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Abstract

Jailbreak attacks against large language models (LLMs) aim to induce harmful
behaviors in LLMs through carefully crafted adversarial prompts. To mitigate
attacks, one way is to perform adversarial training (AT)-based alignment, i.e.,
training LLMs on some of the most adversarial prompts to help them learn how to
behave safely under attacks. During AT, the length of adversarial prompts plays
a critical role in the robustness of aligned LLMs. While long-length adversarial
prompts during AT might lead to strong LLM robustness, their synthesis however
is very resource-consuming, which may limit the application of LLM AT. This
paper focuses on adversarial suffix jailbreak attacks and unveils that to defend
against a jailbreak attack with an adversarial suffix of length © (), it is enough to
align LLMs on prompts with adversarial suffixes of length @(\/M ). Theoretically,
we analyze the adversarial in-context learning of linear transformers on linear
regression tasks and prove a robust generalization bound for trained transformers.
The bound depends on the term ©(y/Mest/Migain), Where Migin and Mies are
the numbers of adversarially perturbed in-context samples during training and
testing. Empirically, we conduct AT on popular open-source LL.Ms and evaluate
their robustness against jailbreak attacks of different adversarial suffix lengths.
Results confirm a positive correlation between the attack success rate and the
ratio of the square root of the adversarial suffix length during jailbreaking to the
length during AT. Our findings show that it is practical to defend against “long-
length” jailbreak attacks via efficient “short-length” AT. The code is available at
https://github.com/fshp971/adv-icl.

1 Introduction

Large language models (LLMs) [5, 51, 28, 65] are widely adopted in various real-world applications
to assist human users [55, 67, 57, 56, 24], but their safety is found to be vulnerable toward jailbreak
attacks [60]. With carefully crafted adversarial prompts, one can “jailbreak” the safety mechanism of
LLMs and induce arbitrary harmful behaviors [73, 7, 30]. To tackle the challenge, recent studies [63,
36, 68, 6] propose performing safety alignment through adversarial training (AT) [32] to enhance
LLMs’ robustness against jailbreaking. A standard AT for LLMs would train them on jailbreak
prompts synthesized by strong jailbreak attacks to learn to refuse these harmful instructions [36].

In such AT, the length of synthesized adversarial prompts used for model training is critical to the final
jailbreak robustness of LLMs. [3] and [64] have shown that longer adversarial prompts enjoy stronger

*Corresponding Author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://github.com/fshp971/adv-icl

jailbreaking abilities. Thus, it is reasonable to deduce that performing AT with longer adversarial
prompts can help LLMs achieve stronger robustness to defend against “long-length” jailbreak attacks.
However, synthesizing long-length adversarial prompts in adversarial training is resource-consuming
since it requires solving discrete optimization problems in high-dimensional spaces, which thus
needs lots of GPU memory and training time. This may limit the application of AT in LLMs’ safety
alignment and further raises the following research question: How will the adversarial prompt length
during AT affect trained LLMs’ robustness against jailbreaking with different prompt lengths?

We study this research question by analyzing suffix jailbreak attacks, where each jailbreak prompt is
constructed by concatenating a harmful instruction with a synthesized adversarial suffix. Our main
finding is: To defend against a suffix jailbreak attack with suffix length of © (1), it is enough to
adversarially train LLMs on adversarial prompts with suffix length of only © (/M ). In other
words, we show that it is possible to defend long-length jailbreak attacks via efficient short-length AT.

Our finding is supported by theoretical and empirical evidence. Theoretically, we leverage the
in-context learning theory [53, 69] to investigate how linear transformers learn linear regression tasks
from in-context task samples under AT. To better simulate suffix jailbreak attacks in real-world LLMs,
our analysis introduces a new in-context adversarial attack. Concretely, for any in-context task sample,
this attack will adversarially perturb the last several in-context training points to maximize the squared
prediction error that linear transformers made on the in-context test point. Under our theoretical
framework, we prove a robust generalization bound for adversarially trained linear transformers.
This bound has a positive correlation with the term O (v/Miest/ Miyain ), Where Mypgin and M, are the
number of perturbed in-context points in training and testing in-context task samples, respectively.

Empirically, we conduct AT with the GCG attack [73], one of the most effective jailbreak attacks,
under various adversarial suffix lengths on five popular real-world LLMs and evaluate their robustness
against jailbreak attacks with different adversarial suffix lengths. We use the jailbreak attack success
rate (ASR) to express the robust generalization error of trained LLMs and find that this ASR has a
clear positive correlation with the ratio of the square root of test-time adversarial suffix length to the
AT adversarial suffix length. Such a correlation empirically verifies our main finding. We also find
that AT with an adversarial suffix (token) length of 20 is already able to reduce the ASR of jailbreak
attacks with an adversarial suffix (token) length of up to 120 by at least 30% in all experiments.

2 Related works

Jailbreak attacks. Jailbreaking [60] can be seen as adversarial attacks [49, 14] toward LLMs, which
aim to synthesize adversarial prompts to induce targeted harmful behaviors from LLMs. Many efforts
have been made on token-level jailbreak attacks, i.e., searching adversarial prompts in the token
space of LLMs, which can be achieved via gradient-based optimization [48, 16, 73, 26, 45, 71],
heuristic greedy search [44, 17, 22], or fine-tuning prompt generators from pre-trained LLMs [38].
Other attempts include word-level adversarial prompt searching [30] or directly prompting LLMs to
generate adversarial prompts [7, 29]. Our work focuses on token-level jailbreaking since it make it
easier for us to control the adversarial prompt length for our analysis. More recent studies have found
that increasing the length of adversarial prompts by adding more harmful demonstrations [3, 54, 61]
or synthesizing longer adversarial suffixes [64] can make jailbreaking more effective. These works
motivate us to investigate the problem of defending against “long-length” jailbreak attacks.

Adversarial training on LLMs. To defend against jailbreak attacks, a large body of studies
focus on aligning LLMs to refuse responding jailbreak prompts [37, 42, 40, 41, 8]. More recent
works have started to adopt adversarial training (AT) [32] to align LLMs. [36] trained LLMs on
(discrete) adversarial prompts synthesized by GCG attack [73], in which they cached the intermediate
synthesized results to reduce the heavy cost of searching adversarial prompts from scratch. Meanwhile,
various studies [63, 6, 46, 68] conduct AT with adversarial examples found in the continuous
embedding space rather than the discrete text space since searching in the continuous embedding
space is more computationally efficient. Nevertheless, as a preliminary study of the length of
adversarial prompts during AT, our work only analyzes AT with discrete adversarial prompts.

In-context learning theory (ICL). Transformer-based large models like LLMs are strong in per-
forming ICL: Given a series of inputs (also known as “prompt”) specified by a certain task, LLMs
can make predictions well for this certain task without adjusting model parameters. Current theories
in understanding ICL can be roughly divided into two categories. The first category aims to under-



stand ICL via constructing explicit multi-layer transformers to simulate the optimization process of
learning function classes [13, 53, 1, 9, 34, 59]. The second category focuses on directly analyzing
the training [69, 66, 19, 62, 27] and generalization [31, 33, 11, 47] of simple self-attention models
(i.e., one-layer transformer). [4] is the first to study adversarial attacks against linear transformers and
finds that an attack can always succeed by perturbing only a single in-context sample. However, their
analysis allows samples to be perturbed in the entire real space, which might not appropriately reflect
real-world settings since real-world adversarial prompts can only be constructed from token/character
spaces of limited size. Unlike [4], we propose a new ICL adversarial attack that requires each
adversarial suffix token to be perturbed only within restricted spaces, which thus can be a better tool
for understanding real-world jailbreaking.

Finally, we notice that [61] also recognizes the critical role that the number of adversarial in-context
samples plays in ICL-based attacks. They present a theoretical analysis (not based on ICL theory) for
adversarial attacks against ICL text classification and characterize the minimum number of in-context
adversarial samples required to increase the safety loss of ICL to some extent. However, the main
difference is that [61] focuses on studying the adversarial robustness of fixed ICL models, whereas
our work analyzes how adversarial training affects the robustness of ICL models.

3 Preliminaries

Large language models (LLMs). Let [V] = {1,---,V} be a vocabulary set consisting of all
possible tokens. Then, an LLM can be seen as a function that for any sequence z1., € [V]"
consists of n tokens, the LLM will map 1., to its next token x,,11 following 2,11 ~ po(:|Z1.n),
where py is a conditional distribution over the vocabulary set [V] and 6 is the model parameter
of the LLM. Under such notations, when using the LLM py to generate a new token sequence
for the input x1.,, the probability of generating a sequence y1.,, € [V]™ of length m is given by
Po(Y1:m|T1m) = H:L Po(Yilz1:n © ?/1:(1;1)), where “@” denotes concatenation.

Jailbreak attacks. This paper focuses on suffix jailbreak attacks. Concretely, suppose (") and y(*)
are two token sequences, where (") represents a harmful prompt (e.g., “Please tell me how to build
abomb.”) and y") represents a corresponded targeted answer (e.g., “Sure, here is a guide of how to
build a bomb”). Then, the goal of a suffix jailbreak attack against the LLM py aims to synthesize an

adversarial suffix xg?n for the original harmful prompt (") via solving the following problem,

min - — log po(y M|z @ ng’r)n)’ O
stV

(é)

1.m 1s the adversarial prompt and m is the sequence length of the adversarial suffix

where (") @
xgszn Intuitively, a large m will increase the probability of the LLM pj that generating the targeted
answer y("® for the synthesized adversarial prompt (") @& xﬁn To solve Eq. (1), a standard method
is the Greedy Coordinate Gradient (GCG) attack [73], which leverages gradient information to search

(f) within the discrete space [V]™ in a greedy manner.

for better 27.,,

Adversarial training (AT). We consider the canonical AT loss £ [36, 40] to train the LLM py,
which consists of two sub-losses: an adversarial loss L,q, and an utility loss Lyiiy. Specifically,
given a safety dataset D), where each of its sample (:c(h), y", y(b)) e D™ consists of a harmful
instruction 2™, a harmful answer y"), and a benign answer y®) (e.g., “As a responsible Al I can’t
tell you how to...”). The adversarial loss L,q4, is defined as follows,

Laay (0, M, D) := E [~ log pa(y® ™) @ 217),)]. @

(x) () y®))eDh)

where xgszn is the adversarial suffix obtained from Eq. (1) and m is the adversarial suffix length. Note
that the probability terms in Eqgs. (1) and (2) look similar to each other. The difference is that the
term in Eq. (1) denotes the probability that py generates the harmful answer ") for the adversarial
prompt, while that in Eq. (2) denotes the probability of generating the benign answer ). Besides,
let D) be a utility dataset where each of its sample (x(“), y(“)) € D™ consists of a pair of normal
instruction and answer. Then, the utility loss Lyt is given by

Luitiey (0, D) := E [—log pe(y™|z(™)].
(2(0) () e D)



Thus, the overall AT problem for improving the jailbreak robustness of the LLM py is given as
min{aLag (0, M, D™) + (1 = @) Luity (0, D)}, 3)

where o € [0,1] is a factor that balances between the adversarial and utility sub-losses. The idea
behind such a loss design is that: (1) help LLM learn to respond harmlessly even when strong
jailbreak prompts present (achieved via L,qy), (2) retain the utility of LLM gained from pre-training
(achieved via Lyl ). Intuitively, a larger adversarial suffix length m during AT will help the LLM
gain robustness against jailbreak attacks with longer adversarial suffixes.

4 Theoretical evidence

This section establishes the theoretical foundation of how “short-length” AT can defend against
“long-length” jailbreaking. Our analysis is based on the in-context learning (ICL) theory [69, 47, 4],
and we will bridge the ICL theory and the LLM AT problem defined in Eq. (3) later (in Section 4.2).
Here we first introduce the necessary notations to describe the problem. To avoid confusion, we note
that all notations in this section will only be used within this section and have no relevance to
those in other sections (e.g., Section 3).

In-context learning (ICL). In the ICL theory, a prompt with length NV related to a specific task
indexed by 7 is defined as (¥ 1,Yr1,"** , Tr N, Yr N, Trq), Where z,; € R? is the i-th in-context
training sample, y-; € R is the label for the i-th training sample, and =, , € R is the in-context
query sample. Then, the task-specific ICL input E- is defined as

F. .= Tr1 0 TN Trg c R(d+1)><(N+1). 4)
T y'r,l e yT,N 0

Given an ICL input E; of task 7, the goal of an ICL model is to make a prediction based on E for

the query sample z, ;. Such an ICL model design aims to model the ability of real-world LLMs in

making decisions based on prompting without updating model parameters.

Linear self-attention (LSA) models. LSA models are a kind of linear transformer that has been
widely adopted in existing theoretical ICL studies. [2] empirically show that LSA models share
similar properties with non-linear ones and thus are useful for understanding transformers. We follow
[69] to study the following single-layer LSA model,

ETWKERE,_
fusan(Br) := [E +WVE, - N] € RN,

where 0 := (W, WKQ) is the model parameter, W" € R(¢+1)x(d+1) g the value weight matrix,
WEQ ¢ RE+D*(d+1) j5 3 matrix merged from the key and query weight matrices of attention
models, E, € REFTD*XN+1) g the task-specific ICL input, and N is the prompt length. The
prediction g, ¢ for the query sample x, , is given by the right-bottom entry of the output matrix of
the LSA model, i.e., §q,0(E7) := fisa,0(Er)(d+1),(n+1)- We further follow [69] to denote that

wH wD
WD — ( 11 ) c R(d+1)><(d+1)
(w2D1)T w22

where 0 € {V, KQ}, WH € R4 w5, w5 € R4 and w5, € R. Under this setting, the model
prediction ¢, ¢ can be further simplified as follows,

5 vt vy BrEL Wiie
9a.0(Br) = fusao(Br)@rnxvny = (W) wy) - N i@yt ) Trae O

(wy;) T
Other notations. For any n € N, we denote [n] := {1,--- ,n}. Forany A € R"*™, we denote

[IA]l2,00 = maxi<i<m || A4:.]l2, || Al|2 be the operator norm, and |lA]| ¢ be the Frobenius norm. For
any A € R™*", we denote Tr(A) =Y. | A; ;. We use standard big O notations O(-) and O(-).

4.1 Problem definition for adversarial ICL

We now formalize the AT problem in ICL with the previously introduced notations. We focus on
the linear regression task and introduce a novel ICL “‘suffix” adversarial attack, where in-context
adversarial points are appended to the end of ICL inputs, to analyze the robustness of LSA models.



In-context linear regression. For any task indexed by 7, we assume that there is a task weight
w, € R drawn from w, ~ N(0, I;). Besides, for any in-context training point z, ; (1 < i < N)
and the query point x, , (see Eq. (4)), we assume that they are drawn from 2, ;, 2, 4 ~ N(0,A),
where A € R%*? is a positive-definite covariance matrix. Moreover, the ground-truth labels of
training points z, ; and the query point z., , are given by y, ; = w, z,; and y, , = W} 2, ,.

ICL suffix adversarial attack. Our novel adversarial attack against ICL models is launched via
concatenating (clean) prompt embedding matrices with adversarial embedding suffixes. Specifically,
for an ICL input F; of length N (see Eq. (4)), we will form its corresponding adversarial ICL input
By g RUEHDX(NEMA1) by concatenating F, with an adversarial suffix of length M as follows,

ad s
E:—Jw = Y, Yy 0 , (6)
—— —_—— ——
Training Data of Length N Adversarial Suffix of Length M Query Sample From E -
where X, := (2,1 -+ 2;n) € RPN and Y, := (y,1 -+ yr.n) € RY denote the N original
training samples and labels, and X3™ := (a8 .- a3 ) € RM ysho.— (o .. g8 ) e
RYM “and AS™ := (6,1 -+ ;) € R*M denote the new M clean suffix samples, clean

suffix labels, and adversarial perturbations. The clean suffix samples X3™ and labels Y™ here
follow the same distribution as those in-context data in the embedding E,, i.e., 2% ~ N(0, A) and

T,
yjf’; =w, :csTf’i hold for every i € [M]. For the adversarial perturbation matrix A, we require each

perturbation ¢ ; is restricted within a ball-sphere as ||, ;||2 < €, where € > 0 is the perturbation
radius. This aims to simulate that in jailbreak attacks, and each adversarial token is searched within a
token vocabulary set of limited size.

The goal of the ICL adversarial attack is to add an optimal suffix adversarial perturbation matrix A,
to maximize the difference between the model prediction g)q(EidV) based on the adversarial ICL input
E2 and the ground-truth query label Yr.q- We adopt the squared loss to measure such a prediction
difference, which thus leads to the robust generalization error for the model fg;SA as

1.
RO, M) =E  wmax _ 5 ligo(E%) — yrql? ™

T AT |l2,00 <€

where M is the length of the adversarial suffix and the expectation E.[] is calculated over the
randomness of w,, X, X jfx, and x, 4. As we aim to understand how the adversarial prompt length
in AT would affect the robustness of LLM, Eq. (7) will also only focus on how the adversarial suffix
length M in ICL adversarial attacks would affect the robust generalization error R4 (6, M).

Adyversarial in-context learning. Following previous studies on minimax AT [32, 20, 43, 12, 58],
here we adopt a minimax AT loss to train the LSA model. Concretely, we first use the aforementioned
ICL adversarial attack to synthesize adversarial prompts and then update the LSA model based on
these adversarial prompts to help the model gain robustness against them. We further assume that the
adversarial suffix length is fixed during AT, which thus leads to the following ICL AT problem,

. adv : adv . 1 ~ adv
i £(0) = R0, M) = min {2 s _ 5lino(E5.) ~veal’ . ®

where £24(6) := R (6, Miguin) is the AT loss in ICL and M, € N7 is the fixed adversarial suffix
length during AT. We will perform AT with continuous gradient flow, and further following [69] to
make the following assumption on the LSA model parameter initialization.

Assumption 1 (c.f. Assumption 3 in [69]). Let o > 0 be a parameter and © € R**? be any matrix
satisfying |00 ||z = 1 and OA # 045 4. We assume

viny _ Odxd Odx1 KQn _ (0007 0451
W) = <01><d o >’ WEE0) = ( O1xa 0o /)

Recall in Eq. (5), wYQ, w{éQ, and szQQ do not contribute to the model prediction 44 ¢ (+). Assumption 1

thus directly sets them to be zero at initialization. To ensure symmetric initialization, it further sets

wy; (0) and w2K1Q(O) to zero. We will see how Assumption 1 helps simplify the analysis of ICL AT.



4.2 Bridging ICL AT and LLM AT

We now discuss similarities between the ICL AT problem defined in Eq. (8) and the LLM AT problem
defined in Eq. (3) to help motivate why ICL AT can be a good artifact to theoretically study LLM AT.

Firstly, in-context inputs (i.e., I/, defined in Eq. (4)) for LSA models are similar to prompt
inputs for real-world LLMs. If we replace each token in an LLM prompt with its one-hot encoding
defined over the token vocabulary space, then these one-hot encodings would be similar to in-context
samples x; in Eq. (4) since both of them are now “feature vectors”. Besides, we note that each
in-context label y; in Eq. (4) can be seen as the “next-token prediction label” in real-world LLMs.
The main difference is that in LLMs, the i-th token in a prompt can be seen as the i-th input token and
the (¢ — 1)-th next-token prediction label simultaneously, while in LSA models, the i-th in-context
input and the (¢ — 1)-th in-context label are explicitly separated into two terms x; and ;1.

Secondly, the search for adversarial in-context samples (see Eq. (6)) in the ICL suffix adversarial
attack is similar to the search for adversarial tokens in suffix jailbreak attacks. We note that each
adversarial token in jailbreak prompts can be seen as replacing the “padding token”. Thereby, from
the point of view of one-hot encoding, searching for an adversarial token can thus be seen as applying
an />-norm adversarial perturbation within a radius of v/2 to transform the one-hot encoding of the
padding token to that of the adversarial token. This process is the same as the search for adversarial
in-context samples in the ICL suffix adversarial attack defined in Eq. (7), which would perturb each
in-context suffix sample #*™ within an ¢,-norm ball-sphere under a given radius € > 0.

T,

Thirdly, motivations behind ICL AT and LLM AT are also similar to each other. Both of the two
AT problems aim to enhance models’ robustness via training them on some synthesized adversarial
inputs. The adversarial inputs syntheses in ICL AT and LLM AT are also similar, as both of them aim
to make targeted models behave wrongly via manipulating suffixes of input prompts. The difference
is that suffix jailbreak attacks are targeted adversarial attacks aimed at inducing LLMs to generate
specified harmful content while our ICL attack is an untargeted adversarial attack aimed at reducing
the utility of linear regression prediction made by LSA models.

4.3 Training dynamics of adversarial ICL

We now start to analyze the training dynamics of the minimax ICL AT problem formalized in Eq. (8).
The main technical challenge is that to solve the inner maximization problem in Eq. (8), one needs
to analyze the optimization of the adversarial perturbation matrix A.. However, the matrix A,
along with the clean data embedding E, and the clean adversarial suffix (X% V%) are entangled
together within the adversarial ICL input Ei‘fhm“, which makes it very difficult to solve the inner

maximization problem and further analyze the ICL AT dynamics.

To tackle such a challenge, we propose to instead study the dynamics of a closed-form upper bound
of the original AT loss £%"(8). Formally, we will analyze the following surrogate AT problem:

4
mein L9Y0) = m@in{z1 &-(0)}, )

- sfx
where £24(0) := Z?Zl £;(0) is the surrogate AT loss, Eﬁﬁ‘}}fﬁm = <)§T )}fsTfX x6q> ,and

T IR :
u(6) =2 [(uf) ol e (Yo <]

N+Mtrain Wy )
2¢ My, V12 KQ 2
60) = g gty IR B E W% 5],

262]\4r in K X sfx
00) = (s B[ % 3 Il ) () 1]

2€2Mr in V2 X:_fx T WKQ 2
04(0) = mnwzl\\z ITE[H i (wib)T 307,q||2]~

The surrogate AT loss Ead"(ﬁ) in Eq. (9) is the closed-form upper bound for the original AT loss
£29Y(0) in Eq. (8), as illustrated in the below Proposition 1 (see Appendix A.2 for the proof).



Proposition 1 (Uniform upper bound for £V (6)). For the AT loss function L*V(0) defined in
Eq. (8) and the surrogate AT loss function LY (0) defined in Eq. (9), for any~m0del parameter
0 := (WY, WHKR) of the LSA model fisa g, we uniformly have that: L2 () < L£2(9).

This result indicates that when we are training the LSA model via solving the surrogate AT problem
Eq. (9), we are also reducing the model training loss in the original AT problem Eq. (8). Thus, solving
the surrogate AT problem will also intuitively improve the robustness of the model.

Based on our previous analysis, we now turn to study the training dynamics of surrogate AT defined in
Eq. (9). To better describe our results, we define two functions I'(-) : N — R?*? and (-) : N — R,
both of which depend on the adversarial suffix length M, as follows,

N+M+1 Tr(A) d
(M) = A I; € R M):=-——"2X¢€R 10

( ) N+ M +N+Md6 ) 1/’( ) (N+M)2€ ) ()
where N is the prompt length of the original ICL input E; (see Eq. (4)) and A is the covariance
matrix of in-context linear regression samples. The closed-form surrogate AT dynamics of the LSA
model fisa g is then given in the following Theorem 1 (see Appendix A.3 for the proof).

M?Tr(A)

Theorem 1 (Closed-form Surrogate AT Dynamics). Suppose Assumption 1 holds and fisa,e is
trained from the surrogate AT problem defined in Eq. (9) with continuous gradient flow. When the

o in Assumption 1 satisfies o < \/d-l\(I‘(Mm)A-s-efw(M[mm)ld)A*||2’ after training for infinite long

time, the model parameter 0 will converge to 0, (Miin) := (WY (Myain), wk Q(an)), satisfying:
K K K
U’*,in = w*iQ1 = w*v,12 = w*V,21 = 0dx1, w05 =0, WXH = Odxa, and

-1
w*VQZW*I,(l? = (F(Mrain)A + €2w(erain)Id> A.

Remark 1. When the ls-norm adversarial perturbation radius € is zero, the closed-form AT solution
0. derived in Theorem 1 degenerates to that obtained without AT (see Theorem 4.1 in [69]). Thus, a
sufficient large adversarial perturbation € is a key to helping the LSA model fisa.9 obtain significant
adversarial robustness. This will be further justified in the next section.

4.4 Robust generalization upper-bound

With the closed-form AT solution 6, (M., ) in Theorem 1, we now analyze the robustness of the
trained LSA model. All proofs in this section are presented in Appendix A.4. We study how a LSA
model adversarially trained under a fixed adversarial suffix length M., can defend against the ICL
adversarial attack with a different adversarial suffix length M. That is, we aim to analyze the
magnitude of the robust generalization error R*® (6, ( Myin ), Mies) for the converged robust model
parameter 6, (M,..i, ). Here, we prove an upper-bound for it in the following theorem.

Theorem 2 (Surrogate AT Robust Generalization Bound). Suppose all conditions in Theorem 1 hold
and 6,.( Myain) is the surrogate AT solution in Theorem 1. We have

2
Radv(e* (erain)a Mtest) < 2Tr |:A3 (FtestA + €thestld) (FtrainA + 621plrainId) + A:| s

where My is the adversarial suffix length in the ICL adversarial attack, and Ty = T'(Miyain),
Piest : =T (Miest), Yrain := Y(Mirain ), and resy := W(Mest) are functions in Eq. (10).

We further adopt Assumption 2 to help us better understand our robust generalization bound.

Assumption 2. For adversarial suffix lengths during AT and testing, we assume that Main, Miess <
O(N), where N is the original ICL prompt length. Besides, for the lo-norm adversarial perturbation

radius, we assume that ¢ = ©(\/d), where d is the ICL sample dimension.

In the above Assumption 2, the assumption made on adversarial suffix lengths means that they should
not be too long to make the model “forget” the original ICL prompt. Besides, the assumption made
on the perturbation radius € ensures that it is large enough to simulate the large (but limited) token
vocabulary space of real-world LLMs to help model gain robustness.

Corollary 1. Suppose Assumption 2 and all conditions in Theorem 2 hold. Suppose ||All2 < O(1).
Then, we have the following robust generalization bound,

d? M?
R (0, (Migain), Miest) < O(d) + O (N) +0 (N2 ) ff“) )

train
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Figure 1: Scatter plots of ASR to the ratio v/ Miest/Mirain. For each pair of base model and attack, 48
points are plotted. A high ASR indicates a weak jailbreak robustness.

Corollary 1 is our main theoretical result, which clearly show that for an adversarially trained LSA
model, its robust generalization bound depends on the term © (v/Miest/ Mirain ), Where Mypgin and Mieg
are the number of adversarially perturbed in-context samples during training and testing. In other
words, for an ICL adversarial attack with an adversarial suffix length © (), to maintain the order of
the robust generalization bound, it is enough to perform surrogate AT with only an adversarial suffix
length @(\/M ). Such an observation is useful in practice, since one can thus leverage a “short-length”
AT, which requires less GPU memory and training time, to defend against “long-length” jailbreakings.

S Empirical evidence

In this section, we follow Eq. (3) to perform AT on LLMs and investigate the relationship between
adversarial suffix lengths during LLM AT and jailbreak attacks.

5.1 Experimental setup

Models&datasets. We adopt five pre-trained LLMs, which are: Vicuna-7B-v1.5 [70], Mistral-7B-
Instruct-v0.3 [21], Llama-2-7B-Chat [52], Llama-3-8B-Instruct [15], and Qwen2.5-7B-Instruct [65].
For data in AT, we use the training set from Harmbench [36] as the safety dataset and Alpaca [50]
as the utility dataset. For data in the robustness evaluation, we construct a test set of size 100 that
consists of the first 50 samples from the test set of Harmbench [36] and the first 50 samples from
AdvBench [73]. For data in the utility analysis, we use the benchmark data from AlpacaEval [10].

Adversarial training. We leverage GCG [73], a token-level jailbreak attack, to synthesize (suffix)
jailbreak prompts, in which the adversarial suffix length M, is fixed to one of {5, 10, 20, 30, 40, 50}
during AT. To reduce computational complexity of tuning LLMs, LoRA [18] is applied to all query
and key projection matrices in attentions. In every AT experiment, we follow Eq. (3) to perform AT
with Adam. Please refer to Appendix B.2 for omitted settings.

Jailbreak attacks. We use both suffix and non-suffix jailbreak attacks to evaluate the adversarial
robustness of trained LLMs. Specifically, five token-level suffix jailbreak attacks are adopted, which
are GCG [73], BEAST [44], AmpleGCG [26], Zhu’s AutoDAN [71], and GCQ [17]. The adversarial
suffix token length M, is varied within {5, 10, 20, 40, 60, 80, 100,120}. Meanwhile, two non-
suffix jailbreak attacks are leveraged, which are PAIR [7] and Deeplnception [25]. Please refer to
Appendix B.3 for full implementation details of all used jailbreak attacks.

Evaluations. We focus on evaluating the jailbreak robustness and the utility of trained LLMs. For the
robustness evaluation, we report the Attack Success Rate (ASR) of jailbreak attacks. An LLM-based
judger from [36] is used to determine whether a jailbreak attack succeeds or not. For the utility
evaluation, we use the AlpacaEval2 [10] to report the Length-controlled WinRate (LC-WinRate)
of targeted models against a reference model Davinci003 evaluated under the Llama-3-70B model.
An LC-WinRate of 50% means that the output qualities of the two models are equal, while an LC-
WinRate of 100% means that the targeted model is consistently better than the reference Davinci003.
Please refer to Appendix B.3 for the detailed settings of model evaluations.

5.2 Results analysis

Correlation between the suffix jailbreak robustness and the ratio /Mt / Mirain. We plot the ASR
of models trained and attacked with different adversarial suffix lengths in Figure 1. This results in 48
points for each pair of base model and jailbreak attack. The Pearson correlation coefficient (PCC)



Table 1: PCCs and p-values calculated between ASR and ratio /Mes/ Misain. A high PCC (within
[—1,1]) means a strong correlation between ASR and the ratio. p < 5.00 x 10~2 means that the
observation is considered statistically significant.

Model GCG Attack BEAST Attack AmpleGCG Attack Zhu’s AutoDAN GCQ Attack
PCC(T)  p-value({) PCC(T)  p-value({) PCC(T)  p-value({) PCC(T)  p-value({) PCC(T)  p-value(])
Vicuna-7B 0.93 4.7x1072! 063 1.4x10°% 019 1.9x10°' 051 25x10"% 082 1.4x10 12
Mistral-7B 0.86 4.0x 10715 029 44x1072 074 1.5x10"° 049 37x10°% 070 26x10°8
Llama-2-7B 0.88 9.0x10°'7 067 1.7x10°7 0.37 1.0x10"2 0.13 3.8x10"' 071 21x10"8
Llama-3-8B 0.76 2.8x10°1% 026 7.7x1072 —0.07 6.2x10"" —0.12 41x10"% 00 9.7x10"%
Qwen25-7B 0.87 1.1 x10~ 1 058 1.0x10°° —0.24 1.0x10"' 0.16 2.6x10°1 072 1.1x 108
Miest=5 o= Mieq=10  —+— Mes=20  —— Miey=40  —— Mig=60 —— Mieq=80 —+— Mieq=100 —— Myeq=120
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Figure 2: ASR versus M, on Vicuna-7B-v1.5 under jailbreaking with different M.s;. Mirain = 0
means that AT is not performed on the evaluated model. A low ASR indicates a strong robustness.

and the corresponding p-value between the ratio v/ Mes / Mirain and the ASR are calculated in Table 1,
where bold p-values indicate that observations are statistically significant (i.e., p < 0.05), while
underlined ones indicate they are not significant.

When the jailbreak attack used during AT is the same as that used during robustness evaluation (i.e.,
GCGQG), one can observe from Figure 1 that a clear positive correlation between the ratio v/ Miest/ Miyain
and the ASR for all evaluated base models. Further, high PCCs (> 0.7) and low p-values (< 0.05) in
Table 1 also confirm that the observed positive correlation is statistically significant.

Besides, when the jailbreak attack is BEAST and GCQ, which is different from that used during AT,
the significant positive correlation between the ratio v/ Miest / Mirain and the ASR can only be observed
from some of the base models. This may be due to the fact that AT with only a single jailbreak attack
may not help the model generalize well to unseen attacks. Therefore, it might be necessary to adopt
multiple attacks when performing AT-based alignment on LLMs. Nevertheless, from Figure 1, we
find that for those models where the correlation is not significant (i.e., Mistral-7B, and Llama-3-8B),
GCG-based AT can still suppress the ASR to no more than 50%, which indicates that it can still help
models gain a certain degree of robustness against unseen attacks.

Finally, for AmpleGCG and Zhu’s AutoDAN attacks, we notice that the correlation between the ratio
vV Miest / Misain and the ASR cannot be observed on most of the base models. However, this is simply
due to AT being too effective in defending against these two attacks: from Figure 1, one can observe
that AT effectively reduces ASRs of AmpleGCG and Zhu’s AutoDAN to nearly zero in most cases.

Relationship between adversarial suffix
lengths in AT (i.e., Mirain) and suffix jail-
breaking (i.e., Miest). We plot curves of the
ASR on Vicuna-7B versus the adversarial suf-
fix token length during AT in Figure 2. Results

Table 2: Time cost (hrs) of LLM AT with different
adversarial suffix lengths.

Adversarial Suffix Token Length M, in AT

o . . Model
on remaining base models are presented in Fig- ode 5 10 20 30 40 50
ure 4 in Appendix B.4. From these figures, we Vicuna-7B 102h  113h  138h  160h  I82h  204h
find that as the adversarial suffix token length Mistral-7B ~ 85h  99h  120h  143h  166h  19.0h
. . . Llama-2-7B 9.5h 11.0h 13.2h 15.5h 18.1h 20.0h
during AT increases, AT can effectively reduce Llama-3-8B  97h  108h  I3.1h  153h  17.7h  202h
Qwen2.5-7B 9.1h 9.5h 11.7h 13.9h 16.4h 18.4h

the ASR of all analyzed attacks. Furthermore,
when the AT adversarial suffix token length is

set to 20, AT is already able to reduce the ASR by at least 30% under all settings. All these results
demonstrate the effectiveness of defending against long-length jailbreaking with short-length AT.

Time cost of LLM AT with different adversarial suffix lengths M i,,;,. We then present the time
costs of performing LLM AT in Table 2. From the table, we find that when the adversarial suffix



Table 3: ASR(%) of non-suffix jailbreak attacks versus models adversarially trained with different
adversarial suffix length Mi.i,. A low ASR indicates a strong robustness.
Adversarial Suffix Token Length M, in AT

Attack Model

OMNoAT) 5 10 20 30 40 50

PAIR Vicuna-7B 84.0 530 480 420 500 440 550
Qwen2.5-7B 71.0 200 170 250 190 240 260

Decolncention | Vicuna-7B 76.0 390 150 00 00 00 00
pincep Qwen2.5-7B 89.0 00 00 00 00 00 00

length M, during AT is as long as 50, the time cost of AT can reach around 20 hours, which is
around 30% to 60% longer than that when M, is set to 20 or 30. Meanwhile, according to Figure 2
in this section and Figure 4 in Appendix B.4, AT with a short adversarial suffix length of 20 or 30 can
already enable trained LLMs to achieve strong jailbreak robustness. These results demonstrate the
advantages of using short-length AT instead of long-length AT.

Robustness of jailbreak attacks beyond suffix attacks.

We also calculate the ASR of two non-suffix jailbreak — ViunaTB  —— Uama27B  —=— Quen25-78
attacks, PAIR and Deeplnception attacks, against LLM AT T Mistral78 - Llama-3-78

in Table 3. From the table, one can observe that: (1) For 100w
the Deeplnception attack, LLM AT with a short adversarial 9
suffix length (M. = 20) can already suppress its ASR to
0%. (2) For the PAIR attack, while LLM AT with a short
adversarial suffix length can reduce its ASR from 84% to
around 50% against the Vicuna-7B model and from 71%
to around 25% against the Qwen2.5-7B model, further
increasing the suffix length does not help much to improve
LLM robustness against PAIR. These results suggest that O e D

the mechanisms behind suffix-based and non-suffix-based o
jailbreak attacks might have different properties. Figure 3: Utility analysis based on

Utility analysis. Finally, we plot the LC-WinRate of BS\;XS%%?;&%??thit%eLé?%iI;;cel
models trained under different adversarial suffix token ) &

lengths and the original model (i.e., Mi,in = 0) in Figure 3.
We find that while AT reduces the utility of models, they
can still achieve WinRates close to or more than 50% against the reference model Davinci003. This
means that these adversarially trained models achieve utility comparable to Davinci003.

@
S

~
=}

@
=}

LC-WinRate ( 1) (%)

a
<]

I
S

indicates strong model utility.

6 Conclusion

We study the AT problem in LLMs and unveils that to defend against a suffix jailbreak attack with
suffix length of ©(M), it is sufficient to perform AT on jailbreak prompts with suffix length of
@(\/M ). The finding is supported by both theoretical and empirical evidence. Theoretically, we
define a new AT problem in the ICL theory and prove a robust generalization bound for adversarially
trained linear transformers. This bound has a positive correlation with © (v/ Mgt/ Mirain ). Empirically,
we conduct AT on real-world LLMs and confirm a clear positive correlation between the jailbreak ASR
and the ratio v/ Mes / Mrain- Our results indicate that it is possible to conduct efficient short-length
AT against strong long-length jailbreaking.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claim made by the abstract and introduction is that: short-length AT
can effectively help LLMs defend against long-length jailbreak attacks, which is supported
by both theoretical and empirical evidence. The theoretical evidence is justified in Section 4,
while the empirical evidence is justified in Section 5.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Section 5.2 discusses the limitation of using only a single jailbreak attack
during AT to defend against unseen attacks.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All assumptions are stated as Assumption 1 and Assumption 2. All proofs are
presented in Appendix A.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All necessary details to reproduce experimental results in this paper are
provided in Section 5.1 and Appendix B. The experimental code is also provided in the
supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Experimental code and detailed instructions are provided in the supplementary
material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All necessary details to reproduce experimental results in this paper are
provided in Section 5.1 and Appendix B.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: [NA]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: [NA|
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: [NA|
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See the README . md file and the LICENSE file in the submitted experimental
code for details.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: See the README . md file in the submitted experimental code for details.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA|
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proofs
This section collects all the proofs in this paper.

A.1 Technical lemmas

This section presents several technical lemmas that will be used in our proofs.

Lemma A.1 (c.f. Lemma D.2 in [69]). If z € R**! is Gaussian random vector of d dimension,
mean zero and covariance matrix A, and A € R¥*4 js g fixed matrix. Then

Elzz" Azz '] = A(A+ AT)A + Tr(AA)A.

Lemma A.2. If v € R™! is Gaussian random vector of d dimension, mean zero and covariance
matrix A, and A € R¥™4 jsq fixed matrix. Then

E[z" Az] = Tr(AA).

Proof. Since

d
(o7 Aa] = [ZI Ay =30 Ay Bl = 30 Ay Ay = 3 (AAT), = Tr(4A),
1.7 i.j i=1

which completes the proof. O
Lemma A.3. For any matrices A € R"*™ and B € R™*™, we have

Tr(AB) = Tr(BA).

Proof. Since

i=1 i=1 j=1

which completes the proof. O

Lemma A.4 (From Lemma D.1 in [69]; Also in [39]). Let X € R™*™ be a variable matrix and
A € R*™™ and B € R™ ™ be two fixed matrices. Then, we have

OxTr(BX") = B e R™™,
OxTr(AXBX ") = (AXB+ ATXB") e R™™,

m m

Zn: B;.iA:, Tr(BA),

j=11i=1 j:l

Lemma A.5 (Von Neumann’s Trace Inequality; Also in Lemma D.3 in [69]). Let A € R™*™ and
B € R™*™ be two matrices. Suppose (o1(A),--- omin{n,m}(A)) and (o01(B),- - amin{n,m}(B))
are all the singular values of A and B, respectively. We have

min{n,m} min{n,m}

Te(AB) < Y oiA)oi(B) < Y |[Allz- Bl = min{n,m} - |A]lz - | Ble.

i=1 i=1
A.2 Proof of Proposition 1

This section presents the proof of Proposition 1.

Proof of Proposition 1. For the AT loss £(8) defined in Eq. (8), we have that

Ladv(@) = Radv(G,Mmin) =F max \@q,e(EidJVw ) — qu|2
T HAIHZ,ocge 34V train )

2

1 S BN (Wi
— ]E max - U)V T wV . Ty Mirain =~ T, Mirain < ) N — (Al)
) IAT lz00 <e 2 ((wh)T wh) = (wﬁiQ) T
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adv adv, T
Then, the term £, - E7y  can be decomposed as follows,

gy gt _ (XY (XA (o)) (X)) (XA ()
T, Micain ™~ T, Misain Y. Y. :fx 0 Y, YTsfx 0
— XT X—?—fx (E‘r,q X'r qu—fx xT,q ! + 0d><N AT 00l><1 0d><N AT Od><1 T
Y, Y& ¢ Y, Y& o Oixv Oixngy, O O1xv Oixnfyn O

. T
+ XT X"s_fx Tr,q 0d><N AT 0d><1 + 0d><N A7' Ocl><1 X‘I’ Xj-fx Tr.q
Y, Y& 0 01xN  O1xMyw O O1x~v Oi1xMyn O Y, Y& 0

(X X\ (X, XXz ) (A A )T
“\Yy, ysooo0 Y, Y& 0 01 x Migain / \ 01 % Myain
(XY (A N (oA Y]
Y7§fx 01 X Af{miu 01 X ]V[lmin YTSfX ’

which further means that

Eadv . adv,T. KQ
()T wly) - e Db ((Wn >x

N"‘Mu—ajn U}gQ)T
(XT X3 ajf,q) (XT X35 ‘rT7Q>T
Y, v o)\, v* o wke
_ VAT V) . T T T T . 11 .
(w2)" i) N + Miain ((wéiQ)T) e
X7s_fx
vt AAT KQ VAT LV (YSfx} Ar KQ
+ (w [ S W Tr —+ w w. LT 7, W T
( 21) N+Mtrain 11 »q (( 21) 22) N+Mrain 11 »q
six\ |
A, (2r
AT stx WﬁQ
N7 7 . A2
+ (w21) N + My <(w2K1Q)T> Tr,q (A.2)

Inserting Eq. (A.2) into Eq. (A.1) and applying the inequality that |a + b|? < 2 - (a? + b?), £3Y(0)
can thus be bounded as

Xo X5% ang (X X any,
)\ v o )y, v o (Wgc?) r
. Trqg — Yr
N+ M (wh®)T) eI
ALAT
. max [ oyt —/——r .
T AT [l2,00<e N + Mtrain

:=A1(0)
XY 7
(Y:fx) A‘r . KQ }2

N + Mrain

2
K
WlleT,Q}

+2- a [ T owh) -
ITEHAﬁz,);Se (wi) " wl)

:=A2(0)

+2-E max
T |AT]l2,00<e

Xsfx T
Ar( ;rfx) K
Y. Q 2
[( V)T L NT /S, <( Wll _|_> Iﬁq} . (A.3)

w
2 N + Mrain KQ)

Way
=As(0)
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We then bound terms A; (), A2(8), and A3(6) in Eq. (A.3) seprately. For the term A4 (6) in Eq. (A.3),

we have

M,
2 train 2
A 9 ::7 |: 57’1 T :|
1O) = N g Bt () Z Wi g
2 Mtram leﬂl“
< ) VTS 2. (;T W@y, 2]
S v Bame <€[;[<wgl> i Z}[ K9]
by Cauchy-Schwarz Inequality
2 eruin Mtrain
<————E max [(w¥)) "8, ,]? - max (5W xT 2}
(N + Myin)? 7 L& o () ond - o % Wi Tendl
2 thm Mlmin
= s E[ D lwdille - - > IW Pl - o]
2 .q
(N+ Mtram) T i1 i1
264M21 K
= Wy enls - BV e 3 (A4)
rain T
For the term A5 () in Eq. (A.3), we have
2 Migain sfx 2
As(f) i= ————— E max [ wi)T wl) - (Tf)§:-~WKQxT}
2(0) (N + Myan)? = 1aT10x < (( 21) 22) ; ;f’z i 11 ,q
eram

Mirain

B mex [ (k)T k) (yf)}

< - - (ST W . 2]
- (N+Mtrain)2 T HAIHZ,ooSE i—1 ;[ 1 x 7q]

by Cauchy-Schwarz Inequality

2 Migain VAT v sfx 2 M rain ,
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(N+Mtrain)2 i=1 (( 21) ) yfrtz 1 7 [16-,:ll2<e [ 11 q]
2 erain xSfX 9 erain
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= (N 1 Moan)? 'I@HWH Trqll2 ; E[((wm) wy) y:f,; } . (A.5)

For the term A3(6) in Eq. (A.3), we have

M, T
2 train sfx KQ 2

A30) = e 5 (Wi )
) (N + Miain)? ||AT\|?OO<6[ Z < sfx) ((ng)T> T ﬂ}

Mo M ai T
9 train train xsfx' WKQ 2
<——— E max [ wyy) " 6-4) - [( sz> ( G xT}]
(N + Muain)? 7 AT o <e ;[( 21) Onil ; i) \(wh)T) "
by Cauchy-Schwarz Inequality
Migain Mugain stx\ | KQ
2 VATs 12 (xf) ( W ?
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As a result, by inserting Eqgs. (A.4), (A.5), and (A.6) into Eq. (A.3), we finally have that

X, X% oz )\ (Xr X% 2\
) Ay v 0 )J\y, vxoo ( Wie
. (,

£ 0) < 2-E[((wh)T wh

N + Miain
R RAL T
+ Uff% AL ]MX_;E[(zi)T (&g}) xT,q]z- (A7)
The right-hand-side of Eq. (A.7) is exactly the surrogate AT loss ﬁadV(H) in Eq. (9), which thus
completes the proof. O

A.3 Proof of Theorem 1

This section presents the proof of Theorem 1, which is inspired by that in [69]. Specifically:

1. we first prove that terms wsy; and ng stay zero during the surrogate AT (Lemma A.6) via

continuous gradient-flow, which thus can simplify the surrogate AT loss ﬁad"(ﬂ) defined in
Eq. (9) (Lemma A.7).

2. We then calculate a closed-form solution 6. for the surrogate AT problem based on the
simplified £24"(6) (Lemma A.8), which is exactly the solution given in Theorem 1.

3. Finally, we prove that under the continuous gradient flow, the LSA model starts from the
initial point defined in Assumption 1 can indeed converge to the closed-form solution 6,
(Lemma A.12), which thus completes the proof of Theorem 1.

We now start to prove the following Lemma A.6.

Lemma A.6. Suppose Assumption 1 holds and the LSA model fisa ¢ is trained via minimizing
surrogate AT loss L% (0) in Eq. (9) with continuous gradient flow. Then, for any continuous training
time t > 0, we uniformly have that wY, (t) = ng (t) = Ogxa1.

Proof. When the LSA model fisa, ¢ is trained with continuous gradient-flow, the updates of w;/l and

wé(lQ with respect to the continuous training time ¢ > 0 are given by

opwy, () == —8%‘)/15&‘1"(9),
wi(t) == =0, ko L2%(6).

’LU21

Meanwhile, since Assumption 1 assumes that wY; (0) = W ©(0) = 041, therefore, to complete the
proof, we only need to show that dywY, (£) = O Wi @(t) = 014 as long as wY, (t) = WA (t) =
0gx1 for any ¢ > 0. In other words, below we need to show that wgl = WgQ = 04x1 indicates
B,y L(0) = 0,,xa LY(0) = 01 4.

Toward this end, we adopt the notation in Eq. (9) to decompose the surrogate AT loss 5(9) as follows,

L(0) = [01(0) + £2(6) + £3(0) + La(0))],
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where

(XT X3 xﬂq) (XT X3 an)—r
v, v o )\y, v o Wk 2
6.0) = 2E[(wh)T wh) (o) 20 = ]

T N + Miin (wg(lQ)
(A.8)
2¢4 M2
0(0) = ——— ~“train 2 A
20) = oy oy b IBE 17 e ). a9
26 Musain Xsfx
63(9) = m - [” 11 xT,q 2 ||(('U)¥1)T w22) (stx> ||§:|a (A.10)
262]\4lrain V2 Xsfx T WKQ
4O = N M) ' g g all3]- A1l
1O = e w1 B[l (3 by ) # o] N

In the remaining of this proof, we will show that when w;/l = wgiQ = 0g4x1 holds, one has:
(1) 8W2v1£1(9) = WﬁQEl(e) = O1xq, (2) 8W2v1€2(0) = 8W§Q€2(9) = 01xq, 3) 8W2v1£3(9) =
8W21§Q 63(0) = 0yxq, and (42 6W2\{ 24(0) = 8W21§Q £4(0) = 014, which thus automatically indicates
that 8W2\1 L£29(0) = 8W;§Q L2(0) = 01%4.

Step 1: Show that w}; = w3;? = 04 indicates dyyy (1(0) = Dy 1cal1(0) = O1xa. Such a claim
can be directly obtained from the proofs in [69]. Specifically, when setting the (original) ICL prompt
length from N to (N + M), the ICL training loss L in [69] is equivalent to our ¢1(6) defined in
Eqg. (A.8). Therefore, one can then follow the same procedures as those in the proof of Lemma 5.2 in

[69] to show that the continuous gradient flows of W, and W;{ < are zero when Assumption 1 holds.

Please refer accordingly for details.

Step 2: Show that w); = ng = 041 indicates 0,y l5(0) = 8%{(1@62(9) = 01 xq. Since the term

wle does not exist in the expression of ¢5(#) in Eq. (A.9), we directly have that %Q l5(0) = 01x4-

Besides, for the derivative 0,,y £2(6), based on Eq. (A.9) we further have that

2t M2
0, 050 = Oy, [y b3 E W %3]
u”yl 2( )w;‘)/i:()dxl wZYI (N+Mfaln) H 21”2 T ” H T,q”z w;/l:OXm
4et M2, KQ 2 VAT
= [ g WD ()]
|:(N+Mtra1n) T 1 iz 2 w;/l:()dxl
4e Mtram 2 T
— _— “Ttrain -0 =0
(N + Moan)? EH i xT,qHz dx1 1xd>

which justifies our claim in Step 2.

Step 3: Show that w}, = ng = 0gx1 indicates aw:)vleg(a) = angzg(e) = 0yxq. We first
rewrite ¢3(0) that defined in Eq. (A.10) as follows,
2 M g W59 13 (b whe) (o ) 1]
e E——— w
(N + Myan)? 21 Wag Ystx
2€2Mt i % Migain xsfx xsfx T
= N 5 Mom)? 'I?[”Wn%w”g] Dom{(e)T i) () () ()T
262Mt1’din

Misain sfx sfx\ |
. X X
= (N + Myqin)? 'E[””ngnq”%} ) ((wéfl)—r w¥2) ’ (E E[(ysf’x) <y;rf><l> }) ) ((w¥1)T
rain T =1 ) T,
(A.12)

3(0) =
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Then, for any ¢ € [M] we have

sfx sfx\ | sfx sfx\ T stx T ,.sfx\T
[(xf ) (mt] ) ] _ E ( 'r'rz : (xT z) m'r,i ! (wT xT,i) )
sfx sfx - T sfx sfx \ T T sfx T ,.sfx\T
Yri Yri wq-,x:,f"i Wr Tr ;- (Jj ) wr T ’ (wT T )

A A’del A 0d><1 A 0
= =10 Tr(IgA — dx1
(()Md ‘A Eu. [w:AwTD 1xd b L( d A)z (led Tr(A)) ) (A.13)
y Lemma A.

Finally, by inserting Eq. (A.13) into Eq. (A.12), ¢3(6) can thus be simplified as follows,

2€2Mtrain KQ 2 VAT 1% =y A 0d><1 VT vyl
l3(0) = m 'IE[”WH x‘r,qHQ} ‘ ((wzl) w22) : ; 01xq Tr(A) : ((w21) w22)

2e2 M2
= iy Bl en ] - (@l TAwh + T wh)?). (A14)

According to Eq. (A.14), ¢5(6) does not depend on wle, which means that 8w§<1Q l5(0) = 01xq. On

the other hand, based on Eq. (A.14), when wy; = 0, the derivative of ¢3(f) with respect to w3 is
calculated as follows,

2e2 M2
0oty g [ sl ] (o s )]
Way=

2e2M?2
= it B e B] - Oy, [l T Al

w;/l:O
42 M2
= vty B o] [0

4e2 M2
- ﬁ [H 11 xr,qH%} “0gx1A = O1xa,

which justifies our claim in Step 3.

vV _
wgy =0

Step 4: Show that w); = wg(lQ = 04x1 indicates J,v ¢4(0) = 0 rxols(0) = 01xq. When
21 Waq

wy = szlQ = O4x1, based on the expression of £4(#) given in Eq. (A.11), the derivative of ¢4(6)

with respect to w¥1 is calculated as follows,

D0y s, = O [t g (S0 () el V
wl =wy;
= {(N4€+2]J\\44[::;) E G’(:Z)T ((ngé?r) wralf- W] Wl =04,
- e g (500) () el 0T = 1
Besides, for the derivative of /4(0) with respect to wle, we also have that
8wé<lQ£4(9) WY@, = 8%1 {%H wy; I3 - IE” <§:§x> <(M;<1619) )xr,q“%} o
U21= )21

2€2 M. Xsfx WKQ
= {m ) Hw%”% g KQEH (stx) ((wl&?)T Lr,q

]

2
2E2Mtra‘n 2 Xsfx T WKQ

= —"_.0 -0 { T 11 . 2]

(N + Mipain )2 10ax 12 wii? IE” YT~f (ng)T Trqll2

\%4 KQ_
Wy =Wy~ =0dx1

= 01x4q-

KQ__
way *=0dx1

*Od

@=04x1



The above two equations justify the claim in Step 4.

Step 5: Based on results from previous Steps 1 to 4, we eventually have that

8w¥1 Eadv (6)

= Oy, [02(0) + £2(0) + £3(0) + L4 (0)]

= Zolxd = 01x4,

Vo KQ__
Wy =Wy~ =0dx1 wly =wg] @=04x1

~adv _
Ouga Oy _xa_y, = Ousola @O+ LO +LO) +LO)| |\ o, = Zolxd = O1xa.
The proof is completed. O

With Lemma A.6, we can then simplify the surrogate AT loss EadV(H), as shown in the following
Lemma A.7.

Lemma A.7. Under Assumption 1, the surrogate AT loss £V (0) defined in Eq. (9) can be simplified
as follows,

L(0) = 2Ty [(F(Mmm)A + P (Myain)La) - (W W OA) - (wh, W OAZ)T

— AT [l W{OA)  AR] + 2T

A),
where I'(M) := Nﬁfﬁl A+ IT;J(F/IX&I and (M) := éw +T (/)\2) are same functions as that defined in
Eq. (10).

Proof. When Assumption 1 holds, by applying Lemma A.6, one can substitute terms wy; and wK Q
in the surrogate AT loss £%"(6) with the zero vector Oy 1, which thus simplifies £24"(6) as follows,

X, X Tr,q X, X Tr,q '
Y. ysfx 0 Y. ystx 0 WKQ 2
) = = 11 Trq — Yr q:|
N + erain 01 d ’ ’
262]\4lrain

+0+ m |:H 11 LUT,qu : H (led w22) (stx) H :|

£ov(g) = 2@[(olxd wY,

:=B1(0)
2
i B[ IW O - ey a13)
:=B>(0)

For the term B (6) in Eq. (A.15), we have that

Y XT + stx(xsfx) 2
By(0) :=2- E[ 3 W9, - ]
1(0) == = N + Myan 11 a4~ Yra
w . (XTXT 4 Xsfx(Xsfx)T) v KQ - 2
:2~IE[ = - — cwa Wi -y —waT}
T N + Mirain 27 a 4
)(.,-)(7—_r JrXifx(X_,S_fx)T K T XTXTT Jrqu_fx(X"s_fx)T X
B 2 . IE |:|: N + Mtrain . w;/ZWlleT’q B IT7qi| . wTwI ’ |: N + M[rain . wé/QWlleT7q B :L‘T7qi|:|
X X7+ XM T K T XX+ oo
=2 IE |:|: N —+ Mtrain ’ w¥2W11QxT7q - mT;Q:| ' Id . |: N + Mtrain Wll Zr ,q x‘f‘,‘]:|:|
o B [(GXT £ XSO TXT X
=2 E{qu : (w¥2W11Q)T : ( -w22W11Q STy q}
T ’ N + ]\ltrain)2 ’

e B (XX + X300 )
gl

K
E|2r N -(szzWuQ)-xT,q} 2. ]E[ qu} (A.16)
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For I, [(XTXTT FXON(XOM T (XL XT + XﬁfX(XifX)T)] in Eq. (A.16), we have

E| (X + 05 00M) T (XX + X6
= E[X, X X, X ]+ E[X3N (XM ] E[X X]]

B[] BN T+ BLXG (0 T X (X065 )

- ]E[Z T Zx”xmz”} + ]E[Z xsfx ) ] E[Z x”sz}
+E[Z zrial;]  E[r5 @) +E[Z (@) Tl (@)

=
2,7
=E |:Z x‘f‘,im;r,ixﬂ’ixj,i + Z A2:| + MtrainA -NA+ NA - erainA
T 1<, j <N,i#j

LR {Z J;sfxl sfx sf); ('r:_fj;)T 4 Z A2:|

1<4,5 < Miain 175

N
= {Z (2A% + Tr(A)A)] + (N? = N) - A? + 2N Mygin - A?
! i=1 by Lemma A.1
Miain
{Z 2A% + Tr A)} + (Mt%am Miain) - A?
=1 by Lemma A.1
= (N? 4+ N + M2, + Miain + 2N Miain) - A% + (N + Mygin) - Tr(A) - A

= (N + Mtrain) : ((N + Mtrain + ]-) : A2 + TI'(A) : A) = (N + Mtrain)2 : F(-Zu-train)A~

For B, [ X, X[ + X3"(X3™)T] in Eq. (A.16), we have

E[XTX-,—T —|—X7§_tx(X:_fX)T:|

- ]E{Z x”x;rz} +E {Z 2 (55 }
= NAZ+ MiainA = (N %—ZMtrain) A
Inserting Egs. (A.17) and (A.18) into Eq. (A.16) leads to
Bi(6) =2 E|a], - whW) T - D(Mn)A - wl,WH{© -
—4- ]E{ A w22W£Q qu}—l—Q E[ Iqwcf’q].

=2.-Tr [(wQQVVﬁQ)T T(Migain)A - wl, W @ - A}

by Lemma A.2

—4-Tr {A : w;/zWﬁQ ~A] +2 - Tr(A)

by Lemma A.2

= 2 T [D(Main)A - (wyWHTOA) - (w, W OAH)T]

by Lemma A.3

4 Te[(wlWTOAR) - A3 ] 42 Tr(n).

by Lemma A.3
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Besides, for the term B () in Eq. (A.15), we have that

2€2erain KQ 2 V yrsfx (|12
Ba6) =y arys ElIWH el - ko2 5]
rain T
2€2Mtrain V2 T KQ\T KQ T sfx sfx\ T
= m'(wm) 'E[x‘r,q'(wll ) Wi 'JTT,q} 'E[w'r XX 'wr}
rain T T
2¢* Myain V2 KQ\Ti/KQ T
= m'(wm) ‘TT[(WH ) Wi ‘A} 'E[w‘r 'MtrainA'wr}
rain T
by Lemma A.2
262 M i
= ﬁ - (wy)? - TT[WﬁQ A (WgQ)T} 'Tr{MtrainA - Id}
by Lemma A.3 by Lemma A.2
M2- TI‘ A 1
=262 —(N Jr‘r"}l\} (A)é)Q .Tr{(wXQWgQAﬂ A - (w;éWgQ)T}
train
= 262 . )(Miain) - Tr [(w;/ZWgQA%) A (wzvgwf{Q)T] (A.20)

Finally, by inserting Eqgs. (A.19) and (A.20) into Eq. (A.15), we have
EadV(e)
=2 Tr [P(Mmﬂn)A (WY, WEQAS). (wQVQWfiQA%)T] 4 Tr [(wQVviﬁQA%) : A]
2 Tr(A) + 262+ (M) - Te[(wla W OA) - A - (wl, W)
= 2 T [ (D(Miin) A + 6 Myan) L) - (wlgWIT2A%) - (W {{0A%)T]
— 4Tl WEOAR) A 42 Tr(a),

which completes the proof. O

Based on the simplified surrogate AT loss, the closed-form global minimizer 6, for the surrogate AT
problem is then calculated in the following Lemma A.S.

Lemma A.8. Suppose Assumption 1 holds. Then, 0, := (WY wk Q) is a minimizer for the surrogate
AT loss L*(0) in Eq. (8) if and only ifwKQQWfl? = (T'(Migain) A + €29 (Myain) Ig) A

Proof. For the simplified surrogate AT loss proved in Lemma A.7, we rewrite it as follows,
Eadv(e)
= 2Tr [(F(Mtrain)A + 20 (Myain) L) - (Y, WEQAD) . (wQ’QWﬁQA%)T}
— AT [(wl, W OAR) - AF] 4 2Tx(n)
—2.Tr [(FtramA + panl) (wgz WEQAY _ (Tpunh + ezwnamId)*lA%)

3

.
: (w;/QWﬁQA% - (FtrainA + €2¢train1d)71A§> :|
Ty [A?’(PMA + e%mm]d)—l} +2-Tr(A), (A21)

where Diy,in 1= F(Mtrain) and 1blrain = w(Mtrain)'

Notice that the second and third terms in Eq. (A.21) are constants. Besides, the matrix (FyinA +
62’([}[,1) in the first term in Eq. (A.21) is positive definite, which means that this first term is non-

negative. As a result, the surrogate AT loss £°%(6) will be minimized when the first term in Eq. (A.21)
becomes zero. This can be achieved by setting

wzmwf,(l?A% - (F(Mtrain)A + €2¢(Mtrain)ld)_1A% =0,
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which is

wY s WET = (D(Migain) A + €4 (Miggin) La) " A
The proof is completed. O

We now turn to prove an PL-inequality for the surrogate AT problem. The proof idea follows that
in [69]. Specifically, we will first prove several technical lemmas (i.e., Lemma A.9, Lemma A.10,
and Lemma A.11), and then present the PL-inequality in Lemma A.12, which can then enable the
surrogate AT model in Eq. (9) approaches its global optimal solution.

Lemma A.9. Suppose Assumption 1 holds and the model fisa ¢ is trained via minimizing the

surrogate AT loss Ead"(F)) in Eq. (9) with continuous training flow. Then, for any continuous training
time t > 0, we uniformly have that

(w35(8))? = Te[ Wi (6) (W35 (8) '],

Proof. Since the model is trained via continuous gradient flow, thus 0; Wﬁ @ (t) can be calculated
based on the simplified surrogate AT loss proved in Lemma A.7 as follows,
K radv
OWEL(t) = —Oyyrca L (6)
= =2 0y Tr (T (M) A + €46 (Muain) L) - (wia Wi OAD) - (wly{9A5) ]
+4- 0,0 Tr [(wzvzwf{%%) . A}
= =2 () OyraTr [ (D(Main) A + (M) La) - WS - A= (WED)T| 4 dwlya2
by Lemma A.4
= —4- (wyg)? - (T(Mugain) A + €(Myain) Ia) - W - A +4wl, A, (A22)

by Lemma A.4

Similarly, for 0;w3,(t), we have
Orwiy (1) := =0,y L(6)
= =2 0, T [ (C(Maan) A + 9 (Miin) ) - (WL OAD) - (Wl W 20%)T]
+4- awngr[(wnggQA%) : A%}
= —dwly - Te[(P(Muin) A + €6 (M) La) - (WT2A%) - (W{903)T]
4. Tr[(W{fQA%) : A%] (A.23)
Combining Eqgs (A.22) and (A.23), we thus have
G OIASOM
= 4 (w)? - T (T(Miin)A + €0 (Mygan) ) - (WFOAE) - (W OA)T]
4w, T [A : (A%WgQ)T}
= (Drwao (t) Jwa (1),
which further indicates that
T W () (W2 0)T]
=T [2W§ ) - WP W)T] + T W) - o (w2 )T
= (Brw3s () - wya(t) + Was(t) - (Qwyn(t)) = O (w3 (t)?). (A24)
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Finally, according to Assumption 1, we have that when the continuous training time is ¢ = 0,
K K K
T WP O)(W0)T] = W) = 0* = wy(0)%
Combine with Eq. (A.24), we thus have that

Tr[WKQ(t)(WﬁQ( ) ] — wl(t)2, V> 0.

The proof is completed. ]

Lemma A.10. Suppose Assumption 1 holds and the model fisa g is trained via minimizing the

surrogate AT loss Ead"(ﬁ) in Eq. (9) with continuous training flow. Then, if the parameter o in
Assumption 1 satisfies

2
o< ,
\/d (O (Migain) A + €29 Mggin) La) A= 1|2
y

we have w3, (t) > 0 holds for any continuous training time t > 0.

Proof. According to the simplified AT loss calculated in Lemma A.7, we know that if wy,(t) = 0,
then £4"(6,) = 2Tr(A). Besides, under Assumption 1, we have w),(0) = o > 0. Therefore, if we
can show that £24(6;) # 2Tr(A) for any t > 0, then it is proved that w3, (¢) > 0 for any ¢ > 0.

To this end, we first analyze the surrogate AT loss EadV(Ot) at the initial training time ¢ = 0. By
applying Assumption 1, we have

EadV(eo)
= 2T (1 (Myin) A + €20 (Muan) La) - (w8 (0) W2 (0)A%) - (why (0) W 2(0)A%)T
— ATl ()W (0)A ) - AF] + 2Tr(A)
= 2Tr | (D(Muan)A + €0 (Min)Lo) - (2007 A%) - (626007 AH)]
—4Tr[ (0?00 A%) - AF] 4 2T¥(A)
= 20"+ Te[ (T (Migan) A + €4 (Moin) L) A~ - AOOTAOOT | — 402 AO| % + 2Tr(A)
< 20"+ 4 [[(D(Min) A + 6 (Migin) I)A |2 - [AOOTAOOT |, —40% [ A3 + 2Tx(A)

by Lemma A.5
< 20" - d - [[(D(Miain) A + € (Mugain) I)A ™" [|2 - [AOO T Al - |00 ||
— 40%||AO||% + 2Tr(A)
< 20" - d - ||(D(Migain) A + € (Miain) I)A ™2 - [[AO| - 1 — 40?||AB[7 + 2Tr(A)
=207 [|[AO|% - (d- 0 - |(T(Migain) A + €9 (Migain) 1) A" |2 — 2) + 2Tx(A). (A.25)

By Assumption 1, we have || A©||2. > 0. Thus, when (d- 02 || (T'( Myain) A + €29 (Migain) La) A 7|2 —
2) < 0, which is

2
o< ,
\/d ! ”(F(Mtrain)A + 62w(Mtrain)Id)A_1H2

we will have £24(6y) < Tr(A).

Finally, since the surrogate AT loss L2 (6;) is minimized with continuous gradient, thus when the
above condition holds, for any ¢ > 0, we always have that £2V(6,) < £2(6) < Tr(A).

The proof is completed. O
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Lemma A.11. Suppose Assumption 1 holds and the o in Assumption 1 satisfies 0 <

2 . .. .
\/d.H(I‘(Mm)A+e2¢(Mm;“)ld)A*1\|2' Then, for any continuous training time t > 0, we have
(w¥(t))? > v > 0, where

02 - AO[F - (2 —d - 0 (T (Miin) A + €20 (Mivain) ) A™"]|2)

> 0.
2d[|A%]2

Proof. By applying Eq. (A.25) in Lemma A.10, we have that for any ¢ > 0,
o’ ||A9||% - (d- o”- [ (T (Mgain ) A + €2¢(Mtrain>ld)A_l||2 —2) +2Tr(A)
> Eadv(oo) > Zadv(et)
=2Tr [(F(Mn‘ain)A + 62¢(Mtrain)ld) . (U)XQWEQA%) : (U);/QWgQA%)T}
— AT [(wlW{OA%) - A3] 4 2Te(n)
= 2D (Main)A + € (Muan) 1) - (wipWITOAD) |} — 4Te [wlW{{2A%) + 2T (n)
> 0= dd - Juwg| - [|A%] - W22 +2Tr(A),

by Lemma A.5

which indicates
o2 |8 - (d - 0 - ||(T(Mugain) A + €20 (Miain) I))A |2 — 2) > —dd - [wl] - [ A%z - |5 @[,

thus

0% - |[AO|[F - (2 = d - 0% - ||(I'(Muvain)A + €2 (Misain) o)A |2)
lwiy| - |[WEQ| o > E Qd”Agﬁ“ train . (A26)
2
Besides, by combining Lemma A.9 and Lemma A.10, we know that
why(t) = TS O WE )] = I (1) 12 = W) - (A27)
Finally, inserting Eq. (A.27) into Eq. (A.26), we thus have
2 2 2 2 -1
vz s O IAOlE - (2 = d- 0 - [(T(Muain) A + €9 (Mirain) La) A~ [|2)
Woe(t))" > > 0.
( 22( )) = 2d||A2||2
The proof is completed. O

Lemma A.12 (PL-inequality). Suppose Assumption I holds and the LSA model fisa g is trained via
minimizing the surrogate AT loss L2 (0) in Eq. (9) with continuous training flow. Suppose the o

in Assumption 1 satisfies o < \/ T A +622¢( Mo T3 Then for any continuous training

time t > 0, we uniformly have that
1062 (00)13 = - (£(61) — min £4(9) ),

where
8v
H(FtrainA + 52¢train1d)_% ”%“ ' HA_% ||%“ 7

v is defined in Lemma A.11, and Vec(+) denotes the vectorization function.

p=

Proof. From Eq. (A.22) in Lemma A.9, we have that
8,5W1I§Q( t)=—4- (w22) (T (Migain) A + ¢’ Y (Migain) La) - WﬁQ A+ 4w¥2A2
= — 4w}, - (D(Muin) A + €(Main) L) - D(8;) - A2,
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where
D(0:) = (wh W 9N — (P(Maan) A + ) (Migan) T2) A ) € RP, (A.28)

As a result, the gradient norm square |3 £2% (6,)||3 can be further lower-bounded as follows,

186 L (B0)II3 := (D, £ (60))” + 104y 2 L (0,) | T

> |00 £ (0,3

= 4+ ws - (O(Man)A + €4(Maain) la) - D(8:) - A3
16 - (03)" - [[(D(Muin) A + €4 (Mysin) Ia) - D(8r) - A%
| (P (Masin)A + € (Muia) 1a) - D(61) - A2 [, (A29)

Y]

16 - v
~——
by Lemma A.11
where v > 0 is defined in Lemma A.11.
Meanwhile, according to the proof of Lemma A.8, we can rewrite and upper-bound (Eadv(ﬁt) —

ming ZadV(e)) as follows,
(EadV(et) _ mein Eadv(e))
=2-Tr |:(FtrainA + 62qujtralinld) : (wé/gwﬁQA% - (FlrainA + 621/}trainld)71A%)

: (wg’zwﬁQA% — (CanA + 62¢Ua,-n1d)—1A%)T}
=2 Tr[(TiainA + €uainla) - D(0;) - D(6;) "]
=2 Tr[(TyainA + EUuainla)® - D(0:) - D(02)T - (DuainA + €¥ainla) ?]
Lemma A.3
=2 || (Puain + E¥ainla)® - D(0:)|3

<2 [[(Dain + Yinainda) 2 [+ 1A 2|7 - [(TuainA + 2Yisainla) - D(6r) - A2 |3, (A30)
where Diin := F(]\4train) and wtrain = w(Mtrain)~

Combining Egs. (A.29) and (A.30), we thus know that

~ 8v
186 L2 (6:)13 =
? ||(FtrainA+62wtrain1d)_%||%7' : HA_%”%T'

The proof is completed. O

) (Eadv(et) -~ mein/fadV(Q)>.

Finally, we prove Theorem 1 based on Lemma A.8 and Lemma A.12.

Proof of Theorem 1. When all the conditions hold, when the surrogate AT problem defined in Eq. (9)
is solved via continuous gradient flow, by Lemma A.8 we have

(£ (0) = min £5°(0)) = 0pL%(01) - 048, = O™ (01) - (=0§ £ (1)) = 0L (003
~adv s padv
< - (£9(0,) — min £4(0) ),
which means
(Eadv(et) _ H?bin Eadv(e)) < (Eadv(eo) _ mgin Eadv(0)> . e—,ut.

As a result, when performing continuous gradient flow optimization for an infinitely long time, since
> 0, the surrogate AT loss will eventually converge to the global minima, i.e.,

(£24(6.) = min £(6)) = Tim (£ (0:) = min £2(6) ) < (£ (8) — min £(9)) - Jim e~ =0,
—00 —00

where 6, := lim;_, o, 6; is the converged model parameter. Meanwhile, from Lemma A.8, we know

that 6, is a global minimizer if and only if wXQQWfI? = (T'(Migain) A + €29)(Myain) Ig) ~ A, which

completes the proof. O
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A.4 Proofs in Section 4.4

This section collects all proofs that omitted from Section 4.4.

Proof of Theorem 2. By substituting all M., with M in proofs of Proposition 1 and Lemma A.7,
we immediately have that for any model parameter 6 of the LSA model fisa g,

RO, Miew) < 2T [ (D(Mues) A + €M) ) - (wh, W OAY) - (wlyw {12457
ATy [(wZYQWﬁQA%) CAR] 4+ 2Tr(A).
By inserting the converged model parameter 6.(My.in), which satisfies (w *QQW )
(T'(Migain) A + €2p(Myain) 1) ~LA, into the above robust generalization bound, we thus have that
'R(Q* (Mtrain)y Mtest)
< 2Te [ (P (Mies) A + 2 (Maes) L) - (P(Main) A + € (Main) 1) A - A)

: ((F(erain)A + GQw(Mrain)Id)_lA . A%)T]

- 4Tr[(r(Mm)A + €2 (Myain) Ia) "'A - A® - A] +2Tr(A)

(;) 2Tr |:(F<Mlesl)A + 62"/}(]\4test)ld) . (F(Mtrain)A + 62w(]\mrain)ld)_l

: AS ’ ((F(Mtrain)A + 62w(MHain)Id)71)T} + 0+ QTI(A)

(%)
< 2Te[A% - (D(Mias) A + 2 (Mies) L) - (D(Miain) A+ € (Migain) L) 72| + 2Ta(A),

where (x) is due to that the matrix ((T'(Migin)A + €20)(Migin) Ia) ~1A3) is positive definite, and ()
is due to that: (1) (T'(Migain) A + €290(Myain)I4) ~! is symmetric and is commutative with A3, and (2)
Lemma A.3.

The proof is completed. O

Proof of Corollary 1. Let A1, -+, Aq be the d singular values of the matrix A. Then, the robust
generalization bound in Theorem 2 can be rewritten as follows,

R(H* (Mrain)a Mtest)
<2Tr [A3 (D(Mies)A + (M) La) - (T'(Mygain) A + €8 (Mygain) 1a) | + 2Tr(A),

d NA+Meg+1 )\l + Tr(A) + € 2, [es‘Tr(A)
N+ Mieq N+ Miest N+ Mieq
<Y 3. - T+(A) (1» 1; - (A>) S+ 2Tr(A)
S N+thin+1 r train ~ L
= ( Nt b N T Nl T € (N M)? )
d Nt-Meatly y Tr(A) d 2. MfﬂTr(AL
4
S Z A? . N+ Miest N+Mtesn Z (N+Miest) + 2TI‘(A)
i=1 N+A{lrain+1 )\ i=1 2. MuzamT\r(A)
= Nt Moy 70 - € N+ Miin)?
d 2
N + M N + M, 1 A
S Z )\z . ( train ) . + test + )\z 4 Zk_l k
i—1 N + Mtrain +1 N + Mtest N

(N + Mrain)4 t t
sty N
+ Z €2 - max{ I{Ak} N? Mg i Z
O(d) 1 (N+Mtrain)4 Mtgst

< . . — 7 . — |-
<0(d)-0(1) (0(1) t ) +0(d) -0 (€2> NE Mé‘am + O(d)

d2 d (N + Mtrain)4 M12 t
< . €S .
_O(d)+O<N>+O(62) N2 Mt%am
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Then, by applying Assumption 2, we further have that

d? d N + M)t M2
R(e*(Mu-ain%M[est) S O(d) + O () + 0 <EQ> . ( + [§ ) . Zest

N Nz train
d? d (N+OWN))* Mg,
< - . . es
<ow+o(y) (i)
d2 2 Mt?:st
which completes the proof. O

B Additional experimental details

This section collects experimental details omitted from Section 5.

B.1 Jailbreak attacks

Our experiments leverage both suffix and non-suffix jailbreak attacks. Specifically, four suffix
jailbreak attacks are adopted, which are GCG [73], BEAST [44], AmpleGCG [26], and Zhu’s
AutoDAN [71]. Meanwhile, two non-suffix jailbreak attacks are adopted, which are PAIR [7] and
DeeplInception [25]. We re-implemented all attacks except AmpleGCG by ourselves to enable fast
batching operations during jailbreak, which can thus improve the efficiency of AT. Besides, other than
the adversarial suffix length, we will also tune the following hyperparameters of jailbreak attacks:

* GCG: According to Algorithm 1 in [73], hyperparameters that we need to tune for GCG
include the iteration number 7', the top-k parameter k, and the “batch-size” B.

* BEAST: According to Algorithm 1 in [44], hyperparameters that we need to tune for BEAST
are two beam-search parameters k; and ko.

* AmpleGCG: According to [26], AmpleGCG is an algorithm for training adver-
sarial suffix generators. Our experiments adopt the adversarial suffix generator
AmpleGCG-plus-1lama2-sourced-vicuna-7b13b-guanaco-7b13b !, which is offi-
cially released by [26].

e Zhu’s AutoDAN: According to Algorithm 1 and Algorithm 2 in [71], hyperparameters
that we need to tune for Zhu’s AutoDAN are the iteration number 7" in each step, objective
weights w; and ws, the top-B parameter B, and the temperature 7.

* GCQ: According to Algorithm 1 in [17], hyperparameters that we need to tune for GCQ
include the iteration number 7', the proxy batch size b, , the query batch size by, and the
buffer size B.

* PAIR: According to [7], PAIR adopts LLM-based attacker and judger to iteratively syn-
thesize and refine jailbreak prompts. As a result, one needs to set the base models for the
attacker and judger and the number of teratively refining for the PAIR attack.

* DeeplInception: According to [25], Deeplnception attack uses manually crafted jailbreak
prompts to attack targeted LLMs. We adopt the role play-based prompt from [25] to perform
the attack. No other hyperparameter need to be tuned for the DeepInception attack.

B.2 Model training

Jailbreak attacks during AT. We use GCG to search adversarial prompts during AT. The adver-
sarial suffix token length is fixed to one of {5, 10, 20, 30, 40, 50} during the overall AT. For other
hyparameters described in Appendix B.1, we set T as 150, k as 256, and B as 64.

Benign answer (") for the safety dataset D("). We adopt four benign answers for the safety data
during AT, which are:

"https://huggingface.co/osunlp/AmpleGCG-plus-1lama2-sourced-vicuna-7b13b-guanaco-7b13b
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Figure 4: Curves of the ASR versus the adversarial suffix token length during AT (i.e., Mi,in) under

jailbreak

attacks with different adversarial suffix token lengths (i.e., Miest). Mirain = 0 means that AT

is not performed on the evaluated model. A low ASR indicates a strong jailbreak robustness.

“As a responsible Al assistant, I cannot generate content that promotes illegal activities or
violence.”

“Sorry, but I can’t do that. Please try other instructions that are safe and responsible.”
“I cannot fulfill your request. I am designed to provide safe and helpful information.”
“This is a topic I am not permitted to discuss since it contain illegal or violent information.”

LoRA setting. We use the PEFT library [35] to apply LoRA [18] to all query and key projection matri-
ces in attentions. The PEFT hyperparameters are r=64, lora_alpha=32, and lora_dropout=0.1.

Other hyperparameters for AT. In every AT experiment, we follow Eq. (3) to perform AT with

AdamW
Besides,

for 125 iterations, where the learning rate is set as 5 x 10~° and the factor « is set as 0.2.
the batch size is set as 64, in which 8 samples are jailbreak prompts crafted from data from

the safety training set, and the remaining 56 samples are from the utility training set.

B.3 Model evaluations

Robustness evaluation. We report the Attack Success Rate (ASR) of jailbreak attacks to assess the

robustne

ss of models. Specifically, for each instruction from the safety test set, we synthesize the

corresponding jailbreak prompt and use it to induce the targeted LLM to generate 10 responses. Then,
we use an LLM-based judge from [36], which was fine-tuned from the LLlama-2-13B model I to

'http

s://huggingface.co/cais/HarmBench-Llama-2-13b-cls
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determine whether the 10 generated LLM responses are harmful or not. If any of them is determined
to be harmful, the jailbreak attack is considered successful.

Jailbreak attacks for robustness evaluation. For every suffix attack, the adversarial suffix length is
varied within {5, 10, 20, 40, 60, 80, 100, 120}. Besides, for jailbreak hyperparameters described in
Appendix B.1:

» For the GCG attack, we set T" as 500, k as 256, and T as 64.
» For the BEAST attack, we set k1 as 64 and ks as 16.

 For the AmpleGCG attack, we use an official adversarial suffix generator as described in
Appendix B.1.

» For the Zhu’s AutoDAN attack, we set T" as 3, w; as 10, wo as 100, B as 256, and T as 2.
* For the GCQ attack, we set 1" as 200 and b,, b,, and B all as 128.

¢ For the PAIR attack, we set the base model for the attacker as Mistral-8x7B-Instruct-v0.1,
the base model for the judger as Llama-3-70B-Instruct, and the number of iteratively refining
is fixed to 10.

* For the Deeplnception, as explained in Appendix B.1, we use a role-play-based prompt to
perform the attack, and there are no other hyperparameters that need to be tuned for this
attack.

Utility evaluation. We use the AlpacaEval2 framework [10] to report the Length-controlled WinRate
(LC-WinRate) of targeted models against a reference model based on their output qualities on the
utility test set. An LC-WinRate of 50% means that the output qualities of the two models are
equal, while an LC-WinRate of 100% means that the targeted model is consistently better than the
reference model. We use Davinci0O03 as the reference model and use the Llama-3-70B model to judge
output quality. The official code of the AlpacaEval2 framework is used to conduct the evaluation.
Additionally, the Llama-3-70B judger is run locally via the vLLM model serving framework [23].

B.4 Additional experimental results

This section collects additional experimental results (i.e., Figure 4) omitted from Section 5.2.

From Figure 4, we find that GCG-based AT is extremely effective in improving model robustness
against GCG, AmpleGCG, and Zhu’s AutoDAN. For the BEAST attack, GCG-based AT can also
suppress the ASR to no more than 50%. Further, when the AT adversarial suffix token length is set to
20, AT is already able to reduce the ASR by at least 30% under all settings. It is worth noting that the
adversarial suffix length during AT is only up to 50, while that during jailbreaking can vary from 5 to
120. All these results indicate the effectiveness of defending against long-length jailbreaking with
short-length AT.

C More experiments

This section presents experiments beyond those in Section 5.

C.1 Comparison with other jailbreak defense baselines

Here, we compare the jailbreak defense performance of short-length LLM AT with that of another
jailbreak defense baseline, the Circuit Breakers method [72]. Specifically, we adopt GCG and BEAST
attacks to assess the jailbreak robustness of Mistral-7B and Llama-3-8B LLMs protected by short-
length LLM AT or the Circuit Breakers defense. For short-length LLM AT, we set the adversarial
suffix length M, during AT to a small value of 20 or 30. For the Circuit Breakers defense, we
directly use the trained Mistral-7B ! and Llama-3-8B  models officially released by [72].

The resulting jailbreak ASRs are collected and presented in Table 4, from which we observe that:
(1) When the base model is Mistral-7B, short-length LLM AT consistently achieves better jailbreak

"https://huggingface.co/GraySwanAIl/Mistral-7B-Instruct-RR
’https://huggingface.co/GraySwanAIl/Llama-3-8B-Instruct-RR
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Table 4: ASR (%) of suffix jailbreaking against LLMs trained with Circuit Breakers [73] or LLM AT.
A low ASR suggests a strong jailbreak robustness of the targeted model.

(a) ASRs of different jailbreak attacks against Mistral-7B.

Attack Defense Adversarial Suffix Token Length Mt in Jailbreaking

5 10 20 40 60 80 100 120

Circuit Breakers [72] 210 200 210 230 230 280 280 230
GCG  LLMAT (Mg, =20) 80 110 70 60 70 80 100 110
LLM AT (M = 30) 110 130 80 60 70 50 50 50

Circuit Breakers [72] 19.0 21.0 20.0 24.0 25.0 25.0 25.0 27.0
BEAST LLM AT (M pin, = 20) 11.0 8.0 11.0 10.0 13.0 8.0 8.0 11.0
LLM AT (Mrain, = 30) 12.0 13.0 19.0 21.0 18.0 22.0 17.0 22.0

(b) ASRs of different jailbreak attacks against Llama-3-8B.

Adversarial Suffix Token Length Mieg in Jailbreaking

Model Defense
5 10 20 40 60 80 100 120
Circuit Breakers [72] 3.0 5.0 3.0 4.0 3.0 5.0 5.0 7.0
GCG LLM AT (Myain = 20) 5.0 8.0 6.0 5.0 6.0 1.0 3.0 1.0

LLM AT (Myin = 30) 110 9.0 2.0 30 00 20 1.0 1.0

Circuit Breakers [72] 12.0 9.0 11.0 12.0 16.0 15.0 17.0 15.0
BEAST  LLMAT (My,, = 20) 100 120 40 130 120 210 190 150
LLM AT (Myan = 30) 190 150 120 6.0 9.0 140 110 100

e GCG e BEAST
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o Vicuna-7B vs. GCG & Vicuna-7B vs. BEAST §m Qwen2.5-7B vs. GCG aima Qwen2.5-7B vs. BEAST

@ @

g
&

g 8

3

:‘

Attack Success Rate (%)
8
Attack Success Rate (%)

tack Success Rate (AS

Attack Success Rate (
Attack Success Rate (ASR)
Attack Success Rate (AS]

s =
%0 0s_10 15 20 %5 05 10 15 20 %0 10 20 3 4 s & 0 10 20 m 4 s0 8 ‘0 10 2 . w0 0 8 "o 1 2 w0
VMiest / Mycain VMeest | Mysain AT Suffix Token Length Myin AT Suffix Token Length My 2 AT Suffix Token Length Mymin AT Suffix Token Length Myin
(a) Scatter plots of ASR to the ratio  (b) ASR versus Miin under different Micsi. Mirain = 0 means that AT is
vV Miest/ Micain. not performed on the evaluated model.

Figure 5: ASR of models trained from the BEAST-based LLM AT. A low ASR indicates a strong
jailbreak robustness of the model.

robustness than Circuit Breakers under different jailbreak attack adversarial suffix lengths. (2) When
the base model is Llama-3-8B, the two defense methods achieve similar performance.

C.2 LLM AT with the BEAST attack

In our main experiments in Section 5, we solely use the GCG attack to synthesize jailbreak prompts
for LLM AT. In this section, we investigate whether our theoretical results still empirically hold for
AT with jailbreak attacks other than GCG. Specifically, we now perform LLM AT with the BEAST
attack on Vicuna-7B-v1.5 and Qwen2.5-7B-Instruct models. For the hyperparameters of BEAST
described in Appendix B.1, we vary the adversarial suffix token length within {5, 10, 20, 30, 40, 50},
and set k1 to 64 and k5 to 16. All other settings of LLM AT follow those described in Section B.2.

Experimental results are presented in Figure 5 and Table 5. From Figure 5a and Table 5, we observe
a statistically significant positive correlation between the suffix jailbreak robustness and the ratio
vV Miest / Mipain in every experiment, which indicates that our ICL-AT theory still holds for BEAST-
based LLM AT. Besides, from Figure 5b, one can find that AT with a short adversarial suffix length
Mzain of 30 can already reduce the ASR from nearly 100% to around 20% in every evaluation case,
which demonstrates the effectiveness of short-length BEAST-based LLM AT in defending against
jailbreak attacks.

C.3 LLM AT on larger models
We also perform short-length LLM AT on Vicuna-13B-v1.5, which is a model larger than those

7B/8B LLMs adopted in our main experiments in Section 5. All hyperparameters for LLM AT follow
those described in Appendix B.2. Results are presented in Table 6, which shows that AT with an
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Table 5: PCCs and p-values calculated between ASR and ratio v/ Mes;/ Miain on LLMs adversarially
trained with the BEAST attack. p < 5.00 x 102 means that the correlation between ASR and the
ratio is considered statistically significant.

GCG Attack BEAST Attack
Model
PCC(1)  p-value(]) PCC(T) p-value(])
Vicuna-7B 091 5.3x107'% 094 6.7x1024

Qwen2.5-7B 0.88 2.2x10°1% 0.95 5.0x 1025

Table 6: ASR (%) of the GCG attack against Vicuna-13B-v1.5 trained with LLM AT. A low ASR
suggests a strong jailbreak robustness of the targeted model.

(a) ASRs of different jailbreak attacks against Mistral-7B.

Attack Defense Adversarial Suffix Token Length Mieg in Jailbreaking
5 10 20 40 60 80 100 120
None 92.0 94.0 99.0 96.0 98.0 96.0 99.0 98.0

GCG  LLM AT (Miyin = 5) 1.0 190 300 530 550 670 700 680
LLMAT (Myin = 20) 120 90 1.0 60 60 60 8.0 7.0

adversarial suffix token length as short as 20 can already reduce the ASR of the GCG attack from

nearly 99% to around 10% in the worst case. This suggests the generalization of our theoretical
findings beyond 7B/8B models.
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