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ABSTRACT

Understanding the alignment between large language models (LLMs) and human
brain activity can reveal computational principles underlying language process-
ing. We introduce a fine-grained input attribution method to identify the specific
words most important for brain-LLM alignment, and leverage it to study a con-
tentious research question about brain-LLM alignment: the relationship between
brain alignment (BA) and next-word prediction (NWP). Our findings reveal that
BA and NWP rely on largely distinct word subsets: NWP exhibits recency and pri-
macy biases with a focus on syntax, while BA prioritizes semantic and discourse-
level information with a more targeted recency effect. This work advances our
understanding of how LLMs relate to human language processing and highlights
differences in feature reliance between BA and NWP. Beyond this study, our attri-
bution method can be broadly applied to explore the cognitive relevance of model
predictions in diverse language processing tasks.

1 INTRODUCTION

An increasing number of studies investigate the similarities between pretrained large language mod-
els (LLMs) and the human brain, showing a significant alignment between brain activity patterns
and LLM activations when both are exposed to the same linguistic input Toneva & Wehbe (2019);
Schrimpf et al. (2021); Goldstein et al. (2022). According to previous work (Aw & Toneva, 2023;
Goldstein et al., 2024; Zhou et al., 2024), we define brain alignment (BA) as the performance of
brain encoding models that predict brain activity given LLM representations, typically measured as
the Pearson correlation between true and predicted activity. Understanding the reasons for this align-
ment has the potential to provide new insights into the computational principles of the human brain
and, in turn, suggest ways to improve current LLMs. Typical approaches for studying reasons for
brain-LLM alignment either perturb model representations (Toneva et al., 2022; Oota et al., 2023b;
2024), or the input itself (e.g. permuting the order of words in particular ways) Merlin & Toneva
(2024); Kauf et al. (2023). While informative, these methods can limit the ability to interpret how
alignment arises from the input natural stimulus.

In this work, we develop a more fine-grained approach for interpreting the reasons for brain-LLM
alignment: an end-to-end input attribution approach which estimates the importance of individual
words in the input of an LLM for its BA (illustrated in Figure 1)1. Specifically, we use gradient-
based attribution methods to identify the words that are important for a specific LLM to accurately
predict brain activity elicited by the same language input. Thanks to our framework, we can get
insights into what contextual information is relevant to achieve the measured BA: e.g., where are
important words placed in the input context? Does the LLM focus on recent words or words that are
further away in the past? Do important words for brain-LLM alignment mostly represent seman-
tic/syntactic/discourse features?

We further showcase how this input attribution approach can be applied to investigate a contentious
research question about brain-LLM alignment: the relationship between BA and next-word pre-
diction (NWP). Specifically, while some works have shown a strong relationship between the two
(Schrimpf et al., 2021; Goldstein et al., 2022), other works have demonstrated additional important
factors for the alignment of LLMs to the brain, such as syntactic information (Oota et al., 2023b) and

1Code available at (see supplemental - GitHub link available after double-blind review).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

specific semantic information (Merlin & Toneva, 2024). To investigate the relationship between BA
and NWP, we contrast the attributions for brain-LLM alignment with those obtained from the same
models during prediction of the next word for 5 open-source pretrained LLMs. Such comparison
highlights differences in what each task draws from the same representation extracted from a frozen
LLM. According to previous work (Merlin & Toneva, 2024), we demonstrate that BA relies on im-
portant input cues that are overlooked in NWP, such as specific semantic information. Additionally,
we provide further insights into how much information is used by each task (attribution spread), and
where it is placed in the context (recency/primacy biases).

Across LLMs, we find that BA and NWP rely on largely distinct subsets of input words. We show
that the attribution spread over context words is higher for NWP at early layers and for BA in
middle and late layers, suggesting that BA more strongly relies on higher-level, semantically-richer
representations. Additionally, while NWP consistently displays strong recency and primacy biases,
BA shows a more focused recency pattern. Further analyses reveal that NWP emphasizes syntactic
features, while BA draws more heavily on semantic and discourse-level information. Our main
contributions can be summarized as follows:

• We develop a novel end-to-end attribution approach for brain-LLM alignment to enable
fine-grained interpretability analyses.

• We find that transformers, state-space models (SSMs), and hybrid architectures behave
largely similarly in terms of BA.

• We present a case study of how our approach can be used to investigate a contentious
question in brain-LLM alignment: the relationship between BA and NWP.

• We show that BA and NWP rely on different input features and context integration patterns:
NWP shows recency and primacy biases and strongly relies on syntactic information, while
BA has a more pronounced recency bias and also attributes high importance to semantic
and discourse-level cues.

2 RELATED WORK

A growing body of research has investigated the alignment between brain activity during language
comprehension and LLM representations, showing shared structure across biological and compu-
tational language systems Wehbe et al. (2014b); Jain & Huth (2018a;b); Toneva & Wehbe (2019).
Goldstein et al. (2022) suggested that NWP is a major driver of this alignment, with higher predic-
tive performance correlating with stronger BA. However, more recent studies argue that predictive
accuracy does not fully explain brain–LLM similarity: NWP is mostly driven by local, word-level
cues, such as short-range syntactic dependencies (Oh & Schuler, 2023), while BA also depends
on a model’s ability to encode higher-order linguistic features such as syntax and semantics (Oota
et al., 2023b; Merlin & Toneva, 2024). Recent evidence further shows that BA and NWP correlate
strongly only early in training, then decouple as models acquire more abstract capabilities such as
reasoning and world knowledge (AlKhamissi et al., 2025). Our work is complementary: rather than
comparing raw alignment scores, we extend word-level attribution analysis to BA, thus enabling
direct comparison between the information that drives BA, NWP, or both.

Our work is also related to research on positional biases in LLMs. Prior attribution-based work
reported strong recency effects (i.e., high attributions on the most recent tokens) in transformers
and SSMs (Oh & Schuler, 2023; Wang et al., 2025), while primacy (i.e., high attribution on early-
position tokens) was found only through retrieval-based tasks (Liu et al., 2024; Morita, 2025). Using
a unified attribution framework, we show that both biases are present in NWP across architectures,
whereas BA exhibits a more pronounced but broader recency profile.

Attribution has also been applied to brain–LLM alignment, but with different aims: Russo et al.
(2022); Rahimi et al. (2025) used NWP attributions as the input features used to predict brain activity
with the goal of improving alignment scores (i.e. preditive performance). In contrast, we predict
brain activity using LLM layer embeddings and then explain this prediction using our end-to-end
attribution framework. By comparing attribution overlap, spread, positional patterns, and linguistic
feature composition between BA and NWP, our framework provides new insights into the nature
of brain–LLM alignment and reveals complementary representational demands of next-word versus
brain-activity prediction.
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Figure 1: Overview of the attribution pipeline for BA and NWP. The BA pipeline (pink) extracts
token embeddings for the input contexts through a pretrained LLM, aggregates them into TR-level
embeddings, that are passed to the brain prediction head. Attribution scores are computed with re-
spect to the mean squared error between predicted and recorded brain responses. The NWP pipeline
(green) uses the same input to predict the subsequent word via the model’s language modeling head,
with attribution scores computed based on the cross-entropy loss. In both cases, token-level attribu-
tions are aggregated to produce word-level importance scores, allowing for direct comparison of the
linguistic features driving each task.

3 METHODS

We develop an end-to-end attribution framework to identify the words in the input that are important
for the LLM to correctly predict brain activity. By comparing attribution scores obtained for BA and
NWP, we can then better understand how LLMs represent information relevant to brain-activity ver-
sus next-word prediction. In this section, we outline the data, models, and computational framework
used to investigate the differences between BA and NWP through input attribution.

3.1 BRAIN DATA

We use a publicly available fMRI dataset (Wehbe et al., 2014a) containing brain recordings of 8
subjects reading chapter 9 of Harry Potter and the Sorcerer’s Stone (HP) (Rowling et al., 1998).
The chapter is composed of N = 5176 words, presented to the subjects one-by-one for a duration
of 0.5 seconds each. The fMRI recordings are sampled at a fixed repetition time (TR) of 2 sec-
onds. The chapter was divided into four runs of similar length, with a short break between runs.
We use this dataset primarily because it is one of the public fMRI dataset with the most data per
participant, making it well-suited for estimating BA and therefore widely used in prior studies on
brain–LLM (Toneva & Wehbe, 2019; Aw & Toneva, 2023; Merlin & Toneva, 2024). However, to
test the generalizability of our findings, we perform experiments on an additional dataset, the Moth
Radio Hour (MRH) (Deniz et al., 2019), and report results in Appendix D. Beyond the analyses of
attribution spread and positional patters, the HP dataset also offers word-level annotations for high-
level linguistic features, spanning semantic, syntactic, and discourse categories. We leverage these
annotations to conduct a complementary analysis focused on the HP dataset, allowing us to examine
which types of linguistic content are prioritized by BA and NWP (see Section 4). We provide more
details about the MRH dataset and on the HP’s word-level annotations in Appendix A.1

3.2 LANGUAGE MODELS

We analyze five pretrained LLMs with 1 to 2B parameters, sourced from HuggingFace (Wolf et al.,
2019). This parameter scale offers a balance between computational feasibility and representa-
tional power, allowing us to conduct large-scale attribution analyses while preserving brain-relevant
linguistic capabilities. Our selection includes three transformers, one SSM, and one hybrid archi-
tecture. We include SSMs because they are explicitly designed for efficient long-context processing
(Gu et al., 2021), a property that may be especially relevant for modeling the extended temporal
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Table 1: LLMs used in our study, along with their most relevant characteristics.

Name Hidden size Context length # Layers Model family

Falcon3-1B Team (2024) 2048 4K 18 Transformer
Gemma-2B Mesnard et al. (2024) 2048 8K 18 Transformer
Llama3.2-1B Meta AI (2024) 2048 128K 16 Transformer
Mamba-1.4B Gu & Dao (2023) 2048 2K 48 SSM
Zamba2-1.2B Glorioso et al. (2024) 2048 4K 38 Hybrid

structure of natural language and aligning with brain dynamics. This architectural diversity enables
us to explore how attribution and BA differ not only across tasks and layers, but also across model
classes. Key architectural features are summarized in Table 1, and further details, including training
data specifications, are provided in Appendix A.2.

3.3 INPUT ATTRIBUTION

To interpret which input words most influence BA and NWP, we compute input attributions us-
ing gradient-based methods implemented via the Captum library (Kokhlikyan et al., 2020). These
methods are model-agnostic, efficient, and well-suited for large-scale comparisons across models
and layers. In contrast to perturbation-based techniques, gradient-based approaches are significantly
faster and more broadly applicable, as they do not rely on model-specific backward rules, such
as those required by LRP (Montavon et al., 2019). Among gradient-based methods, we primarily
use Gradient × Input (GXI) (Shrikumar et al., 2016), due to its favorable balance between com-
putational efficiency and interpretability. To validate the robustness of our results, we additionally
apply Integrated Gradients (IG) (Sundararajan et al., 2017) to two representative models, obtaining
qualitatively similar results to GXI. While IG provides a more theoretically grounded estimate by
integrating gradients along a path from a baseline to the actual input, it is significantly more com-
putationally intensive and therefore not feasible for large-scale analyses. Formal definitions and
implementation details for both GXI and IG are provided in Appendix A.3.

3.3.1 END-TO-END INPUT ATTRIBUTION FOR BRAIN ALIGNMENT

Our goal is to compute input attributions that identify which words in the input context are most im-
portant for predicting brain activity. To this end, we develop a gradient-based attribution framework
that integrates (1) contextual word representations from a language model, (2) a trained brain encod-
ing model, and (3) a differentiable projection layer that enables gradient flow from brain predictions
back to the input. This framework allows us to assign word-level importance scores with respect to
the model’s ability to align with neural data.

Brain activity prediction. We begin by extracting contextual embeddings from a pretrained LLM.
For each word w in the text, we construct a context of L = 640 words with w as the final word.
These contexts are fed into a pretrained language model, and for each layer l of model m, we build
TR-level embeddings. Finally, to account for the hemodynamic delay, we concatenate the previous
four TR embeddings to form the final input Xm

l of shape (K, 4H), with K and H being the number
of time points (TRs) and the hidden dimension of layer l, respectively. We provide more details on
how to obtain TR-level embeddings, together with illustrations, in Appendix A.4.

We then pass the inputs Xm
l into a trained brain encoding model, which is a ridge-regularized

linear regressor f : Xm
l → yji that maps the LLM-derived input Xm

l to the voxel2 activity yji .
Following prior work, we use 4-fold cross-validation for HP, and 11-fold cross-validation (with
each fold corresponding to one story) for MRH, and select the regularization strength via nested
cross-validation (Jain & Huth, 2018b; Toneva & Wehbe, 2019; Schrimpf et al., 2021; Oota et al.,
2023a).

2A voxel (volumetric pixel) represents a small 3D unit of brain tissue captured in an fMRI scan, recording
a time series of blood-oxygen-level-dependent signals during the reading task.

4
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Attribution approach. To make the encoding weights usable in an attribution setting, we decom-
pose the learned weight matrix of shape (4H,Vi), with Vi being the number of voxels recorded for
subject i, into four matrices of shape (H,Vi), one per TR. Each of these matrices is used to initialize
a linear projection layer g that maps the LLM representation at a given TR to voxel activity.

For each TR, we extract the input contexts corresponding to the words shown in that time window.
We process each context with the LLM and average the token embeddings of the final word to obtain
word-level embeddings. These are then averaged to form a TR-level embedding of shape (H, ). The
resulting representation is passed through the linear projection layer g to produce predicted voxel
activity ŷji across all voxels. We compute the mean squared error (MSE) between the predicted and
true voxel activity:

MSE =
1

Vi

Vi∑
j=1

(yji − ŷji )
2

We then apply the attribution method with respect to this loss to compute token-level importance
scores for each input word, as shown in Figure 1. To obtain word-level attributions, we sum the
token-level scores corresponding to each word, as is standard practice in the literature (Dürlich et al.,
2025). This aggregation is particularly appropriate for IG, as it preserves the completeness property
of the method (Sundararajan et al., 2017) (i.e., the sum of the attribution scores for an input sequence
should be equal to the difference in model prediction for the real input sequence and the baseline).
Since each input word may appear in multiple overlapping contexts across the 4 concatenated TRs,
we sum all its associated attribution values to obtain a final word-level score per TR.

3.3.2 END-TO-END INPUT ATTRIBUTION FOR NEXT-WORD PREDICTION

To compare input attributions for BA with those derived from NWP, we ensure both prediction
tasks use equivalent input information. For each TR, we construct an extended context composed
of all words from the four input contexts of each of the four concatenated TRs used in the BA task.
We use teacher forcing, a standard technique where, at each time step, the model is provided with
the ground-truth input tokens to predict the next token. In our case, we use the extended input
context (containing all words from the contexts of all the concatenated TRs) to predict the word that
immediately follows it. Since most words are tokenized into multiple sub-word units, we predict
each token of the target word and compute the average cross-entropy loss across them. This scalar
loss serves as the objective for attribution. This approach ensures that words composed of multiple
tokens are treated fairly and that attribution reflects the full predictive burden of the model. We then
compute token-level attributions using gradient-based methods and sum them to obtain word-level
attribution scores.

3.4 EVALUATION METRICS

To compare the attributions obtained for BA and NWP, we employ two complementary evaluation
metrics: intersection over union (IoU) and center of mass (CoM). The IoU Jaccard (1908) measures
the degree of overlap between the sets of words prioritized by the two tasks. Because attribution
scores are continuous, we define “important words” by selecting the smallest subset of words whose
cumulative attribution reaches a given threshold t. Let W t

brain and W t
NWP denote these sets of most

important words for BA and NWP, respectively. The IoU is then defined as:

IoU t =
|W t

brain ∩W t
NWP |

|W t
brain ∪W t

NWP |
We compute IoU scores for t = 1, 2, 3, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 98% to assess how
the overlap changes as larger subsets of words are considered. CoM, instead, captures where in the
input context important words tend to occur (earlier vs. later positions). Formally, given a sequence
of n input words with corresponding attribution scores a1, . . . , an, the CoM is defined as:

CoM =

∑n
i=1 i · ai∑n
i=1 ai

where i denotes the position of the i-th word in the input context, and ai is its corresponding attri-
bution score. A higher CoM indicates that the task places more importance on words closer to the
end of the input context, while a lower CoM reflects a focus on earlier words.

5
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Figure 2: Intersection over Union (IoU) between BA and NWP as a function of the top-t% attribution
threshold for the HP dataset. We report the average IoU across contexts, layers, subjects, and models,
with gray shapes indicating per-model IoUs. The gray line represents a random baseline. The
overlap between important words for the two tasks is very low for t ≤ 10%, and then grows linearly
as the threshold is increased, but it is always above chance.

4 RESULTS

To investigate the relationship between BA and NWP, we perform attribution analyses for both
prediction tasks to identify the most influential input words. We first analyze the overlap (IoU)
between words that are important for NWP and BA, respectively. We then examine which words are
uniquely or jointly important across tasks, and their linguistic types (semantic, syntactic, discourse).
Finally, we analyze positional patterns of high-attributed words, together with CoM values. To
perform these analyses, we compute BA using LLM representations at every layer of each model,
and then compute attributions at three representative layer depths (early, middle, late) by selecting
the layer with highest BA at each depth. We provide more details on layer selection in Appendix B.
As a sanity check to ensure that attribution scores highlight words important for the task at hand, we
probe their functional relevance by masking top-attributed words. We find that even removing only
the top 1% of words virtually abolishes predictive power (see Appendix C). Having established that
attribution scores capture meaningful signal, we present results at increasing levels of granularity.

Low overlap between top-attributed words for BA and NWP. After computing attributions for
BA and NWP, for each context and model, we rank all words by their attribution scores and select the
smallest subset that covers a cumulative attribution threshold of t%. We then compute the overlap
(i.e., IoU) between the top-attributed sets for BA and NWP, for different thresholds t%. Figure 2
shows the results for all individual models, as well as their average, on the HP dataset. As a random
baseline, for each TR and threshold t, we drew 100 pairs of random word sets matching the sizes of
the BA-and NWP-top-t% sets, and averaged their IoUs. The baseline confirms that chance overlap
is essentially zero at stringent thresholds (t < 10%); our observed IoU of ≈ 0.16 at this range
therefore cannot be explained by random coincidence. Even as t grows, empirical IoUs remain
consistently 1.5–2× above chance (up to t = 80%), indicating systematic, though limited, overlap
between tasks. At low thresholds (t ≤ 10%), the overlap is minimal (IoU ≈ 0.1− 0.2), suggesting
that the two tasks rely on distinct subsets of important words. As t increases, IoU gradually rises,
eventually exceeding 0.8 at t = 98%. This pattern indicates that while both tasks ultimately draw on
broad context, their top attribution targets diverge significantly. All the observations we made hold
on the MRH dataset (see Appendix D.1).

BA and NWP have opposing trends of attribution spread. To show differences in how attribu-
tion spreads across context words for BA and NWP, Figure 3 reports the number of unique words
needed to cumulatively reach increasing attribution thresholds t on the HP dataset, along with the
corresponding area under the curve (AUC). The results reveal a task-dependent shift in attribution
spread across layers. At early layers, NWP requires significantly more unique words than BA to
reach a given t, consistent with its reliance on highly local cues, such as collocational associations
and lexical repetition (Oh & Schuler, 2023). These local, word-level cues are already captured at
early model layers (Mischler et al., 2024). In contrast, at middle and late layers, BA exhibits higher
attribution spread, suggesting that it integrates higher-order linguistic structures, such as semantic
and discourse-level information, that emerge later in the model (Merlin & Toneva, 2024; Mischler
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(a) Early layer.
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(b) Middle layer.
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(c) Late layer.

Figure 3: Number of unique important words, averaged across models and contexts, that are needed
to cumulatively reach increasing attribution thresholds across three representative layers on the HP
dataset. Error bars represent the standard error across contexts. Each plot compares BA and NWP,
with the area under the curve (AUC) quantifying the total attribution spread. Asterisks denote sig-
nificant differences (p < 0.001), assessed via a two-sided paired t-test, with Benjamini-Hochberg
correction (Benjamini & Hochberg, 1995).
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Figure 4: Distribution of top-attributed words across linguistic feature categories (semantic, dis-
course, syntactic) for BA-only, NWP-only, and for both. Results are averaged across layers, sub-
jects, and models, with standard errors across models. We show results for top 10%, 60%, and 80%
of attribution scores. At lower thresholds, NWP prioritizes syntactic features, while BA emphasizes
semantic and discourse-level content. As the threshold increases, the overlap between tasks grows,
but BA consistently favors meaning-oriented features.

et al., 2024). This shift is also reflected in the AUC trends: the AUC for BA increases steadily from
early to late layers, while the AUC for NWP decreases, highlighting that BA draws on increasingly
distributed contextual evidence as representations deepen. These findings, which also hold for the
MRH dataset (see Appendix D.2), suggest that brain-aligned signals become more distributed and
semantically rich at higher levels of processing, beyond what is required for surface-level prediction.

NWP relies heavily on syntax, while BA also draws on semantics and discourse. To better
understand the types of linguistic information driving BA and NWP, we analyzed the distribution
of top-attributed words across three story-level features in the HP dataset: semantic, discourse, and
syntactic features. Figure 4 presents the percentage of words in each category that are uniquely or
jointly important for BA and NWP, evaluated at three attribution thresholds (t = 10%, 60%, 80%).
For each context, the percentage for category x is computed as the number of features in x found
in top-attributed words, divided by the total number of features in x. Words with multiple features
contribute multiple counts, and computations are done independently per category. Figure 4 reports
averages across models, layers, subjects, and contexts, with error bars denoting the standard error
across models. A value of 100% means that all features of category x lie in top-attributed words on
average. Across all thresholds, NWP shows a clear bias toward syntactic features, consistent with
prior findings (Oh & Schuler, 2023). In contrast, BA exhibits a more balanced distribution: while
syntactic cues remain important, as also shown by (Oota et al., 2023b), a substantial proportion of its
attribution falls on semantic and discourse-level features. These findings suggest that fully trained
LLMs prioritize different features for NWP and BA, in accordance with (AlKhamissi et al., 2025).
While NWP relies more on syntax, it still captures semantic cues: at t = 60%, it marks ≈ 20% of
feature words as important (≈ 7% uniquely, ≈ 13% jointly), compared to ≈ 33% for BA. Although
lower, this is still substantial given that BA spreads importance across more words. Appendix E.1
shows the results hold with IG, confirming they are not an artifact of the attribution method.
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Figure 5: Distribution of top-60% attributed words by distance from the most recent word in the
context for two representative models. For each model, we plot the proportion of important words
located at each distance bin, comparing BA and NWP. NWP attributions peak at the beginning and
end of contexts (primacy and recency), whereas BA peaks are broader and less edge-focused. The
dashed lines represent the CoM values, which are shifted toward higher distances for Llama3.2-1B.

Fine-grained attribution reveals positional biases and model-specific integration strategies.
Our word-level attribution enables a detailed analysis of how models prioritize contextual infor-
mation across different positions in the input sequence. Figure 5 reports the distribution of words
included in the top-60% attribution set as a function of their distance from the most recent word
(0 = latest, 736 = farthest, with 736 corresponding to the maximum extended context length after
concatenating the 4 TRs to account for the BOLD delay). Dotted lines represent the CoM values.
We show results for Llama3.2-1B and Mamba-1.4B, and report full model-wise and per-subject re-
sults on the HP dataset in Appendix F. Llama3.2-1B is the most brain-aligned model among the
tested ones (see Appendix G) and exhibits a unique attribution pattern, while Mamba-1.4B reflects
the typical trends seen in other models (Gemma-2B, Falcon3-1B, Zamba2-1.2B).

Across all models, NWP consistently shows a sharp bimodal distribution: a pronounced peak at the
end of the context (low distance from most recent word) and a secondary peak at the beginning of the
context (high distance from most recent word). These findings confirm the presence of recency and
primacy biases in transformer-based models (Oh & Schuler, 2023; Liu et al., 2024) and SSMs (Wang
et al., 2025; Morita, 2025), which might be due to: (1) architectural elements, such as positional
encodings and attention, may favor the edges of the context (Su et al., 2024; Wu et al., 2025), or (2)
biases in the training data, shaped by human communication patterns (Itzhak et al., 2024; Raimondi
& Gabbrielli, 2025). We provide the first word-level comparison of primacy across both NWP
and BA: results show that primacy bias is stronger in NWP attributions than in BA attributions,
suggesting that the brain can modulate reliance on early context more flexibly, likely guided by the
specific contextual content. Interestingly, BA displays a more pronounced recency bias than NWP
in 4 out of 5 models, with a broader peak at low distances. This stronger recency focus is reflected
in the CoM analysis as, for most models, BA’s CoM is slightly closer to the most recent word than
that of NWP. However, the exact magnitude of this shift varies with the attribution threshold and
model architecture, indicating differences in how each system integrates context. For t = 10%,
CoM values for BA, NWP, and their intersection are much closer to the most recent word, indicating
a dominance of the recency bias over the primacy bias for both tasks (see plots in Appendix F.1).

Llama3.2-1B deviates from these described trends by exhibiting an oscillatory attribution pattern,
with pronounced peaks at non-contiguous distances. To confirm that this unique pattern does not
depend on the attribution method, in Appendix E.2 we provide results for Llama3.2-1B and Gemma-
2B obtained using IG, which replicate the same positional patterns. However, additional experiments
suggest that the oscillatory behavior of Llama3.2-1B is not an invariant property of the architecture.
First, Qwen2-1.5B, which shares several key architectural features with Llama3.2-1B (RoPE, GQA,
FlashAttention2, and quantization type), does not display oscillatory attributions (see Appendix H).
Second, when replicating the positional pattern analysis on the HP dataset with a shorter context
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length (80 words) the oscillations for Llama3.2-1B disappear, yielding a smoother recency profile
(see Appendix I). Finally, experiments on the MRH dataset in Appendix D.3 also show no oscillatory
behavior for Llama3.2-1B, instead producing the more conventional bimodal distribution. Taken
together, these findings indicate that the oscillatory pattern may be stimulus- and context-dependent,
rather than a direct consequence of Llama3.2-1B’s architecture.

5 DISCUSSION

Our work introduces a tool for fine-grained analysis of BA and applies it to the study of the relation-
ship between BA and NWP. Using gradient-based word-level attributions, we show that the words
important for predicting brain activity and the next word, respectively, differ substantially. This low
overlap supports prior findings that brain-LLM alignment stems from deeper, semantically mean-
ingful representations, rather than only predictive processing Merlin & Toneva (2024). We further
demonstrate that BA has higher attribution spread compared to NWP at middle and late layers, while
the opposite holds at early layers. This may due to the fact that NWP relies on highly localized sig-
nals, such as collocational associations and syntactic dependencies, that are better captured by early
layers compared to higher-level semantic information Mischler et al. (2024). We confirmed this
hypothesis through our feature-based analysis, which shows that while both tasks attend to syntactic
information, according to Oota et al. (2023b); Oh & Schuler (2023), BA more strongly emphasizes
semantic and discourse-level content. Finally, our positional attribution analysis highlights task-
specific distributions: NWP exhibits recency and primacy biases across architectures, while BA
shows a more pronounced and broad recency bias.

Limitations. One limitation of our approach lies in the reliance on gradient-based attribution
methods, which may be sensitive to local nonlinearities and model smoothness. We mitigate this
issue by validating consistency across models with diverse architectures, and applying multiple at-
tribution methods to confirm outlier patterns. Another limitation is that the discourse feature an-
notations used in our analysis on the HP dataset are relatively coarse and limited to predefined
categories. Still, they provide a useful first approximation for characterizing broad functional dif-
ferences between tasks. Lastly, we perform attributions using frozen models, without optimizing
them for BA. Consequently, our findings reflect the models’ inductive biases, rather than an optimal
solution, but this allows us to interpret how these systems process language out of the box.

Future work. Future work should apply our framework to larger and more diverse models (e.g.,
trained with instruction-following objectives), or models that have been specifically fine-tuned for
BA (i.e., brain-tuned (Moussa et al., 2025)), enabling direct comparison between native and opti-
mized representations. Additionally, if applied to alignment trajectories during training, our pipeline
would allow to analyze the evolution of the relationship between NWP and BA (AlKhamissi et al.,
2025). Finally, linking attribution dynamics to behavioral or cognitive measures, such as compre-
hension or memory recall scores, may provide a richer understanding of how LLMs approximate
human-like language processing.

6 CONCLUSION

We introduce the first end-to-end attribution framework for brain-LLM alignment, enabling fine-
grained analysis of the reasons for this alignment. As a case study, we use our method to investigate
a contentious question in the literature: the relationship between BA and NWP. Our results show
that while NWP provides a strong basis for alignment, it does not fully capture the linguistic signals
relevant to predict brain activity. BA depends on a broader set of contextual cues and places greater
weight on semantic and discourse-level information, reflecting more distributed and integrative pro-
cessing. By uncovering differences in attribution spread, positional biases, and linguistic feature
reliance across architectures, our approach also provides insights into how BA may emerge. These
insights open new directions for interpreting brain-aligned LLMs and refining their objectives to bet-
ter match human cognition. Ultimately, our work demonstrates the value of attribution in bridging
artificial and biological language representations.
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REPRODUCIBILITY STATEMENT

In this paper, we fully describe our attribution framework for brain–LLM alignment and how to
evaluate it. (1) Section 3 details the datasets, preprocessing steps, model families, encoding mod-
els, and all hyper-parameters required to reproduce brain alignment (BA) and next-word prediction
(NWP) attribution analyses. (2) Sections 4 and 5, together with Appendices A, B, and C, provide
complete descriptions of the evaluation pipelines, masking experiments, and metrics used in our
study, as well as additional analyses on alternative datasets and attribution methods. (3) Appendix J
reports all details on compute time and resources. (4) We will release open-source code, including
data preprocessing scripts, attribution implementations, and evaluation procedures, upon acceptance
of the paper.
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Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Xinyi Wu, Yifei Wang, Stefanie Jegelka, and Ali Jadbabaie. On the emergence of position bias
in transformers. In Forty-second International Conference on Machine Learning, 2025. URL
https://openreview.net/forum?id=YufVk7I6Ii.

Yuchen Zhou, Emmy Liu, Graham Neubig, Michael Tarr, and Leila Wehbe. Divergences between
language models and human brains. Advances in neural information processing systems, 37:
137999–138031, 2024.

A METHODS

A.1 FMRI DATASETS

Moth Radio Hour dataset. The Moth Radio Hour (MRH) dataset contains naturalistic language
stimuli in the form of 10 autobiographical stories (10–15 minutes each) from The Moth Radio Hour
podcast. An additional 10-minute story, presented twice to each participant, serves as a validation
set. Brain responses were recorded from 9 subjects while they either listened to or read the stories. In
this work, analyze only the reading condition. Adding listening would introduce a second modality
and additional variability that falls beyond our current scope. The words of each story were presented
one-by-one for a duration that is equal to the duration of that word in the spoken story, and the
functional image acquisition rate is TR = 2.0045s. Brain responses were collected in two 3-hour
scanning sessions, performed on different days.

Harry Potter’s word-level annotations. Each word in the HP dataset is annotated as one or more
high-level linguistic features belonging to 3 categories: semantic, syntactic, and discourse-level fea-
tures. Semantic annotations consist of a 100-dimensional vector per-word representing different
word meanings, computed for each word in the chapter using the co-occurrence patterns with other
words in a large text corpus. Syntactic labels consist of 45-dimensional vectors representing 28 POS
and 17 dependency relationships, obtained using an automated parser, while discourse-level annota-
tions consist of a 27-dimensional vector representing the following features: verbs (e.g., ’be’, ’hear’,
’know’), speech (’speak’), motion (’fly’, ’manipulate’, ’move’), emotion (e.g., ’annoyed’, ’dislike’,
’fear’, ’like’), and characters (e.g., ’draco’, ’filch’, ’harry’, ’ron’). Each word in the chapter may be
associated with zero, one, or multiple features within each category (semantic/syntactic/discourse).
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A.2 MODELS DESCRIPTION

In our experiments, we compare results obtained using five different models, belonging to three
model families: transformers, SSMs, and hybrid. We herein provide a detailed description of each
of the used models:

• Falcon3-1B Team (2024) is a decoder-only transformer with 18 layers and
2048-dimensional representations. It uses Grouped-Query Attention (GQA) (8Q/4KV
heads of size 256) and rotary positional encodings (RoPE) Su et al. (2024) with a very
large θ = 1000042, enabling sequences up to 4K tokens. The 1B model was distilled and
depth-pruned from a 3B teacher and trained on ≈ 80G tokens of multilingual web, code
and STEM text, with SwiGLU activations and RMSNorm layers.

• Gemma-2B Mesnard et al. (2024) is an 18-layer, 2048-hidden-size decoder-only trans-
former. It employs multi-query attention (MQA) (8Q/1KV heads of size 256) and standard
RoPE (θ=10000) for contexts of up to 8K tokens. The 2B checkpoint is distilled from a
9B teacher and pretrained on a ≈ 3T -token filtered web+code mix. It leverages GeLU
activations and RMSNorm layers.

• Llama3.2-1B Meta AI (2024) consists of 16 transformer blocks with hidden size 2048.
It uses GQA (32Q/8KV heads), RoPE scaled to handle 128K-token windows, and
SwiGLU activations. Pretraining covered up to 9T tokens of multilingual/coding text, with
logits-distillation from Llama3.1-8B and -70B.

• Mamba-1.4B Gu & Dao (2023) is a pure selective state-space model, using no
self-attention. It stacks 48 SSM blocks with embedding size 2048, giving linear train-
ing cost and constant-time generation. Benchmarks show accurate extrapolation beyond
1M tokens. The public 1.4B checkpoint was trained on ≈ 1T tokens of English/Russian
web data.

• zamba2-1.2B Glorioso et al. (2024) is a 38-layer hybrid model combining SSM and atten-
tion: a Mamba2 Gu & Dao (2023) backbone interleaves with six weight-shared attention
blocks. Similarly to all the other models we consider, the hidden size is 2048. Attention
layers use RoPE and low-rank adapters (LoRA) Hu et al. (2022) on both the shared atten-
tion and shared MLPs for per-depth specialization. The model supports 4K-token contexts
and was trained on 3T tokens of Zyda-2 web text and code, then annealed on 100B curated
tokens.

A.3 GRADIENT-BASED ATTRIBUTION METHODS

We employ two widely used gradient-based attribution methods to compute input importance scores:
Gradient × Input and Integrated Gradients. Both methods quantify the contribution of each input
token to a model’s output by analyzing how sensitive the output is to changes in the input. These
methods are implemented using the Captum library Kokhlikyan et al. (2020).

Gradient × Input (GXI). Gradient × Input Shrikumar et al. (2016) is a simple yet effective attri-
bution method. For a given input x = (x1, . . . , xn) and model output F (x) (e.g., a scalar loss), GXI
assigns importance to input component xi as:

GXI(xi) =
∂F (x)

∂xi
· xi

The attribution score is the element-wise product of the input embedding and the gradient of the
output with respect to that input. This method captures both the sensitivity of the model’s output to
each input dimension and the magnitude of the input itself. GXI is computationally efficient and has
been shown to produce biologically meaningful attributions in recent brain alignment work Rahimi
et al. (2025).

Integrated Gradients (IG). Integrated Gradients Sundararajan et al. (2017) address the limita-
tions of standard gradients by accumulating gradients along a straight-line path from a baseline
input x′ to the actual input x. The attribution score for input component xi is defined as:

14
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IG(xi) = (xi − x′
i) ·

∫ 1

α=0

∂F (x′ + α(x− x′))

∂xi
dα

In practice, the integral is approximated using a Riemann sum with m interpolation steps:

IG(xi) ≈ (xi − x′
i) ·

1

m

m∑
k=1

∂F (x′ + k
m (x− x′))

∂xi

We use the zero embedding as the baseline x′ and set m = 20 in our experiments. IG is more
computationally expensive than GXI due to multiple forward and backward passes, but it provides
a more theoretically grounded attribution estimate.

We primarily use GXI due to its efficiency, and validate select findings using IG. In our experiments
with Llama3.2-1B, we observe that IG produces qualitatively similar attribution patterns to GXI,
supporting the robustness of our conclusions.

A.4 BRAIN ACTIVITY PREDICTION

LLM representations. We begin by extracting contextual embeddings from a pretrained LLM
(see Figure 6). For each word w in the text, we construct a context of L = 640 words with w as the
final word. These contexts are fed into a pretrained language model, and for each layer l of model
m, we extract token embeddings of shape (N,T,H), where N is the number of input words, T the
number of tokens in each context, and H the hidden dimension. To obtain word-level embeddings,
we average the token embeddings corresponding to the final word in each context, yielding a repre-
sentation of shape (N,H). Subsequently, we downsample the word-level embeddings to match the
fMRI sampling rate by averaging the embeddings of all the words in each TR, obtaining TR-level
embeddings of shape (K,H). Finally, to account for the hemodynamic delay, we concatenate the
previous four TR embeddings to form the final input Xm

l of shape (K, 4H).

Input contexts
(N, L)

Input IDs
(N, T)

Token embeddings
(N, T, H)

Word
embeddings

(N, H)
TR embeddings

(K, H)
Delayed TR embeddings

(K, HxD)

Legend

Input text Tokenizer Pre-trained LLMAvg. over last word's tokens Avg. over TR's words Simulated delay

Figure 6: Extraction and processing of LLM representations. We associate a context of L words to
each word wi in the input text, with i ∈ [0, N − 1]. We then pass the tokenized contexts to an LLM
and extract token embeddings of shape (N,T,H), with T being the maximum number of tokens in
a context. To get word embeddings of shape (N,H), we average the embeddings of the tokens in
the last word in each context. Finally, we average the word embeddings of all the words in each TR,
obtaining TR embeddings of shape (K,H), and concatenate D previous TR embeddings to account
for the delay in the BOLD response, yielding a final representation of shape (K,H ×D).

Brain encoding model. We then pass the inputs Xm
l into a trained brain encoding model, which

maps contextual LLM features to voxel-level brain activity. A voxel (volumetric pixel) represents
a small 3D unit of brain tissue captured in an fMRI scan, recording a time series of blood-oxygen-
level-dependent signals during the reading task. For each subject, we represent brain activity as
a matrix Yi of shape (K,Vi), where K is the number of time points (TRs) and Vi is the number
of voxels recorded for subject i. Each encoding model is a ridge-regularized linear regressor f :

Xm
l → yji that maps the LLM-derived input Xm

l to the voxel activity yji . Following prior work,
we use 4-fold cross-validation for HP, and 11-fold cross-validation (with each fold corresponding
to one story) for MRH, and select the regularization strength via nested cross-validation, following
prior work (Jain & Huth, 2018b; Toneva & Wehbe, 2019; Schrimpf et al., 2021; Oota et al., 2023a).
The full brain alignment pipeline is illustrated in Figure 7.
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Figure 7: Illustration of the full brain alignment pipeline.

Table 2: Indexes of the layers used for computing brain alignment attributions. For each model,
i ∈ [0, l − 1], with l being the number of layers.

Layer depth

Model Early Middle Late

Falcon3-1B 5 9 12
Gemma-2B 5 6 12
Llama3.2-1B 4 9 12
Mamba-1.4B 15 29 32
zamba2-1.2B 11 17 30

B LAYER SELECTION FOR ATTRIBUTION

To investigate how attribution behavior varies across network depth, we compute BA attributions at
three representative layers per model: one from early, one from middle, and one from late in the
architecture. Rather than selecting fixed indices, we identify the most informative layers for BA.
Specifically, for each model, we evaluate brain encoding performance at every layer using Pearson
correlation between predicted and recorded fMRI activity. We divide each model into three equal-
depth sections and select the layer within each section that achieves the highest average correlation
across voxels and subjects. Table 2 lists the selected layers for each model.

C FUNCTIONAL IMPACT OF MASKING TOP-ATTRIBUTED WORDS

To evaluate whether words with high attribution scores are functionally important for each task,
we performed targeted masking experiments on the HP dataset. Specifically, we replaced the top-
attributed words with random words from the same chapter and measured the resulting drop in
predictive performance. For NWP, we report changes in cross-entropy (CE) loss relative to the
baseline model performance. For BA, we quantify the decrease in Pearson’s r across language-
selective ROIs, averaged across models and subjects. Together, these analyses confirm that top-
attributed words indeed carry essential information for both tasks.

Next-word prediction. Masking the most attributed words leads to sharp increases in CE across
all models (Figure 8). Even masking only the top 1% of words more than doubles the loss, and
increases remain above 100% for larger thresholds. This consistent degradation demonstrates that
attribution scores capture words that are indispensable for predicting the next token, validating their
functional relevance to the NWP objective.

Brain alignment. For BA, performance collapses almost completely when only the top 1% of
attributed words are masked (Figure 9). Across all ROIs and models, correlations with brain activity
drop by nearly 100%, showing that the words flagged by attribution are critical for predicting neural
responses. Increasing the threshold beyond 1% does not further reduce performance substantially,
as alignment is already abolished by removing this minimal but highly informative subset of words.
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Figure 8: Relative increase in cross-entropy loss when masking the top-t% most attributed words
for each model. Masking even 1% of words leads to a substantial degradation in NWP performance,
highlighting the functional importance of top-attributed tokens.
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Figure 9: Mean percentage drop in Pearson’s r across language-selective ROIs after masking the top-
t% most attributed words. Results are averaged across models. Performance collapses almost com-
pletely after masking as little as 1% of top-attributed words, demonstrating that attribution scores
identify words critical for BA.

D RESULTS ON THE MOTH RADIO HOUR DATASET

D.1 IOU ANALYSIS

1 5 10 20 30 40 50 60 70 80 90 95 98
Top % attribution

0.0

0.2

0.4

0.6

0.8

1.0

In
te

rs
ec

tio
n 

ov
er

 U
ni

on
 (I

oU
)

Mean across models
Falcon3-1B
Gemma-2B
Llama3.2-1B
Mamba-1.4B
Zamba2-1.2B
Random baseline

Figure 10: Intersection over Union (IoU) between BA and NWP as a function of the top-t% attribu-
tion threshold for the MRH dataset. We report the average IoU across contexts, layers, subjects, and
models, with gray shapes indicating per-model IoUs. The gray line represents a random baseline.
The overlap between important words for the two tasks is very low for t ≤ 10%, and then grows
linearly as the threshold is increased.
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To investigate whether BA and NWP rely on similar words, we compute the IoU between their
top-attributed subsets across attribution thresholds. For the HP dataset (see Figure 2), we showed
that for low thresholds (t ≤ 10%), the overlap is minimal (IoU ≈ 0.1−0.2), indicating that the two
tasks depend on largely distinct subsets of words. As the threshold increases, the IoU steadily rises,
eventually exceeding 0.8 at t = 98%, consistent with both tasks drawing on broad context at larger
scales. The same qualitative trend holds on the MRH dataset (Figure 10): very low agreement at
small thresholds, followed by a gradual rise toward convergence. This replication strengthens our
conclusion that BA and NWP diverge most strongly on the small subset of words each considers
essential, while converging only when most of the context is included.

D.2 ATTRIBUTION SPREAD ANALYSIS
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(a) Early layer.
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(b) Middle layer.
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(c) Late layer.

Figure 11: Number of unique important words, averaged across models and contexts, that are needed
to cumulatively reach increasing attribution thresholds across three representative layers on the MRH
dataset. Error bars represent the standard error across contexts. Each plot compares brain alignment
(BA) and next-word prediction (NWP). The area under the curve (AUC) quantifies the total attribu-
tion spread. Asterisks denote significant differences (p < 0.001), assessed via a two-sided paired
t-test, with Benjamini-Hochberg correction (Benjamini & Hochberg, 1995).

To examine whether the differences in attribution spread generalize beyond the HP dataset, we
repeated the analysis on the MRH dataset. As before, we measure the number of unique words
required to cumulatively reach increasing attribution thresholds for BA and NWP, and conduct the
analysis at three representative depths, selecting in each case the layer with the highest BA. Results
shown in Figure 11 closely mirror those obtained on the HP dataset. At early layers, NWP requires
substantially more unique words than BA to reach a given threshold, consistent with its reliance on
highly local lexical cues. In contrast, at middle and late layers, BA exhibits a broader attribution
spread, indicating stronger integration of distributed semantic and discourse-level information. The
AUC trends replicate those on the HP dataset: BA spread increases steadily with depth, while NWP
spread decreases. These convergent results confirm that the opposing attribution spread dynamics
of BA and NWP are robust across datasets and stimulus domains.

D.3 POSITIONAL PATTERNS ANALYSIS

We repeated the positional attribution analysis on the MRH dataset. Figures 12–14 report the distri-
bution of top-attributed words at thresholds t = 10%, 60%, 80%, plotted by distance from the most
recent word in the context.
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The results broadly replicate the patterns observed in the HP dataset. For both models, NWP shows
a sharp recency bias, with a large fraction of attribution mass concentrated on the most recent words
(i.e. lower distances). This is especially pronounced at low thresholds (t = 10%), where almost
all importance is assigned to words at the lowest distances. In contrast, BA exhibits a smoother
and more distributed recency profile, with attribution spread over a broader set of nearby words.
As the attribution threshold increases, BA continues to allocate importance across a wider temporal
window, whereas NWP maintains its edge-focused profile.

Interestingly, Llama3.2-1B does not display the oscillatory attribution pattern for BA that we ob-
served in the HP dataset. Instead, its BA attributions show a more conventional recency distribution,
similar to Gemma-2B. This suggests that the oscillatory pattern may be stimulus-dependent, po-
tentially tied to the structural or lexical properties of the Harry Potter text rather than an invariant
architectural feature of the model.

Overall, these findings confirm that the positional biases of NWP and BA are robust across datasets,
while also revealing that certain model-specific patterns, such as Llama’s oscillatory behavior, do
not necessarily generalize across stimulus domains.
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Figure 12: Distribution of top-attributed words (top 10% attribution) by distance from the most
recent word. For each model, we plot the proportion of important words located at each distance
bin, comparing BA and NWP. Both BA and NWP show a strong recency bias, with top-attributed
words placed at very low distances from the most recent word.
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Figure 13: Distribution of top-attributed words (top 60% attribution) by distance from the most
recent word. For each model, we plot the proportion of important words located at each distance
bin, comparing BA and NWP. NWP shows a bimodal distribution, with sharp recency and primacy
peaks. BA, on the other hand, emphasizes more distributed words, showing a much broader recency
peak.
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Figure 14: Distribution of top-attributed words (top 80% attribution) by distance from the most
recent word. For each model, we plot the proportion of important words located at each distance
bin, comparing BA and NWP. NWP shows a bimodal distribution, with sharp recency and primacy
peaks. BA, on the other hand, emphasizes more distributed words, showing a much broader recency
peak.
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E ATTRIBUTION ANALYSES USING IG

To test the robustness of our results with respect to the attribution method, we also compute at-
tributions on the HP dataset using IG for Llama3.2-1B, the model displaying a unique oscillatory
attribution distribution, and Gemma-2B, which is representative of the behavior of all other models.

E.1 FEATURE-BASED ANALYSIS
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Figure 15: Distribution of top-attributed words across linguistic feature categories (semantic, dis-
course, syntactic) for brain-alignment-only, next-word-prediction-only, and for both. Results are
averaged across layers, subjects, and models, with standard errors across models. We show results
for top 10%, 60%, and 80% of attribution scores. At lower thresholds, NWP prioritizes syntactic
features, while brain alignment emphasizes semantic and discourse-level content. As the thresh-
old increases, the overlap between tasks grows, but brain alignment consistently favors meaning-
oriented features.

Figure 15 presents the percentage of words in each category that are important exclusively for
BA, exclusively for NWP, or shared by both, evaluated at three attribution thresholds (t =
10%, 60%, 80%). Consistent with prior findings Oh & Schuler (2023) and with GXI results, NWP
shows a clear bias toward syntactic features across all thresholds. In contrast, BA exhibits a more
balanced distribution: while syntactic cues remain important Oota et al. (2023b), a substantial pro-
portion of its attribution falls on semantic and discourse-level features. This trend also appears in the
intersection set (i.e., words important for both tasks), indicating that NWP partially relies on similar
types of words to BA.

E.2 POSITIONAL PATTERNS ANALYSIS

Figures 16 and 17 show the distance distribution of top-attributed words under IG for both BA
and NWP at two thresholds (10% and 60%) for Llama3.2-1B and Gemma-2B, respectively. IG
is computed using m = 20 interpolation steps along the path from the baseline to the input, as
described in Appendix A.3.

The observed patterns are consistent with those found using GXI. At both thresholds and for both
models, NWP shows a bimodal distribution, with strong recency and primacy bias. For Llama3.2-
1B, BA displays the same oscillatory and distributed profile we observed with GXI, particularly at
60%. This supports the conclusion that Llama3.2-1B integrates context in a structurally distinct
manner for brain prediction, and that this behavior is robust to the choice of attribution method. On
the contrary, Gemma-2B does not show any oscillatory behavior, and maintains a broader recency
peak and less pronounced primacy bias.

F FULL ATTRIBUTION DISTRIBUTION RESULTS

In this section, we provide attribution distribution results for all models, with plots showing the
position of top-attributed words relative to the most recent token in the input context. These analyses
allow us to assess how BA and NWP differ in terms of the contextual positions they prioritize, and
whether these patterns are consistent across architectures and attribution thresholds.
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Figure 16: Distribution of top-attributed words by distance from the most recent word in the context
for Llama3.2-1B, using Integrated Gradients. Results are shown for brain alignment, next-word
prediction, and their intersection at t = 10%, 60%.
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Figure 17: Distribution of top-attributed words by distance from the most recent word in the context
for Gemma-2B, using Integrated Gradients. Results are shown for brain alignment, next-word pre-
diction, and their intersection at t = 10%, 60%.

Figure 18 shows the proportion of top-attributed words (top 60% cumulative attribution) located at
each distance from the most recent word in the context for Falcon3-1B, Gemma-2B, and zamba2-
1.2B. The dashed lines in each plot represent the center of mass (CoM), computed by considering
the top-attributed words. Across models, NWP consistently shows a recency bias, with a sharp
peak at low-distance (recent) positions, and an even higher primacy bias, with most attribution mass
concentrated at high-distance words. Similarly, BA also shows a strong recency bias, although with
a much broader peak (i.e., high-attribution words are present at a higher number of recent positions).
In contrast, the primacy bias is much less pronounced. The strong primacy bias for NWP is also the
main reason for the higher associated CoM, as high-distance top-attributed words pull it further
away from the most recent word.

To evaluate the consistency of our findings across subjects, we plot the attribution distributions for
each of the 8 subjects for both Llama3.2-1B and Mamba-1.4B at the 60% attribution threshold. As
shown in Figure 19 and Figure 20, the overall trends observed at the group level are highly con-
sistent across subjects. In particular, NWP consistently shows a strong recency and primacy bias.
BA, instead, emphasizes a broader distribution over more recent tokens with minimal primacy bias
for Mamba-1.4 and the peculiar oscillatory pattern for Llama3.2-1B. The subject-specific curves ex-
hibit similar shapes and centers of mass, indicating low inter-subject variability and supporting the
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Figure 18: Distribution of top-attributed words (top 60% attribution) by distance from the most
recent word in the context. For each model, we plot the proportion of important words located at
each distance bin, comparing brain alignment (BA) and next-word prediction (NWP). NWP shows
a strong recency bias, while BA often emphasizes earlier or more distributed words.

robustness of the main effects. These results validate our choice to report mean attribution distribu-
tions across subjects in the main text and reinforce the interpretability of the observed differences
between BA and NWP.

F.1 ATTRIBUTION DISTRIBUTION FOR t = 10%

Figure 21 shows the same analysis at a lower attribution threshold of 10%. These plots focus on the
most influential words per context, offering a finer-grained view of attribution prioritization. While
NWP continues to show a sharp peak near the end of the context (strong recency), BA exhibits a less
sharply peaked but still recency-focused distribution in most models.

The CoM for both BA and NWP is generally closer to the recent words than in the 60% case,
indicating that when only the most highly attributed words are considered, BA and NWP become
more similar in their positional focus. Still, notable differences remain between Llama3.2-1B and
all other models, as the oscillatory distribution pattern for BA already emerges at t = 10%.
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Figure 19: Distribution of top-attributed words (top 60% cumulative attribution) by distance from
the most recent word in the context, shown separately for each of the 8 subjects for Llama3.2-1B.
Each plot compares brain alignment and next-word prediction. The overall shape and center of mass
of the attribution distributions are consistent across subjects, indicating low inter-subject variability.
This supports the robustness of the observed task-specific attribution differences.
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Figure 20: Distribution of top-attributed words (top 60% cumulative attribution) by distance from
the most recent word in the context, shown for each of the 8 subjects for Mamba-1.4B. Across
all subjects, next-word prediction shows a strong recency and primacy bias, while brain alignment
attribution is more concentrated around the recent context and more broadly distributed over recent
words. The similarity in curves across subjects confirms that these effects are consistent at the
individual level.
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(d) Mamba-1.4B.
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(e) zamba2-1.2B.

Figure 21: Distribution of top-attributed words (top 10% attribution) by distance from the most
recent word in the context. For each model, we plot the proportion of important words located at
each distance bin, comparing brain alignment (BA) and next-word prediction (NWP). NWP shows
a strong recency bias, while BA often emphasizes earlier or more distributed words.
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G QUANTITATIVE RESULTS FOR BRAIN ALIGNMENT
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(b) Paiwise significance heatmap.

Figure 22: Model-wise brain alignment performance. (a) Mean correlation between true and pre-
dicted brain activity across models. We report the mean across voxels, layers, and subjects, with
standard error across subjects. (b) Pairwise significance heatmap showing p-values from paired t-
tests comparing mean correlation scores between models.

Figure 22 presents quantitative BA scores for the five LLMs evaluated in this study: Falcon3-1B,
Gemma-2B, Llama3.2-1B, Mamba-1.4B, and zamba2-1.2B. BA is measured as the mean Pearson
correlation between predicted and observed fMRI activity, averaged across all voxels, layers, and
subjects.

Figure 22a shows a bar plot of the model-wise mean correlation scores, with standard error bars re-
flecting variability across subjects. Among the evaluated models, Llama3.2-1B achieves the highest
average BA, followed by zamba2-1.2B and Mamba-1.4B. Falcon3-1B and Gemma-2B exhibit lower
alignment scores, suggesting reduced ability to capture brain-relevant representations.

Figure 22b, instead, shows a pairwise significance heatmap, where each cell reports the p-value
of a two-sided paired t-test comparing voxel-wise correlations between two models across sub-
jects. Blue shading indicates statistically significant differences (p < 0.05), with darker shades
denoting stronger significance. Llama3.2-1B shows significantly higher alignment than both other
transformer-based models (Falcon3-1B and Gemma-2B), as well as low p-values in comparisons
with Mamba-1.4B and zamba2-1.2B, suggesting consistently stronger alignment overall. No signif-
icant differences are observed between Falcon3-1B, Gemma-2B, Mamba-1.4B, and zamba2-1.2B,
indicating comparable performance among these models within the margin of statistical uncertainty.

H POSITIONAL PATTERNS ANALYSIS ON QWEN2-1.5B

We analyze positional attribution patterns for Qwen2-1.5B, a transformer architecture that shares
several design features with Llama3.2-1B, including rotary position embeddings (RoPE), grouped-
query attention (GQA), FlashAttention2, and similar quantization strategies. Figures 23 shows the
distribution of top-attributed words at thresholds t = 10, 60, 80%, plotted as a function of distance
from the most recent word in the input context.

Across all thresholds, Qwen2-1.5B exhibits the canonical task-dependent positional profiles ob-
served in other models. NWP consistently displays a sharp recency bias, with most attribution mass
concentrated on the last few tokens, and a secondary primacy peak becoming more apparent at higher
thresholds. BA, by contrast, shows a broader recency distribution, with important words spread more
evenly across the recent context window. Importantly, unlike Llama3.2-1B, Qwen2-1.5B does not
display oscillatory attribution patterns for BA. Instead, its attribution profile remains smooth across
thresholds. This suggests that oscillatory behavior is not a necessary consequence of shared archi-
tectural components (RoPE, GQA, or FlashAttention2), but rather may emerge from interactions
between architecture and specific input statistics, as confirmed by the absence of oscillations when
considering shorter contexts or on the MRH dataset. Together, these results reinforce the robustness
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(b) t = 60%.
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Figure 23: Distribution of top-attributed words by distance from the most recent word in the context
for Qwen2-1.5B, shown at thresholds t = 10, 60, 80%. Each plot compares brain alignment (BA)
and NWP. Across thresholds, NWP displays a sharp recency bias and a secondary primacy peak,
while BA shows a broader recency distribution. Unlike Llama3.2-1B on the Harry Potter dataset,
Qwen2-1.5B does not exhibit oscillatory attribution patterns, instead maintaining smooth and mono-
tonic profiles.

of the general trends: NWP dominated by sharp recency and primacy, and BA characterized by
smoother and broader recency.

I ATTRIBUTION ANALYSIS WITH SHORTER CONTEXTS

To assess robustness to context length, we repeated our full pipeline using 80-word contexts (an 8×
reduction from the 640-word setting used in all other experiments).

Attribution profiles are maintained. Figures 24–26 report attribution distributions for Llama3.2-
1B and Gemma-2B obtained using the shorter contexts. The overall shape of the attribution distri-
butions remains consistent with the longer-context results: BA maintains a smoother profile with a
broad recency peak at ∼12 words, while NWP preserves its sharp bimodal structure: a strong spike
on the most recent 5 words and a second, smaller primacy bump at the farthest positions (75–80
words), underscoring its heavy reliance on sentence-edges (Liu et al., 2024). This confirms these
positional biases are not an artifact of long contexts.

Important words overlap between short and long contexts. We compared attributions across
long and short contexts to understand whether the same words are identified as important in both
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(a) Llama3.2-1B.
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(b) Gemma-2B.

Figure 24: Distribution of top-attributed words (top 10% attribution) by distance from the most re-
cent word in the context, using 80-word contexts. For each model, we plot the proportion of impor-
tant words located at each distance bin, comparing brain alignment (BA) and next-word prediction
(NWP). NWP shows a strong recency bias, while BA often emphasizes earlier or more distributed
words.

0 20 40 60 800.0

0.5

1.0

32
.3 Brain alignment

0 20 40 60 800.0

0.5

1.0

Pr
op

or
tio

n 
of

 im
po

rta
nt

 w
or

ds

31
.9 Next-word prediction

0 20 40 60 80
Distance from most recent word

0.0

0.5

1.0

34
.0 Intersection

(a) Llama3.2-1B.
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Figure 25: Distribution of top-attributed words (top 60% attribution) by distance from the most re-
cent word in the context, using 80-word contexts. For each model, we plot the proportion of impor-
tant words located at each distance bin, comparing brain alignment (BA) and next-word prediction
(NWP). NWP shows a strong recency bias, while BA often emphasizes earlier or more distributed
words.

settings, by computing Spearman’s ρ for rank agreement (restricted to the last 80 words of the 640-
word contexts) and IoU of the top-mass words (shown in Figure 27. NWP proves highly robust, with
strong rank correlation (ρ ≈ 0.8) and substantial overlap of important words (IoU > 0.5 across all
thresholds). In contrast, BA shows only moderate rank agreement (ρ ≈ 0.44) and very limited
overlap (IoU < 0.1 for t < 80%), except at very large thresholds.

These findings highlight that NWP relies on a narrow, stable set of recent words, while BA distributes
attribution more flexibly across context, leading to lower robustness in top-word overlap across
window sizes.
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Figure 26: Distribution of top-attributed words (top 80% attribution) by distance from the most re-
cent word in the context, using 80-word contexts. For each model, we plot the proportion of impor-
tant words located at each distance bin, comparing brain alignment (BA) and next-word prediction
(NWP). NWP shows a strong recency bias, while BA often emphasizes earlier or more distributed
words.
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Figure 27: IoU of top-attributed words between long (640-word) and short (80-word) contexts as a
function of attribution mass threshold t. NWP shows high robustness across window sizes, while
BA exhibits low overlap, reflecting its more distributed and flexible use of context.

J EXPERIMENTS COMPUTE RESOURCES

All experiments were conducted on a single NVIDIA H100 Tensor Core GPU (80GB, Hopper ar-
chitecture). Tables 3–5 summarize the time and memory requirements for each task and model. To
estimate total compute usage, we sum the runtimes of all major experimental stages across the five
evaluated models:

• LLM representation extraction: ≈10 minutes × 5 models × 2 datasets = ≈2 hours total
• Brain alignment training: ≈219 hours total
• GXI attributions: ≈1501 hours total
• IG attribution: ≈329 hours total
• NWP attribution: ≈3.6 hours total

While attribution is computationally intensive, we mitigate resource demands by limiting our study
to 1–2B parameter models and using a single H100 GPU per task. These design choices balance
tractability with representational fidelity and enable detailed interpretability analyses within practi-
cal runtime constraints.
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Table 3: Per-task compute time and peak memory usage across models on the Harry Potter dataset.

Task Model Time (dd:hh:mm:ss) Peak Memory (GB)

Brain alignment training

Llama3.2-1B 00:04:08:16 3.16
Gemma-2B 00:04:47:19 3.08
Falcon3-1B 00:05:42:46 3.39
zamba2-1.2B 00:10:24:00 3.66
Mamba-1.4B 00:12:50:23 3.86
Qwen2-1.5B 00:05:46:31 3.46

GXI attribution

Llama3.2-1B 01:14:00:00 2.53
Gemma-2B 08:16:03:12 2.45
Falcon3-1B 07:10:08:01 2.53
zamba2-1.2B 13:03:12:00 2.63
Mamba-1.4B 11:12:00:00 2.53
Qwen2-1.5B 00:15:36:34 2.47

IG attribution Llama3.2-1B 13:13:43:01 2.53
Gemma-2B 00:03:34:39 2.51

NWP attribution

Llama3.2-1B 00:00:22:58 2.18
Gemma-2B 00:00:08:26 2.16
Falcon3-1B 00:00:06:07 2.17
zamba2-1.2B 00:00:14:20 2.26
Mamba-1.4B 00:00:07:38 2.18
Qwen2-1.5B 00:00:05:47 2.22

Table 4: Per-task compute time and peak memory usage across models on the Moth Radio Hour
dataset.

Task Model Time (dd:hh:mm:ss) Peak Memory (GB)

Brain alignment training Llama3.2-1B 00:08:44:08 34.49
Gemma-2B 00:10:19:46 36.05
Falcon3-1B 01:11:56:51 40.98
zamba2-1.2B 02:00:45:34 36.24
Mamba-1.4B 02:11:36:54 34.78

GXI attribution Llama3.2-1B 00:12:58:21 28.22
Gemma-2B 00:14:52:05 28.07
Falcon3-1B 03:28:07:06 28.15
zamba2-1.2B 08:15:36:44 27.85
Mamba-1.4B 04:19:02:20 27.63

NWP attribution Llama3.2-1B 00:00:08:00 26.87
Gemma-2B 00:00:10:55 26.86
Falcon3-1B 00:00:18:50 26.36
zamba2-1.2B 00:00:59:26 26.46
Mamba-1.4B 00:00:21:07 26.38

K LLM USAGE STATEMENT

We used LLMs solely for grammar checking and minor wording improvements. All research ideas,
analyses, experiments, and results are entirely our own.
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Table 5: Per-task compute time and peak memory usage across models for experiments with reduced
context length.

Task Model Time (dd:hh:mm:ss) Peak Memory (GB)

Brain alignment training Llama3.2-1B 00:05:40:33 3.01
Gemma-2B 00:06:13:33 2.99

GXI attribution Llama3.2-1B 00:09:57:10 2.59
Gemma-2B 00:09:52:24 2.57

NWP attribution Llama3.2-1B 00:00:22:58 2.18
Gemma-2B 00:00:08:26 2.16
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