xt+1)] ≤ E[Φ(xt)] + ακ2E[∥∇yf(xt, yt)∥2
2] + αE[∥∇xf(xt, yt) − vt∥2

2] −
(
α

2 − Lα2

2

)
E[∥vt∥2

2]
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≤ E[Φ(xt)] + ακ2δt + α∆t −
(
α

2 − Lα2

2

)
E[∥vt∥2

2]. (45)

Using the property in Lemma 16, we obtain the following

E[Φ(xt+1)] ≤ E[Φ(xt)] + ακ2δt + α∆t −
(
α

2 − Lα2

2

)
E[∥vt∥2

2]

(i)
≤ E[Φ(xt)] + 2ακ2δ′

t + 2α∆′
t −

(
α

2 − Lα2

2

)
E[∥vt∥2

2]

+ µ2α(κ2 + 1)
2 ℓ2(d2 + 3)3 + µ1α

2 ℓ2(d1 + 3)3. (46)

Rearranging eq. (46) and taking the summation over t = {0, 1, · · · , T − 1} yield(
α

2 − Lα2

2

) T −1∑
t=0

E[∥vt∥2
2] ≤ Φ(x0) − E[Φ(xT )] + 2ακ2

T −1∑
t=0

δ′
t + 2α

T −1∑
t=0

∆′
t

+ αTπ(d1, d2, µ1, µ2). (47)

Note that in eq. (47) we define

π(d1, d2, µ1, µ2) = µ2
2(κ2 + 1)

2 ℓ2(d2 + 3)3 + µ2
1

2 ℓ2(d1 + 3)3. (48)

Then we proceed to prove Theorem 2/Theorem 4 in the following three steps.

Step 1. We establish the induction relationships for the tracking error and gradient estimation error with
respect to the Gaussian smoothed function upon one outer-loop update for ZO-VRGDA. Namely, we develop
the relationship between δ′

t and δ′
t−1 as well as that between ∆′

t and ∆′
t−1, which are captured in Lemma 17

and Lemma 18.

Step 2. Based on Step 1, we provide the bounds on the inter-related accumulative errors
∑T −1

t=0 ∆′
t and∑T −1

t=0 δ′
t over the entire execution of the algorithm.

We first consider
∑T −1

t=0 ∆′
t, for any (nT − 1)q ≤ t′ < T − 1. Applying the inequality in Lemma 17 recursively,

we obtain the following bound

∆′
t ≤

[
1 + 6ℓ2β2

1 − b

(
d1 + 4
S2,x

+ d2 + 4
S2,y

)]
∆′

t−1 + 6ℓ2β2

1 − b

(
d1 + 4
S2,x

+ d2 + 4
S2,y

)
δ′

t−1

+ 2ℓ2α2
(
d1 + 4
S2,x

+ d2 + 4
S2,y

) (
1 + 9ℓ2β2

1 − b

)
E[∥vT −2∥2

2] + π∆(d1, d2, µ1, µ2, S2)

≤
[
1 + 6ℓ2β2

1 − b

(
d1 + 4
S2,x

+ d2 + 4
S2,y

)]t−t′

∆′
t′

+ 6ℓ2β2

1 − b

(
d1 + 4
S2,x

+ d2 + 4
S2,y

) t−1∑
p=t′

[
1 + 6ℓ2β2

1 − b

(
d1 + 4
S2,x

+ d2 + 4
S2,y

)]p−t′

δ′
p

+ 2ℓ2α2
(
d1 + 4
S2,x

+ d2 + 4
S2,y

) (
1 + 9ℓ2β2

1 − b

) t−1∑
p=t′

[
1 + 6ℓ2β2

1 − b

(
d1 + 4
S2,x

+ d2 + 4
S2,y

)]p−t′

E[∥vt∥2
2]

+ π∆(d1, d2, µ1, µ2, S2)
t−1∑
p=t′

[
1 + 6ℓ2β2

1 − b

(
d1 + 4
S2,x

+ d2 + 4
S2,y

)]p−t′

(i)
≤ 2∆′

t′ + 6ℓ2β2

1 − b

(
d1 + 4
S2,x

+ d2 + 4
S2,y

) t−1∑
p=t′

δ′
t
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+ 2ℓ2α2
(
d1 + 4
S2,x

+ d2 + 4
S2,y

) (
1 + 9ℓ2β2

1 − b

) t−1∑
p=t′

E[∥vt∥2
2]

+ 2π∆(d1, d2, µ1, µ2, S2), (49)

where (i) follows from the fact that[
1 + 6ℓ2β2

1 − b

(
d1 + 4
S2,x

+ d2 + 4
S2,y

)]p−t′

≤
[
1 + 6ℓ2β2

1 − b

(
d1 + 4
S2,x

+ d2 + 4
S2,y

)]q

(ii)
≤ 1 +

6qℓ2β2

1−b

(
d1+4
S2,x

+ d2+4
S2,y

)
1 − 6(q−1)ℓ2β2

1−b

(
d1+4
S2,x

+ d2+4
S2,y

) (iii)
≤ 2,

where (ii) follows from the Bernoulli’s inequality Li & Yeh (2013)

(1 + c)r ≤ 1 + rc

1 − (r − 1)c for c ∈
[

− 1, 1
r − 1

)
, r > 1, (50)

and (iii) follows from the fact that q = (1 − b)
(

d1+4
S2,x

+ d2+4
S2,y

)−1
, β = 2

13ℓ ,
(

d1+4
S2,x

+ d2+4
S2,y

)
< 1, and

b = 1 − βµℓ
2(µ+ℓ) , which further implies that

6qℓ2β2

1−b

(
d1+4
S2,x

+ d2+4
S2,y

)
1 − 6(q−1)ℓ2β2

1−b

(
d1+4
S2,x

+ d2+4
S2,y

) ≤
6qℓ2β2

1−b

(
d1+4
S2,x

+ d2+4
S2,y

)
1 − 6qℓ2β2

1−b

(
d1+4
S2,x

+ d2+4
S2,y

) = 6ℓ2β2

1 − 6ℓ2β2 < 1.

Letting t′ = (nT − 1)q and taking summation of eq. (49) over t = {(nT − 1)q, · · · , T − 1} yield

T −1∑
t=(nT −1)q

∆′
t ≤ 2(T − (nT − 1)q)∆′

(nT −1)q + 6ℓ2β2

1 − b

(
d1 + 4
S2,x

+ d2 + 4
S2,y

) T −1∑
t=(nT −1)q

t−1∑
p=(nT −1)q

δ′
p

+ 2ℓ2α2
(
d1 + 4
S2,x

+ d2 + 4
S2,y

) (
1 + 9ℓ2β2

1 − b

) T −1∑
t=(nT −1)q

t−1∑
p=(nT −1)q

E[∥vp∥2
2]

+ 2(T − (nT − 1)q)π∆(d1, d2, µ1, µ2, S2)
(i)
≤ 2(T − (nT − 1)q)ϵ(S1, δ) + 6qℓ2β2

1 − b

(
d1 + 4
S2,x

+ d2 + 4
S2,y

) T −2∑
t=(nT −1)q

δ′
t

+ 2qℓ2α2
(
d1 + 4
S2,x

+ d2 + 4
S2,y

) (
1 + 9ℓ2β2

1 − b

) T −2∑
t=(nT −1)q

E[∥vt∥2
2]

+ 2(T − (nT − 1)q)π∆(d1, d2, µ1, µ2)

= 2(T − (nT − 1)q)ϵ(S1, δ) + 6ℓ2β2
T −2∑

t=(nT −1)q

δ′
t

+ 2ℓ2α2(1 − b)
(

1 + 9ℓ2β2

1 − b

) T −2∑
t=(nT −1)q

E[∥vt∥2
2]

+ 2(T − (nT − 1)q)π∆(d1, d2, µ1, µ2)

≤ 2(T − (nT − 1)q)ϵ(S1, δ) + 6ℓ2β2
T −2∑

t=(nT −1)q

δ′
t + 2ℓ2α2 (

1 + 9ℓ2β2) T −2∑
t=(nT −1)q

E[∥vt∥2
2]
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+ 2(T − (nT − 1)q)π∆(d1, d2, µ1, µ2)
(ii)
≤ 2(T − (nT − 1)q)ϵ(S1, δ) + 1

7

T −2∑
t=(nT −1)q

δ′
t + 3ℓ2α2

T −2∑
t=(nT −1)q

E[∥vt∥2
2]

+ 2(T − (nT − 1)q)π∆(d1, d2, µ1, µ2), (51)

where (i) follows from the fact that ∆′
(nT −n)q ≤ ϵ(S1, δ) for all n ≤ nT (following from Lemma 4),

T −1∑
t=(nT −1)q

t−1∑
p=(nT −1)q

δ′
p ≤ q

T −2∑
t=(nT −1)q

δ′
t,

and
T −1∑

t=(nT −1)q

t−1∑
p=(nT −1)q

E[∥vt∥2
2] ≤ q

T −2∑
t=(nT −1)q

E[∥vt∥2
2],

and (ii) follows because β = 2
13ℓ . Applying steps similar to those in eq. (51) for iterations over t =

{(nT − nt)q, · · · , (nT − nt + 1)q − 1} yields

(nT −nt+1)q−1∑
t=(nT −nt)q

∆′
t ≤ 2qϵ(S1, δ) + 1

7

(nT −nt+1)q−1∑
t=(nT −nt)q

δ′
t + 3ℓ2α2

(nT −nt+1)q−1∑
t=(nT −nt)q

E[∥vt∥2
2]

+ 2qπ∆(d1, d2, µ1, µ2). (52)

Taking summation of eq. (52) over n = {2, · · · , nT } and combing with eq. (51) yield

T −1∑
t=0

∆′
t ≤ 2Tϵ(S1, δ) + 1

7

T −1∑
t=0

δ′
t + 3ℓ2α2

T −1∑
t=0

E[∥vt∥2
2] + 2Tπ∆(d1, d2, µ1, µ2). (53)

Then we consider the upper bound on
∑T −1

t=0 δ′
t. Since m = 16

µβ − 1 and β = 2
13ℓ , Lemma 18 implies

δ′
t ≤ 1

2δ
′
t−1 + 5

4∆
′
t−1 + 3ℓ2α2E[∥vt−1∥2

2] + πδ(d1, d2, µ1, µ2). (54)

Applying eq. (54) recursively from t to 0 yields

δ′
t ≤ 1

2t
δ′

0 + 5
4

t−1∑
p=0

1
2p
∆′

p + 3ℓ2α2
t−1∑
p=0

1
2p

E[∥vp∥2
2] + πδ(d1, d2, µ1, µ2)

t−1∑
p=0

1
2p
. (55)

Taking the summation of eq. (55) over t = {0, 1, · · · , T − 1} yields

T −1∑
t=0

δ′
t ≤ δ′

0

T −1∑
t=0

1
2t

+ 5
4

T −1∑
t=0

t−1∑
p=0

1
2p
∆′

p + 3ℓ2α2
T −1∑
t=0

t−1∑
p=0

1
2p

E[∥vp∥2
2]

+ πδ(d1, d2, µ1, µ2)
T −1∑
t=0

t−1∑
p=0

1
2p

≤ 2δ′
0 + 5

2

T −2∑
t=0

∆′
t + 6ℓ2α2

T −2∑
t=0

E[∥vt∥2
2] + 2Tπδ(d1, d2, µ1, µ2). (56)

We then decouple the bounds on
∑T −1

t=0 ∆′
t and

∑T −1
t=0 δ′

t in Step 2 from each other, and establish their
separate relationships with the accumulative gradient estimators

∑T −1
i=0 E[∥vt∥2

2].
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Substituting eq. (56) into eq. (53) yields

T −1∑
t=0

∆′
t ≤ 2Tϵ(S1, δ) + 2

7δ
′
0 + 4α2ℓ2

T −2∑
t=0

E[∥vt∥2
2] + 5

14

T −2∑
t=0

∆′
t

+ 2Tπ∆(d1, d2, µ1, µ2) + 2
7Tπδ(d1, d2, µ1, µ2),

which implies

T −1∑
t=0

∆′
t ≤ 4Tϵ(S1, δ) + 1

2δ
′
0 + 7α2ℓ2

T −2∑
t=0

E[∥vt∥2
2]

+ 1
2Tπ∆(d1, d2, µ1, µ2) + 4Tπδ(d1, d2, µ1, µ2). (57)

Substituting eq. (57) into eq. (56) yields

T −1∑
t=0

δ′
t ≤ 10Tϵ(S1, δ) + 4δ′

0 + 24α2ℓ2
T −2∑
t=0

E[∥vt∥2
2]

+ 10Tπ∆(d1, d2, µ1, µ2) + 4Tπδ(d1, d2, µ1, µ2). (58)

Step 3. We bound
∑T −1

i=0 E[∥vt∥2
2], and further cancel out the impact of

∑T −1
t=0 ∆′

t and
∑T −1

t=0 δ′
t by exploiting

Step 2. Then, we obtain the convergence rate of E[∥∇Φ(x̂)∥2
2].

Substituting eq. (57) and eq. (58) into eq. (47) yields(
α

2 − Lα2

2

) T −1∑
t=0

E[∥vt∥2
2]

≤ Φ(x0) − E[Φ(xT )] + (20κ2 + 8)αTϵ(S1, δ) + (8κ2 + 1)αδ′
0 + (48κ2 + 14)α3ℓ2

T −1∑
t=0

E[∥vt∥2
2]

+ (20κ2 + 1)αTπ∆(d1, d2, µ1, µ2) + (8κ2 + 8)αTπδ(d1, d2, µ1, µ2) + αTπ(d1, d2, µ1, µ2)
(i)
≤ Φ(x0) − E[Φ(xT )] + 28κ2αTϵ(S1, δ) + 9κ2αδ′

0 + 62α3L2
T −1∑
t=0

E[∥vt∥2
2]

+ 21κ2αTπ∆(d1, d2, µ1, µ2) + 16κ2αTπδ(d1, d2, µ1, µ2) + αTπ(d1, d2, µ1, µ2), (59)

where (i) follows from the fact that L = (1 + κ)ℓ and κ > 1. Rearranging eq. (59), we have(
α

2 − Lα2

2 − 62L2α3
) T −1∑

t=0
E[∥vt∥2

2]

≤ Φ(x0) − E[Φ(xT )] + 28κ2αTϵ(S1, δ) + 9κ2αδ′
0

+ 21κ2αTπ∆(d1, d2, µ1, µ2) + 16κ2αTπδ(d1, d2, µ1, µ2) + αTπ(d1, d2, µ1, µ2). (60)

Since α = 1
24L , we obtain

α

2 − Lα2

2 − 62L2α3 = 214
13824L ≥ 1

72L. (61)

Substituting eq. (61) into eq. (60) and applying Assumption 1 yield

T −1∑
t=0

E[∥vt∥2
2] ≤ 72L(Φ(x0) − Φ∗) + 84κ2Tϵ(S1, δ) + 27κ2δ′

0
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+ 63κ2Tπ∆(d1, d2, µ1, µ2) + 48κ2Tπδ(d1, d2, µ1, µ2)
+ 3Tπ(d1, d2, µ1, µ2). (62)

We then establish the convergence bound on E[∥∇Φ(x̂)∥2] based on the bounds on its estimators
∑T −1

i=0 E[∥vt∥2
2]

and the two error bounds
∑T −1

t=0 ∆′
t, and

∑T −1
t=0 δ′

t.

Observe that
T −1∑
t=0

E[∥∇Φ(xt)∥2
2] ≤

T −1∑
t=0

E[∥∇Φ(xt) − ∇xf(xt, yt) + ∇xf(xt, yt) − vt + vt∥2
2]

≤ 3
T −1∑
t=0

(
E[∥∇Φ(xt) − ∇xf(xt, yt)∥2

2] + E[∥∇xf(xt, yt) − vt∥2
2] + E[∥vt∥2

2]
)

≤ 3
T −1∑
t=0

(
κ2E[∥∇yf(xt, yt)∥2

2] + E[∥∇xf(xt, yt) − vt∥2
2] + E[∥vt∥2

2]
)

≤ 3κ2
T −1∑
t=0

δt + 3
T −1∑
t=0

∆t + 3
T −1∑
t=0

E[∥vt∥2
2]

(i)
≤ 6κ2

T −1∑
t=0

δ′
t + 6

T −1∑
t=0

∆′
t + 3

T −1∑
t=0

E[∥vt∥2
2] + 3Tπ(d1, d2, µ1, µ2) (63)

where (i) follows from Lemma 16. Substituting eq. (57), eq. (58) and eq. (62) into eq. (63) yields

T −1∑
t=0

E[∥∇Φ(xt)∥2
2]

≤ (60κ2 + 24)Tϵ(S1, δ) + (24κ2 + 3)δ′
0 + (60κ2 + 3)Tπ∆(d1, d2, µ1, µ2)

+ (24κ2 + 24)Tπδ(d1, d2, µ1, µ2) + (144κ2α2ℓ2 + 42α2ℓ2 + 3)
T −1∑
t=0

E[∥vt∥2
2]

+ 3Tπ(d1, d2, µ1, µ2)
(i)
≤ 84κ2Tϵ(S1, δ) + 27κ2δ′

0 + 63κ2Tπ∆(d1, d2, µ1, µ2) + 48κ2Tπδ(d1, d2, µ1, µ2)

+ 4
T −1∑
t=0

E[∥vt∥2
2] + 3Tπ(d1, d2, µ1, µ2)

(ii)
≤ 288L(Φ(x0) − Φ∗) + 420κ2Tϵ(S1, δ) + 135κ2δ′

0 + 315κ2Tπ∆(d1, d2, µ1, µ2)
+ 240κ2Tπδ(d1, d2, µ1, µ2) + 15Tπ(d1, d2, µ1, µ2). (64)

where (i) follows from the fact that κ > 1, L = (κ+ 1)ℓ and α = 1
24L , and (ii) follows from eq. (62). Recall

L = (1 + κ)ℓ. Then, eq. (64) implies that

E[∥∇Φ(x̂)∥2
2]

≤ 288(κ+ 1)ℓΦ(x0) − Φ∗

T
+ 420κ2ϵ(S1, δ) + 135κ2δ′

0
T

+ 315κ2π∆(d1, d2, µ1, µ2) + 240κ2πδ(d1, d2, µ1, µ2) + 15π(d1, d2, µ1, µ2). (65)

Recalling Lemma 10, we have

ϵ(S1, δ) ≤ (d1 + d2)ℓ2δ2

2 + 4σ2

S1
+ µ2

1
2 ℓ2(d1 + 3)3 + µ2

2
2 ℓ2(d2 + 3)3.
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If we let δ′
0 ≤ 1

κ , T = max{1728(κ+ 1)ℓΦ(x0)−Φ∗

ϵ2 , 810κ
ϵ2 }, S1 = 40320σ2κ2

ϵ2 , and further let δ = ϵ
71κℓ

√
d1+d2

, µ1 =
ϵ

71κ2.5ℓ(d1+6)1.5 and µ2 = ϵ
71κ2.5ℓ(d2+6)1.5 , according to the definition of ϵ(S1, δ) (Lemma 10), π∆(d1, d2, µ1, µ2)

(Lemma 17), πδ(d1, d2, µ1, µ2) (Lemma 18) and π(d1, d2, µ1, µ2) (eq. (48)), then we have 420κ2ϵ(S1, δ) ≤ ϵ2

6 ,
and

315κ2π∆(d1, d2, µ1, µ2) + 240κ2πδ(d1, d2, µ1, µ2) + 15π(d1, d2, µ1, µ2) ≤ ϵ2

2 ,

which implies

E[∥∇Φ(x̂)∥2] ≤
√

E[∥∇Φ(x̂)∥2
2] ≤ ϵ.

We also let S2,x = 5600(d1+4)κ
ϵ , S2,y = 5600(d2+4)κ

ϵ and q = 2800κ
13ϵ(κ+1) . Then, the total sample complexity is

given by

T · (S2,x + S2,y) ·m+
⌈
T

q

⌉
· S1 · (d1 + d2) + T0

≤ Θ

(
κ

ϵ2
· (d1 + d2)κ

ϵ
· κ

)
+Θ

(
κ

ϵ
· κ

2

ϵ2
· (d1 + d2)

)
+Θ (d2κ log(κ))

= O
(

(d1 + d2)κ3

ϵ3

)
,

which completes the proof.

E Proof of Theorem 3

In the finite-sum case, recall that

f(x, y) ≜ 1
n

n∑
i=1

F (x, y; ξi).

Here we modify Algorithm 1 by replacing the mini-batch update used in line 6 and 7 of Algorithm 1 with the
following update using all samples:

vt = 1
n

n∑
i=1

d1∑
j=1

F (xt + δej , yt, ξi) − F (xt − δej , yt, ξi)
2δ ej ,

ut = 1
n

n∑
i=1

d2∑
j=1

F (xt, yt + δej , ξi) − F (xt, yt − δej , ξi)
2δ ej ,

where ej denotes the j-th canonical unit basis vector. In this case, if mod(k, q) = 0, then we have

ϵ(S1, δ) ≤ (d1 + d2)ℓ2δ2

2 + µ2
1

2 ℓ2(d1 + 3)3 + µ2
2

2 ℓ2(d2 + 3)3. (66)

Case 1: n ≥ κ2

Substituting eq. (66) into eq. (65), it can be checked easily that under the same parameter settings for δ′
0, T ,

δ, µ1 and µ2 in Theorem 2, we have

E[∥∇Φ(x̂)∥2] ≤
√

E[∥∇Φ(x̂)∥2
2] ≤ ϵ.

Then, let S2,x = 5600(d1 +4)κ
√
n, S2,y = 5600(d2 +4)κ

√
n and q = 2800κ

√
n

13(κ+1) . Recalling the sample complexity
result of ZO-iSARAH in the finite-sum case in Appendix C, we have T0 = O (d2(κ+ n) log (κ)). The total
sample complexity is given by

T · (S2,x + S2,y) ·m+
⌈
T

q

⌉
· S1 · (d1 + d2) + T0
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≤ Θ
( κ
ϵ2

· (d1 + d2)
√
n · κ

)
+Θ

(⌈
κ2

√
nϵ2

⌉
· n · (d1 + d2)

)
+Θ (d2(κ+ n)κ log(κ))

= O
(
(d1 + d2)(

√
nκ2ϵ−2 + n)

)
+ O(d2(κ2 + κn) log(κ)).

Case 2: n ≤ κ2

In this case, we let S2,x = 56(d1 + 4) + 420, S2,y = 56(d2 + 4) + 420 and q = 1. Then we have

∆′
t ≤ ϵ∆ = (d1 + d2)ℓ2δ2

2 + µ2
1

2 ℓ2(d1 + 3)3 + µ2
2

2 ℓ2(d2 + 3)3, for all 0 ≤ t ≤ T − 1. (67)

Given the value of S2,x and S2,y, it can be checked that the proofs of Lemma 15 and Lemma 18 still hold.
Following from the steps similar to those from eq. (47) to eq. (56), we obtain

T −1∑
t=0

δ′
t ≤ 2δ′

0 + 5
2Tϵ∆ + 6ℓ2α2

T −2∑
t=0

E[∥vt∥2
2] + 2Tπδ(d1, d2, µ1, µ2). (68)

Substituting eq. (67) and eq. (68) into eq. (47) yields(
α

2 − Lα2

2

) T −1∑
t=0

E[∥vt∥2
2]

(i)
≤ Φ(x0) − E[Φ(xT )] + 4ακ2δ′

0 + 7ακ2Tϵ∆ + 12L2α3
T −2∑
t=0

E[∥vt∥2
2]

+ 4ακ2Tπδ(d1, d2, µ1, µ2) + αTπ(d1, d2, µ1, µ2), (69)

where (i) follows because L = (1 + κ)ℓ. Rearranging eq. (69) yields(
α

2 − Lα2

2 − 12L2α3
) T −1∑

t=0
E[∥vt∥2

2]

≤ Φ(x0) − E[Φ(xT )] + 4ακ2δ′
0 + 7ακ2Tϵ∆ + 4ακ2Tπδ(d1, d2, µ1, µ2) + αTπ(d1, d2, µ1, µ2). (70)

Letting α = 1
8L , we obtain

α

2 − Lα2

2 − 12L2α3 = 1
32L. (71)

Substituting eq. (70) into eq. (71) and applying Assumption 1 yield

T −1∑
t=0

E[∥vt∥2
2] ≤ 32L(Φ(x0) − Φ∗) + 16κ2δ′

0 + 28κ2Tϵ∆ + 16κ2Tπδ(d1, d2, µ1, µ2)

+ 4Tπ(d1, d2, µ1, µ2). (72)

Substituting eq. (72) and eq. (67) into eq. (63) yields

T −1∑
t=0

E[∥∇Φ(xt)∥2
2]

≤ 6κ2
T −1∑
t=0

δ′
t + 6Tϵ∆ + 3

T −1∑
t=0

E[∥vt∥2
2] + 3Tπ(d1, d2, µ1, µ2)

≤ 12κ2δ′
0 + 21κ2Tϵ∆ + 4

T −1∑
t=0

E[∥vt∥2
2] + 12κ2Tπδ(d1, d2, µ1, µ2) + 3Tπ(d1, d2, µ1, µ2)
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≤ 128L(Φ(x0) − Φ∗) + 76κ2δ′
0 + 133κ2Tϵ∆ + 76κ2Tπδ(d1, d2, µ1, µ2) + 19Tπ(d1, d2, µ1, µ2). (73)

Recall that L = (1 + κ)ℓ. Then, eq. (73) implies

E[∥∇Φ(x̂)∥2
2] ≤ 128(κ+ 1)ℓΦ(x0) − Φ∗

T
+ 133κ2ϵ∆ + 76κ2δ′

0
T

+ 76κ2πδ(d1, d2, µ1, µ2)

+ 19π(d1, d2, µ1, µ2).

If we let δ′
0 ≤ 1

κ , T = max{640(κ + 1)ℓΦ(x0)−Φ∗

ϵ2 , 380κ
ϵ2 }, and let µ1, µ2 and δ follow the same setting in

Theorem 2, then we have

E[∥∇Φ(x̂)∥2] ≤
√

E[∥∇Φ(x̂)∥2
2] ≤ ϵ.

Recall the sample complexity result of ZO-iSARAH in the finite-sum case in Appendix C. Then, we have
T0 = O (d2(κ+ n) log (κ)). The total sample complexity is given by

T · (S2,x + S2,y) ·m+
⌈
T

q

⌉
· S1 · (d1 + d2) + T0

≤ Θ
( κ
ϵ2

· (d1 + d2) · κ
)

+Θ
(⌈ κ
ϵ2

⌉
· n · (d1 + d2)

)
+Θ (d2(κ+ n) log(κ))

= O
(
(d1 + d2)(κ2 + κn)ϵ−2)

.
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