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Abstract

Machine learning (ML) has proved useful across a wide range of scientific applications.
Supervised learning in particular has been successfully applied for solving prediction prob-
lems in the domain of very-large-scale integration computer-aided design (VLSI CAD),
where function-based designs of digital hardware must be translated into physical designs
for implementation on semiconductor devices. To avoid overestimating ML models’ gen-
eralization capabilities for real-world deployments in such domains, good practices utilize
realistic data and avoid test set information leakage during model preparation. In this pa-
per we identify a further consideration in the form of atomic data groups, which are sets of
very highly correlated data that may also lead to such overestimation if not accounted for
in train-test splits during model evaluation. We investigate the potential impact of atomic
data groups in experimental design through a case study of the VLSI CAD circuit design
routing process for field-programmable gate arrays (FPGAs). Our investigations show that
model performance in deployment is overestimated by 38% in this case study when atomic
data groups are ignored. We hope that these results encourage other ML practitioners in
different scientific domains to be critical of their train-test splits and identify when atomic
data groups are relevant to their model evaluations.

Keywords: VLSI, CAD, FPGA, routing, supervised learning, information leakage

1 Introduction

In supervised learning, it is common practice to split an available dataset into a training
set and test set, known as a train-test split. While the training set ideally correlates with
the test set, explicit information about the test set should never enter the model training
process. Most machine learning (ML) practitioners know to check against trivial errors, such
as upsampling data then creating a train-test split randomly which can cause duplicate data
points to appear between the train and test sets. When such errors occur, they are referred
to as data leakage or information leakage from the test set. We note that the terms “data
leakage” and “information leakage” see dual usage in the literature, as they can also refer to
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sensitive training data being leaked through ML models in the context of data privacy and
security; Del Grosso et al. (2023). In this paper, our usage of these terms is purely about
leakage from test data sets into model preparation causing generalization overestimation.

Insidious forms of information leakage exist where test data isn’t ever directly found
in the training data, such as when model evaluations on the test data are used to make
architectural or hyperparameter decisions about model changes; Samala et al. (2020). In-
formation leakage is considered bad as it will often cause models to perform much better
in closed evaluations than they do in deployment, i.e. generalization overestimation. An-
other potential hazard for overestimating model generalization is the usage of unrealistic
data. This occurs when data gathered for a supervised learning data set does not reflect
the data that a model will encounter when deployed to the real world. A model evaluated
on unrealistic data cannot be trusted to generalize well. Typically, if a realistic data set
is crafted and information leakage is prevented in model training and tuning then a model
can be expected to generalize well in deployment. However, this is not always the case.

We identify the existence of a model generalization overestimation hazard that can occur
even when using realistic data and preventing test set information leakage. This hazard
occurs when a train-test split is performed without regard for what we call “atomic data
groups”, which are often found in the real world. We provide an explanation of what atomic
data groups are and how they may occur in Section 3. We quantify the potential impact
of this hazard in the context of the applied science domain of very-large-scale integration
computer-aided design (VLSI CAD) for field-programmable gate arrays (FPGAs).

2 Background

Before discussing atomic data groups, we first provide information about the scientific
domain which contextualizes our work.

2.1 Field-Programmable Gate Arrays

Field-programmable gate arrays (FPGAs) are semiconductor devices designed without a
prescribed purpose and are thus fabricated in such a way that their functional hardware
components can later be programmed when a purpose is determined. At that point, a
digital circuit to execute the purpose is designed and then needs to be translated through
VLSI CAD software to the FPGA’s available programmable hardware components. The
VLSI CAD software’s output is a bitstream which is uploaded to the FPGA to program its
hardware to implement the input circuit design.

2.2 VLSI CAD Routing for FPGAs

Very-large-scale integration computer-aided design (VLSI CAD) refers to a group of soft-
ware tools used in the design and implementation of semiconductor devices. Implementing
a digital design as a bitstream for an FPGA is a multi-stage process, with routing being the
final stage. Routing determines how communicating components will be connected through
the FPGA’s programmable wiring. This is an NP-complete graph problem composed of
many—in practice, millions of—shortest path-finding subproblems. The current state-of-
the-art FPGA routing algorithm, “negotiated congestion”, represents components as nodes
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and wiring connectivity as edges. All communicating component (node) pairs must be as-
signed an exclusive path to each other while minimizing path length, but path minimization
promotes illegal path sharing (“congestion”).

Negotiated congestion is an iterative algorithm that progressively converges to a viable
routing solution. It has three major deficiencies: (1) convergence is not guaranteed; some
circuit problems are “unroutable” (2) it cannot detect when a circuit is unroutable; nego-
tiated congestion can run infinitely without converging (3) when convergence is possible,
there’s no indicator for how many iterations are required. We previously researched ML
tools in Gunter and Wilton (2023) that operate after each iteration to predict if negotiated
congestion will converge and, if so, how many more iterations will be required. These pre-
dictions enable a doomed routing run to be intelligently exited early, preventing time being
wasted on an unsolvable problem.

In the context of our work there are two notable VLSI CAD hyperparameters in FPGA
routing, the VLSI CAD software’s random seed and the FPGA’s “channel width”. The
random seed influences how routing progresses. The “channels” of an FPGA are its re-
programmable wiring elements, corresponding to the edges in the routing problem graph.
Increasing the utilized channel width of the device increases the number of edges in the
routing graph and makes the routing problem easier.

3 Atomic Data Groups

3.1 General

An atomic data group is a collection of data points, from some larger dataset, that are all to
be used exclusively in either the training set or testing set but never both. Their “atomic”
nature is such that they should generally not be split; if one data point of the group is
assigned to a given set then all data points will be, ignoring the trivial case of removing
data points from an experiment. In the supervised learning context, each data point is an
input feature object with an associated label(s). While the number of data points in an
atomic data group may vary arbitrarily, no individual data point may belong to multiple
atomic data groups. Although we discuss train-test splitting here, similar principles apply
to train-test-validate schemes or other multi-set experiments wherein data points from an
atomic data group should not be split between any two sets.

The motivation for organizing data points into atomic groups is to maintain realistic
train-test splits. Typically, atomic data groups will be collected from the real world in
scenarios where data points co-occur or exist together sequentially. While we cannot ex-
haustively describe such possibilities, examples of co-occurrence could be when multiple
data points are extracted from a single physical phenomenon or the case of a data pipeline
where labelling is done in batches rather than individually. The frames of a video feed
which are only incorporated into a model’s learning at the end of every week is an example
where sequential data might be best treated as an atomic data group. The reason for this
is because the freedom to assign the data points from such groups arbitrarily between the
training and test sets exists only in abstract experimentation; the real world will dictate
the content of the test set in deployment. In this weekly video feed example, if significant
changes systematically occur mid-week then offline experiments may be prone to overesti-
mating model generalization by splitting data points from the same week between training
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and testing. In essence, accommodating for atomic data groups is beneficial in experimen-
tal design when such data are believed to be highly correlated in a manner which will not
be achievable between the final training set and the data to be encountered in deployment.
This paper examines the case of atomic data groups found in VLSI CAD routing for FPGAs.

3.2 FPGA Routing Data

We now use FPGA routing as an example to clarify how atomic data groups may arise.
On each iteration of routing a given digital circuit design, a ML sample is extracted. Each
sample consists of a feature vector paired with a regression label. The regression label for an
iteration is the number of iterations remaining until the routing problem will be successfully
solved. These data samples are used in Gunter and Wilton (2023) to train regression models
that predict, on each iteration, how many iterations are remaining in a given FPGA routing
problem for the negotiated congestion algorithm to converge on a solution. In deployment,
if the models predict that convergence will require an undesirably large number of iterations
(thus requiring a lot of time) then the routing problem is exited early.

The atomicity of the described data (samples) comes from the fact that they are all
acquired effectively simultaneously in groups from the same routing problem attempt. It
is unrealistic to expect that half of a routing problem’s data is captured in a training set
and the remaining half is waiting out in the real world. Correspondingly, it is unrealistic to
assign half of a recorded routing problem’s data to training and half to testing.

Figure 1: Atomic data groups in FPGA routing visualization

Figure 1 visualizes the atomic data groups in the FPGA routing process with atomic data
groups shown in boxes and we may focus on just one. For example, purple data samples
{A1, A2, ..., Aa} correspond with the data extracted from one routing problem based on
“Circuit Design 1”. These are clearly an atomic data group by themselves.

What happens if we make variations to the VLSI CAD process by changing its random
seed or the FPGA channel width then again attempt routing the same Circuit Design 1?
This is represented with the data samples {B1, B2, ..., Bb} and {C1, C2, ..., Cc}. Should these
be three separate atomic data groups or are they really just three parts of one larger atomic
data group? It depends on context. The motivation for identifying an atomic data group is
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to effectively create train-test splits that reflect real-world deployment. If a ML model will
be making predictions in deployment on a routing problem which is merely a variation of
another problem available in training (i.e. from similar circuit designs) then it is appropriate
to consider data from variations of routing problems as non-atomic. This corresponds with
the “exceptional case” in Section 3.1, which makes assumptions that may not always hold.

4 Case Study: Data Atomicity Experiments in FPGA Routing Early Exit

Now we investigate a case study in FPGA routing early exit based on Gunter and Wilton
(2023). We observe how the results of ML model evaluation vary when atomic data groups
are maintained versus when they are split between training and test sets.

4.1 Experimental Setup

We extract data by routing digital circuit designs found in standard open-source academic
suites. The “MCNC”, “VTR”, and “Titan-Other” suites contain relatively small, simple
circuit designs; Yang (1991); Luu et al. (2014). The “Koios” deep learning and “Titan23”
suites contain larger, more complex designs which mimic modern industrial designs; Murray
et al. (2015); Arora et al. (2021). This yields a total of 126 designs. All routing is done
through the VLSI CAD software tools from Murray et al. (2020) and all routing problem at-
tempts are stopped if unsolved after 1000 iterations of negotiated congestion. Data samples
are extracted as described in Section 3.2, with the same features as in Gunter and Wilton
(2023), but we extract additional binary classification labels which indicate for each sample
whether its corresponding routing problem was solved within 1000 routing iterations. For
each of the 126 circuit designs, we vary the random seed of the VLSI CAD software 5 times
and we also vary the FPGA channel width 5 times for each seed, yielding 3150 different
FPGA routing problems and over 106 extracted data samples.

Our case study observes a regressor and a binary classifier trained on labels of the corre-
sponding type. Both models are ensembles of gradient boosted decision trees implemented
through Scikit-learn 1.0.1 with default settings; Pedregosa et al. (2011). With these models,
we perform three simple experiments of 5-fold cross-validation where each experiment forms
atomic data groups differently. The recipe for the experiments is that each fold is formed
by determining which atomic data groups will have their entire data in the fold’s test set,
while the remaining data is used for training. No two samples originating from the same
atomic data group are ever split between training and test sets for a fold. As per typical
cross-validation, a data sample is never represented in more than one test set across folds.
The three different experimental variations of this are:

1. Each data sample is an “atomic data group”, i.e. each atomic data group has only
a single data sample. Samples are assigned to folds’ test sets randomly. Only data
samples from the Koios and Titan design suites are used.

2. Data samples from the same circuit design are treated as atomic data groups. Only
the circuit designs from the Koios and Titan design suites are used. Circuit designs
are assigned to folds’ test sets randomly.
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3. Data samples from the same design suite are treated as atomic data groups. Only
circuit designs from the Koios and Titan23 design suites are used in the test sets and
they are assigned to folds randomly. The MCNC, VTR, and Titan-Other design suites
are used for training.

Experiments 1 and 2 only use the Koios and Titan design suites because these are
the most state-of-the-art. Experiment 3 takes the atomicity one level higher than what was
described in Section 3.2. Circuits from the same VLSI CAD design suite are usually created
with particular similarities, e.g. the Koios suite designs are all ML hardware accelerators.
Arguably, it is even unrealistic to split designs from the same suite between training and test
sets. We introduce the MCNC, VTR, and Titan-Other suites as Experiment 3 would have
had fewer training samples otherwise. The number of training samples added in Experiment
3 is such that the total amounts per fold match Experiment 2.

Figure 2: Comparison of circuit sizes/complexity across VLSI CAD design suites. The x-
axis is histogram bin upper bound, measuring circuit size. The y-axis is the
number of designs in each bin.

Figure 2 shows the differences in circuit design sizes (essentially complexity) between
the design suites marked as training and testing in Experiment 3. In the real world, digital
circuit designs trend toward greater complex over time and therefore it is pragmatic to
prepare for a scenario where ML models for VLSI CAD will face designs of higher complexity
in deployment than in training; Rapp et al. (2022).

4.2 Modelling Reality in Offline Experimental Design

Before discussing the results, it is worth clarifying the varying realism of the three experi-
ments we have described.

It is necessarily true that Experiment 1 is unrealistic as it splits data from multiple
iterations of the same routing problem attempt between the train and test sets, something
which could not logically occur in deployment. There would be no logical way to train on
data from a specific routing problem without first attempting to solve that routing problem
and extracting its data. There is no question that Experiments 2 and 3 are more realistic
in this regard, they both mimic how routing may actually proceed in real world deployment
with a model trained on previous routing problem attempts’ data. The primary question
we wish to answer is whether the lack of realism in Experiment 1 leads to overestimation
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of model generalization, i.e. whether Experiment 1 yields seemingly higher accuracy. Com-
paring the results of Experiment 1 with Experiment 2 will inform us of the need to consider
atomic data groups in offline experimentation to replicate the logical structure of future
deployment in the real world.

The secondary question to be answered is whether there is a meaningful difference in
results between Experiment 2 and Experiment 3. Both experiments are modelled after
plausible deployment scenarios. However, Experiment 2 assumes a deployment scenario
where the circuit designs available in training are characteristically very similar to those
which will be encountered in real world deployment. Experiment 3 does not make this
assumption, its results could therefore be considered more general. For an experimenter
who has a strong idea of the circuit designs to be encountered in deployment, Experiment
2 would appear more realistic. While Experiment 3 would appear more realistic if the
experimenter were unsure. However, this is only a relevant consideration if Experiment 2
and Experiment 3 yield dissimilar results. If these results are dissimilar, then it indicates
that the assumptions we are able to make about a real world deployment scenario should be
considered when designing the structure of atomic data groups for offline experimentation.

4.3 Binary Classification Results

We report model accuracy but our main classification metric is the Matthews correlation
coefficient (MCC) as our datasets have more negative samples (unroutable circuits) than
positive ones (routable circuits) and accuracy can be misleading; Chicco and Jurman (2020).

Table 1: Effect of Data Split Organization in Classification. Higher is better.
Fold Data Train Test
Index Split Type Acc MCC Acc MCC
0 Non-Atomic 99% 0.98 99% 0.98
0 Atomic 99% 0.98 93% 0.82
0 Suite 99% 0.94 71% 0.12
1 Non-Atomic 99% 0.98 99% 0.98
1 Atomic 99% 0.99 66% 0.44
1 Suite 99% 0.93 49% 0.23
2 Non-Atomic 99% 0.98 99% 0.98
2 Atomic 99% 0.99 83% 0.67
2 Suite 99% 0.94 58% 0.18
3 Non-Atomic 99% 0.98 99% 0.98
3 Atomic 99% 0.99 94% 0.87
3 Suite 99% 0.94 25% 0.00
4 Non-Atomic 99% 0.98 99% 0.98
4 Atomic 99% 0.99 87% 0.73
4 Suite 99% 0.94 73% 0.40

Avg Non-Atomic 99% 0.98 99% 0.98
Avg Atomic 99% 0.99 85% 0.71
Avg Suite 99% 0.94 55% 0.19

Table 1 shows classification results from Experiments 1-3. Each row is a cross-validation
fold result for a given data split approach. The “Fold Index” column identifies cross-
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validation folds, with the “Avg” rows showing average values across all 5 folds. “Data Split
Type” indicates how the data were split: “Non-atomic” for Experiment 1, “Atomic” for
Experiment 2, and “Suite” for Experiment 3. “Train” and “Test” columns indicate results
from evaluation on the train and test sets respectively. “Acc” is accuracy.

The non-atomic classification results in Table 1 give the first impression that the model
is nearly perfect, with alarmingly constant accuracy at 99% and MCC at 0.98. The atomic
data evaluation tells a different story, showing average accuracy and MCC drops of 14%
and 0.28 respectively from training to testing. Atomic test results are lower because highly
correlated data points have been kept together in either the training or test set. While
this produces results that look inferior, it is a better reflection of reality as discussed in
Section 4.2. The “Suite” results are even more negative; the atomic data group results may
also overestimate model generalization. Here, average accuracy drops to 55% and the MCC
is at 0.19. Fold 3 of the “Suite” data is notably bad, achieving an MCC of 0.00, equivalent
to random guessing. While it is debatable which of the atomic and “Suite” results are
more representative of deployment, it is certain that the non-atomic results are optimistic.
Taking the atomic data as most realistic, a non-atomic evaluation overestimates the model’s
test MCC by 0.27 (38%). We note that our attempts at regularization by reducing model
capacity actually yield worse test set results, indicating that the models are well fit to the
data rather than overfit as might be inferred from these results in isolation.

4.4 Regression Results

We report the R2 coefficient of determination for regression as it is noted to be an effective
measure of model performance in Chicco et al. (2021), but we use mean absolute error
(MAE) as our primary metric because it is more interpretable in our work.

Table 2: Effect of Data Organization in Regression. Lower MAE/higher R2 is better.
Fold Data Train Test
Index Split Type MAE R2 MAE R2

0 Non-Atomic 56 0.79 57 0.78
0 Atomic 49 0.85 88 0.32
0 Suite 72 0.78 110 0.24
1 Non-Atomic 56 0.79 56 0.80
1 Atomic 55 0.80 77 0.62
1 Suite 72 0.79 91 0.41
2 Non-Atomic 56 0.80 56 0.79
2 Atomic 50 0.83 110 0.28
2 Suite 74 0.79 115 0.29
3 Non-Atomic 56 0.79 56 0.79
3 Atomic 57 0.80 78 -0.75
3 Suite 75 0.78 72 -0.48
4 Non-Atomic 56 0.79 56 0.79
4 Atomic 51 0.81 104 0.37
4 Suite 69 0.78 100 0.36

Avg Non-Atomic 56 0.79 56 0.79
Avg Atomic 52 0.82 91 0.17
Avg Suite 72 0.78 98 0.16
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Table 2 shows regression experimental results. The non-atomic results are not as strong
as in Table 1 but they seemingly indicate excellent generalization from training to testing
data. For this regression data, a typical label value is 500, so the MAE of 56 is fairly
strong and the R2 being around 0.79 is similarly good. A naive takeaway would be that
the regression task is harder than classification but generalization is near flawless in both
cases. This takeaway, of course, does not extend beyond the non-atomic results.

The atomic results in Table 2 show familiar trends, with both regression metrics degrad-
ing in the test data from the non-atomic case. The “Suite” results align with the atomic
results much more closely in regression than classification but they are still even further
degraded in the test data. Again taking the atomic results as most representative of de-
ployment, the non-atomic results underestimate the MAE by 35 (38%) in the test data.
It is clear that the choice of train-test split with regard to data atomicity is critical for
evaluating ML model generalization here and likely also in other real-world applications.

5 Prior Work

Other works have critiqued train-test split issues before us. These works have tackled model
selection problems arising from test set information leakage as we covered in Section 1 and
issues in effective splitting algorithm selection for generalization estimation among others;
van der Goot (2021); Birba (2020). There is further related research on data set splitting
in the presence of unlabeled data which is beyond our scope; Tan et al. (2021). There are
many other data split-related problems worth discussing, but our work is focused on the
atomic nature of data extraction apparent in some real-world scientific applications.

While we explicitly describe atomic data groups and structured data splitting, these
ideas have at least been implicit in the experimental designs of prior VLSI CAD research Xie
et al. (2018); Gunter and Wilton (2023); Shrestha et al. (2022); Esmaeilzadeh et al. (2022);
Tabrizi et al. (2018). Although using different language than us, more research exists
in other applied science domains which identifies the possibility of model generalization
overestimation hazards being contained in train-test splits; Salazar et al. (2022); Saeb et al.
(2017). We are not first to identify an example of the atomic data group phenomenon, our
contribution is identifying its generality and quantifying its potential impact.

6 Conclusion

In this paper, we have identified atomic data groups as a practical consideration for ML
practitioners working with real-world data in a supervised learning context. We have in-
vestigated and quantified the significance of atomic data groups in the context of machine
learning-driven early exit for VLSI CAD routing of FPGA digital circuit designs. For this
prediction task, our experiments conducted as part of this investigation show that a failure
to consider data atomicity in constructing train-test splits leads to overestimating a classi-
fier’s MCC and a regressor’s mean absolute error both by 38%. To avoid overestimating ML
models’ generalization capabilities, researchers in other domains should be aware of the exis-
tence of atomic data groups in their own work and should make necessary accommodations
in experimental design when relevant.
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Broader Impact Statement

This paper presents work whose goal is to advance the field of Machine Learning. There are
many potential societal consequences of our work, none which we feel must be specifically
highlighted here.

Reproducibility Statement

The data required to reproduce this paper’s results can be found at the corresponding
Zenodo repository available through the URL: https://zenodo.org/records/10638699?
token=eyJhbGciOiJIUzUxMiIsImlhdCI6MTcwNzQ3MDc0NywiZXhwIjoxNzA5NTEwMzk5fQ.e

yJpZCI6ImRhMjMwMWI5LTFhZjYtNDRkYS04MWUxLTU3NjRkOTEwYTE5YSIsImRhdGEiOnt9LCJ

yYW5kb20iOiI3OTAzY2NkOTY2OWZmMjA5NzEwNjU5OTMzZGJlMjVmZCJ9.ZU4V9UcCTlbSkaiI

QdEB0XOqeKSTt2BjxYf252ibG6mMRTEle7h5n8aGsEy0SZg0BnIRcMDmsRU2syXZGjDMmw. The
data are broken down by classification and regression then further divided by circuit design.
All machine learning work was done with Scikit-learn 1.0.1 as mentioned in Section 4.1.
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