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Abstract

We propose a novel deep generative model, the Kolmogorov-Smirnov Generative1

Adversarial Network (KSGAN). Unlike existing approaches, KSGAN formulates2

the learning process as a minimization of the Kolmogorov-Smirnov (KS) distance,3

generalized to handle multivariate distributions. This distance is calculated using4

the quantile function, which acts as the critic in the adversarial training process.5

We formally demonstrate that minimizing the KS distance leads to the trained6

approximate distribution aligning with the target distribution. We propose an7

efficient implementation and evaluate its effectiveness through experiments. The8

results show that KSGAN performs on par with existing adversarial methods,9

exhibiting stability during training, resistance to mode dropping and collapse, and10

tolerance to variations in hyperparameter settings. Additionally, we review the11

literature on the Generalized KS test and discuss the connections between KSGAN12

and existing adversarial generative models.13
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Figure 1: A schematic depiction of how the Generalized Kolmogorov-Smirnov (KS) distance between
target PF and approximate PG distributions with respect to critic cϕ is computed. The critic is
evaluated on samples xF (|||) and xG (|||) from the target and approximate distributions respectively.
The λ threshold moves from −∞ to +∞ establishing a stack of level sets. At each level, the fraction
of datapoints (• and •) below the threshold is calculated for each distribution independently. This
produces the PF

(
Γcϕ(λ)

)
and PG

(
Γcϕ(λ)

)
curves. The Generalized KS distance is the largest

absolute difference between the curves shown as ↕↕↕ in the right figure. Best viewed in color.

1 Introduction14

Generative modeling is about fitting a model to a target distribution, usually the data. A fundamental15

taxonomy of models assigns them into prescribed and implicit statistical models [9], with partial16

overlap between the two classes. Prescribed models directly parameterize the distribution’s probability17

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.



density function, while implicit models parameterize the generator that allows samples to be drawn18

from the distribution. The ultimate application of the model primarily dictates the choice between the19

two approaches. It does, however, have consequences regarding the available types of divergences20

that we can minimize when fitting the model. The divergences differ in the stability of optimization21

and computational efficiency, as well as statistical efficiency, which all affect the final performance of22

the model.23

The natural approach for fitting a prescribed model is maximum likelihood estimation (MLE),24

equivalently formulated as minimization of Kullback–Leibler divergence. Likelihood evaluation25

for normalized models is straightforward. In non-normalized models, density evaluation is ex-26

pensive; in this context, Hyvärinen [22] proposed the score matching objective, which can be27

interpreted as the Fisher divergence [30]. This approach is very effective for simulation-free training28

of ODE[7]/SDE[42, 19]-based models which are state-of-the-art in multiple domains today.29

The principle driving the fitting of implicit statistical models is to push the model to generate samples30

that are indistinguishable from the target. An inflection point for this family of models came with the31

Generative Adversarial Network (GAN) [13], which took the principle literally and introduced an32

auxiliary classifier trained in an adversarial process to discriminate between the two distributions.33

The classification error given an optimal classifier relates to the Jensen–Shannon divergence between34

generator and the target. Initial work in this area involved applying heuristic tricks to deal with35

learning problems, namely vanishing gradients, unstable training, and mode dropping or collapse.36

Further advancements focused on using other distances based on the principle of adversarial learning37

of auxiliary models, which were supposed to have certain favorable properties with respect to the38

original GAN.39

The Bayesian inference community has been reluctant to adopt adversarial methods [8], and the40

attempts to apply them in this context [40] indicate a credibility problem. A significant drawback of41

approximate methods is the excessive reduction of diversity in the distribution [17], the extremes of42

which lead to mode dropping [1]. In this work, we consider another distance for training implicit43

statistical models, i.e., the Kolmogorov-Smirnov (KS) distance, which, to the best of our knowledge,44

has not been used in this context before. The distinctive feature of the KS distance is that it directly45

measures the coverage discrepancy of each other’s credibility regions by the distributions under46

analysis at all confidence levels. Thus, its minimization straightforwardly leads to the correct spread47

of the probability mass, avoiding mode dropping, overconfidence, and mode collapse when applied48

with a sufficient sampling budget.49

We term the proposed model as Kolmogorov-Smirnov Generative Adversarial Network (KSGAN).50

We show how to generalize the standard KS distance to higher dimensions based on Polonik [38] in51

section 2, allowing our method to be used for multidimensional distributions. Next, in section 3, we52

show how to efficiently leverage the distance in an adversarial training process and show formally53

that the proposed algorithm leads to an alignment of the approximate and target distributions. We54

support the theoretical findings with empirical results presented in section 6.55

2 Generalized Kolmogorov–Smirnov distance56

We generalize the Kolmogorov–Smirnov (KS) distance (sometimes called simply Kolmogorov57

distance) between continuous probability distributions on one-dimensional spaces to multidimensional58

spaces and show that it is a metric. The test statistic of the KS test is a KS distance between empirical59

and target distributions (or two empirical in the case of the two-sample case). For this reason, our60

proposal is directly inspired by the generalization of the test introduced in Polonik [38].61

Let us consider two probability measures PF and PG on a measurable space (X ,A), where the62

sample space X is a vector space such as IRd andA is the corresponding event space; F : X → [0, 1]63

and G : X → [0, 1] are the cumulative distribution functions (CDFs) of PF and PG respectively.164

We say that PF = PG iff ∀ A ∈ A, PF (A) = PG(A). When dim(X ) = 1 then the KS distance is65

DKS (PF ,PG) := sup
x∈X
|F (x)−G(x)|. (1)

In the multivariate case, the problem with using the KS distance as is is that on a d-dimensional66

space, there are 2d − 1 ways of defining a CDF. The distance has to be independent of the particular67

1In what follows we will use PF for the true data distribution and PG for the learnt one

2



definition and thus should be the largest across all the possibilities [35]. This, however, becomes68

prohibitive for any d > 2. In other words, the challenge comes from a multidimensional vector space69

not being a partially ordered set. Everything that follows in this section consists of proposing a partial70

order, showing that, under certain conditions, a probability distribution can be uniquely determined71

on its basis and operationalizing it in an optimization problem.72

We begin by bringing the classical result that73

DKS (PF ,PG) = sup
α∈[0,1]

|F (G−1(α))− α|, (2)

where G−1 : [0, 1]→ X is the inverse CDF also called the quantile function. Einmahl and Mason74

[10] show that there exists a natural generalization of the quantile function to multivariate distribution,75

which we restate below.76

Definition 1 (Generalized Quantile Function). Let v : A → IR+ be a measure, and C ⊂ A an77

arbitrary subset of the event space, then a function CP,C(α) : [0, 1]→ C such that78

CP,C(α) ∈ argmin
C∈C

{v(C) : P(C) ⩾ α} (3)

is called the generalized quantile function in C for P with respect to v2.79

The generalized quantile function evaluated at level α yields a minimum-volume set [36] whose80

probability is at least α, and it is the smallest with respect to v such set in C, thus the name. For the81

remainder of this paper, we assume that v is the Lebesgue measure.82

It may seem that it is enough to plug CPG,C(α) in place of G−1(α) and PF in place of F in eq. (2)83

to establish the Generalized KS distance but it turns out that such a distance does not satisfy the84

positivity condition DKS (PF ,PG) > 0 if PF ̸= PG as the example below shows.85

Example 1 (Polonik [38]). Let PF be the probability measure of a chi distribution with one degree86

of freedom
√
χ2
1 which has support on IR+ and PG the probability measure of a standard Gaussian87

distribution N (0, 1) which has support on the whole IR. Given C = A we have88

PF (CPG,C(α)) = α ∀α ∈ [0, 1], (4)
while clearly PF ̸= PG. The statement in eq. (4) is easy to show by observing that ∀x ∈ [0,∞) the89

density of PF is twice the density of PG and CPG,C(α) are intervals centered at 0.90

Instead, a solution based on the quantile functions of both distributions is needed, which we present91

in definition 2.92

Definition 2 (Generalized Kolmogorov-Smirnov distance). Let the Generalized Kolmogorov-Smirnov93

distance be formulated as follows:94

DGKS (PF ,PG) := sup
α∈[0,1]

C∈{CPG,C,CPF ,C}

[|PF (C(α))− PG(C(α))|] . (5)

Such distance is symmetric, satisfying the triangle inequality as shown in appendix A.1. For the95

remainder of this section, we will show that the Generalized KS distance in eq. (5) meets the necessary96

DGKS (P,P) = 0 and sufficient DGKS (PF ,PG) > 0 ifPF ̸= PG conditions to consider it a metric.97

In the proof, we will rely on the probability density function of P with respect to a reference measure98

v, which we denote with p : X → [0,∞). Let99

Γp(λ) := {x : p(x) ⩾ λ} (6)
denote the density level set of p at level λ ⩾ 0 (also called the highest density region [21]), and let100

Πp := {Γp(λ) : λ ⩾ 0}. The following observations about level sets will introduce the fundamental101

tools to prove the necessary and sufficient conditions for the generalized KS distance.102

Remark 1 (The silhouette [37]). For any density p, the following holds103

p(x) =

∫ ∞

0

1Γp(λ)(x)dλ, (7)

where 1C denotes the indicator function of a set C. The RHS of eq. (7) is called the silhouette.104

2In the general case, CP,C(α) at any given level α is not uniquely determined, i.e. there may exist several
sets C,C′ ∈ C s.t. C ̸= C′ that satisfy the condition in eq. (3). For simplicity, we will call all such sets the
(generalized) quantile sets at level α and write CP,C(α) = C and CP,C(α) = C′ for all of them.
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An immediate consequence of remark 1 is that Πp ordered with respect to λ ⩾ 0 fully characterizes105

P, because p does. Graphically, the silhouette is a multidimensional stack of level sets.106

Remark 2. Density level sets are minimum-volume sets [38] The quantity P(C) − λ v(C)107

is maximized over A by Γp(λ), and thus if Γp(λ) ∈ C, then Γp(λ) = CP,C(α)
3 at level108

α = P(Γp(λ)) =
∫
p(x)1[λ,∞)(p(x))dx.109

Below, we present the fundamental theoretical result behind the proposed method, which restates110

Lemma 1.2. of Polonik [38].111

Theorem 1 (Necessary and sufficient conditions). Let v be a measure on (X ,A). Suppose that112

PF and PG are probability measures on (X ,A) with densities (with reference measure v) f and g113

respectively. Assuming that114

A.1 Πf ∪Πg ⊂ C;115

A.2 CPF ,C(α) and CPG,C(α) are uniquely determined4 in C with respect to v116

the following two statements are equivalent:117

S.1 PF = PG;118

S.2 DGKS (PF ,PG) = 0.119

See proof in Appendix A .120

Meeting assumption A.1 is a demanding challenge, almost equivalent to learning the target distribution.121

Below, we propose a relaxation of it, which we will use to show the validity of our method.122

Theorem 2 (Relaxation of assumption A.1). Theorem 1 holds if assumption A.1 is relaxed to the123

case that C contains sets that are uniquely determined with density level sets of PF and PG up to a124

set C such that125

∀C′∈2C PF (C
′) = PG(C

′), (8)

and let r := PF (C) = PG(C), then the supremum in statement S.2 is restricted to [0, 1− r].126

See proof in Appendix A .127

3 Kolmogorov–Smirnov GAN128

For the remainder of the paper, we will consider PF as the target distribution represented by a dataset129

{xF }, and PG as the approximate distribution that we want to train by minimizing the Generalized130

KS distance in eq. (5) with Stochastic Gradient Descent. We model PG as a pushforward gθ#PZ of131

a simple (e.g., Gaussian, or Uniform) latent distribution PZ supported on Z , with a neural network132

gθ : Z → X , parameterized with θ, which we call the generator.133

The major challenge in utilizing eq. (5) is the necessity of finding the CP,C(α) terms which is an134

optimization problem on its own. The idea that we propose in this work is to amortize the procedure135

by modeling the generalized quantile functions CPF ,C(α) and CPG,C(α) with additional neural136

networks which have to be trained in parallel to the generator gθ. Therefore, our method is based137

on adversarial training [13], where optimization proceeds in alternating phases of minimization138

and maximization for different sets of parameters. Hence the name of the proposed method, the139

Kolmogorov–Smirnov Generative Adversarial Network.140

3.1 Neural Quantile Function141

The generalized quantile function defined in definition 1 is an infinite-dimensional vector function142

CP,C : [0, 1]→ C ∈ C. Such objects do not have an expressive, explicit representation that allows143

for gradient-based optimization. Therefore, we use an implicit representation inspired by density144

level sets in eq. (6). We propose to use neural level sets defined in definition 3 that are modeled by a145

neural network c : X → IR, which we will refer to as the critic.146

3There may be other sets C = CP,C(α) but Γp(λ) will certainly be one of them.
4In the sense defined in Polonik [38]
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Definition 3 (Neural level set). Given a neural network c : X → IR, the neural level set at level λ is147

defined as5148

Γc(λ) := {x : c(x) ⩽ λ}, and let Πc := {Γc(λ) : λ ∈ IR}. (9)

Neural level sets are used, for example, in image segmentation [6, 20] and surface reconstruction149

from point clouds [3]. They fit our application because for computing the Generalized KS distance in150

eq. (5), the explicit materialization of generalized quantiles is not required as long as the probability151

measure can be efficiently evaluated on the implicitly specified sets. We set C = Πc, and thus152

CP,Πc
(α) = Γc(λα), with λα = argminλ∈IR{λ : P(Γc(λ)) ⩾ α}. For a probability measure P′153

the following holds:154

P′ (CP,Πc
(α)) = Ex∼P′

[
1(−∞,λα](c(x))

]
, (10)

which shows that the terms in eq. (5) under neural level sets can be Monte-Carlo estimated given155

samples from the respective distributions. Assumption A.2 is satisfied by neural level sets by156

construction.157

The formulation of the Generalized KS distance in eq. (5) includes two generalized quantile functions158

CPF ,C(α) corresponding to target distribution PF and CPG,C(α) corresponding to the approximate159

distribution PG. Both have to be modeled with the respective neural networks cϕF
and cϕG

, where160

we use ϕ = {ϕF , ϕG} to denote the joint set of their parameters. In section 3.3, we show how to161

parameterize both critics with a single neural network. We set C = ΠcϕF
∪ΠcϕG

.162

3.2 Optimizing generator’s parameters θ163

The Generalized KS distance in eq. (5) is a supremum over a unit interval and two functions; thus, it164

can be upper-bounded as165

DGKS (PF ,PG) ⩽
∑

C∈{CPG,C,CPF ,C}

sup
α∈[0,1]

[|PF (C(α))− PG(C(α))|] . (11)

Next, we plug in C = ΠcϕF
∪ΠcϕG

to eq. (11) and use eq. (10) to get generator’s objective:166

Lg =
∑

cϕ∈{cϕG
,cϕF

}

sup
λ∈IR

[
|Ex∼PF

[
1(−∞,λ](cϕ(x))

]
− Ex∼PG

[
1(−∞,λ](cϕ(x))

]
|
]
. (12)

In practice, the expectations in eq. (12) are estimated on finite samples from the two distributions,167

i.e. {xF } mentioned before, and {xG} sampled from the approximate distribution PG using the168

reparametrization trick to facilitate backpropagation of gradients. Therefore, the two terms become169

step functions in λ, and the supremum is located on one of the steps. That way, a line search on IR170

reduces to a maximum over a finite set. To preserve the differentiability of the cost function calculated171

in this way, we apply Straight-through Estimator [4] in place of indication function 1. A schematic172

depiction of the process for a single critic is shown in fig. 1.173

3.3 Optimizing critics’ parameters ϕ174

By optimizing critics’ parameters ϕ, we want to satisfy assumption A.1 so that Generalized KS175

distance becomes a metric. For the problem posed in such a way, we lack supervision, i.e., we do176

not know the target sets’ shapes. However, we can reformulate the problem as an estimation of the177

density functions of the two considered measures PF and PG and use the obtained approximate178

density models to build level sets. We can constitute an optimization problem for such a task based179

solely on finite sets of samples, which we have for PF and can arbitrarily generate from PG. As180

the estimator, we propose to use the Energy-based model (EBM) [43], which, thanks to the lack of181

constraints in the choice of architecture, can be very expressive while having favorable computational182

complexity at inference. To carry out EMB training effectively, we will introduce a new min-max183

game, the “min phase” of which will turn out to be the initial objective in eq. (5), and in this way, we184

will close the adversarial cycle.185

Let the critic cϕF
(x) serve as the energy function. The density given by the EBM is then pcϕF

(x) =186

exp(−cϕF
(x))/ZcϕF

, where ZcϕF
=

∫
exp(−cϕF

(x))dx is the normalizing constant called partition187

5Please note that the direction of the inequality in eq. (9) is opposite of the one in eq. (6) which is a convention
that aligns the critic with the energy function of Energy-Based models.
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Algorithm 1: Learning a generative model by minimizing Generalized KS distance.
Input :Target distribution PF ; latent distribution PZ ; generator network gθ; critic network cϕ;

number of critic updates kϕ; number of generator updates kθ; score penalty weight β;
Output :Trained model PG approximating PF ;

1 repeat
2 for i = 1 to kϕ do
3 Draw batch {x} ∼ PF and {z} ∼ PZ ; // critic’s inner loop
4 Rc ← 1

|{z}|
∑

{z}∥∇xcϕ(gθ(z))∥22 + 1
|{x}|

∑
{x}∥∇xcϕ(x)∥22;

5 Lc ← 1
|{z}|

∑
{z} cϕ(gθ(z))− 1

|{x}|
∑

{x} cϕ(x);

6 Update ϕ by using ∂(Lc−βRc)
∂ϕ to maximize Lc − βRc;

7 for i = 1 to kθ do
8 Draw batch {x} ∼ PF and {z} ∼ PZ ; // generator’s inner loop
9 {cF } ← {cϕ(x) : {x}} and {cG} ← {cϕ(gθ(z)) : {z}};

10 {λ} ← {cF } ∪ {cG};
11 Lg,F ← max{λ}

∣∣∣ 1
|{z}|

∑
{cG} 1(−∞,λ](cG)− 1

|{x}|
∑

{cF } 1(−∞,λ](cF )
∣∣∣;

12 Lg,G ← max{λ}

∣∣∣ 1
|{x}|

∑
{cF } 1(−∞,−λ](−cF )− 1

|{z}|
∑

{cG} 1(−∞,−λ](−cG)
∣∣∣;

13 Lg ← Lg,F + Lg,G;
14 Update θ by using ∂Lg

∂θ to minimize Lg;

15 until not converged;
16 return gθ#PZ

function. The standard technique for learning the model given target data distribution PF is MLE,188

where the likelihood189

Ex∼PF
[log pcϕF

(x)] = Ex∼PF
[−cϕF

(x)]− logZcϕF
(13)

is maximized wrt ϕF . An unbiased estimate of the gradient of the second term can be obtained with190

samples from the EBM itself, typically achieved with MCMC sampling. Many approaches to avoid191

this expensive procedure have been described in the literature [43], and among them, the one based on192

adversarial training [23] is the most appealing to us. It introduces an auxiliary distribution Paux(F ),193

such that the gradient of eq. (13) wrt ϕF is approximated with the gradient of194

Ex∼PF
[−cϕF

(x)]− Ex∼Paux(F )
[−cϕF

(x)]. (14)

Consequently, an additional objective Laux(F ) must be introduced, the optimization of which will195

lead to the alignment of Paux(F ) and PcϕF
, where PcϕF

denotes the probability distribution with196

density pcϕF
(x). We take an analogous approach to estimate cϕG

(x).197

When we (i) set cϕG
(x) := −cϕF

(x), and (ii) repurpose PG as Paux(F ) and PF as Paux(G), we198

show in appendix A.2 that the MLE objectives for the critics – now, denoted as cϕ – simplify as199

Lc = Ex∼PG
[cϕ(x)]− Ex∼PF

[cϕ(x)], which is then maximized in an adversarial game against the200

Generalized KS distance in eq. (5).201

The standard approach for aligning the auxiliary distributions with their targets is to use the Kullback–202

Leibler divergence. We propose using the Generalized KS distance instead. We set Laux(F ) =203

DGKS

(
PG,Pcϕ

)
and Laux(PG) = DGKS

(
PF ,P−cϕ

)
. By analyzing these objectives in the fashion204

of section 3.2, we note that Laux(PG) is the same as our original objective DGKS (PF ,PG) – which is205

symmetric – when we approximate sampling from Pcϕ with the target distribution PF . Analogously206

for Laux(PG) where sampling from P−cϕ is approximated with PG. Therefore, we have shown that207

the auxiliary objectives are already integrated into the adversarial game.208

In practice, we find the score penalty regularizer of Kumar et al. [26], derived from the score209

matching objective, helpful to stabilize training. Therefore, we subtract it from Lc weighted by a210

hyperparameter β. In this way, we get a critic that is smoother and, therefore, generates regular level211

sets that facilitate optimization. We summarize the proposed training procedure in algorithm 1.212
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4 Discussion213

In section 3.3, where we justify the choice of the critic’s objective function, we refer to methods214

for training EBMs, which are approximate density distribution models. Thus, the reader can expect215

that our proposed critic cϕ in the limit of convergence of the algorithm will become a source of216

information about the density distribution of the target distribution PF accompanying the model that217

generates samples PG. However, this does not happen as a consequence of the design choice (i),218

that is, the setup of cϕF
= −cϕG

= cϕ. An EBM can only be equivalent to its inverse in the case219

of a uniform distribution. In addition, because of design choice (ii), during training, the critic is220

not evaluated outside of the support of PF and PG and, therefore, can reach arbitrary values there.221

Despite these observations, the Generalized KS distance present in our algorithm exposes sufficient222

conditions because of theorem 2.223

The feature distinguishing KSGAN from other adversarial generative modeling approaches is that224

regardless of the outcome of the critic’s inner problem, minimizing eq. (5) is justified because Gener-225

alized KS distance, despite not meeting assumption A.1, is a pseudo-metric [38]. For comparison,226

the dual representation of Wasserstein distance, used in WGAN [2] requires attaining the supremum227

in the inner problem.228

The distances used for training generative models all fall into either the category of f -divergences229

Df (PF ,PG) =
∫
A f (dPF /dPG) dPG or integral probability metrics (IPMs) DF (PF ,PG) =230

supf∈F |Ex∼PF
f(x)− Ex∼PG

f(x)|. The classical one-dimensional KS distance is an instance of231

IPM with F = {1(−∞,t]|t ∈ IR} or F = {1G−1(α)|α ∈ [0, 1]} when having access to the inverse232

CDF of one of the distributions based on eq. (2). One can see the Generalized KS distance from the233

perspective of IPM with F = {1C(α)|α ∈ [0, 1] & C ∈ {CPF ,C , CPG,C}}. Assuming direct access234

to CPF ,C and CPG,C , for example when both PF and PG are Normalizing Flows [24, 34], measuring235

the distance comes down to a line search.236

5 Related work237

The need to generalize the KS test, and therefore distance, to multiple dimensions arose naturally238

from the side of practitioners who collected such data and wished to test related hypotheses. It was239

first addressed by Peacock [35], where a two-dimensional test for applications in astronomy was240

proposed. It involves considering all possible orders in this space and using the one that maximizes241

the distance between the distributions. A modification of this procedure has been proposed by Fasano242

and Franceschini [11] where only four candidate CDFs have to be considered, causing the test to243

be applicable in three dimensions, with eight candidates, under similar computational constraints.244

Chronologically, the following approach was the one on which we base our work, proposed in Polonik245

[38] but made possible by the author’s earlier work [36, 37]. To the best of our knowledge, the first246

work that practically uses the theory developed by Polonik is Glazer et al. [12], which we recommend247

as an introduction to our work. It proposes applying the Generalized KS test based on the support248

vector machines for detecting distribution shifts in data streams.249

As an instance of the adversarial generative modeling family, our work is related to all the countless250

GAN [13] follow-ups. We highlight those that study the learning process from the perspective of251

the distance being minimized. The work of Arjovsky and Bottou [1] provides a formal analysis of252

the heuristic tricks used for stabilizing the training of GANs. The f -GAN [33] proposes a unified253

training framework targeting f -divergences, which relies on a variational lower bound of the objective254

that results in the adversarial process. Approaches relying on the integral probability metric include255

FisherGAN [32], the Generative Moment Matching Networks [29] based on MMD, just like the256

later, more sophisticated MMD GAN [28], and finally the Wasserstein GAN (WGAN) [2] with the257

WGAN-GP follow-up [16] which shares common features with our work. Our maximum likelihood258

approach to fitting the critic results in the same functional form of the loss as WGAN(-GP) uses. In259

addition, the score penalty we use is similar to the gradient penalty of WGAN-GP.260

6 Experiments261

We evaluate the proposed method on eight synthetic 2D distributions (see appendix B.1 for details)262

and two image datasets, i.e. MNIST [27] and CIFAR-10 [25]. We compare against other adversarial263
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Table 1: Squared population MMD (↓) between test data and samples from the methods trained on
65536 samples, averaged over five random initializations with the standard deviation calculated with
Bessel’s correction in the parentheses. The proposed KSGAN with kϕ = 1 performs on par with the
WGAN-GP trained with five times the budget kϕ = 5. See appendix D.1 for qualitative comparison.

Method (kϕ, kθ)

Distribution GAN (5, 1) WGAN-GP (5, 1) KSGAN (1, 1)

swissroll 0.00337 (0.001023) 0.00029 (0.000119) 0.00039 (0.000100)
circles 0.00298 (0.001501) 0.00027 (0.000215) 0.00049 (0.000240)
rings 0.00200 (0.001264) 0.00013 (0.000082) 0.00043 (0.000162)
moons 0.00141 (0.000757) 0.00035 (0.000136) 0.00053 (0.000189)
8gaussians 0.00357 (0.002719) 0.00035 (0.000248) 0.00032 (0.000277)
pinwheel 0.00166 (0.001451) 0.00027 (0.000184) 0.00040 (0.000086)
2spirals 0.00093 (0.000822) 0.00027 (0.000191) 0.00044 (0.000232)
checkerboard 0.00143 (0.000899) 0.00038 (0.000296) 0.00086 (0.000468)

methods, GAN and WGAN-GP, using the same neural network architectures and training hyper-264

parameters unless specified otherwise (see appendix C for details). All the quantitative results are265

presented based on five random initializations of the models. The source code for all the experiments266

is provided in anonymous code repository.267

In all KSGAN experiments, we relax the maximum in line 11 and line 12 of algorithm 1 with sample268

average. In all experiments, we re-use the last batch of samples from the latent distribution (and269

target distribution in the case of KSGAN) from the critic’s optimization inner loop as the first batch270

for the generator’s optimization inner loop.271

6.1 Synthetic distributions272

Analyzing adversarial methods on synthetic, low-dimensional distributions is not popular. However,273

we conduct such an experiment because we are interested in whether the model generates samples274

from the support of the target distribution and how accurately it approximates the distribution.275

Working with small-dimensional distributions, we do not have to be as concerned about the curse of276

dimensionality when calculating sample-based distances, and we can visually compare the resulting277

histograms.278

In table 1, we report the squared population MMD [15] between target and approximate distributions,279

computed with Gaussian kernel on 65536 samples from each distribution. Details about how we280

chose the kernel’s bandwidth can be found in appendix B.1. GAN and WGAN-GP fail to converge281

with kϕ = kθ = 1 (we do not report the results to economize on space); thus, we set kθ = 5 for them.282

The proposed KSGAN with kθ = 1 performs at a similar level to WGAN-GP, the better of the two283

former, despite using five times less training budget. We present additional results on the synthetic284

datasets in appendix D.1, which include performance with different training dataset sizes, non-default285

hyper-parameter setups for KSGAN, and histograms of the samples for qualitative comparison.286

6.2 MNIST287

We use the 50000 training instances to train the models, and based on visual inspection of the288

generated samples (reported in appendix D.2), we conclude that all the methods achieve comparable,289

high samples quality. To assess the quality of the distribution approximation, we use a pre-trained290

classifier on the same data as the generative models (details in appendix B.2). We run the same291

experiment on 3StackedMNIST [44], which has 1000 modes. We report the results in table 2.292

In this experiment, we set the training budget for all methods to kϕ = 1, kθ = 1 for a fair comparison.293

We find that all methods always recover all the modes with the standard MNIST target. However,294

GAN fails to distribute the probability mass uniformly between the digits. As the number of modes295

increases with the 3StackedMNIST target, GAN demonstrates its inferiority to other methods by296

losing 198 modes on average (four initialization cover approx. 985 modes, and one fails to converge,297

achieving only 98 modes). WGAN-GP and KSGAN consistently recover all the modes while being298

on par regarding KL divergence, which differs little between networks’ initialization.299
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Table 2: The number of captured modes and Kullback-Leibler divergence between the distribution
of sampled digits and target uniform distribution averaged over five random initializations with the
standard deviation calculated with Bessel’s correction in the parentheses. All the methods were
trained with the same budget kϕ = 1, kθ = 1. WGAN-GP and KSGAN cover all the modes in all
experiments while demonstrating low KL divergence.

MNIST 3StackedMNIST

Method (kϕ, kθ) # modes ↑ KL ↓ # modes ↑ KL ↓
GAN (1,1) 10 (0.00) 0.6007 (0.27550) 808 (396.91) 1.4160 (1.36819)

WGAN-GP (1,1) 10 (0.00) 0.0087 (0.00499) 1000 (0.00) 0.0336 (0.00461)
KSGAN (1,1) 10 (0.00) 0.0056 (0.00045) 1000 (0.00) 0.0362 (0.00534)

Table 3: Inception Score (IS) and Fréchet inception distance (FID) metrics averaged over five random
initializations with the standard deviation calculated with Bessel’s correction in the parentheses. All
the methods were trained with the same budget kϕ = 1, kθ = 1. The scores for the training dataset
are included in the top row, as “Real data” for reference. WGAN-GP and KSGAN perform similarly
on average, while KSGAN exhibits lower variance between networks’ initialization.

Method (kϕ, kθ) IS ↑ FID ↓
Real data 9.7256 5.8600

GAN (1,1) 2.1900 (0.08303) 47.6419 (10.6864)
WGAN-GP (1,1) 2.3464 (0.08397) 43.0660 (6.73299)

KSGAN (1,1) 2.3832 (0.04066) 39.8881 (2.42623)

6.3 CIFAR-10300

We use the 50000 training instances to train the models and report the generated samples in ap-301

pendix D.3. We train the models in a fully unconditional manner, i.e., not using the class information302

at all – contrary to many unconditional models that use class information in normalization layers.303

We quantify the quality of fitted models by computing the Inception Score (IS) [41] and Fréchet304

inception distance (FID) [18] from the test set and report the results in table 3 based on five random305

initializations. For reference, in the table, we include the IS of the training dataset and the FID306

between the training and test sets.307

In this experiment, we set the training budget for all methods to kϕ = 1, kθ = 1 for a fair comparison.308

All models fail to accurately approximate the target distribution, which is evident from a quantitative309

comparison in table 3 and a qualitative one in appendix D.3. KSGAN is characterized by the lowest310

variance between initializations among the methods considered.311

7 Conclusions and future work312

In this work, we investigated the use of Generalized Kolmogorov–Smirnov distance for training313

deep implicit statistical models, i.e., generative networks. We proposed an efficient way to compute314

the distance and termed the resulting model Kolmogorov–Smirnov Generative Adversarial Network315

because it uses adversarial learning. Based on the empirical evaluation of the proposed model, the316

results of which we report, we conclude that it can be considered as an alternative to existing models317

in its class. At the same time, we point out that many properties of KSGAN have not been studied,318

and we leave this as a future work direction.319

Interesting aspects to explore are the characteristics of learning dynamics with the number of generator320

updates exceeding the number of critic updates, alternative ways to train the critic, and alternative321

representations of generalized quantile sets. The natural scaling of the Generalized KS distance may322

also prove beneficial regarding the interpretability of learning curves, learning rate scheduling, or323

early stopping. In addition, we hope that our work will draw the attention of the machine learning324

community to the Generalized KS distance, applications of which remain to be explored.325
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A Proofs423

Theorem 1 (Necessary and sufficient conditions). Let v be a measure on (X ,A). Suppose that424

PF and PG are probability measures on (X ,A) with densities (with reference measure v) f and g425

respectively. Assuming that426

A.1 Πf ∪Πg ⊂ C;427

A.2 CPF ,C(α) and CPG,C(α) are uniquely determined6 in C with respect to v428

the following two statements are equivalent:429

S.1 PF = PG;430

S.2 DGKS (PF ,PG) = 0.431

Proof of Theorem 1. The S.1 =⇒ S.2 direction is trivial to show and works without satisfying the432

assumptions [38]. Therefore, we focus on showing that S.2 =⇒ S.1. Let433

SC(P) = {(v(C),P(C)) : C ∈ C} ⊂ IR+ × [0, 1], (15)

and denote with Γ(λ) the level set of density of P as defined in eq. (6), and let Π := {Γ(λ) : λ ⩾ 0}.434

Further, let S̃C denote the least concave majorant [5] to SC(P), that is, the smallest concave function435

from IR+ to [0, 1] lying above SC(P). S̃C is supported on the generalized quantiles of P in C, i.e. on436

the points (v(CP,C(α)),P(CP,C(α))). Finally, let ∂S̃C(P) be the intersection of the extremal points437

of the convex hull of SC(P) with the graph of S̃C . Given Π ⊂ C which we assume in A.1 for PF438

and PG, and in the light of remark 2 we have that for any set C such that (v(C),P(C)) ∈ ∂S̃C(P)439

there is a level λ for which C = Γ(λ), and it is equal the left-hand derivative of S̃C in the point v(C).440

From remark 1, we have that the silhouette fully characterizes P, and therefore ∂S̃C(P) does it as441

well.442

Eventually, we conclude the proof with the observation that given S.2, under Lemma 2.1 of Polonik443

[38] (where A.2 is utilized) we have that the extremal points of the convex hulls of SC(PF ) and444

SC(PG) are the same points, thus ∂S̃PF
(P) = ∂S̃PG

(P), and finally PF = PG.445

Theorem 2 (Relaxation of assumption A.1). Theorem 1 holds if assumption A.1 is relaxed to the446

case that C contains sets that are uniquely determined with density level sets of PF and PG up to a447

set C such that448

∀C′∈2C PF (C
′) = PG(C

′), (8)

and let r := PF (C) = PG(C), then the supremum in statement S.2 is restricted to [0, 1− r].449

Proof of Theorem 2. The statement in eq. (8) is equivalent to saying that PF = PG on (C, 2C).450

Analogously to the proof of theorem 1 we can show that PF = PG on (X \ C, 2X\C). By observing451

that probability measures are σ-additive, we conclude that PF = PG on (X ,A), and thus the result452

of theorem 1 holds.453

6In the sense defined in Polonik [38]
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A.1 Generalized KS distance satisfies triangle inequality454

Let us consider three probability measures PF , PG, and PH on a measurable space (X ,A).455

DGKS (PF ,PH) +DGKS (PH ,PG)

= sup
α∈[0,1]

C∈{CPF ,C,CPH,C}

[|PF (C(α))− PH(C(α))|] + sup
α∈[0,1]

C∈{CPH,C,CPG,C}

[|PH(C(α))− PG(C(α))|]

(i)
= sup

α∈[0,1]
C∈{CPF ,C,CPH,C,CPG,C}

[|PF (C(α))− PH(C(α))|] + sup
α∈[0,1]

C∈{CPH,C,CPG,C,CPF ,C}

[|PH(C(α))− PG(C(α))|]

= sup
α∈[0,1]

C∈{CPF ,C,CPH,C,CPG,C}

[|PF (C(α))− PH(C(α))|] + [|PH(C(α))− PG(C(α))|]

(ii)
⩾ sup

α∈[0,1]
C∈{CPF ,C,CPH,C,CPG,C}

[|PF (C(α))− PG(C(α))|]

= sup
α∈[0,1]

C∈{CPG,C,CPF ,C}

[|PF (C(α))− PG(C(α))|] = DGKS (PF ,PG)

In (i), we use the fact that the supremum of absolute difference in distribution coverage is maximized456

with the generalized quantile function of one of them. In (ii), we apply triangle inequality for absolute457

value. Thus we have shown that DGKS (PF ,PH) +DGKS (PH ,PG) ⩾ DGKS (PF ,PG) which is458

the triangle inequality for the Generalized KS distance.459

A.2 Objective for the critic460

Given two adversarial maximum likelihood objectives from Kim and Bengio [23], we (i) set461

cϕG
(x) := −cϕF

(x), and (ii) repurpose PG as Paux(F ) and PF as Paux(G), and show that:462

1

2
(Ex∼PF

[−cϕF
(x)]− Ex∼Paux(F )

[−cϕF
(x)]) +

1

2
(Ex∼PG

[−cϕG
(x)]− Ex∼Paux(G)

[−cϕG
(x)])

=
1

2
(Ex∼PF

[−cϕ(x)]− Ex∼PG
[−cϕ(x)] + Ex∼PG

[cϕ(x)]− Ex∼PF
[cϕ(x)])

= Ex∼PG
[cϕ(x)]− Ex∼PF

[cϕ(x)].

B Experiments details463

In this section, we provide additional details about experiments conducted in the paper that did not464

fit in the main text. All the models reported in the paper were trained under 12 hours on a single465

Nvidia GeForce GTX TITAN X GPU (12GB vRAM) with 32GB of RAM and 2 CPU cores. We466

report results based on 645 models trained, which amounts to 7740 GPU hours at most. We estimate467

that about three times as much computing time was used for preliminary experiments not reported in468

the paper.469

B.1 Synthetic470

The synthetic 2D distributions are adopted from the official code of Grathwohl et al. [14] – https:471

//github.com/rtqichen/ffjord. We randomly generate 65536 training and 65536 test instances472

from each distribution. In appendix D.1, we report the results of training the models with fewer473

instances but evaluated using the entire test set.474

We choose the bandwidth of the Gaussian filter in squared population MMD as the median L2475

distance between two samples, of 32768 instances each, from the simulator. The resulting values can476

be found in the code we provide with the paper.477
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Table 4: Architectures for synthetic 2D datasets.

z ∈ IR8 ∼ N (0, I)

Linear(bias=True), 8→ 512

ReLU

Linear(bias=True), 512→ 512

ReLU

Linear(bias=True), 512→ 512

ReLU

Linear(bias=True), 512→ 2

(a) Generator

Linear(bias=True), 2→ 512

LeakyReLU(slope=0.2)

Linear(bias=True), 512→ 512

LeakyReLU(slope=0.2)

Linear(bias=True), 512→ 512

LeakyReLU(slope=0.2)

Linear(bias=True), 512→ 1

(b) Critic

B.2 MNIST478

To detect the modes in the (3Stacked)MNIST experiments, we use a pre-trained classifier from479

PyTorch examples, trained for 14 epochs of the train set of the original MNIST dataset. We expect480

to find 10 and 1000 modes for the MNIST and 3StackedMNIST, respectively. We measure the KL481

divergence between the classifier’s output and discrete uniform distribution for both distributions.482

B.3 CIFAR-10483

We compute the Inception Score using the implementation from https://github.com/sbarratt/484

inception-score-pytorch. We compute the Fréchet inception distance using the implementation485

from https://github.com/mseitzer/pytorch-fid.486

C Architectures and hyper-parameters487

C.1 Synthetic488

For all of the methods and distributions, we use the same architecture, described in table 4, with489

spectral normalization [31] on linear layers for GAN. In all cases, we train the generator and critic490

with Adam(β1 = 0.5, β2 = 0.9) optimizer with a constant learning rate of 0.0001, without L2491

regularization or weight decay, for 128000 generator updates with batch size equal to 512. We use the492

standard loss for GAN, enforcing class 1 for real samples and 0 for generated samples. In WGAN-GP,493

we use 0.1 weight on gradient penalty (identified as a good value in preliminary experiments, which494

we do not report), and in KSGAN β = 1.0 as the weight for score penalty.495

C.2 MNIST496

For the MNIST experiments, we use the DCGAN [39] architecture, without batch normalization497

layers, with 128-dimensional latent Gaussian distribution. For the 3StackedMNIST distribution, we498

increase the number of input and output channels for the critic and generator, respectively. We train499

the generator and critic with Adam(β1 = 0.5, β2 = 0.9) optimizer with a constant learning rate of500

0.0001, without L2 regularization or weight decay, for 200000 generator updates with batch size501

equal to 50. In the case of GAN for 3StackedMNIST, we use a learning rate of 0.001 (identified as a502

good value in preliminary experiments, which we do not report). We use the503

flipped loss for GAN, enforcing class 0 for real samples and 1 for generated samples. In WGAN-GP,504

we use 10.0 weight on gradient penalty (identified as a good value in preliminary experiments, which505

we do not report), and in KSGAN β = 1.0 as the weight for score penalty.506
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Figure 2: Squared population MMD between approximate and test distribution as a function of the
number of training instances. Solid lines denote the average over five random initializations, and the
shaded area represents the two-σ interval. Best viewed in color.

C.3 CIFAR-10507

For the CIFAR-10 experiments, we use ResNet architecture from Gulrajani et al. [16]. We train508

the generator and critic with Adam(β1 = 0.0, β2 = 0.9) optimizer with a constant learning rate of509

0.0001, without L2 regularization or weight decay, for 199936 generator updates with batch size510

equal to 64. We use the511

flipped loss for GAN, enforcing class 0 for real samples and 1 for generated samples. In WGAN-GP,512

we use 10.0 weight on gradient penalty (identified as a good value in preliminary experiments, which513

we do not report), and in KSGAN β = 1.0 as the weight for score penalty.514

D Extended results515

In this section, we report additional experiment results that did not fit in the main text. This includes516

materials allowing a qualitative comparison of the trained models.517

D.1 Synthetic data518

In fig. 2, we report, extended relative to table 2 in the main text, a study of the quality of trained519

models as measured by the squared population MMD. Solid lines denote the average over five520

random initializations, and the shaded area represents the two-σ interval. KSGAN performs on par521

with WGAN-GP while being trained with a five times less training budget. In fig. 3, we show the522

histograms of 65536 samples from the models (a single random initialization), with a histogram of523

test data in the first column for reference. For KSGAN, in addition to the configurations included in524

table 2, we include one with a training budget matching that of GAN and WGAN-GP, and one with a525

training budget reduced by two, where the critic is updated only every second update of the generator.526

D.2 MNIST527

In fig. 4, we show samples from one of the random initializations reported in table 2 in the main text.528

All models demonstrate similar sample quality, while for GAN, the digit “1” is over-represented,529

which corresponds with the high KL in table 2.530
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Figure 3: Histograms of samples from distributions denoted on the top. Heatmap colors are shared
for all figures in each row. Best viewed in color.
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(a) GAN (1, 1)

(b) WGAN-GP (1, 1)

(c) KSGAN (1, 1)

Figure 4: Samples from the respective models trained on the MNIST dataset.
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(a) GAN (1, 1)

(b) WGAN-GP (1, 1)

(c) KSGAN (1, 1)

Figure 5: Samples from the respective models trained on the CIFAR-10 dataset. Best viewed in color.

D.3 CIFAR-10531

In fig. 5, we show samples from one of the random initializations reported in table 3 in the main text.532

All models demonstrate similar, low sample quality.533
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paper’s contributions and scope?537

Answer: [Yes]538

Justification: We provide a formal derivation of the proposed method, with all the steps539

described and justified. Claims about the empirical behavior of the proposed method are540

supported by the results of experiments reported in the main text and appendix.541

Guidelines:542

• The answer NA means that the abstract and introduction do not include the claims543

made in the paper.544

• The abstract and/or introduction should clearly state the claims made, including545

the contributions made in the paper and important assumptions and limitations. A546

No or NA answer to this question will not be perceived well by the reviewers.547

• The claims made should match theoretical and experimental results, and reflect548

how much the results can be expected to generalize to other settings.549

• It is fine to include aspirational goals as motivation as long as it is clear that these550

goals are not attained by the paper.551

2. Limitations552

Question: Does the paper discuss the limitations of the work performed by the authors?553

Answer: [Yes]554

Justification: We explicitly specify all the assumptions made regarding the theoretical part.555

In the main text, we admit that the empirical evaluation does not explore all the properties556

of the proposed method. We propose further lines of work that we consider promising based557

on our experience with the method.558

Guidelines:559

• The answer NA means that the paper has no limitation while the answer No means560

that the paper has limitations, but those are not discussed in the paper.561

• The authors are encouraged to create a separate "Limitations" section in their paper.562

• The paper should point out any strong assumptions and how robust the results are to563

violations of these assumptions (e.g., independence assumptions, noiseless settings,564

model well-specification, asymptotic approximations only holding locally). The565

authors should reflect on how these assumptions might be violated in practice and566

what the implications would be.567

• The authors should reflect on the scope of the claims made, e.g., if the approach568

was only tested on a few datasets or with a few runs. In general, empirical results569

often depend on implicit assumptions, which should be articulated.570

• The authors should reflect on the factors that influence the performance of the571

approach. For example, a facial recognition algorithm may perform poorly when572

image resolution is low or images are taken in low lighting. Or a speech-to-text573

system might not be used reliably to provide closed captions for online lectures574

because it fails to handle technical jargon.575

• The authors should discuss the computational efficiency of the proposed algorithms576

and how they scale with dataset size.577

• If applicable, the authors should discuss possible limitations of their approach to578

address problems of privacy and fairness.579

• While the authors might fear that complete honesty about limitations might be used580

by reviewers as grounds for rejection, a worse outcome might be that reviewers581

discover limitations that aren’t acknowledged in the paper. The authors should use582

their best judgment and recognize that individual actions in favor of transparency583
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play an important role in developing norms that preserve the integrity of the584

community. Reviewers will be specifically instructed to not penalize honesty585

concerning limitations.586

3. Theory Assumptions and Proofs587

Question: For each theoretical result, does the paper provide the full set of assumptions and588

a complete (and correct) proof?589

Answer: [Yes]590

Justification: All assumptions are explicitly mentioned, we believe our proofs are correct.591

In addition, in the theoretical part of our work, we rely on previously published results by592

other authors, which we always cite as a reference.593

Guidelines:594

• The answer NA means that the paper does not include theoretical results.595

• All the theorems, formulas, and proofs in the paper should be numbered and596

cross-referenced.597

• All assumptions should be clearly stated or referenced in the statement of any598

theorems.599

• The proofs can either appear in the main paper or the supplemental material, but if600

they appear in the supplemental material, the authors are encouraged to provide a601

short proof sketch to provide intuition.602

• Inversely, any informal proof provided in the core of the paper should be comple-603

mented by formal proofs provided in appendix or supplemental material.604

• Theorems and Lemmas that the proof relies upon should be properly referenced.605

4. Experimental Result Reproducibility606

Question: Does the paper fully disclose all the information needed to reproduce the main ex-607

perimental results of the paper to the extent that it affects the main claims and/or conclusions608

of the paper (regardless of whether the code and data are provided or not)?609

Answer: [Yes]610

Justification: Experiments (including the evaluation protocol) are described in detail in the611

main text and completed with more information in the appendix. In addition, we include a612

link to the repository containing the code that was used to conduct the experiments.613

Guidelines:614

• The answer NA means that the paper does not include experiments.615

• If the paper includes experiments, a No answer to this question will not be perceived616

well by the reviewers: Making the paper reproducible is important, regardless of617

whether the code and data are provided or not.618

• If the contribution is a dataset and/or model, the authors should describe the steps619

taken to make their results reproducible or verifiable.620

• Depending on the contribution, reproducibility can be accomplished in various621

ways. For example, if the contribution is a novel architecture, describing the622

architecture fully might suffice, or if the contribution is a specific model and623

empirical evaluation, it may be necessary to either make it possible for others624

to replicate the model with the same dataset, or provide access to the model. In625

general. releasing code and data is often one good way to accomplish this, but626

reproducibility can also be provided via detailed instructions for how to replicate627

the results, access to a hosted model (e.g., in the case of a large language model),628

releasing of a model checkpoint, or other means that are appropriate to the research629

performed.630

• While NeurIPS does not require releasing code, the conference does require all631

submissions to provide some reasonable avenue for reproducibility, which may632

depend on the nature of the contribution. For example633
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(a) If the contribution is primarily a new algorithm, the paper should make it634

clear how to reproduce that algorithm.635

(b) If the contribution is primarily a new model architecture, the paper should636

describe the architecture clearly and fully.637

(c) If the contribution is a new model (e.g., a large language model), then638

there should either be a way to access this model for reproducing the639

results or a way to reproduce the model (e.g., with an open-source dataset640

or instructions for how to construct the dataset).641

(d) We recognize that reproducibility may be tricky in some cases, in which642

case authors are welcome to describe the particular way they provide643

for reproducibility. In the case of closed-source models, it may be that644

access to the model is limited in some way (e.g., to registered users), but it645

should be possible for other researchers to have some path to reproducing646

or verifying the results.647

5. Open access to data and code648

Question: Does the paper provide open access to the data and code, with sufficient instruc-649

tions to faithfully reproduce the main experimental results, as described in supplemental650

material?651

Answer: [Yes]652

Justification: We include a link to the repository containing the code that was used to conduct653

the experiments. We use only publicly available data.654

Guidelines:655

• The answer NA means that paper does not include experiments requiring code.656

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/657

public/guides/CodeSubmissionPolicy) for more details.658

• While we encourage the release of code and data, we understand that this might659

not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply660

for not including code, unless this is central to the contribution (e.g., for a new661

open-source benchmark).662

• The instructions should contain the exact command and environment needed to663

run to reproduce the results. See the NeurIPS code and data submission guide-664

lines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more665

details.666

• The authors should provide instructions on data access and preparation, including667

how to access the raw data, preprocessed data, intermediate data, and generated668

data, etc.669

• The authors should provide scripts to reproduce all experimental results for the new670

proposed method and baselines. If only a subset of experiments are reproducible,671

they should state which ones are omitted from the script and why.672

• At submission time, to preserve anonymity, the authors should release anonymized673

versions (if applicable).674

• Providing as much information as possible in supplemental material (appended to675

the paper) is recommended, but including URLs to data and code is permitted.676

6. Experimental Setting/Details677

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-678

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the679

results?680

Answer: [Yes]681

Justification: Experiments (including the evaluation protocol) are described in detail in the682

main text and completed with more information in the appendix. In addition, we include a683

link to the repository containing the code that was used to conduct the experiments.684
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detail that is necessary to appreciate the results and make sense of them.688

• The full details can be provided either with the code, in appendix, or as supplemen-689

tal material.690

7. Experiment Statistical Significance691

Question: Does the paper report error bars suitably and correctly defined or other appropriate692

information about the statistical significance of the experiments?693

Answer: [Yes]694

Justification: All the evaluation metrics were computed on five random initializations. We695

report the average scores with standard deviation computed with Bessel’s correction.696

Guidelines:697

• The answer NA means that the paper does not include experiments.698

• The authors should answer "Yes" if the results are accompanied by error bars,699

confidence intervals, or statistical significance tests, at least for the experiments700

that support the main claims of the paper.701

• The factors of variability that the error bars are capturing should be clearly stated702

(for example, train/test split, initialization, random drawing of some parameter, or703

overall run with given experimental conditions).704

• The method for calculating the error bars should be explained (closed form formula,705

call to a library function, bootstrap, etc.)706

• The assumptions made should be given (e.g., Normally distributed errors).707

• It should be clear whether the error bar is the standard deviation or the standard708

error of the mean.709

• It is OK to report 1-sigma error bars, but one should state it. The authors should710

preferably report a 2-sigma error bar than state that they have a 96% CI, if the711

hypothesis of Normality of errors is not verified.712

• For asymmetric distributions, the authors should be careful not to show in tables713

or figures symmetric error bars that would yield results that are out of range (e.g.714

negative error rates).715

• If error bars are reported in tables or plots, The authors should explain in the text716

how they were calculated and reference the corresponding figures or tables in the717

text.718

8. Experiments Compute Resources719

Question: For each experiment, does the paper provide sufficient information on the com-720

puter resources (type of compute workers, memory, time of execution) needed to reproduce721

the experiments?722

Answer: [Yes]723

Justification: In the appendix, we include information about the resources needed to repro-724

duce results reported in the paper, and give an estimate of resources spent on preliminary725

experiments not reported in the paper.726

Guidelines:727

• The answer NA means that the paper does not include experiments.728

• The paper should indicate the type of compute workers CPU or GPU, internal729

cluster, or cloud provider, including relevant memory and storage.730

• The paper should provide the amount of compute required for each of the individual731

experimental runs as well as estimate the total compute.732
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• The paper should disclose whether the full research project required more compute733

than the experiments reported in the paper (e.g., preliminary or failed experiments734

that didn’t make it into the paper).735

9. Code Of Ethics736

Question: Does the research conducted in the paper conform, in every respect, with the737

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?738

Answer: [Yes]739

Justification: None of the datasets used in the paper has been deprecated. We do not identify740

any concerns regarding societal impact and potential harmful consequences of our work.741

Guidelines:742

• The answer NA means that the authors have not reviewed the NeurIPS Code of743

Ethics.744

• If the authors answer No, they should explain the special circumstances that require745

a deviation from the Code of Ethics.746

• The authors should make sure to preserve anonymity (e.g., if there is a special747

consideration due to laws or regulations in their jurisdiction).748

10. Broader Impacts749

Question: Does the paper discuss both potential positive societal impacts and negative750

societal impacts of the work performed?751

Answer: [NA]752

Justification: Our work is foundational research, and thus does not have a direct positive or753

negative societal impact. We disclaim responsibility for the malicious use of our work.754

Guidelines:755

• The answer NA means that there is no societal impact of the work performed.756

• If the authors answer NA or No, they should explain why their work has no societal757

impact or why the paper does not address societal impact.758

• Examples of negative societal impacts include potential malicious or unintended759

uses (e.g., disinformation, generating fake profiles, surveillance), fairness consider-760

ations (e.g., deployment of technologies that could make decisions that unfairly761

impact specific groups), privacy considerations, and security considerations.762

• The conference expects that many papers will be foundational research and not763

tied to particular applications, let alone deployments. However, if there is a direct764

path to any negative applications, the authors should point it out. For example, it765

is legitimate to point out that an improvement in the quality of generative models766

could be used to generate deepfakes for disinformation. On the other hand, it is not767
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enable people to train models that generate Deepfakes faster.769

• The authors should consider possible harms that could arise when the technology770

is being used as intended and functioning correctly, harms that could arise when771

the technology is being used as intended but gives incorrect results, and harms772

following from (intentional or unintentional) misuse of the technology.773

• If there are negative societal impacts, the authors could also discuss possible774

mitigation strategies (e.g., gated release of models, providing defenses in addition775

to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a776

system learns from feedback over time, improving the efficiency and accessibility777

of ML).778

11. Safeguards779

Question: Does the paper describe safeguards that have been put in place for responsible780

release of data or models that have a high risk for misuse (e.g., pretrained language models,781

image generators, or scraped datasets)?782

Answer: [NA]783
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Justification: The paper poses no such risks.784

Guidelines:785

• The answer NA means that the paper poses no such risks.786

• Released models that have a high risk for misuse or dual-use should be released787

with necessary safeguards to allow for controlled use of the model, for example by788

requiring that users adhere to usage guidelines or restrictions to access the model789

or implementing safety filters.790

• Datasets that have been scraped from the Internet could pose safety risks. The791

authors should describe how they avoided releasing unsafe images.792

• We recognize that providing effective safeguards is challenging, and many papers793

do not require this, but we encourage authors to take this into account and make a794

best faith effort.795

12. Licenses for existing assets796

Question: Are the creators or original owners of assets (e.g., code, data, models), used in797

the paper, properly credited and are the license and terms of use explicitly mentioned and798

properly respected?799

Answer: [Yes]800

Justification: All the creators of assets are properly credited in the paper and the code.801
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• The answer NA means that the paper does not use existing assets.803

• The authors should cite the original paper that produced the code package or804
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• The authors should state which version of the asset is used and, if possible, include806

a URL.807

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.808

• For scraped data from a particular source (e.g., website), the copyright and terms809
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• If assets are released, the license, copyright information, and terms of use in811
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determine the license of a dataset.814
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13. New Assets819
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Answer: [NA]822

Justification: The paper does not release new assets.823
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• The answer NA means that the paper does not release new assets.825

• Researchers should communicate the details of the dataset/code/model as part of826
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license, limitations, etc.828

• The paper should discuss whether and how consent was obtained from people829

whose asset is used.830

• At submission time, remember to anonymize your assets (if applicable). You can831

either create an anonymized URL or include an anonymized zip file.832
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14. Crowdsourcing and Research with Human Subjects833
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well as details about compensation (if any)?836
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Justification: The paper does not involve crowdsourcing nor research with human subjects.838
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• The answer NA means that the paper does not involve crowdsourcing nor research840
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approvals (or an equivalent approval/review based on the requirements of your country or852
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Answer: [NA]854

Justification: The paper does not involve crowdsourcing nor research with human subjects.855

Guidelines:856
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with human subjects.858

• Depending on the country in which research is conducted, IRB approval (or equiv-859

alent) may be required for any human subjects research. If you obtained IRB860

approval, you should clearly state this in the paper.861

• We recognize that the procedures for this may vary significantly between institutions862

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and863

the guidelines for their institution.864

• For initial submissions, do not include any information that would break anonymity865

(if applicable), such as the institution conducting the review.866
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