FINE-GRAINED ANALYSIS OF BRAIN-LLM ALIGN-MENT THROUGH INPUT ATTRIBUTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Understanding the alignment between large language models (LLMs) and human brain activity can reveal computational principles underlying language processing. We introduce a fine-grained input attribution method to identify the specific words most important for brain-LLM alignment, and leverage it to study a contentious research question about brain-LLM alignment: the relationship between brain alignment (BA) and next-word prediction (NWP). Our findings reveal that BA and NWP rely on largely distinct word subsets: NWP exhibits recency and primacy biases with a focus on syntax, while BA prioritizes semantic and discourse-level information with a more targeted recency effect. This work advances our understanding of how LLMs relate to human language processing and highlights differences in feature reliance between BA and NWP. Beyond this study, our attribution method can be broadly applied to explore the cognitive relevance of model predictions in diverse language processing tasks.

1 Introduction

An increasing number of studies investigate the similarities between pretrained large language models (LLMs) and the human brain, showing a significant alignment between brain activity patterns and LLM activations when both are exposed to the same linguistic input Toneva & Wehbe (2019); Schrimpf et al. (2021); Goldstein et al. (2022). According to previous work (Aw & Toneva, 2023; Goldstein et al., 2024; Zhou et al., 2024), we define brain alignment (BA) as the performance of brain encoding models that predict brain activity given LLM representations, typically measured as the Pearson correlation between true and predicted activity. Understanding the reasons for this alignment has the potential to provide new insights into the computational principles of the human brain and, in turn, suggest ways to improve current LLMs. Typical approaches for studying reasons for brain-LLM alignment either perturb model representations (Toneva et al., 2022; Oota et al., 2023b; 2024), or the input itself (e.g. permuting the order of words in particular ways) Merlin & Toneva (2024); Kauf et al. (2023). While informative, these methods can limit the ability to interpret how alignment arises from the input natural stimulus.

In this work, we develop a more fine-grained approach for interpreting the reasons for brain-LLM alignment: an end-to-end input attribution approach which estimates the importance of individual words in the input of an LLM for its BA (illustrated in Figure 1)¹. Specifically, we use gradient-based attribution methods to identify the words that are important for a specific LLM to accurately predict brain activity elicited by the same language input. Thanks to our framework, we can get insights into what contextual information is relevant to achieve the measured BA: e.g., where are important words placed in the input context? Does the LLM focus on recent words or words that are further away in the past? Do important words for brain-LLM alignment mostly represent semantic/syntactic/discourse features?

We further showcase how this input attribution approach can be applied to investigate a contentious research question about brain-LLM alignment: the relationship between BA and next-word prediction (NWP). Specifically, while some works have shown a strong relationship between the two (Schrimpf et al., 2021; Goldstein et al., 2022), other works have demonstrated additional important factors for the alignment of LLMs to the brain, such as syntactic information (Oota et al., 2023b) and

¹Code available at (see supplemental - GitHub link available after double-blind review).

specific semantic information (Merlin & Toneva, 2024). To investigate the relationship between BA and NWP, we contrast the attributions for brain-LLM alignment with those obtained from the same models during prediction of the next word for 5 open-source pretrained LLMs. Such comparison highlights differences in what each task draws from the same representation extracted from a frozen LLM. According to previous work (Merlin & Toneva, 2024), we demonstrate that BA relies on important input cues that are overlooked in NWP, such as specific semantic information. Additionally, we provide further insights into how much information is used by each task (attribution spread), and where it is placed in the context (recency/primacy biases).

Across LLMs, we find that BA and NWP rely on largely distinct subsets of input words. We show that the attribution spread over context words is higher for NWP at early layers and for BA in middle and late layers, suggesting that BA more strongly relies on higher-level, semantically-richer representations. Additionally, while NWP consistently displays strong recency and primacy biases, BA shows a more focused recency pattern. Further analyses reveal that NWP emphasizes syntactic features, while BA draws more heavily on semantic and discourse-level information. Our main contributions can be summarized as follows:

- We develop a novel end-to-end attribution approach for brain-LLM alignment to enable fine-grained interpretability analyses.
- We find that transformers, state-space models (SSMs), and hybrid architectures behave largely similarly in terms of BA.
- We present a case study of how our approach can be used to investigate a contentious question in brain-LLM alignment: the relationship between BA and NWP.
- We show that BA and NWP rely on different input features and context integration patterns: NWP shows recency and primacy biases and strongly relies on syntactic information, while BA has a more pronounced recency bias and also attributes high importance to semantic and discourse-level cues.

2 RELATED WORK

A growing body of research has investigated the alignment between brain activity during language comprehension and LLM representations, showing shared structure across biological and computational language systems Wehbe et al. (2014b); Jain & Huth (2018a;b); Toneva & Wehbe (2019). Goldstein et al. (2022) suggested that NWP is a major driver of this alignment, with higher predictive performance correlating with stronger BA. However, more recent studies argue that predictive accuracy does not fully explain brain–LLM similarity: NWP is mostly driven by local, word-level cues, such as short-range syntactic dependencies (Oh & Schuler, 2023), while BA also depends on a model's ability to encode higher-order linguistic features such as syntax and semantics (Oota et al., 2023b; Merlin & Toneva, 2024). Recent evidence further shows that BA and NWP correlate strongly only early in training, then decouple as models acquire more abstract capabilities such as reasoning and world knowledge (AlKhamissi et al., 2025). Our work is complementary: rather than comparing raw alignment scores, we extend word-level attribution analysis to BA, thus enabling direct comparison between the information that drives BA, NWP, or both.

Our work is also related to research on positional biases in LLMs. Prior attribution-based work reported strong recency effects (i.e., high attributions on the most recent tokens) in transformers and SSMs (Oh & Schuler, 2023; Wang et al., 2025), while primacy (i.e., high attribution on early-position tokens) was found only through retrieval-based tasks (Liu et al., 2024; Morita, 2025). Using a unified attribution framework, we show that both biases are present in NWP across architectures, whereas BA exhibits a more pronounced but broader recency profile.

Attribution has also been applied to brain–LLM alignment, but with different aims: Russo et al. (2022); Rahimi et al. (2025) used NWP attributions as the input features used to predict brain activity with the goal of improving alignment scores (i.e. preditive performance). In contrast, we predict brain activity using LLM layer embeddings and then explain this prediction using our end-to-end attribution framework. By comparing attribution overlap, spread, positional patterns, and linguistic feature composition between BA and NWP, our framework provides new insights into the nature of brain–LLM alignment and reveals complementary representational demands of next-word versus brain-activity prediction.

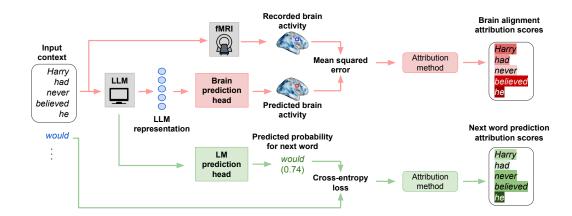


Figure 1: Overview of the attribution pipeline for BA and NWP. The BA pipeline (pink) extracts token embeddings for the input contexts through a pretrained LLM, aggregates them into TR-level embeddings, that are passed to the brain prediction head. Attribution scores are computed with respect to the mean squared error between predicted and recorded brain responses. The NWP pipeline (green) uses the same input to predict the subsequent word via the model's language modeling head, with attribution scores computed based on the cross-entropy loss. In both cases, token-level attributions are aggregated to produce word-level importance scores, allowing for direct comparison of the linguistic features driving each task.

3 METHODS

We develop an end-to-end attribution framework to identify the words in the input that are important for the LLM to correctly predict brain activity. By comparing attribution scores obtained for BA and NWP, we can then better understand how LLMs represent information relevant to brain-activity versus next-word prediction. In this section, we outline the data, models, and computational framework used to investigate the differences between BA and NWP through input attribution.

3.1 Brain data

We use a publicly available fMRI dataset (Wehbe et al., 2014a) containing brain recordings of 8 subjects reading chapter 9 of Harry Potter and the Sorcerer's Stone (HP) (Rowling et al., 1998). The chapter is composed of N=5176 words, presented to the subjects one-by-one for a duration of 0.5 seconds each. The fMRI recordings are sampled at a fixed repetition time (TR) of 2 seconds. The chapter was divided into four runs of similar length, with a short break between runs. We use this dataset primarily because it is one of the public fMRI dataset with the most data per participant, making it well-suited for estimating BA and therefore widely used in prior studies on brain–LLM (Toneva & Wehbe, 2019; Aw & Toneva, 2023; Merlin & Toneva, 2024). However, to test the generalizability of our findings, we perform experiments on an additional dataset, the Moth Radio Hour (MRH) (Deniz et al., 2019), and report results in Appendix D. Beyond the analyses of attribution spread and positional patters, the HP dataset also offers word-level annotations for high-level linguistic features, spanning semantic, syntactic, and discourse categories. We leverage these annotations to conduct a complementary analysis focused on the HP dataset, allowing us to examine which types of linguistic content are prioritized by BA and NWP (see Section 4). We provide more details about the MRH dataset and on the HP's word-level annotations in Appendix A.1

3.2 LANGUAGE MODELS

We analyze five pretrained LLMs with 1 to 2B parameters, sourced from HuggingFace (Wolf et al., 2019). This parameter scale offers a balance between computational feasibility and representational power, allowing us to conduct large-scale attribution analyses while preserving brain-relevant linguistic capabilities. Our selection includes three transformers, one SSM, and one hybrid architecture. We include SSMs because they are explicitly designed for efficient long-context processing (Gu et al., 2021), a property that may be especially relevant for modeling the extended temporal

Table 1: LLMs used in our study, along with their most relevant characteristics.

Name	Hidden size	Context length	# Layers	Model family
Falcon3-1B Team (2024)	2048	4K	18	Transformer
Gemma-2B Mesnard et al. (2024)	2048	8K	18	Transformer
Llama3.2-1B Meta AI (2024)	2048	128K	16	Transformer
Mamba-1.4B Gu & Dao (2023)	2048	2K	48	SSM
Zamba2-1.2B Glorioso et al. (2024)	2048	4K	38	Hybrid

structure of natural language and aligning with brain dynamics. This architectural diversity enables us to explore how attribution and BA differ not only across tasks and layers, but also across model classes. Key architectural features are summarized in Table 1, and further details, including training data specifications, are provided in Appendix A.2.

3.3 INPUT ATTRIBUTION

To interpret which input words most influence BA and NWP, we compute input attributions using gradient-based methods implemented via the Captum library (Kokhlikyan et al., 2020). These methods are model-agnostic, efficient, and well-suited for large-scale comparisons across models and layers. In contrast to perturbation-based techniques, gradient-based approaches are significantly faster and more broadly applicable, as they do not rely on model-specific backward rules, such as those required by LRP (Montavon et al., 2019). Among gradient-based methods, we primarily use Gradient × Input (GXI) (Shrikumar et al., 2016), due to its favorable balance between computational efficiency and interpretability. To validate the robustness of our results, we additionally apply Integrated Gradients (IG) (Sundararajan et al., 2017) to two representative models, obtaining qualitatively similar results to GXI. While IG provides a more theoretically grounded estimate by integrating gradients along a path from a baseline to the actual input, it is significantly more computationally intensive and therefore not feasible for large-scale analyses. Formal definitions and implementation details for both GXI and IG are provided in Appendix A.3.

3.3.1 END-TO-END INPUT ATTRIBUTION FOR BRAIN ALIGNMENT

Our goal is to compute input attributions that identify which words in the input context are most important for predicting brain activity. To this end, we develop a gradient-based attribution framework that integrates (1) contextual word representations from a language model, (2) a trained brain encoding model, and (3) a differentiable projection layer that enables gradient flow from brain predictions back to the input. This framework allows us to assign word-level importance scores with respect to the model's ability to align with neural data.

Brain activity prediction. We begin by extracting contextual embeddings from a pretrained LLM. For each word w in the text, we construct a context of L=640 words with w as the final word. These contexts are fed into a pretrained language model, and for each layer l of model m, we build TR-level embeddings. Finally, to account for the hemodynamic delay, we concatenate the previous four TR embeddings to form the final input X_l^m of shape (K,4H), with K and H being the number of time points (TRs) and the hidden dimension of layer l, respectively. We provide more details on how to obtain TR-level embeddings, together with illustrations, in Appendix A.4.

We then pass the inputs X_l^m into a trained brain encoding model, which is a ridge-regularized linear regressor $f: X_l^m \to y_i^j$ that maps the LLM-derived input X_l^m to the voxel² activity y_i^j . Following prior work, we use 4-fold cross-validation for HP, and 11-fold cross-validation (with each fold corresponding to one story) for MRH, and select the regularization strength via nested cross-validation (Jain & Huth, 2018b; Toneva & Wehbe, 2019; Schrimpf et al., 2021; Oota et al., 2023a).

²A voxel (volumetric pixel) represents a small 3D unit of brain tissue captured in an fMRI scan, recording a time series of blood-oxygen-level-dependent signals during the reading task.

Attribution approach. To make the encoding weights usable in an attribution setting, we decompose the learned weight matrix of shape $(4H, V_i)$, with V_i being the number of voxels recorded for subject i, into four matrices of shape (H, V_i) , one per TR. Each of these matrices is used to initialize a linear projection layer g that maps the LLM representation at a given TR to voxel activity.

For each TR, we extract the input contexts corresponding to the words shown in that time window. We process each context with the LLM and average the token embeddings of the final word to obtain word-level embeddings. These are then averaged to form a TR-level embedding of shape (H,). The resulting representation is passed through the linear projection layer g to produce predicted voxel activity \hat{y}_i^j across all voxels. We compute the mean squared error (MSE) between the predicted and true voxel activity:

$$MSE = \frac{1}{V_i} \sum_{j=1}^{V_i} (y_i^j - \hat{y}_i^j)^2$$

We then apply the attribution method with respect to this loss to compute token-level importance scores for each input word, as shown in Figure 1. To obtain word-level attributions, we sum the token-level scores corresponding to each word, as is standard practice in the literature (Dürlich et al., 2025). This aggregation is particularly appropriate for IG, as it preserves the completeness property of the method (Sundararajan et al., 2017) (i.e., the sum of the attribution scores for an input sequence should be equal to the difference in model prediction for the real input sequence and the baseline). Since each input word may appear in multiple overlapping contexts across the 4 concatenated TRs, we sum all its associated attribution values to obtain a final word-level score per TR.

3.3.2 END-TO-END INPUT ATTRIBUTION FOR NEXT-WORD PREDICTION

To compare input attributions for BA with those derived from NWP, we ensure both prediction tasks use equivalent input information. For each TR, we construct an extended context composed of all words from the four input contexts of each of the four concatenated TRs used in the BA task. We use teacher forcing, a standard technique where, at each time step, the model is provided with the ground-truth input tokens to predict the next token. In our case, we use the extended input context (containing all words from the contexts of all the concatenated TRs) to predict the word that immediately follows it. Since most words are tokenized into multiple sub-word units, we predict each token of the target word and compute the average cross-entropy loss across them. This scalar loss serves as the objective for attribution. This approach ensures that words composed of multiple tokens are treated fairly and that attribution reflects the full predictive burden of the model. We then compute token-level attributions using gradient-based methods and sum them to obtain word-level attribution scores.

3.4 EVALUATION METRICS

To compare the attributions obtained for BA and NWP, we employ two complementary evaluation metrics: intersection over union (IoU) and center of mass (CoM). The IoU Jaccard (1908) measures the degree of overlap between the sets of words prioritized by the two tasks. Because attribution scores are continuous, we define "important words" by selecting the smallest subset of words whose cumulative attribution reaches a given threshold t. Let W_{brain}^t and W_{NWP}^t denote these sets of most important words for BA and NWP, respectively. The IoU is then defined as:

$$IoU^{t} = \frac{|W_{brain}^{t} \cap W_{NWP}^{t}|}{|W_{brain}^{t} \cup W_{NWP}^{t}|}$$

We compute IoU scores for t=1,2,3,5,10,20,30,40,50,60,70,80,90,95,98% to assess how the overlap changes as larger subsets of words are considered. CoM, instead, captures where in the input context important words tend to occur (earlier vs. later positions). Formally, given a sequence of n input words with corresponding attribution scores a_1, \ldots, a_n , the CoM is defined as:

$$CoM = \frac{\sum_{i=1}^{n} i \cdot a_i}{\sum_{i=1}^{n} a_i}$$

where i denotes the position of the i-th word in the input context, and a_i is its corresponding attribution score. A higher CoM indicates that the task places more importance on words closer to the end of the input context, while a lower CoM reflects a focus on earlier words.

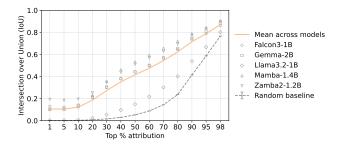


Figure 2: Intersection over Union (IoU) between BA and NWP as a function of the top-t% attribution threshold for the HP dataset. We report the average IoU across contexts, layers, subjects, and models, with gray shapes indicating per-model IoUs. The gray line represents a random baseline. The overlap between important words for the two tasks is very low for $t \leq 10\%$, and then grows linearly as the threshold is increased, but it is always above chance.

4 RESULTS

To investigate the relationship between BA and NWP, we perform attribution analyses for both prediction tasks to identify the most influential input words. We first analyze the overlap (IoU) between words that are important for NWP and BA, respectively. We then examine which words are uniquely or jointly important across tasks, and their linguistic types (semantic, syntactic, discourse). Finally, we analyze positional patterns of high-attributed words, together with CoM values. To perform these analyses, we compute BA using LLM representations at every layer of each model, and then compute attributions at three representative layer depths (early, middle, late) by selecting the layer with highest BA at each depth. We provide more details on layer selection in Appendix B. As a sanity check to ensure that attribution scores highlight words important for the task at hand, we probe their functional relevance by masking top-attributed words. We find that even removing only the top 1% of words virtually abolishes predictive power (see Appendix C). Having established that attribution scores capture meaningful signal, we present results at increasing levels of granularity.

Low overlap between top-attributed words for BA and NWP. After computing attributions for BA and NWP, for each context and model, we rank all words by their attribution scores and select the smallest subset that covers a cumulative attribution threshold of t%. We then compute the overlap (i.e., IoU) between the top-attributed sets for BA and NWP, for different thresholds t%. Figure 2 shows the results for all individual models, as well as their average, on the HP dataset. As a random baseline, for each TR and threshold t, we drew 100 pairs of random word sets matching the sizes of the BA-and NWP-top-t% sets, and averaged their IoUs. The baseline confirms that chance overlap is essentially zero at stringent thresholds (t < 10%); our observed IoU of ≈ 0.16 at this range therefore cannot be explained by random coincidence. Even as t grows, empirical IoUs remain consistently $1.5-2\times$ above chance (up to t=80%), indicating systematic, though limited, overlap between tasks. At low thresholds ($t \le 10\%$), the overlap is minimal (IoU $\approx 0.1-0.2$), suggesting that the two tasks rely on distinct subsets of important words. As t increases, IoU gradually rises, eventually exceeding 0.8 at t=98%. This pattern indicates that while both tasks ultimately draw on broad context, their top attribution targets diverge significantly. All the observations we made hold on the MRH dataset (see Appendix D.1).

BA and NWP have opposing trends of attribution spread. To show differences in how attribution spreads across context words for BA and NWP, Figure 3 reports the number of unique words needed to cumulatively reach increasing attribution thresholds t on the HP dataset, along with the corresponding area under the curve (AUC). The results reveal a task-dependent shift in attribution spread across layers. At early layers, NWP requires significantly more unique words than BA to reach a given t, consistent with its reliance on highly local cues, such as collocational associations and lexical repetition (Oh & Schuler, 2023). These local, word-level cues are already captured at early model layers (Mischler et al., 2024). In contrast, at middle and late layers, BA exhibits higher attribution spread, suggesting that it integrates higher-order linguistic structures, such as semantic and discourse-level information, that emerge later in the model (Merlin & Toneva, 2024; Mischler

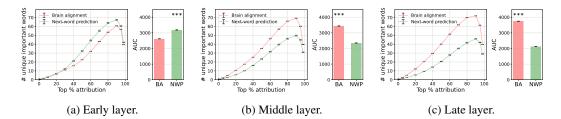


Figure 3: Number of unique important words, averaged across models and contexts, that are needed to cumulatively reach increasing attribution thresholds across three representative layers on the HP dataset. Error bars represent the standard error across contexts. Each plot compares BA and NWP, with the area under the curve (AUC) quantifying the total attribution spread. Asterisks denote significant differences (p < 0.001), assessed via a two-sided paired t-test, with Benjamini-Hochberg correction (Benjamini & Hochberg, 1995).

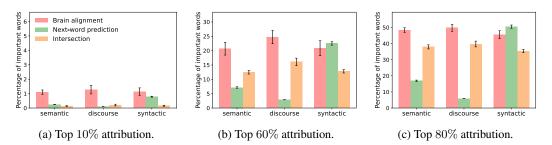


Figure 4: Distribution of top-attributed words across linguistic feature categories (semantic, discourse, syntactic) for BA-only, NWP-only, and for both. Results are averaged across layers, subjects, and models, with standard errors across models. We show results for top 10%, 60%, and 80% of attribution scores. At lower thresholds, NWP prioritizes syntactic features, while BA emphasizes semantic and discourse-level content. As the threshold increases, the overlap between tasks grows, but BA consistently favors meaning-oriented features.

et al., 2024). This shift is also reflected in the AUC trends: the AUC for BA increases steadily from early to late layers, while the AUC for NWP decreases, highlighting that BA draws on increasingly distributed contextual evidence as representations deepen. These findings, which also hold for the MRH dataset (see Appendix D.2), suggest that brain-aligned signals become more distributed and semantically rich at higher levels of processing, beyond what is required for surface-level prediction.

NWP relies heavily on syntax, while BA also draws on semantics and discourse. To better understand the types of linguistic information driving BA and NWP, we analyzed the distribution of top-attributed words across three story-level features in the HP dataset: semantic, discourse, and syntactic features. Figure 4 presents the percentage of words in each category that are uniquely or jointly important for BA and NWP, evaluated at three attribution thresholds (t = 10%, 60%, 80%). For each context, the percentage for category x is computed as the number of features in x found in top-attributed words, divided by the total number of features in x. Words with multiple features contribute multiple counts, and computations are done independently per category. Figure 4 reports averages across models, layers, subjects, and contexts, with error bars denoting the standard error across models. A value of 100% means that all features of category x lie in top-attributed words on average. Across all thresholds, NWP shows a clear bias toward syntactic features, consistent with prior findings (Oh & Schuler, 2023). In contrast, BA exhibits a more balanced distribution: while syntactic cues remain important, as also shown by (Oota et al., 2023b), a substantial proportion of its attribution falls on semantic and discourse-level features. These findings suggest that fully trained LLMs prioritize different features for NWP and BA, in accordance with (AlKhamissi et al., 2025). While NWP relies more on syntax, it still captures semantic cues: at t = 60%, it marks $\approx 20\%$ of feature words as important ($\approx 7\%$ uniquely, $\approx 13\%$ jointly), compared to $\approx 33\%$ for BA. Although lower, this is still substantial given that BA spreads importance across more words. Appendix E.1 shows the results hold with IG, confirming they are not an artifact of the attribution method.

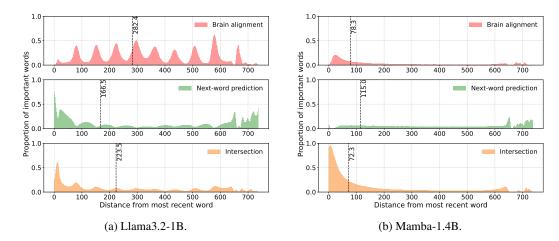


Figure 5: Distribution of top-60% attributed words by distance from the most recent word in the context for two representative models. For each model, we plot the proportion of important words located at each distance bin, comparing BA and NWP. NWP attributions peak at the beginning and end of contexts (primacy and recency), whereas BA peaks are broader and less edge-focused. The dashed lines represent the CoM values, which are shifted toward higher distances for Llama3.2-1B.

Fine-grained attribution reveals positional biases and model-specific integration strategies. Our word-level attribution enables a detailed analysis of how models prioritize contextual information across different positions in the input sequence. Figure 5 reports the distribution of words included in the top-60% attribution set as a function of their distance from the most recent word (0 = latest, 736 = farthest, with 736 corresponding to the maximum extended context length after concatenating the 4 TRs to account for the BOLD delay). Dotted lines represent the CoM values. We show results for Llama3.2-1B and Mamba-1.4B, and report full model-wise and per-subject results on the HP dataset in Appendix F. Llama3.2-1B is the most brain-aligned model among the tested ones (see Appendix G) and exhibits a unique attribution pattern, while Mamba-1.4B reflects

the typical trends seen in other models (Gemma-2B, Falcon3-1B, Zamba2-1.2B).

Across all models, NWP consistently shows a sharp bimodal distribution: a pronounced peak at the end of the context (low distance from most recent word) and a secondary peak at the beginning of the context (high distance from most recent word). These findings confirm the presence of recency and primacy biases in transformer-based models (Oh & Schuler, 2023; Liu et al., 2024) and SSMs (Wang et al., 2025; Morita, 2025), which might be due to: (1) architectural elements, such as positional encodings and attention, may favor the edges of the context (Su et al., 2024; Wu et al., 2025), or (2) biases in the training data, shaped by human communication patterns (Itzhak et al., 2024; Raimondi & Gabbrielli, 2025). We provide the first word-level comparison of primacy across both NWP and BA: results show that primacy bias is stronger in NWP attributions than in BA attributions, suggesting that the brain can modulate reliance on early context more flexibly, likely guided by the specific contextual content. Interestingly, BA displays a more pronounced recency bias than NWP in 4 out of 5 models, with a broader peak at low distances. This stronger recency focus is reflected in the CoM analysis as, for most models, BA's CoM is slightly closer to the most recent word than that of NWP. However, the exact magnitude of this shift varies with the attribution threshold and model architecture, indicating differences in how each system integrates context. For t = 10%, CoM values for BA, NWP, and their intersection are much closer to the most recent word, indicating a dominance of the recency bias over the primacy bias for both tasks (see plots in Appendix F.1).

Llama3.2-1B deviates from these described trends by exhibiting an oscillatory attribution pattern, with pronounced peaks at non-contiguous distances. To confirm that this unique pattern does not depend on the attribution method, in Appendix E.2 we provide results for Llama3.2-1B and Gemma-2B obtained using IG, which replicate the same positional patterns. However, additional experiments suggest that the oscillatory behavior of Llama3.2-1B is not an invariant property of the architecture. First, Qwen2-1.5B, which shares several key architectural features with Llama3.2-1B (RoPE, GQA, FlashAttention2, and quantization type), does not display oscillatory attributions (see Appendix H). Second, when replicating the positional pattern analysis on the HP dataset with a shorter context

length (80 words) the oscillations for Llama3.2-1B disappear, yielding a smoother recency profile (see Appendix I). Finally, experiments on the MRH dataset in Appendix D.3 also show no oscillatory behavior for Llama3.2-1B, instead producing the more conventional bimodal distribution. Taken together, these findings indicate that the oscillatory pattern may be stimulus- and context-dependent, rather than a direct consequence of Llama3.2-1B's architecture.

5 DISCUSSION

Our work introduces a tool for fine-grained analysis of BA and applies it to the study of the relationship between BA and NWP. Using gradient-based word-level attributions, we show that the words important for predicting brain activity and the next word, respectively, differ substantially. This low overlap supports prior findings that brain-LLM alignment stems from deeper, semantically meaningful representations, rather than only predictive processing Merlin & Toneva (2024). We further demonstrate that BA has higher attribution spread compared to NWP at middle and late layers, while the opposite holds at early layers. This may due to the fact that NWP relies on highly localized signals, such as collocational associations and syntactic dependencies, that are better captured by early layers compared to higher-level semantic information Mischler et al. (2024). We confirmed this hypothesis through our feature-based analysis, which shows that while both tasks attend to syntactic information, according to Oota et al. (2023b); Oh & Schuler (2023), BA more strongly emphasizes semantic and discourse-level content. Finally, our positional attribution analysis highlights task-specific distributions: NWP exhibits recency and primacy biases across architectures, while BA shows a more pronounced and broad recency bias.

Limitations. One limitation of our approach lies in the reliance on gradient-based attribution methods, which may be sensitive to local nonlinearities and model smoothness. We mitigate this issue by validating consistency across models with diverse architectures, and applying multiple attribution methods to confirm outlier patterns. Another limitation is that the discourse feature annotations used in our analysis on the HP dataset are relatively coarse and limited to predefined categories. Still, they provide a useful first approximation for characterizing broad functional differences between tasks. Lastly, we perform attributions using frozen models, without optimizing them for BA. Consequently, our findings reflect the models' inductive biases, rather than an optimal solution, but this allows us to interpret how these systems process language out of the box.

Future work. Future work should apply our framework to larger and more diverse models (e.g., trained with instruction-following objectives), or models that have been specifically fine-tuned for BA (i.e., brain-tuned (Moussa et al., 2025)), enabling direct comparison between native and optimized representations. Additionally, if applied to alignment trajectories during training, our pipeline would allow to analyze the evolution of the relationship between NWP and BA (AlKhamissi et al., 2025). Finally, linking attribution dynamics to behavioral or cognitive measures, such as comprehension or memory recall scores, may provide a richer understanding of how LLMs approximate human-like language processing.

6 CONCLUSION

We introduce the first end-to-end attribution framework for brain-LLM alignment, enabling fine-grained analysis of the reasons for this alignment. As a case study, we use our method to investigate a contentious question in the literature: the relationship between BA and NWP. Our results show that while NWP provides a strong basis for alignment, it does not fully capture the linguistic signals relevant to predict brain activity. BA depends on a broader set of contextual cues and places greater weight on semantic and discourse-level information, reflecting more distributed and integrative processing. By uncovering differences in attribution spread, positional biases, and linguistic feature reliance across architectures, our approach also provides insights into how BA may emerge. These insights open new directions for interpreting brain-aligned LLMs and refining their objectives to better match human cognition. Ultimately, our work demonstrates the value of attribution in bridging artificial and biological language representations.

REPRODUCIBILITY STATEMENT

In this paper, we fully describe our attribution framework for brain–LLM alignment and how to evaluate it. (1) Section 3 details the datasets, preprocessing steps, model families, encoding models, and all hyper-parameters required to reproduce brain alignment (BA) and next-word prediction (NWP) attribution analyses. (2) Sections 4 and 5, together with Appendices A, B, and C, provide complete descriptions of the evaluation pipelines, masking experiments, and metrics used in our study, as well as additional analyses on alternative datasets and attribution methods. (3) Appendix J reports all details on compute time and resources. (4) We will release open-source code, including data preprocessing scripts, attribution implementations, and evaluation procedures, upon acceptance of the paper.

REFERENCES

- Badr AlKhamissi, Greta Tuckute, Yingtian Tang, Taha Binhuraib, Antoine Bosselut, and Martin Schrimpf. From language to cognition: How llms outgrow the human language network. *arXiv* preprint arXiv:2503.01830, 2025.
- Khai Loong Aw and Mariya Toneva. Training language models to summarize narratives improves brain alignment. *ICLR*, 2023.
- Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical and powerful approach to multiple testing. *Journal of the Royal statistical society: series B (Methodological)*, 57(1):289–300, 1995.
- Fatma Deniz, Anwar O. Nunez-Elizalde, Alexander G. Huth, and Jack L. Gallant. The representation of semantic information across human cerebral cortex during listening versus reading is invariant to stimulus modality. *Journal of Neuroscience*, 39(39):7722–7736, 2019. ISSN 0270-6474. doi: 10.1523/JNEUROSCI.0675-19.2019. URL https://www.jneurosci.org/content/39/39/7722.
- Luise Dürlich, Erik Bergman, Maria Larsson, Hercules Dalianis, Seamus Doyle, Gabriel Westman, and Joakim Nivre. Explainability for NLP in pharmacovigilance: A study on adverse event report triage in Swedish. In Sophia Ananiadou, Dina Demner-Fushman, Deepak Gupta, and Paul Thompson (eds.), *Proceedings of the Second Workshop on Patient-Oriented Language Processing (CLAHealth)*, pp. 46–68, Albuquerque, New Mexico, May 2025. Association for Computational Linguistics. ISBN 979-8-89176-238-1. URL https://aclanthology.org/2025.cl4health-1.5/.
- Paolo Glorioso, Quentin Anthony, Yury Tokpanov, Anna Golubeva, Vasudev Shyam, James Whittington, Jonathan Pilault, and Beren Millidge. The zamba2 suite: Technical report, 2024. URL https://arxiv.org/abs/2411.15242.
- Ariel Goldstein, Zaid Zada, Eliav Buchnik, Mariano Schain, Amy Price, Bobbi Aubrey, Samuel A Nastase, Amir Feder, Dotan Emanuel, Alon Cohen, et al. Shared computational principles for language processing in humans and deep language models. *Nature neuroscience*, 25(3):369–380, 2022.
- Ariel Goldstein, Avigail Grinstein-Dabush, Mariano Schain, Haocheng Wang, Zhuoqiao Hong, Bobbi Aubrey, Samuel A Nastase, Zaid Zada, Eric Ham, Amir Feder, et al. Alignment of brain embeddings and artificial contextual embeddings in natural language points to common geometric patterns. *Nature communications*, 15(1):2768, 2024.
- Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv* preprint arXiv:2312.00752, 2023.
 - Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured state spaces. *arXiv preprint arXiv:2111.00396*, 2021.
 - Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

Itay Itzhak, Gabriel Stanovsky, Nir Rosenfeld, and Yonatan Belinkov. Instructed to bias: Instruction-tuned language models exhibit emergent cognitive bias. *Transactions of the Association for Computational Linguistics*, 12:771–785, 2024.

- Paul Jaccard. Nouvelles recherches sur la distribution florale. *Bull. Soc. Vaud. Sci. Nat.*, 44:223–270, 1908.
- Shailee Jain and Alexander Huth. Incorporating context into language encoding models for fmri. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 31. Curran Associates, Inc., 2018a.
- Shailee Jain and Alexander Huth. Incorporating context into language encoding models for fmri. *Advances in neural information processing systems*, 31, 2018b.
- Carina Kauf, Greta Tuckute, Roger Levy, Jacob Andreas, and Evelina Fedorenko. Lexical semantic content, not syntactic structure, is the main contributor to ann-brain similarity of fmri responses in the language network. *bioRxiv*, 2023. doi: 10.1101/2023.05.05.539646. URL https://www.biorxiv.org/content/early/2023/05/06/2023.05.05.539646.
- Narine Kokhlikyan, Vivek Miglani, Miguel Martin, Edward Wang, Bilal Alsallakh, Jonathan Reynolds, Alexander Melnikov, Natalia Kliushkina, Carlos Araya, Siqi Yan, et al. Captum: A unified and generic model interpretability library for pytorch. *arXiv preprint arXiv:2009.07896*, 2020.
- Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and Percy Liang. Lost in the middle: How language models use long contexts. *Transactions of the Association for Computational Linguistics*, 12:157–173, 2024. doi: 10.1162/tacl_a_00638. URL https://aclanthology.org/2024.tacl-1.9/.
- Gabriele Merlin and Mariya Toneva. Language models and brains align due to more than next-word prediction and word-level information. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 18431–18454, Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.1024. URL https://aclanthology.org/2024.emnlp-main.1024/.
- Gemma Team Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, L. Sifre, Morgane Rivière, Mihir Kale, J Christopher Love, Pouya Dehghani Tafti, L'eonard Hussenot, Aakanksha Chowdhery, Adam Roberts, Aditya Barua, Alex Botev, Alex Castro-Ros, Ambrose Slone, Am'elie H'eliou, Andrea Tacchetti, Anna Bulanova, Antonia Paterson, Beth Tsai, Bobak Shahriari, Charline Le Lan, Christopher A. Choquette-Choo, Clé ment Crepy, Daniel Cer, Daphne Ippolito, David Reid, Elena Buchatskaya, Eric Ni, Eric Noland, Geng Yan, George Tucker, George-Christian Muraru, Grigory Rozhdestvenskiy, Henryk Michalewski, Ian Tenney, Ivan Grishchenko, Jacob Austin, James Keeling, Jane Labanowski, Jean-Baptiste Lespiau, Jeff Stanway, Jenny Brennan, Jeremy Chen, Johan Ferret, Justin Chiu, Justin Mao-Jones, Kather ine Lee, Kathy Yu, Katie Millican, Lars Lowe Sjoesund, Lisa Lee, Lucas Dixon, Machel Reid, Maciej Mikuła, Mateo Wirth, Michael Sharman, Nikolai Chinaev, Nithum Thain, Olivier Bachem, Oscar Chang, Oscar Wahltinez, Paige Bailey, Paul Michel, Petko Yotov, Pier Giuseppe Sessa, Rahma Chaabouni, Ramona Comanescu, Reena Jana, Rohan Anil, Ross McIlroy, Ruibo Liu, Ryan Mullins, Samuel L. Smith, Sebastian Borgeaud, Sertan Girgin, Sholto Douglas, Shree Pandya, Siamak Shakeri, Soham De, Ted Klimenko, Tom Hennigan, Vladimir Feinberg, Wojciech Stokowiec, Yu hui Chen, Zafarali Ahmed, Zhitao Gong, Tris Warkentin, Ludovic Peran, Minh Giang, Clément Farabet, Oriol Vinyals, Jeffrey Dean, Koray Kavukcuoglu, Demis Hassabis, Zoubin Ghahramani, Douglas Eck, Joelle Barral, Fernando Pereira, Eli Collins, Armand Joulin, Noah Fiedel, Evan Senter, Alek Andreev, and Kathleen Kenealy. Gemma: Open models based on gemini research and technology. ArXiv, abs/2403.08295, 2024.
- Meta AI. LLaMA 3.2. https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/MODEL_CARD.md, 2024.
- Gavin Mischler, Yinghao Aaron Li, Stephan Bickel, Ashesh D Mehta, and Nima Mesgarani. Contextual feature extraction hierarchies converge in large language models and the brain. *Nature Machine Intelligence*, pp. 1–11, 2024.

- Grégoire Montavon, Alexander Binder, Sebastian Lapuschkin, Wojciech Samek, and Klaus-Robert
 Müller. Layer-wise relevance propagation: an overview. *Explainable AI: interpreting, explaining and visualizing deep learning*, pp. 193–209, 2019.
 - Takashi Morita. Emergence of the primacy effect in structured state-space models. *arXiv preprint arXiv:2502.13729*, 2025.
 - Omer Moussa, Dietrich Klakow, and Mariya Toneva. Improving semantic understanding in speech language models via brain-tuning. *ICLR*, 2025.
 - Byung-Doh Oh and William Schuler. Token-wise decomposition of autoregressive language model hidden states for analyzing model predictions. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 10105–10117, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.562. URL https://aclanthology.org/2023.acl-long.562/.
 - Subba Reddy Oota, Khushbu Pahwa, Mounika Marreddy, Manish Gupta, and Bapi S Raju. Neural architecture of speech. In *ICASSP 2023-2023 IEEE International Conference on Acoustics*, *Speech and Signal Processing (ICASSP)*, pp. 1–5. IEEE, 2023a.
 - Subba Reddy Oota, Emin Çelik, Fatma Deniz, and Mariya Toneva. Speech language models lack important brain-relevant semantics. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 8503–8528, 2024.
 - SubbaReddy Oota, Manish Gupta, and Mariya Toneva. Joint processing of linguistic properties in brains and language models. *Advances in Neural Information Processing Systems*, 36:18001–18014, 2023b.
 - Maryam Rahimi, Yadollah Yaghoobzadeh, and Mohammad Reza Daliri. Explanations of large language models explain language representations in the brain. *arXiv preprint arXiv:2502.14671*, 2025.
 - Bianca Raimondi and Maurizio Gabbrielli. Exploiting primacy effect to improve large language models. *arXiv preprint arXiv:2507.13949*, 2025.
 - J. K. Rowling, M. GrandPre, M. GrandPré, T. Taylor, Arthur A. Levine Books, and Scholastic Inc. *Harry Potter and the Sorcerer's Stone*. Harry Potter. A. A. Levine Books, 1998. ISBN 9780590353403. URL https://books.google.de/books?id=zXgTdQagLGkC.
 - Andrea G Russo, Assunta Ciarlo, Sara Ponticorvo, Francesco Di Salle, Gioacchino Tedeschi, and Fabrizio Esposito. Explaining neural activity in human listeners with deep learning via natural language processing of narrative text. *Scientific reports*, 12(1):17838, 2022.
 - Martin Schrimpf, Idan Asher Blank, Greta Tuckute, Carina Kauf, Eghbal A. Hosseini, Nancy Kanwisher, Joshua B. Tenenbaum, and Evelina Fedorenko. The neural architecture of language: Integrative modeling converges on predictive processing. *Proceedings of the National Academy of Sciences*, 118(45):e2105646118, 2021. doi: 10.1073/pnas.2105646118.
 - Avanti Shrikumar, Peyton Greenside, Anna Shcherbina, and Anshul Kundaje. Not just a black box: Learning important features through propagating activation differences. *arXiv* preprint *arXiv*:1605.01713, 2016.
 - Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.
 - Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In *International conference on machine learning*, pp. 3319–3328. PMLR, 2017.
 - Falcon-LLM Team. The falcon 3 family of open models, December 2024. URL https://huggingface.co/blog/falcon3.

- Mariya Toneva and Leila Wehbe. Interpreting and improving natural-language processing (in machines) with natural language-processing (in the brain). *Advances in neural information processing systems*, 32, 2019.
- Mariya Toneva, Tom M Mitchell, and Leila Wehbe. Combining computational controls with natural text reveals aspects of meaning composition. *Nature Computational Science*, 2(11):745–757, 2022.
- Peihao Wang, Ruisi Cai, Yuehao Wang, Jiajun Zhu, Pragya Srivastava, Zhangyang Wang, and Pan Li. Understanding and mitigating bottlenecks of state space models through the lens of recency and over-smoothing. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=pymXpl4qvi.
- Leila Wehbe, Brian Murphy, Partha Talukdar, Alona Fyshe, Aaditya Ramdas, and Tom Mitchell. Simultaneously uncovering the patterns of brain regions involved in different story reading subprocesses. *in press*, 2014a.
- Leila Wehbe, Ashish Vaswani, Kevin Knight, and Tom Mitchell. Aligning context-based statistical models of language with brain activity during reading. In Alessandro Moschitti, Bo Pang, and Walter Daelemans (eds.), *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 233–243, Doha, Qatar, October 2014b. Association for Computational Linguistics. doi: 10.3115/v1/D14-1030. URL https://aclanthology.org/D14-1030/.
- Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface's transformers: State-of-the-art natural language processing. *arXiv* preprint arXiv:1910.03771, 2019.
- Xinyi Wu, Yifei Wang, Stefanie Jegelka, and Ali Jadbabaie. On the emergence of position bias in transformers. In *Forty-second International Conference on Machine Learning*, 2025. URL https://openreview.net/forum?id=YufVk7I6Ii.
- Yuchen Zhou, Emmy Liu, Graham Neubig, Michael Tarr, and Leila Wehbe. Divergences between language models and human brains. *Advances in neural information processing systems*, 37: 137999–138031, 2024.

A METHODS

A.1 FMRI DATASETS

Moth Radio Hour dataset. The Moth Radio Hour (MRH) dataset contains naturalistic language stimuli in the form of 10 autobiographical stories (10–15 minutes each) from *The Moth Radio Hour* podcast. An additional 10-minute story, presented twice to each participant, serves as a validation set. Brain responses were recorded from 9 subjects while they either listened to or read the stories. In this work, analyze only the reading condition. Adding listening would introduce a second modality and additional variability that falls beyond our current scope. The words of each story were presented one-by-one for a duration that is equal to the duration of that word in the spoken story, and the functional image acquisition rate is TR = 2.0045s. Brain responses were collected in two 3-hour scanning sessions, performed on different days.

Harry Potter's word-level annotations. Each word in the HP dataset is annotated as one or more high-level linguistic features belonging to 3 categories: semantic, syntactic, and discourse-level features. Semantic annotations consist of a 100-dimensional vector per-word representing different word meanings, computed for each word in the chapter using the co-occurrence patterns with other words in a large text corpus. Syntactic labels consist of 45-dimensional vectors representing 28 POS and 17 dependency relationships, obtained using an automated parser, while discourse-level annotations consist of a 27-dimensional vector representing the following features: verbs (e.g., 'be', 'hear', 'know'), speech ('speak'), motion ('fly', 'manipulate', 'move'), emotion (e.g., 'annoyed', 'dislike', 'fear', 'like'), and characters (e.g., 'draco', 'filch', 'harry', 'ron'). Each word in the chapter may be associated with zero, one, or multiple features within each category (semantic/syntactic/discourse).

A.2 MODELS DESCRIPTION

In our experiments, we compare results obtained using five different models, belonging to three model families: transformers, SSMs, and hybrid. We herein provide a detailed description of each of the used models:

- Falcon3-1B Team (2024) is a decoder-only transformer with 18 layers and 2048-dimensional representations. It uses Grouped-Query Attention (GQA) (8Q/4KV heads of size 256) and rotary positional encodings (RoPE) Su et al. (2024) with a very large $\theta=1000042$, enabling sequences up to 4K tokens. The 1B model was distilled and depth-pruned from a 3B teacher and trained on $\approx 80G$ tokens of multilingual web, code and STEM text, with SwiGLU activations and RMSNorm layers.
- Gemma-2B Mesnard et al. (2024) is an 18-layer, 2048-hidden-size decoder-only transformer. It employs multi-query attention (MQA) (8Q/1KV heads of size 256) and standard RoPE (θ =10000) for contexts of up to 8K tokens. The 2B checkpoint is distilled from a 9B teacher and pretrained on a $\approx 3T$ -token filtered web+code mix. It leverages GeLU activations and RMSNorm layers.
- Llama3.2-1B Meta AI (2024) consists of 16 transformer blocks with hidden size 2048. It uses GQA (32Q/8KV heads), RoPE scaled to handle 128K-token windows, and SwiGLU activations. Pretraining covered up to 9T tokens of multilingual/coding text, with logits-distillation from Llama3.1-8B and -70B.
- Mamba-1.4B Gu & Dao (2023) is a pure selective state-space model, using no self-attention. It stacks 48 SSM blocks with embedding size 2048, giving linear training cost and constant-time generation. Benchmarks show accurate extrapolation beyond 1M tokens. The public 1.4B checkpoint was trained on $\approx 1T$ tokens of English/Russian web data.
- zamba2-1.2B Glorioso et al. (2024) is a 38-layer hybrid model combining SSM and attention: a Mamba2 Gu & Dao (2023) backbone interleaves with six weight-shared attention blocks. Similarly to all the other models we consider, the hidden size is 2048. Attention layers use RoPE and low-rank adapters (LoRA) Hu et al. (2022) on both the shared attention and shared MLPs for per-depth specialization. The model supports 4K-token contexts and was trained on 3T tokens of Zyda-2 web text and code, then annealed on 100B curated tokens.

A.3 GRADIENT-BASED ATTRIBUTION METHODS

We employ two widely used gradient-based attribution methods to compute input importance scores: Gradient × Input and Integrated Gradients. Both methods quantify the contribution of each input token to a model's output by analyzing how sensitive the output is to changes in the input. These methods are implemented using the Captum library Kokhlikyan et al. (2020).

Gradient × **Input** (**GXI**). Gradient × Input Shrikumar et al. (2016) is a simple yet effective attribution method. For a given input $x = (x_1, \ldots, x_n)$ and model output F(x) (e.g., a scalar loss), GXI assigns importance to input component x_i as:

$$GXI(x_i) = \frac{\partial F(x)}{\partial x_i} \cdot x_i$$

The attribution score is the element-wise product of the input embedding and the gradient of the output with respect to that input. This method captures both the sensitivity of the model's output to each input dimension and the magnitude of the input itself. GXI is computationally efficient and has been shown to produce biologically meaningful attributions in recent brain alignment work Rahimi et al. (2025).

Integrated Gradients (IG). Integrated Gradients Sundararajan et al. (2017) address the limitations of standard gradients by accumulating gradients along a straight-line path from a baseline input x' to the actual input x. The attribution score for input component x_i is defined as:

$$IG(x_i) = (x_i - x_i') \cdot \int_{\alpha=0}^{1} \frac{\partial F(x' + \alpha(x - x'))}{\partial x_i} d\alpha$$

In practice, the integral is approximated using a Riemann sum with m interpolation steps:

$$IG(x_i) \approx (x_i - x_i') \cdot \frac{1}{m} \sum_{k=1}^m \frac{\partial F(x' + \frac{k}{m}(x - x'))}{\partial x_i}$$

We use the zero embedding as the baseline x' and set m=20 in our experiments. IG is more computationally expensive than GXI due to multiple forward and backward passes, but it provides a more theoretically grounded attribution estimate.

We primarily use GXI due to its efficiency, and validate select findings using IG. In our experiments with Llama3.2-1B, we observe that IG produces qualitatively similar attribution patterns to GXI, supporting the robustness of our conclusions.

A.4 Brain Activity Prediction

LLM representations. We begin by extracting contextual embeddings from a pretrained LLM (see Figure 6). For each word w in the text, we construct a context of L=640 words with w as the final word. These contexts are fed into a pretrained language model, and for each layer l of model m, we extract token embeddings of shape (N,T,H), where N is the number of input words, T the number of tokens in each context, and H the hidden dimension. To obtain word-level embeddings, we average the token embeddings corresponding to the final word in each context, yielding a representation of shape (N,H). Subsequently, we downsample the word-level embeddings to match the fMRI sampling rate by averaging the embeddings of all the words in each TR, obtaining TR-level embeddings of shape (K,H). Finally, to account for the hemodynamic delay, we concatenate the previous four TR embeddings to form the final input X_l^m of shape (K,4H).

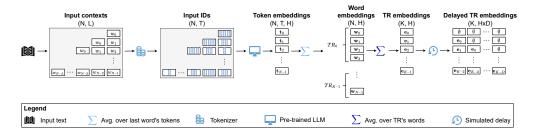


Figure 6: Extraction and processing of LLM representations. We associate a context of L words to each word w_i in the input text, with $i \in [0, N-1]$. We then pass the tokenized contexts to an LLM and extract token embeddings of shape (N,T,H), with T being the maximum number of tokens in a context. To get word embeddings of shape (N,H), we average the embeddings of the tokens in the last word in each context. Finally, we average the word embeddings of all the words in each TR, obtaining TR embeddings of shape (K,H), and concatenate D previous TR embeddings to account for the delay in the BOLD response, yielding a final representation of shape $(K,H\times D)$.

Brain encoding model. We then pass the inputs X_l^m into a trained brain encoding model, which maps contextual LLM features to voxel-level brain activity. A voxel (volumetric pixel) represents a small 3D unit of brain tissue captured in an fMRI scan, recording a time series of blood-oxygen-level-dependent signals during the reading task. For each subject, we represent brain activity as a matrix Y_i of shape (K, V_i) , where K is the number of time points (TRs) and V_i is the number of voxels recorded for subject i. Each encoding model is a ridge-regularized linear regressor $f: X_l^m \to y_i^j$ that maps the LLM-derived input X_l^m to the voxel activity y_i^j . Following prior work, we use 4-fold cross-validation for HP, and 11-fold cross-validation (with each fold corresponding to one story) for MRH, and select the regularization strength via nested cross-validation, following prior work (Jain & Huth, 2018b; Toneva & Wehbe, 2019; Schrimpf et al., 2021; Oota et al., 2023a). The full brain alignment pipeline is illustrated in Figure 7.

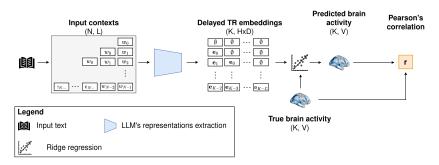


Figure 7: Illustration of the full brain alignment pipeline.

Table 2: Indexes of the layers used for computing brain alignment attributions. For each model, $i \in [0, l-1]$, with l being the number of layers.

	Layer depth		
Model	Early	Middle	Late
Falcon3-1B	5	9	12
Gemma-2B	5	6	12
Llama3.2-1B	4	9	12
Mamba-1.4B	15	29	32
zamba2-1.2B	11	17	30

B Layer selection for attribution

To investigate how attribution behavior varies across network depth, we compute BA attributions at three representative layers per model: one from early, one from middle, and one from late in the architecture. Rather than selecting fixed indices, we identify the most informative layers for BA. Specifically, for each model, we evaluate brain encoding performance at every layer using Pearson correlation between predicted and recorded fMRI activity. We divide each model into three equaldepth sections and select the layer within each section that achieves the highest average correlation across voxels and subjects. Table 2 lists the selected layers for each model.

C FUNCTIONAL IMPACT OF MASKING TOP-ATTRIBUTED WORDS

To evaluate whether words with high attribution scores are functionally important for each task, we performed targeted masking experiments on the HP dataset. Specifically, we replaced the top-attributed words with random words from the same chapter and measured the resulting drop in predictive performance. For NWP, we report changes in cross-entropy (CE) loss relative to the baseline model performance. For BA, we quantify the decrease in Pearson's r across language-selective ROIs, averaged across models and subjects. Together, these analyses confirm that top-attributed words indeed carry essential information for both tasks.

Next-word prediction. Masking the most attributed words leads to sharp increases in CE across all models (Figure 8). Even masking only the top 1% of words more than doubles the loss, and increases remain above 100% for larger thresholds. This consistent degradation demonstrates that attribution scores capture words that are indispensable for predicting the next token, validating their functional relevance to the NWP objective.

Brain alignment. For BA, performance collapses almost completely when only the top 1% of attributed words are masked (Figure 9). Across all ROIs and models, correlations with brain activity drop by nearly 100%, showing that the words flagged by attribution are critical for predicting neural responses. Increasing the threshold beyond 1% does not further reduce performance substantially, as alignment is already abolished by removing this minimal but highly informative subset of words.

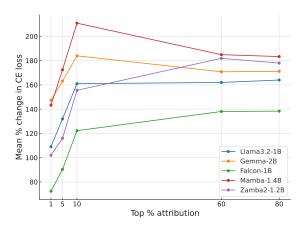


Figure 8: Relative increase in cross-entropy loss when masking the top-t% most attributed words for each model. Masking even 1% of words leads to a substantial degradation in NWP performance, highlighting the functional importance of top-attributed tokens.

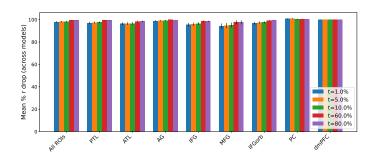


Figure 9: Mean percentage drop in Pearson's r across language-selective ROIs after masking the top-t% most attributed words. Results are averaged across models. Performance collapses almost completely after masking as little as 1% of top-attributed words, demonstrating that attribution scores identify words critical for BA.

D RESULTS ON THE MOTH RADIO HOUR DATASET

D.1 IOU ANALYSIS

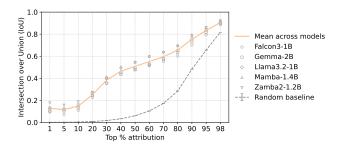


Figure 10: Intersection over Union (IoU) between BA and NWP as a function of the top-t% attribution threshold for the MRH dataset. We report the average IoU across contexts, layers, subjects, and models, with gray shapes indicating per-model IoUs. The gray line represents a random baseline. The overlap between important words for the two tasks is very low for $t \leq 10\%$, and then grows linearly as the threshold is increased.

To investigate whether BA and NWP rely on similar words, we compute the IoU between their top-attributed subsets across attribution thresholds. For the HP dataset (see Figure 2), we showed that for low thresholds ($t \le 10\%$), the overlap is minimal (IoU $\approx 0.1-0.2$), indicating that the two tasks depend on largely distinct subsets of words. As the threshold increases, the IoU steadily rises, eventually exceeding 0.8 at t = 98%, consistent with both tasks drawing on broad context at larger scales. The same qualitative trend holds on the MRH dataset (Figure 10): very low agreement at small thresholds, followed by a gradual rise toward convergence. This replication strengthens our conclusion that BA and NWP diverge most strongly on the small subset of words each considers essential, while converging only when most of the context is included.

D.2 ATTRIBUTION SPREAD ANALYSIS

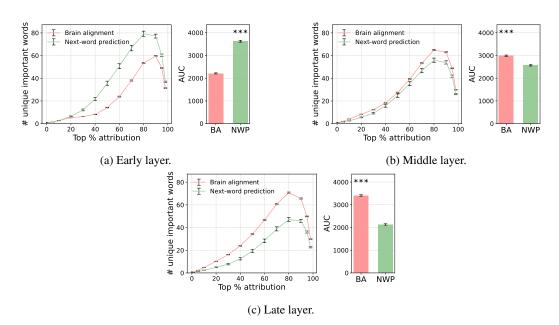


Figure 11: Number of unique important words, averaged across models and contexts, that are needed to cumulatively reach increasing attribution thresholds across three representative layers on the MRH dataset. Error bars represent the standard error across contexts. Each plot compares brain alignment (BA) and next-word prediction (NWP). The area under the curve (AUC) quantifies the total attribution spread. Asterisks denote significant differences (p < 0.001), assessed via a two-sided paired t-test, with Benjamini-Hochberg correction (Benjamini & Hochberg, 1995).

To examine whether the differences in attribution spread generalize beyond the HP dataset, we repeated the analysis on the MRH dataset. As before, we measure the number of unique words required to cumulatively reach increasing attribution thresholds for BA and NWP, and conduct the analysis at three representative depths, selecting in each case the layer with the highest BA. Results shown in Figure 11 closely mirror those obtained on the HP dataset. At early layers, NWP requires substantially more unique words than BA to reach a given threshold, consistent with its reliance on highly local lexical cues. In contrast, at middle and late layers, BA exhibits a broader attribution spread, indicating stronger integration of distributed semantic and discourse-level information. The AUC trends replicate those on the HP dataset: BA spread increases steadily with depth, while NWP spread decreases. These convergent results confirm that the opposing attribution spread dynamics of BA and NWP are robust across datasets and stimulus domains.

D.3 Positional Patterns Analysis

We repeated the positional attribution analysis on the MRH dataset. Figures 12–14 report the distribution of top-attributed words at thresholds t=10%, 60%, 80%, plotted by distance from the most recent word in the context.

The results broadly replicate the patterns observed in the HP dataset. For both models, NWP shows a sharp recency bias, with a large fraction of attribution mass concentrated on the most recent words (i.e. lower distances). This is especially pronounced at low thresholds (t=10%), where almost all importance is assigned to words at the lowest distances. In contrast, BA exhibits a smoother and more distributed recency profile, with attribution spread over a broader set of nearby words. As the attribution threshold increases, BA continues to allocate importance across a wider temporal window, whereas NWP maintains its edge-focused profile.

Interestingly, Llama3.2-1B does not display the oscillatory attribution pattern for BA that we observed in the HP dataset. Instead, its BA attributions show a more conventional recency distribution, similar to Gemma-2B. This suggests that the oscillatory pattern may be stimulus-dependent, potentially tied to the structural or lexical properties of the Harry Potter text rather than an invariant architectural feature of the model.

Overall, these findings confirm that the positional biases of NWP and BA are robust across datasets, while also revealing that certain model-specific patterns, such as Llama's oscillatory behavior, do not necessarily generalize across stimulus domains.

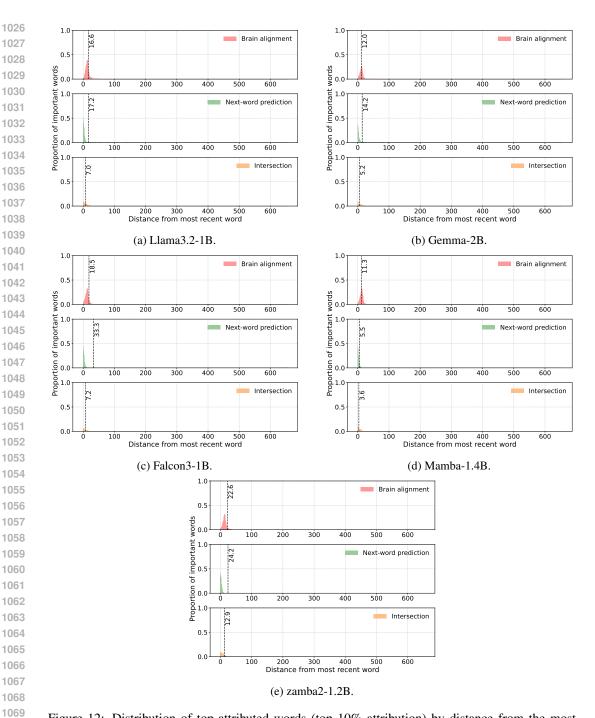


Figure 12: Distribution of top-attributed words (top 10% attribution) by distance from the most recent word. For each model, we plot the proportion of important words located at each distance bin, comparing BA and NWP. Both BA and NWP show a strong recency bias, with top-attributed words placed at very low distances from the most recent word.

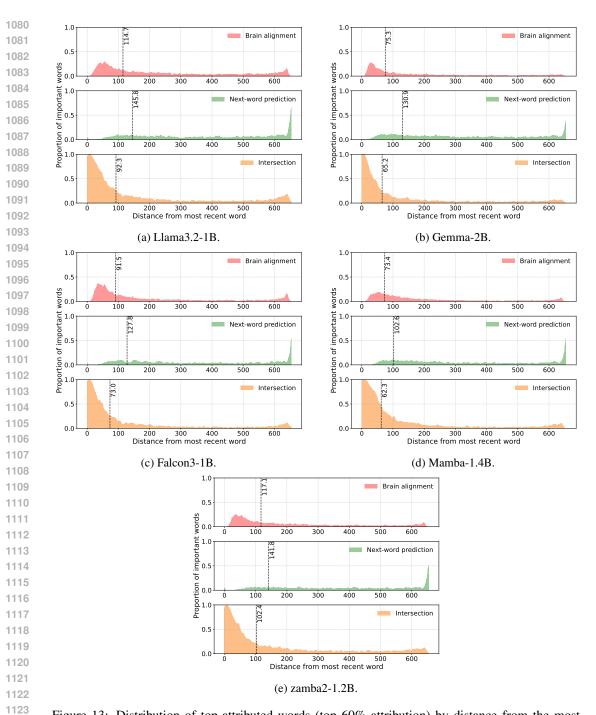


Figure 13: Distribution of top-attributed words (top 60% attribution) by distance from the most recent word. For each model, we plot the proportion of important words located at each distance bin, comparing BA and NWP. NWP shows a bimodal distribution, with sharp recency and primacy peaks. BA, on the other hand, emphasizes more distributed words, showing a much broader recency peak.

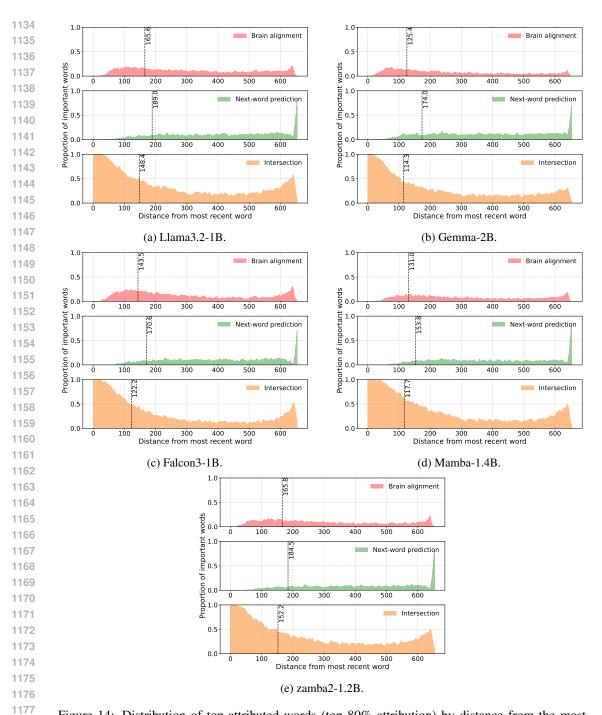


Figure 14: Distribution of top-attributed words (top 80% attribution) by distance from the most recent word. For each model, we plot the proportion of important words located at each distance bin, comparing BA and NWP. NWP shows a bimodal distribution, with sharp recency and primacy peaks. BA, on the other hand, emphasizes more distributed words, showing a much broader recency peak.

E ATTRIBUTION ANALYSES USING IG

To test the robustness of our results with respect to the attribution method, we also compute attributions on the HP dataset using IG for Llama3.2-1B, the model displaying a unique oscillatory attribution distribution, and Gemma-2B, which is representative of the behavior of all other models.

E.1 FEATURE-BASED ANALYSIS

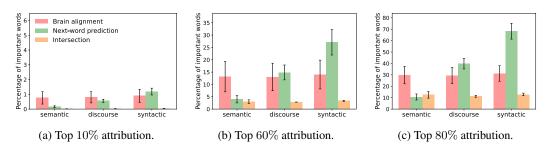


Figure 15: Distribution of top-attributed words across linguistic feature categories (semantic, discourse, syntactic) for brain-alignment-only, next-word-prediction-only, and for both. Results are averaged across layers, subjects, and models, with standard errors across models. We show results for top 10%, 60%, and 80% of attribution scores. At lower thresholds, NWP prioritizes syntactic features, while brain alignment emphasizes semantic and discourse-level content. As the threshold increases, the overlap between tasks grows, but brain alignment consistently favors meaning-oriented features.

Figure 15 presents the percentage of words in each category that are important exclusively for BA, exclusively for NWP, or shared by both, evaluated at three attribution thresholds (t=10%, 60%, 80%). Consistent with prior findings Oh & Schuler (2023) and with GXI results, NWP shows a clear bias toward syntactic features across all thresholds. In contrast, BA exhibits a more balanced distribution: while syntactic cues remain important Oota et al. (2023b), a substantial proportion of its attribution falls on semantic and discourse-level features. This trend also appears in the intersection set (i.e., words important for both tasks), indicating that NWP partially relies on similar types of words to BA.

E.2 POSITIONAL PATTERNS ANALYSIS

Figures 16 and 17 show the distance distribution of top-attributed words under IG for both BA and NWP at two thresholds (10% and 60%) for Llama3.2-1B and Gemma-2B, respectively. IG is computed using m=20 interpolation steps along the path from the baseline to the input, as described in Appendix A.3.

The observed patterns are consistent with those found using GXI. At both thresholds and for both models, NWP shows a bimodal distribution, with strong recency and primacy bias. For Llama3.2-1B, BA displays the same oscillatory and distributed profile we observed with GXI, particularly at 60%. This supports the conclusion that Llama3.2-1B integrates context in a structurally distinct manner for brain prediction, and that this behavior is robust to the choice of attribution method. On the contrary, Gemma-2B does not show any oscillatory behavior, and maintains a broader recency peak and less pronounced primacy bias.

F FULL ATTRIBUTION DISTRIBUTION RESULTS

In this section, we provide attribution distribution results for all models, with plots showing the position of top-attributed words relative to the most recent token in the input context. These analyses allow us to assess how BA and NWP differ in terms of the contextual positions they prioritize, and whether these patterns are consistent across architectures and attribution thresholds.

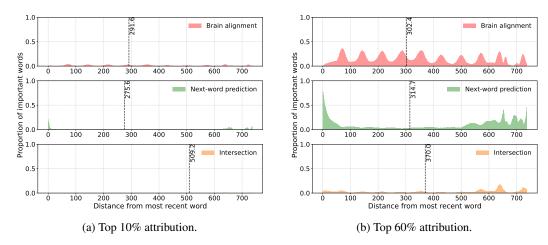


Figure 16: Distribution of top-attributed words by distance from the most recent word in the context for Llama3.2-1B, using Integrated Gradients. Results are shown for brain alignment, next-word prediction, and their intersection at t=10%,60%.

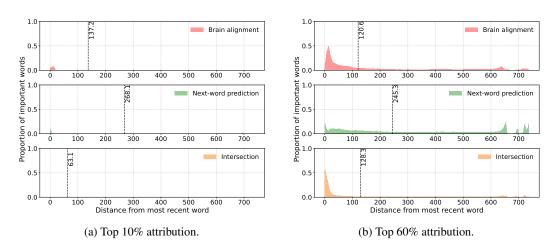


Figure 17: Distribution of top-attributed words by distance from the most recent word in the context for Gemma-2B, using Integrated Gradients. Results are shown for brain alignment, next-word prediction, and their intersection at t=10%,60%.

Figure 18 shows the proportion of top-attributed words (top 60% cumulative attribution) located at each distance from the most recent word in the context for Falcon3-1B, Gemma-2B, and zamba2-1.2B. The dashed lines in each plot represent the center of mass (CoM), computed by considering the top-attributed words. Across models, NWP consistently shows a recency bias, with a sharp peak at low-distance (recent) positions, and an even higher primacy bias, with most attribution mass concentrated at high-distance words. Similarly, BA also shows a strong recency bias, although with a much broader peak (i.e., high-attribution words are present at a higher number of recent positions). In contrast, the primacy bias is much less pronounced. The strong primacy bias for NWP is also the main reason for the higher associated CoM, as high-distance top-attributed words pull it further away from the most recent word.

To evaluate the consistency of our findings across subjects, we plot the attribution distributions for each of the 8 subjects for both Llama3.2-1B and Mamba-1.4B at the 60% attribution threshold. As shown in Figure 19 and Figure 20, the overall trends observed at the group level are highly consistent across subjects. In particular, NWP consistently shows a strong recency and primacy bias. BA, instead, emphasizes a broader distribution over more recent tokens with minimal primacy bias for Mamba-1.4 and the peculiar oscillatory pattern for Llama3.2-1B. The subject-specific curves exhibit similar shapes and centers of mass, indicating low inter-subject variability and supporting the

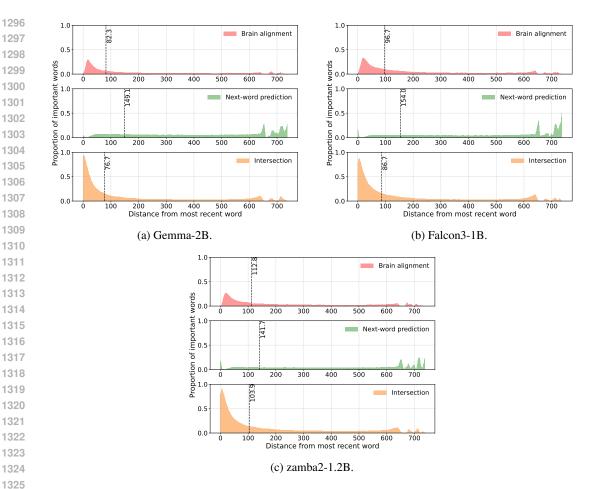


Figure 18: Distribution of top-attributed words (top 60% attribution) by distance from the most recent word in the context. For each model, we plot the proportion of important words located at each distance bin, comparing brain alignment (BA) and next-word prediction (NWP). NWP shows a strong recency bias, while BA often emphasizes earlier or more distributed words.

robustness of the main effects. These results validate our choice to report mean attribution distributions across subjects in the main text and reinforce the interpretability of the observed differences between BA and NWP.

Attribution distribution for t=10%

Figure 21 shows the same analysis at a lower attribution threshold of 10%. These plots focus on the most influential words per context, offering a finer-grained view of attribution prioritization. While NWP continues to show a sharp peak near the end of the context (strong recency), BA exhibits a less sharply peaked but still recency-focused distribution in most models.

The CoM for both BA and NWP is generally closer to the recent words than in the 60% case, indicating that when only the most highly attributed words are considered, BA and NWP become more similar in their positional focus. Still, notable differences remain between Llama3.2-1B and all other models, as the oscillatory distribution pattern for BA already emerges at t = 10%.



Figure 19: Distribution of top-attributed words (top 60% cumulative attribution) by distance from the most recent word in the context, shown separately for each of the 8 subjects for Llama3.2-1B. Each plot compares brain alignment and next-word prediction. The overall shape and center of mass of the attribution distributions are consistent across subjects, indicating low inter-subject variability. This supports the robustness of the observed task-specific attribution differences.

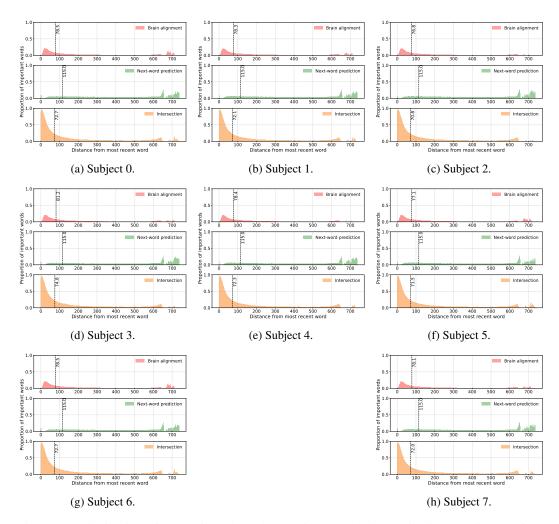


Figure 20: Distribution of top-attributed words (top 60% cumulative attribution) by distance from the most recent word in the context, shown for each of the 8 subjects for Mamba-1.4B. Across all subjects, next-word prediction shows a strong recency and primacy bias, while brain alignment attribution is more concentrated around the recent context and more broadly distributed over recent words. The similarity in curves across subjects confirms that these effects are consistent at the individual level.

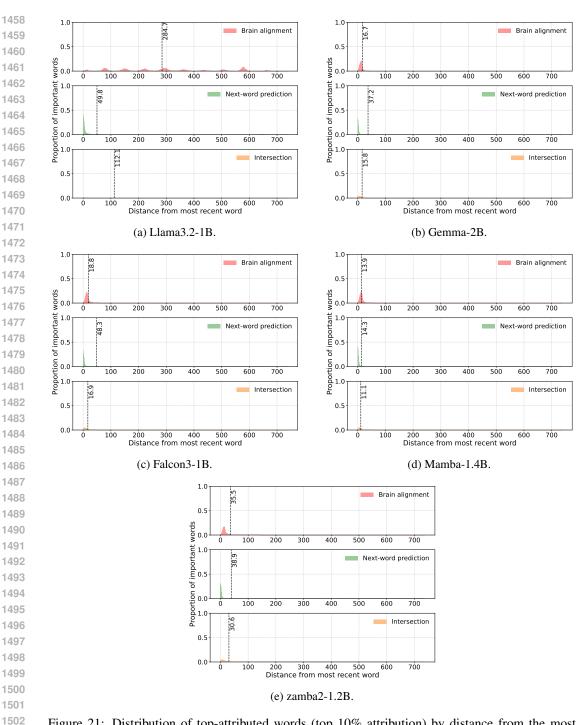
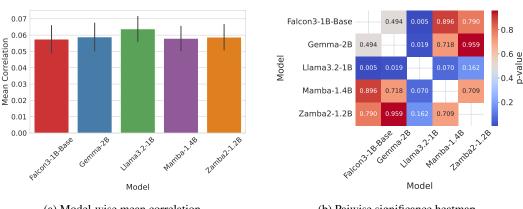


Figure 21: Distribution of top-attributed words (top 10% attribution) by distance from the most recent word in the context. For each model, we plot the proportion of important words located at each distance bin, comparing brain alignment (BA) and next-word prediction (NWP). NWP shows a strong recency bias, while BA often emphasizes earlier or more distributed words.

G QUANTITATIVE RESULTS FOR BRAIN ALIGNMENT



(a) Model-wise mean correlation.

(b) Paiwise significance heatmap.

Figure 22: Model-wise brain alignment performance. (a) Mean correlation between true and predicted brain activity across models. We report the mean across voxels, layers, and subjects, with standard error across subjects. (b) Pairwise significance heatmap showing *p*-values from paired t-tests comparing mean correlation scores between models.

Figure 22 presents quantitative BA scores for the five LLMs evaluated in this study: Falcon3-1B, Gemma-2B, Llama3.2-1B, Mamba-1.4B, and zamba2-1.2B. BA is measured as the mean Pearson correlation between predicted and observed fMRI activity, averaged across all voxels, layers, and subjects.

Figure 22a shows a bar plot of the model-wise mean correlation scores, with standard error bars reflecting variability across subjects. Among the evaluated models, Llama3.2-1B achieves the highest average BA, followed by zamba2-1.2B and Mamba-1.4B. Falcon3-1B and Gemma-2B exhibit lower alignment scores, suggesting reduced ability to capture brain-relevant representations.

Figure 22b, instead, shows a pairwise significance heatmap, where each cell reports the p-value of a two-sided paired t-test comparing voxel-wise correlations between two models across subjects. Blue shading indicates statistically significant differences (p < 0.05), with darker shades denoting stronger significance. Llama3.2-1B shows significantly higher alignment than both other transformer-based models (Falcon3-1B and Gemma-2B), as well as low p-values in comparisons with Mamba-1.4B and zamba2-1.2B, suggesting consistently stronger alignment overall. No significant differences are observed between Falcon3-1B, Gemma-2B, Mamba-1.4B, and zamba2-1.2B, indicating comparable performance among these models within the margin of statistical uncertainty.

H Positional Patterns Analysis on Qwen2-1.5B

We analyze positional attribution patterns for Qwen2-1.5B, a transformer architecture that shares several design features with Llama3.2-1B, including rotary position embeddings (RoPE), grouped-query attention (GQA), FlashAttention2, and similar quantization strategies. Figures 23 shows the distribution of top-attributed words at thresholds t=10,60,80%, plotted as a function of distance from the most recent word in the input context.

Across all thresholds, Qwen2-1.5B exhibits the canonical task-dependent positional profiles observed in other models. NWP consistently displays a sharp recency bias, with most attribution mass concentrated on the last few tokens, and a secondary primacy peak becoming more apparent at higher thresholds. BA, by contrast, shows a broader recency distribution, with important words spread more evenly across the recent context window. Importantly, unlike Llama3.2-1B, Qwen2-1.5B does not display oscillatory attribution patterns for BA. Instead, its attribution profile remains smooth across thresholds. This suggests that oscillatory behavior is not a necessary consequence of shared architectural components (RoPE, GQA, or FlashAttention2), but rather may emerge from interactions between architecture and specific input statistics, as confirmed by the absence of oscillations when considering shorter contexts or on the MRH dataset. Together, these results reinforce the robustness

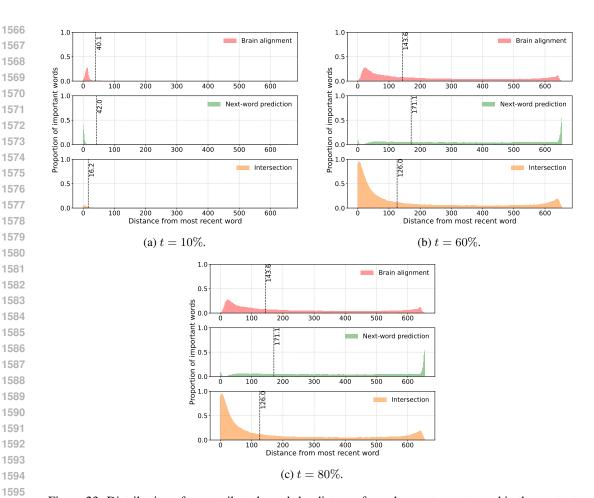


Figure 23: Distribution of top-attributed words by distance from the most recent word in the context for Qwen2-1.5B, shown at thresholds t=10,60,80%. Each plot compares brain alignment (BA) and NWP. Across thresholds, NWP displays a sharp recency bias and a secondary primacy peak, while BA shows a broader recency distribution. Unlike Llama3.2-1B on the Harry Potter dataset, Qwen2-1.5B does not exhibit oscillatory attribution patterns, instead maintaining smooth and monotonic profiles.

of the general trends: NWP dominated by sharp recency and primacy, and BA characterized by smoother and broader recency.

I ATTRIBUTION ANALYSIS WITH SHORTER CONTEXTS

To assess robustness to context length, we repeated our full pipeline using 80-word contexts (an $8 \times$ reduction from the 640-word setting used in all other experiments).

Attribution profiles are maintained. Figures 24–26 report attribution distributions for Llama3.2-1B and Gemma-2B obtained using the shorter contexts. The overall shape of the attribution distributions remains consistent with the longer-context results: BA maintains a smoother profile with a broad recency peak at \sim 12 words, while NWP preserves its sharp bimodal structure: a strong spike on the most recent 5 words and a second, smaller primacy bump at the farthest positions (75–80 words), underscoring its heavy reliance on sentence-edges (Liu et al., 2024). This confirms these positional biases are not an artifact of long contexts.

Important words overlap between short and long contexts. We compared attributions across long and short contexts to understand whether the same words are identified as important in both

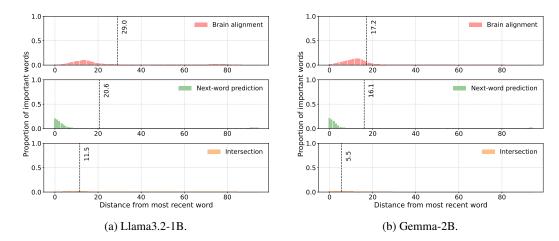


Figure 24: Distribution of top-attributed words (top 10% attribution) by distance from the most recent word in the context, using 80-word contexts. For each model, we plot the proportion of important words located at each distance bin, comparing brain alignment (BA) and next-word prediction (NWP). NWP shows a strong recency bias, while BA often emphasizes earlier or more distributed words.

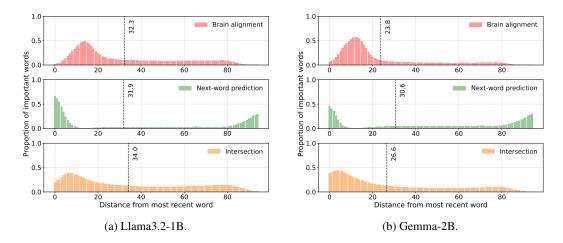


Figure 25: Distribution of top-attributed words (top 60% attribution) by distance from the most recent word in the context, using 80-word contexts. For each model, we plot the proportion of important words located at each distance bin, comparing brain alignment (BA) and next-word prediction (NWP). NWP shows a strong recency bias, while BA often emphasizes earlier or more distributed words.

settings, by computing Spearman's ρ for rank agreement (restricted to the last 80 words of the 640-word contexts) and IoU of the top-mass words (shown in Figure 27. NWP proves highly robust, with strong rank correlation ($\rho \approx 0.8$) and substantial overlap of important words (IoU > 0.5 across all thresholds). In contrast, BA shows only moderate rank agreement ($\rho \approx 0.44$) and very limited overlap (IoU < 0.1 for t < 80%), except at very large thresholds.

These findings highlight that NWP relies on a narrow, stable set of recent words, while BA distributes attribution more flexibly across context, leading to lower robustness in top-word overlap across window sizes.

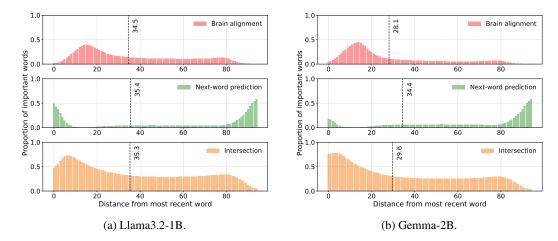


Figure 26: Distribution of top-attributed words (top 80% attribution) by distance from the most recent word in the context, using 80-word contexts. For each model, we plot the proportion of important words located at each distance bin, comparing brain alignment (BA) and next-word prediction (NWP). NWP shows a strong recency bias, while BA often emphasizes earlier or more distributed words.

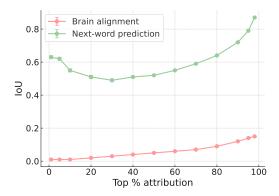


Figure 27: IoU of top-attributed words between long (640-word) and short (80-word) contexts as a function of attribution mass threshold t. NWP shows high robustness across window sizes, while BA exhibits low overlap, reflecting its more distributed and flexible use of context.

J EXPERIMENTS COMPUTE RESOURCES

All experiments were conducted on a single NVIDIA H100 Tensor Core GPU (80GB, Hopper architecture). Tables 3–5 summarize the time and memory requirements for each task and model. To estimate total compute usage, we sum the runtimes of all major experimental stages across the five evaluated models:

- LLM representation extraction: ≈ 10 minutes \times 5 models \times 2 datasets $= \approx 2$ hours total
- Brain alignment training: ≈219 hours total
- **GXI attributions**: ≈1501 hours total
- **IG attribution**: ≈329 hours total
- **NWP attribution**: ≈3.6 hours total

While attribution is computationally intensive, we mitigate resource demands by limiting our study to 1–2B parameter models and using a single H100 GPU per task. These design choices balance tractability with representational fidelity and enable detailed interpretability analyses within practical runtime constraints.

Table 3: Per-task compute time and peak memory usage across models on the Harry Potter dataset.

Task	Model	Time (dd:hh:mm:ss)	Peak Memory (GB)
Brain alignment training	Llama3.2-1B	00:04:08:16	3.16
	Gemma-2B	00:04:47:19	3.08
	Falcon3-1B	00:05:42:46	3.39
	zamba2-1.2B	00:10:24:00	3.66
	Mamba-1.4B	00:12:50:23	3.86
	Qwen2-1.5B	00:05:46:31	3.46
GXI attribution	Llama3.2-1B	01:14:00:00	2.53
	Gemma-2B	08:16:03:12	2.45
	Falcon3-1B	07:10:08:01	2.53
	zamba2-1.2B	13:03:12:00	2.63
	Mamba-1.4B	11:12:00:00	2.53
	Qwen2-1.5B	00:15:36:34	2.47
IG attribution	Llama3.2-1B	13:13:43:01	2.53
	Gemma-2B	00:03:34:39	2.51
NWP attribution	Llama3.2-1B	00:00:22:58	2.18
	Gemma-2B	00:00:08:26	2.16
	Falcon3-1B	00:00:06:07	2.17
	zamba2-1.2B	00:00:14:20	2.26
	Mamba-1.4B	00:00:07:38	2.18
	Qwen2-1.5B	00:00:05:47	2.22

Table 4: Per-task compute time and peak memory usage across models on the Moth Radio Hour dataset.

Task	Model	Time (dd:hh:mm:ss)	Peak Memory (GB)
Brain alignment training	Llama3.2-1B	00:08:44:08	34.49
	Gemma-2B	00:10:19:46	36.05
	Falcon3-1B	01:11:56:51	40.98
	zamba2-1.2B	02:00:45:34	36.24
	Mamba-1.4B	02:11:36:54	34.78
GXI attribution	Llama3.2-1B	00:12:58:21	28.22
	Gemma-2B	00:14:52:05	28.07
	Falcon3-1B	03:28:07:06	28.15
	zamba2-1.2B	08:15:36:44	27.85
	Mamba-1.4B	04:19:02:20	27.63
NWP attribution	Llama3.2-1B	00:00:08:00	26.87
	Gemma-2B	00:00:10:55	26.86
	Falcon3-1B	00:00:18:50	26.36
	zamba2-1.2B	00:00:59:26	26.46
	Mamba-1.4B	00:00:21:07	26.38

K LLM USAGE STATEMENT

We used LLMs solely for grammar checking and minor wording improvements. All research ideas, analyses, experiments, and results are entirely our own.

Table 5: Per-task compute time and peak memory usage across models for experiments with reduced context length.

Task	Model	Time (dd:hh:mm:ss)	Peak Memory (GB)
Brain alignment training	Llama3.2-1B	00:05:40:33	3.01
	Gemma-2B	00:06:13:33	2.99
GXI attribution	Llama3.2-1B	00:09:57:10	2.59
	Gemma-2B	00:09:52:24	2.57
NWP attribution	Llama3.2-1B	00:00:22:58	2.18
	Gemma-2B	00:00:08:26	2.16