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Abstract

Test-Time Adaptation (TTA) adjusts models using unlabeled test data to handle
dynamic distribution shifts. However, existing methods rely on frequent adaptation
and high computational cost, making them unsuitable for resource-constrained
edge environments. To address this, we propose SNAP, a sparse TTA framework
that reduces adaptation frequency and data usage while preserving accuracy. SNAP
maintains competitive accuracy even when adapting based on only 1% of the in-
coming data stream, demonstrating its robustness under infrequent updates. Our
method introduces two key components: (i) Class and Domain Representative
Memory (CnDRM), which identifies and stores a small set of samples that are
representative of both class and domain characteristics to support efficient adapta-
tion with limited data; and (ii) Inference-only Batch-aware Memory Normalization
(IoBMN), which dynamically adjusts normalization statistics at inference time by
leveraging these representative samples, enabling efficient alignment to shifting
target domains. Integrated with five state-of-the-art TTA algorithms, SNAP reduces
latency by up to 93.12%, while keeping the accuracy drop below 3.3%, even across
adaptation rates ranging from 1% to 50%. This demonstrates its strong potential
for practical use on edge devices serving latency-sensitive applications. The source
code is available at https://github.com/chahh9808/SNAP.

1 Introduction

Deep learning models often suffer performance degradation under domain shifts caused by environ-
mental changes or noise [37]. Test-Time Adaptation (TTA) offers a promising solution for domain
shifts by utilizing only unlabeled test data without requiring source data. While TTA algorithms
have advanced in complexity to improve accuracy in data streams [48, 30, 50, 53, 31, 43], they are
typically designed for resource-rich servers, overlooking the computational limitations crucial for
real-world deployment. Operations such as backpropagation, data augmentation, and model ensem-
bling [50, 53, 55] result in substantial latency and memory consumption, making state-of-the-art
(SOTA) TTA methods inefficient for practical use.

For edge devices with limited computational power, such as mobile devices or IoT sensors, the
adaptation latency from TTA methods becomes a critical bottleneck, particularly in delay-sensitive
applications such as autonomous driving and real-time health monitoring. Moreover, the model must
keep up with the data stream in those applications, but high computational overhead could cause it to
miss critical samples, resulting in inference lags and reduced accuracy. This issue is exacerbated with
fast data streams, such as high-frame-rate videos or high-performance sensors. For example, even a

∗Corresponding authors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/chahh9808/SNAP


Vanilla TTA

TTA on 
Edge devices

Pre-trained
Model

Adapt 
batch

Timeline

Delaying

Sparse TTA Fitting

Latency: 6.7s

Acc: 81%

Adapt 
batch

Timeline

t
Online 

data stream

① ② ③

① ④ ⑦

④

① ③ ④ ⑤ ⑥ ⑦ ⑧②

*Adaptation Rate: 0.33

Latency: 2.1s

Acc: 69%

: Adaptation latency : Inference latency

Original TTA

TTA on 
Edge devices

Pre-trained
Model

Adapt 
batch

Timeline

Naive Sparse TTA

Latency: 6.7s

Acc: 81%

Adapt 
batch

Timeline

tOnline data stream

Latency: 2.1s

Acc: 69%

: Adaptation : Inference

Delay

*Adaptation Rate: 0.33

Figure 1: Comparison of average latency per batch and accuracy between the Original and Naïve
Sparse TTA approaches on edge devices processing an online data stream. With an adaptation rate of
0.33, adaptation occurs once every three batches, reducing latency proportional to the rate but leading
to a significant accuracy drop compared with fully adapting Original TTA.

slight delay in processing sensor data can lead to dangerous situations in autonomous driving. A high
adaptation latency accumulating with each batch not only undermines real-time performance but also
limits the potential of TTA algorithms in latency-sensitive applications (Section 3). In response to
this challenge, forward-only TTA methods [13, 29] propose adjusting lightweight components such
as prototypes or prompts during inference. While these mechanisms improve efficiency, their reliance
on fixed model parameters fails to adapt to dynamic distribution shifts [7, 53, 29]. Consequently, a
robust performance of backpropagation-based approaches across diverse conditions (Appendix B.10)
underscores the necessity of efficient model updates.

In online TTA scenarios where rapid response is required under strict resource constraints, Sparse
TTA (STTA) offers a practical compromise by reducing the frequency of adaptation rather than
eliminating it entirely. By adapting intermittently instead of at every batch, STTA significantly
reduces computational overhead and latency. However, naïvely reducing update frequency degrades
performance since only a limited data portion is utilized (Figure 1). Thus, the success of STTA hinges
on strategically selecting representative stream samples to enable effective adaptation under sparse
update schedules (detailed analysis in Section 5).

Existing sampling-based TTA methods are especially designed for handling dynamic data stream
such as non-i.i.d. [6, 31, 53] or noisy data [7]. However, they are not optimized for data efficiency
and continue to utilize a large proportion of samples. For example, EATA [30] reduces sample usage
by filtering out unreliable samples but experiences performance degradation when reductions become
too aggressive. Meanwhile, research in data-efficient deep learning has shown that selecting easy,
class-representative samples is effective at low sampling rates (e.g., below 0.4) [51, 2]. However,
these approaches depend on ground-truth labels, which are not available in TTA.

We propose SNAP: Sparse Network Adaptation for Practical Test-Time Adaptation, a low-latency
unsupervised domain adaptation framework for resource-constrained devices. SNAP balances
adaptation accuracy with computational efficiency through two key components: Class and Domain
Representative Memory (CnDRM) and Inference-only Batch-aware Memory Normalization (IoBMN).
CnDRM stores a pool of class-representative samples (high pseudo-label confidence, balanced across
predictions) and domain-representative samples (closest to the target domain centroid in feature
space). This approach enables the model to adapt effectively to domain shifts with minimal data
(Section 4.1). Meanwhile, IoBMN dynamically refines the normalization layers during inference
by utilizing CnDRM’s class-domain representative statistics to correct skewed feature distributions
at each inference step. This keeps the model aligned with the evolving data distribution, enabling
effective batch-wise adaptation without backpropagation (Section 4.2).

SNAP is a lightweight module that reduces latency while seamlessly integrating with existing TTA
methods, preserving their adaptation behavior. To assess its effectiveness, we integrated SNAP
with five SOTA TTA algorithms: Tent [48], EATA [30], SAR [31], CoTTA [50], and RoTTA [53].
We tested it on three widely-used TTA benchmarks (CIFAR10-C, CIFAR100-C, and ImageNet-
C [10]) across various adaptation rates (Section 5). We also validate SNAP on ImageNet-R [9] and
ImageNet-Sketch [49] to assess generalization (Appendix B.11).

In addition, we measured SNAP’s latency and memory usage on three popular edge de-
vices—Raspberry Pi 4 [38], Raspberry Pi Zero 2 W [39], and NVIDIA Jetson Nano [32]—to
assess its real-world applicability. SNAP significantly reduces latency while minimizing performance
degradation from existing TTA methods. On a Raspberry Pi 4 testbed, it reduced CoTTA’s latency by
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up to 93.12% at an adaptation rate of 0.1 in CIFAR10-C, with no loss in performance. Moreover,
SNAP maintained performance comparable to original TTA methods across adaptation rates from
0.01 to 0.5, achieving 77.12%–81.74% for Tent, close to the full adaptation accuracy of 80.43%.
SNAP also operates efficiently under memory constraints, with low memory overhead and seamless
integration with a memory-efficient TTA module [12], as detailed in Appendices B.7 and B.8.

2 Related work

Test-time adaptation. Test-time adaptation aims to improve model performance on out-of-
distribution data by using only the unlabeled test data stream to adapt the model. Test-time normaliza-
tion [28, 40] adjusts the batch normalization (BN) statistics using test data to improve performance.
Other works mainly involve updating the parameters of the model during test time. Tent [48] adapts
the affine parameters of the BN layers to minimize the entropy of its predictions. EATA [30] builds
upon Tent, sampling reliable and non-redundant samples and utilizing an anti-forgetting regularizer
for efficiency. Other works introduce more complex schemes, primarily to improve robustness against
more practical test-time scenarios. CoTTA [50] addresses a continually changing test-time environ-
ment by using weight-averaged and augmentation-averaged predictions with stochastic restoring.
SAR [31] filters samples with large and noisy gradients to stabilize the model during wilder test-time
scenarios. RoTTA [53] targets a practical test-time setting of changing distributions and correlative
sampling by introducing a memory bank and a teacher-student model. We further analyze how prior
TTA methods perform under sparse-update regimes and how our approach differs in Appendix B.3.

Test-time adaptation on edge devices. TTA on edge devices primarily inherit the challenges of
on-device learning:, including limited memory and reduced computational efficiency [21]. Several
memory-efficient TTA works have been proposed in this regard. MECTA [12] aims to reduce
the memory consumption of gradient-based TTA, proposing an adaptive normalization layer to
reduce the intermediate caches for backpropagation. EcoTTA [43] proposes memory-efficient
continual TTA by adapting lightweight meta networks instead of the originals to reduce the size of
intermediate activations. Despite works to promote memory-efficiency, the latency of TTA, especially
on resource-constrained edge devices, has been generally overlooked. While many adaptation-based
TTA [48, 30, 31, 53] update only the affine parameters for general time and memory concerns, they
still involve computationally-heavy operations every batch, which can lead to high latency on edge
devices. A recent work [1] introduces a more practical TTA evaluation protocol that penalizes slow
TTA methods by providing them with fewer samples for adaptation.

Data-efficient deep learning. Data-efficient deep learning methods enable deep learning models
to achieve competitive performance with less data. Among these methods, data selection, or data
sampling, involves utilizing a small subset of the training data in an attempt to match that of full-
dataset training. A branch of data-selection is score-based selection, which scores each sample
based on some predefined metric, such as a sample’s influence [16], difficulty [46, 34], prediction
confidence [35], or consistency [14], and selects samples with scores in a certain range. Another set
of data-selection methods involves optimization-based selection, which formulates an optimization
problem to find an optimal subset that can best approximate full-dataset training [26, 52, 36]. While
these approaches work well in their preconceived settings, they generally suffer performance drop
as their settings change, such as a change in sampling rates. More recent studies such as Moderate
Coreset [51] propose a more robust selection approach by using the distance of a sample to the class
center as a score criterion, for an effective representation of the dataset.

3 Preliminaries

Our work addresses the challenge of test-time adaptation latency on edge devices, where efficient,
low-latency inference must be achieved despite limited resources.

Test-time adaptation and its latency challenge on edge devices. In unsupervised domain adapta-
tion, the source domain data DS = XS ,Y is drawn from the distribution PS(x, y), while the target
domain data DT = X T ,Y follows PT (x, y), typically without known labels yj . Given a pre-trained
model f(·; Θ) on the source domain DS , TTA adjusts the model to the target distribution PT using
only target instances xj , updating the parameters Θ to reduce domain discrepancy [48].
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Figure 2: Component-wise latency and overall
accuracy comparison between full SOTA TTA
and SNAP (sparse update with frequency 0.1) on
CIFAR100-C, measured on Raspberry Pi 4. SNAP
matches accuracy with significantly lower cost.

On resource-constrained edge devices, frequent
adaptation poses a significant bottleneck. Our
experiments on a Raspberry Pi 4 [38] revealed
that existing TTA methods incur a minimum
latency of 3.83 seconds per batch (Figure 2),
severely limiting real-time inference for fast
data streams (e.g., autonomous driving [45, 22]).
Additional latency tracking for other devices is
reported in Appendix B.6. Even lightweight
TTA algorithms suffer from considerable back-
propagation overhead, creating bottlenecks on
resource-constrained devices without GPU-level
computation. More computationally intensive
methods like CoTTA, which depend on data
augmentation and ensembles, require over 70
seconds per adaptation step, rendering them im-
practical for edge devices (Figure 2).

A recent work [1] recognized latency as a crucial problem and proposed a TTA evaluation protocol
that penalizes methods slower than the data stream rate. Instead of penalizing a model for being slow,
we propose Sparse TTA, where the model adapts at sparse intervals to sustain real-time throughput.
As real deployments involve devices with different computational capabilities and data streams of
varying speeds, we believe a framework that effectively maintains various TTA methods’ performance
across different latency requirements is crucial.

Sparse test-time adaptation and adaptation rates. Sparse Test-Time Adaptation (STTA) lowers
the frequency of model updates, a key factor in reducing adaptation latency on resource-constrained
devices. Unlike conventional TTA methods that process full batches and incur significant overhead,
STTA updates the model using only a subset of batches (Figure 1). The core parameter of STTA, the
Adaptation Rate (AR), determines the proportion of batches or samples used for adaptation compared
to the Original TTA. By tuning the AR, STTA balances the performance and computational latency.
Furthermore, STTA’s periodic adaptation can be optimized by strategically distributing sparse model
updates across selected intervals during inference. This approach helps distribute the adaptation
overhead, smooths latency fluctuations across inference batches, and preserves overall performance.

4 Methodology

SNAP framework resolves the high latency and inefficiency issue of existing TTA methods. By
introducing a Sparse TTA (STTA) strategy combined with a novel sampling method, SNAP minimizes
adaptation delays while maintaining accuracy. The overall system, illustrated in Figure 3, consists
of two primary components: (i) Class and Domain Representative Memory (CnDRM) for efficient
sampling and (ii) Inference-only Batch-aware Memory Normalization (IoBMN) to correct feature
distribution shifts during inference. Together, these components enable effective STTA with minimal
computational overhead.

4.1 Class and Domain Representative Memory

CnDRM is a core component of SNAP that addresses the challenges of efficient data sampling
for STTA. As the adaptation rate directly impacts the number of samples used for adaptation, this
necessitates a careful sampling strategy to optimize performance with minimal data. Given this
limited sampling rate, CnDRM selects both class and domain-representative samples to maintain
model performance while minimizing adaptation overhead.

Motivation. Effective data sampling is essential for data-efficient deep learning, particularly when
only a few samples are available. While score-based methods that prioritize difficult samples perform
well at high sampling rates, selecting easy, class-representative samples is more effective at lower
rates [2]. Moderate Coreset [51] also demonstrates that selecting samples near the class center
improves performance in noisy-label settings, a principle that aligns with the STTA scenario where
ground truth is unavailable.
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Figure 3: Design overview of SNAP. The framework consists of two primary components: (a) Class
and Domain Representative Memory (CnDRM), which efficiently selects representative samples to
minimize adaptation overhead, and (b) Inference-only Batch-aware Memory Normalization (IoBMN),
which corrects feature distribution shifts during inference. Together, these components implement
the Sparse TTA (STTA) strategy, reducing latency while maintaining model accuracy.

In addition, on real-world deployments, latency constraints often limit adaptation frequency, requiring
models to function at low adaptation rates (e.g., 0.1). At such low rates, class-representative sampling
alone is insufficient (Table 2), as it fails to capture distributional shifts between source and target
domains. To overcome this limitation, we propose selecting both class- and domain-representative
samples to enhance adaptation efficiency in low-data environments. Detailed theoretical analysis on
the proposed efficient sampling strategy is in Appendix B.1.

Criteria 1: class representation. To ensure stable adaptation without ground truth labels, CnDRM
selects high-confidence samples, avoiding low-confidence samples that often lie near decision
boundaries and carry incorrect pseudo-labels. This ensures stable learning signals and reduces
error propagation from incorrect pseudo-labels, supporting more effective and stable adaptation
(Details in Appendix B.5). The confidence score C(x) for each sample x is calculated as: C(x) =
maxy∈Y p(y|x; Θ) where p(y|x; Θ) is the softmax probability for class y. Only samples with
confidence above a threshold τconf are retained. For a balanced representation across diverse classes,
CnDRM selects these high-confidence samples in a prediction-balanced manner. This helps maintain
the model’s overall classification capability by preventing bias towards certain classes when only
a low sample rate is available for adaptation. By leveraging both high confidence and prediction
balance, CnDRM effectively selects class-representative samples that are diverse and reliable, even
without access to ground-truth labels.

Criteria 2: domain representation. In addition to class-representative sampling, Cn-
DRM selects domain-representative samples to facilitate adaptation to new domain condi-
tions. Building on the efficient class-representative sampling criteria, we argue that select-
ing samples close to the domain centroid would enhance performance in STTA. Our prelim-
inary experiment results validate improved performance when selecting samples near the cen-
troid (Figure 4). For ImageNet-C Gaussian noise, TTA with the closest 20% of samples
achieved 26.65% accuracy, whereas the farthest 20% showed a lower accuracy of 18.52%.
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Figure 4: Sampling visualization and accuracy comparison
between the closest 20% and farthest 20% samples from the
domain centroid on ImageNet-C Gaussian noise.

As early layers in deep learning mod-
els tend to retain domain-specific fea-
tures [54, 19, 42], we utilize the hid-
den features of early layers to identify
domain-representative samples (Ap-
pendix B.4). Specifically, CnDRM
uses the feature statistics (mean and
variance) of the first normalization
layer to assess domain representation,
since domain discrepancies can be ef-
fectively mitigated through normaliza-
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tion adjustments using these statistics [28, 40]. Domain discrepancies in hidden features are substan-
tially reduced after passing through a single normalization layer, significantly minimizing domain
shift [20]. While deeper layers provide detailed information, using the first layer balances capturing
domain-specific information and maintaining computational efficiency.

The domain centroid cd is computed using a momentum-based update of batch statistics from the
normalization layer: µdomain ← (1 − β)µdomain + βµt and σ2

domain ← (1 − β)σ2
domain + βσ2

t ,
where µt and σ2

t are the mean and variance of the current batch t, and β is the momentum parameter.
In our preliminary study, we found that using only the mean and standard deviation values before
the first normalization was sufficient to calculate the domain centroid. The sampled instances
effectively represented the domain and were correctly positioned in the embedding space for each
criterion (Figure 4).

We formally define a domain-representative sample as one whose early-layer feature statistics are
closest to the domain centroid, as measured by the Wasserstein distance [47]. The Wasserstein distance
quantifies the similarity between two distributions by considering their mean and variance, evaluating
how well a sample represents the domain. It is useful for capturing domain characteristics, thus
widely used in domain generalization [42]. Following common practice in domain adaptation [20, 27],
we approximate channel-wise feature distributions as independent univariate Gaussians (i.e., with
diagonal covariance) to efficiently estimate mean/variance-level domain shifts, which yields the
following closed-form expression:

W (xt, cdomain) =
√
(µxt − µdomain)2 + (σxt − σdomain)2. (1)

For each sample xt, the feature statistics (µxt , σxt) are taken from the input to the normalization
layer. Further clarification and assumption details are provided in Appendix B.2.

Algorithm 1 Class and Domain Representative Memory (CnDRM) Management

Require: test data stream xt, memory M with capacity N , confidence threshold τconf , adaptation
rate 1/k

1: for batch b ∈ {1, . . . , B} do
2: Ŷb ← f(b; Θ)
3: for each sample xt in batch b do
4: ŷt ← Ŷb[t]
5: confidence← C(xt; Θ)
6: ct(µxt , σxt)← mean & variance of early feature
7: wxt

←W (xt, cdomain)
8: if confidence > τconf then
9: Add st(xt, ŷt, ct, wxt

) to M ▷ Add class-representative samples
10: if |M | > N then
11: L∗ ← class with most samples in M
12: if ŷt /∈ L∗ then ▷ Remove domain-centroid farthest sample
13: sfarthest ← argmaxsi∈M∧ŷi∈L∗ wxi

14: else
15: sfarthest ← argmaxsi∈M∧ŷi=ŷt wxi

16: Remove sfarthest from M

17: cdomain ← (1− β)cdomain + βct ▷ Update domain-centroid
18: Recalculate wsi for all si in M
19: if b mod k == 0 then ▷ Adaptation occurs every k batches
20: Update model Θ using samples in M

Memory management algorithm. CnDRM maintains a compact yet adaptive memory that jointly
preserves class balance and domain representativeness while keeping computational overhead min-
imal. To achieve this, the memory size is fixed to match the batch size for efficiency. Within this
limited capacity, samples are managed so that each class remains well-represented while the overall
memory distribution stays close to the domain centroid. Specifically, when the memory reaches its
capacity, the farthest samples from the domain centroid (those with the largest Wasserstein distance)
are replaced by new, high-confidence samples that better align with both class balance and domain
characteristics. This joint management ensures that the memory continually retains the most class-
and domain-representative samples under dynamic distribution shifts.
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Algorithm 1 implements these procedures: lines 8∼16 handle both class balancing and the remove
domain-centroid farthest sample operation, where the least representative sample (i.e., the one with
the largest Wasserstein distance within an overrepresented class) is discarded. Lines 17∼20 perform
the update domain-centroid operation using a momentum-based moving average (with β = 0.9) that
enables the centroid to smoothly adapt to the evolving feature distribution. This linkage clarifies how
CnDRM maintains a unified class-domain representative memory throughout continuous adaptation
on edge devices.

4.2 Inference-only Batch-aware Memory Normalization

Motivation. Sparse Test-Time Adaptation (STTA) requires models to adapt to domain shifts
with limited update opportunities. Consequently, stored adaptation batch statistics may become
misaligned with subsequent inference data when updates are skipped. Traditional normalization
methods, relying solely on test batch statistics, also struggle with such shifts. To address this, we
propose Inference-only Batch-aware Memory Normalization (IoBMN), which stabilizes adaptation by
leveraging representative memory statistics while selectively adjusting for distributional mismatches.
This approach ensures both robustness and adaptability in STTA, significantly improving model
stability, as demonstrated in our ablation study (Section 5).

Approach. Given a feature map f ∈ RB×C×L, where B is the batch size, C is the number of
channels, and L is the number of spatial locations, the batch-wise statistics µ̄c and σ̄2

c for the c-th
channel are calculated as follows:

µ̄c =
1

B × L

B∑
b=1

L∑
l=1

fb,c,l, σ̄2
c =

1

B × L

B∑
b=1

L∑
l=1

(fb,c,l − µb,c), (2)

where µ̄m and σ̄2
m are calculated from the most recent adapted CnDRM samples in the same way

with Equation 2, using the memory capacity M with m representing the memory. We assume that
µm and σ2

m follow the sampling distribution of the feature map size L and memory capacity M . The
corresponding variances for the memory mean µm and variance σ2

m are calculated as:

s2µm
:=

σ̄2
m

L×M
, s2σ2

m
:=

2σ̄4
m

L×M − 1
. (3)

For the normalization process to adapt efficiently to the current inference batch statistics, IoBMN
corrects (µ̄m, σ̄2

m) only when µ̄c (and σ̄2
c ) significantly differ from µ̄m (and σ̄2

m) through soft
shrinkage function:

µIoBMN
m = µ̄m + Sλ(µ̄c − µ̄m;αsµm), (σIoBMN

m )2 = σ̄2
m + Sλ(σ̄

2
c − σ̄2

m;αsσ2
m
), (4)

where α ≥ 0 in IoBMN controls the reliance on the normalization layer statistics. A larger α gives
more weight to the last adapted memory normalization statistics, whereas a smaller α emphasizes the
current inference batch normalization statistics. The soft shrinkage function Sλ(x;λ) is defined as:

Sλ(x;λ) = sign(x) ·max(|x| − λ, 0), (5)
where λ is the threshold and x is the input. The function allows for proportional adjustments based on
the magnitude of the values, where smaller values are adjusted less and larger values more, preserving
the critical information inherent in the adapted memory normalization statistics.

Finally, the output of the IoBMN for each feature fb,c,l is computed as:

IoBMN(fb,c,l; µ̄m, σ̄2
m, µIoBMN

m , (σIoBMN
m )2) := γ · fb,c,l − µIoBMN

m√
(σIoBMN

m )2 + ϵ
+ β, (6)

where γ and β are learnable affine parameters of normalization layer, and ϵ is a small constant added
for numerical stability. In our experiments, we chose α as 4 to handle various out-of-distribution
scenarios effectively. The parameter s is a hyperparameter that determines the degree of adjustment
desired and can be tuned based on specific requirements.

IoBMN utilizes CnDRM’s class-domain representative statistics and adjusts them based on the current
inferencing batch statistics. This dual-statistic approach allows IoBMN to correct the outdated and
skewed distribution of the memory, ensuring alignment with the data distribution at each inference
point. By leveraging the statistics of the data used during model update points, IoBMN adapts
effectively without significant computational overhead. Additionally, this method mitigates the
performance degradation caused by the prolonged intervals between adaptations so that the model
remains well-aligned with the evolving data distribution.
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Table 1: Classification accuracy (%) and latency per batch (s) measured on a Raspberry Pi 4, compar-
ing with and without SNAP (AR=0.1) on CIFAR100-C (ResNet18) and ImageNet-C (ResNet50).
Bold numbers indicate the highest accuracy on the sparse setting. Extended results for CIFAR10-C
and other ARs (0.01, 0.03, 0.05, 0.3, and 0.5) are in Appendix C.

Methods Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg. ∆(Acc.) Lat.

CIFAR100-C
Tent 46.71 48.06 40.98 65.19 44.10 62.78 63.95 55.43 55.46 59.32 67.43 63.83 53.89 59.40 49.91 55.76 - 4.54

+ STTA 43.55 44.25 37.95 62.56 41.80 59.45 62.13 53.04 51.60 56.76 64.60 61.19 51.01 56.42 46.28 52.84 (-2.92) 3.34
+ SNAP 46.51 47.68 39.92 65.39 44.14 63.29 64.53 55.20 55.55 59.71 68.05 64.90 53.91 59.28 49.58 55.84 (+0.08) 3.67

CoTTA 42.14 42.92 37.92 55.40 41.01 55.18 55.39 49.46 50.61 50.86 61.35 47.44 48.69 54.38 48.11 49.39 - 74.77
+ STTA 28.53 29.53 26.45 42.19 30.34 44.69 41.88 34.44 33.93 39.03 45.49 31.17 37.25 36.17 36.84 35.86 (-13.53) 4.94

+ SNAP 41.72 42.62 37.46 58.43 41.24 57.33 57.96 50.34 51.17 52.29 63.59 51.32 49.68 54.78 47.89 50.52 (+1.13) 4.95
EATA 38.42 39.96 32.64 62.35 38.73 59.93 61.07 50.50 50.79 55.30 64.38 60.63 49.66 53.63 43.02 50.74 - 4.25

+ STTA 38.41 39.03 32.29 61.07 38.45 58.21 60.62 49.59 49.19 54.23 62.88 57.39 49.00 53.01 42.05 49.70 (-1.04) 3.13
+ SNAP 40.62 41.53 34.31 64.08 40.29 61.32 63.04 52.00 51.77 56.85 65.98 61.96 51.05 55.67 44.80 52.35 (+1.61) 3.51

SAR 50.75 52.00 43.87 65.44 46.30 63.60 64.68 58.41 58.26 61.34 68.03 67.68 54.53 61.52 52.72 57.94 - 6.68
+ STTA 43.92 45.28 38.64 63.36 42.58 60.36 62.78 53.39 52.23 57.54 65.41 60.88 52.07 56.80 47.16 53.49 (-4.45) 2.95

+ SNAP 46.29 47.60 39.95 65.26 44.00 63.09 64.97 55.08 55.17 59.73 68.13 64.72 53.84 58.98 49.54 55.76 (-2.18) 3.09
RoTTA 38.54 39.85 33.73 63.45 40.74 60.54 62.03 51.61 51.75 56.20 65.14 61.55 51.22 54.42 42.50 51.55 - 6.71

+ STTA 36.28 37.12 31.38 61.20 38.36 58.26 60.30 49.20 48.21 53.54 62.80 56.78 49.61 52.28 41.26 49.11 (-2.44) 2.96
+ SNAP 37.83 38.42 32.38 63.73 39.72 61.32 62.58 51.38 51.18 55.61 65.70 61.39 51.36 54.51 42.85 51.33 (-0.22) 2.99

ImageNet-C
Tent 27.03 28.98 28.64 24.66 23.63 38.70 45.77 44.82 38.06 54.59 64.61 16.84 51.64 55.54 49.38 39.53 - 38.33

+ STTA 22.00 23.51 23.07 19.38 18.86 32.15 42.29 39.70 34.33 51.62 63.70 15.79 47.74 52.35 45.54 35.47 (-4.06) 18.01
+ SNAP 26.21 27.85 27.50 23.62 22.73 36.01 44.11 42.19 38.15 52.95 64.57 30.23 48.56 53.71 47.09 39.03 (-0.50) 18.76

CoTTA 13.12 13.98 13.94 12.44 12.18 23.74 35.22 31.78 30.26 44.40 62.40 15.13 40.42 45.26 36.53 28.72 - 300.23
+ STTA 10.97 11.92 11.98 11.45 11.38 22.39 34.96 30.88 29.89 44.09 61.96 13.08 40.20 45.27 36.71 27.81 (-0.91) 161.98

+ SNAP 15.13 16.03 15.91 13.86 14.02 24.90 36.51 32.56 31.81 46.02 63.60 15.69 41.94 46.78 38.03 30.19 (+1.47) 163.24
EATA 29.62 31.79 31.17 26.89 26.30 40.65 47.44 46.29 40.78 55.57 64.97 38.02 52.66 56.03 50.26 42.56 - 31.98

+ STTA 22.43 23.78 23.26 19.38 19.42 32.18 43.22 40.65 36.64 52.38 63.87 24.59 48.13 52.89 46.33 36.61 (-5.95) 16.00
+ SNAP 26.10 27.29 27.13 22.38 22.15 33.45 43.92 40.96 36.68 52.71 63.77 27.93 48.47 53.23 47.46 38.24 (-4.32) 17.45

SAR 29.23 31.14 29.88 29.29 27.39 39.76 44.13 45.98 29.39 55.13 63.71 17.34 52.31 56.09 49.35 39.34 - 78.15
+ STTA 26.12 27.56 26.93 22.51 23.35 36.03 44.48 43.19 37.26 53.82 64.15 19.87 50.78 54.78 48.43 38.62 (-0.72) 21.39

+ SNAP 30.28 31.97 31.30 26.67 26.31 39.66 46.08 45.43 40.26 54.76 64.62 36.12 51.26 55.42 49.63 41.99 (+2.65) 23.99
RoTTA 20.60 22.83 19.81 10.46 10.10 21.31 31.83 39.66 32.09 46.08 62.22 20.27 42.54 47.47 40.67 31.20 - 87.00

+ STTA 14.77 15.59 15.33 13.17 13.19 23.85 35.38 32.73 30.77 45.22 63.08 15.62 41.05 46.15 37.19 29.54 (-1.66) 45.98
+ SNAP 15.35 16.20 16.01 13.67 13.66 24.27 35.62 33.04 31.02 45.38 62.95 15.96 41.06 46.17 37.44 29.85 (-1.36) 47.47

5 Experiments

This section outlines our experimental setup and presents the results obtained under various STTA
settings. Refer to Appendix A for further details.

Scenario. We varied the Adaptation Rates (AR) to examine how different update frequencies
affect both model accuracy and latency under latency-constrained scenarios. In our setup, AR
controls how frequently the model is adapted and also corresponds to the memory sampling rate,
as the memory size equals the batch size. The main evaluation was run with diverse AR values:
0.01, 0.03, 0.05, 0.1, 0.3, and 0.5. We report the mean accuracy and standard deviation over three
random seeds. Latency was measured on three representative edge devices: Raspberry Pi 4 [38], Zero
2W [39], and Jetson Nano [32].

Dataset and model. We used three standard TTA benchmarks: CIFAR10-C, CIFAR100-C and
ImageNet-C [10] for main evaluation. These datasets include 15 different types of corruption with
five levels of severity, and we used the highest one. We employed ResNet18 [8] as the backbone
network, utilizing models pre-trained on CIFAR10 and CIFAR100 [18]. We also use ResNet50 [8]
and Vit-Base [4] pre-trained on ImageNet [3] from the TorchVision [25] library.

Baselines. SNAP is designed to integrate with existing TTA algorithms. Therefore, testing existing
TTA algorithms under different ARs serves as our baseline (implementation details, including
hyperparameters, are in Appendix A.1). We selected five SOTA TTA algorithms: (i) Tent [48]
updates only BN affine parameters, (ii) CoTTA [50] updates the entire model parameters using a
teacher-student framework, (iii) EATA [30], (iv) SAR [31], and (v) RoTTA[53].

Overall performance across various adaptation rates. Table 1 and Appendix C provide a perfor-
mance comparison of baseline state-of-the-art (SOTA) TTA methods and SNAP integration across
adaptation rates from 0.01 to 0.5 on CIFAR10/100-C and ImageNet-C. The results reveal that while
STTA reduces adaptation latency by up to 93.38%, conventional SOTA algorithms suffer significant
accuracy degradation in STTA settings. In contrast, SNAP effectively mitigates this performance drop.
By utilizing minimal updates with only a fraction of the samples, SNAP consistently outperforms
baseline methods and achieves accuracy comparable to fully adapted models. These findings highlight
SNAP’s ability to balance efficiency and performance, preserving or even improving classification
accuracy in sparse adaptation scenarios.
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Figure 5: Latency on Raspberry Pi 4 and CIFAR10-C ac-
curacy across adaptation rates. Due to SNAP’s negligible
overhead, solid and dotted lines overlap in the latency plot.
Marker size indicates standard deviation.

Figure 5 further illustrates that SNAP
maintains STTA performance even
at adaptation rates as low as 0.01
while significantly reducing latency.
In contrast, naïve STTA suffers sub-
stantial performance degradation as
the adaptation rate decreases. No-
tably, computationally complex and
latency-intensive method CoTTA ben-
efits more from SNAP. This is be-
cause CoTTA updates all model pa-
rameters, making it highly dependent
on an effective sampling strategy, un-
derscoring the effectiveness of Cn-
DRM. At higher adaptation rates (0.5
or 0.3), SNAP can even surpass fully adapted methods by selectively utilizing the most informative
samples, similar to existing sampling-based TTA methods [30, 31, 6, 7]. With sufficient samples and
update frequency, SNAP’s class-domain representative sampling filters harmful data points, further
improving performance. Overall, these results confirm that SNAP significantly reduces per-batch
latency while preserving accuracy, demonstrating its effectiveness in resource-constrained environ-
ments. Extended results on various adaptation rates and datasets (CIFAR10/100-C and ImageNet-C)
are reported in Appendix C.

Contribution of SNAP’s individual components. We conducted an ablative evaluation to under-
stand the effects of the individual components of SNAP (Table 2; more results on various adaptation
rates and datasets are in Appendix C.4). CRM denotes prediction-balanced sampling with a confi-
dence threshold, and CnDRM denotes both Class and Domain Representative sampling (the first
component of SNAP). For inference, the default uses test batch normalization statistics, EMA uses the
exponential moving average of the test batch, and IoBMN uses memory samples’ statistics corrected
to match that of the test batch (the second component of SNAP).

Table 2: Classification accuracy (%) comparison of
ablative settings on the STTA (AR=0.1). Perfor-
mance averaged over all 15 CIFAR10-C corruptions.

Methods Tent CoTTA EATA SAR RoTTA

Naïve 76.81 ±0.18 66.42 ±0.12 76.29 ±0.11 76.01 ±0.07 74.78 ±0.15

Random 77.08 ±0.14 65.61 ±0.08 76.59 ±0.10 76.33 ±0.13 75.01 ±0.16

LowEntropy 75.66 ±0.09 63.19 ±0.14 74.89 ±0.12 74.41 ±0.18 72.60 ±0.10

CRM 77.77 ±0.05 65.71 ±0.19 77.18 ±0.08 74.36 ±0.11 75.27 ±0.17

CnDRM 77.46 ±0.07 77.69 ±0.10 77.17 ±0.06 76.85 ±0.09 75.64 ±0.08

CnDRM+EMA 78.02 ±0.12 72.19 ±0.15 77.05 ±0.11 76.84 ±0.13 76.18 ±0.05

CnDRM+IoBMN 78.95 ±0.09 78.83 ±0.06 78.61 ±0.13 78.06 ±0.07 77.07 ±0.10

Contrary to the belief that low-entropy sam-
ples benefit TTA [30, 31], LowEntropy per-
formed worse than Rand for STTA, due to lim-
ited updates causing poor or slow convergence.
CRM, originally for data-efficient supervised
learning [2, 51], outperformed Rand but re-
mained inferior to CnDRM due to reliance
on uncertain pseudo-labels instead of ground
truth. The highest accuracy was achieved
with IoBMN, which mainly leverages memory
statistics and adapts minimally to each test batch. These indicate that combining CnDRM and IoBMN
in SNAP enhances performance in low-latency STTA.

Performance validation across diverse edge-devices. SNAP significantly reduces adaptation
latency across a range of edge devices. At an adaptation rate of 0.05, latency was reduced by up to
91.3% on Raspberry Pi 4 [38], 86.2% on Jetson Nano [32], and 93.7% on Raspberry Pi Zero 2 W [39].
This consistent trend across varying hardware confirms SNAP’s effectiveness in latency-sensitive edge
deployments. Complete results across all adaptation rates and devices are provided in Appendix B.6.

Memory overhead and compatibility with memory-efficient TTA. SNAP’s memory overhead
primarily comes from the memory buffer in CnDRM and statistics stored for IoBMN. Empirical
results confirm that this overhead is minimal, accounting for only 0.02% to 1.74% of the original
memory usage across all algorithms. Additionally, SNAP improves average memory efficiency by
reducing backpropagation frequency. Further theoretical and experimental analyses of memory usage
are provided in Appendix B.7. SNAP is also compatible with memory-efficient TTA modules like
MECTA [12]. Integrating MECTA with Tent + SNAP reduces peak memory usage by 32.08%,
showcasing its effectiveness in meeting both latency and memory constraints (Appendix B.8).
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Figure 6: Latency comparison of full (orig-
inal) and sparse (SNAP) TTA on ViT-
Base [4], ImageNet-C. Accuracy values are
annotated to the right of each bar.

SNAP on vision transformer. We validate SNAP
on ViT-Base [4] by adapting CnDRM and IoBMN
to instance-level layer normalization (LN), replacing
batch statistics. This confirms that our core strategies,
class-domain sample selection and normalization shift
mitigation, generalize to LN. SNAP achieves up to 2.9×
latency reduction while preserving or improving full
adaptation accuracy across all five baselines (Figure 6).
Details are in Appendix B.9.

Robustness under continuous and persistent distri-
bution shifts. SNAP adapts efficiently to evolving
domains by smoothly moving its domain centroid with
minimal overhead. In a continuous stream of corrup-
tions from ImageNet-C, it outperforms naïve STTA by
over 2.5% on average. We further assess long-term
robustness under temporally correlated and recurring shifts [11]. Combined with SNAP, accuracy
remains consistently above 50% over 10 adaptation rounds, whereas naive STTA alone degrades
sharply, dropping to 16.97%. These results highlight SNAP’s ability to maintain stable performance
across both continuous and persistent distribution changes. Details are in Appendices B.13 and B.14.

Robustness in single-sample (BS=1) adaptation scenario. In highly constrained environments
where the batch size is limited to one, SNAP maintains strong performance. It achieves 51.80%
accuracy with an adaptation rate of 0.1, closely matching the full SAR [31] baseline at 52.21% and
performing over 5× better than naïve STTA. CnDRM continues to effectively select informative
samples, while IoBMN leverages memory-based statistics to adaptively normalize each input under
this extreme regime. Further details are provided in Appendix B.15.

Impact of memory size and learning rate. SNAP demonstrates robustness to both memory sizes
and learning rates. It adapts effectively with a memory size equal to the batch size, as larger sizes offer
only 1∼2% marginal gains before saturation. Likewise, it outperforms all baselines across learning
rates, showing up to 5∼10% absolute gains under sparse adaptation. These results underscore SNAP’s
efficiency and stability under constrained adaptation. Full analyses are in Appendices B.16 and B.17.

6 Discussion and conclusion

Limitations and societal impacts. SNAP uses a fixed adaptation rate, but dynamically adjusting it
based on distribution shifts or system load could improve responsiveness. The confidence threshold
in CnDRM is also fixed as a simple safeguard, which may limit adaptability. Dynamically tuning this
threshold based on data characteristics could further enhance sampling efficiency. In addition, our
implementation reduces average latency by adapting sparsely across batches, rather than explicitly
optimizing backpropagation delay, due to PyTorch [33] constraints that require backpropagation to
run as a single block. Future work could explore distributing the backpropagation step allocation
across batches to further enhance applicability. Furthermore, deploying deep learning on edge devices
at scale can raise societal concerns, such as carbon emissions [41]. By lowering computational
overhead, SNAP helps mitigate these environmental impacts. It also reduces the need to transmit user
data to the server, supporting stronger privacy in real-world applications.

Conclusion. We highlight the often-overlooked issue of TTA latency, a critical factor for resource-
constrained edge devices. To address this, we propose SNAP, a lightweight STTA framework that
significantly reduces latency while preserving accuracy. SNAP leverages class-domain representative
memory for adaptation and optimizes inference by adapting normalization layers using memory to
account for domain shifts. Extensive experiments and ablation studies validate its effectiveness.
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A Experiment details

All experiments presented in this paper were conducted using three random seeds (0, 1, 2), and we
report the average accuracies along with their corresponding standard deviations. To ensure efficiency
in experimentation, accuracy measurements were obtained using NVIDIA GeForce RTX 3090 GPUs,
as the performance differences attributable to the random seed are negligible. Latency measurements
were mainly conducted on a Raspberry Pi 4 [38], equipped with a Quad-core Cortex-A72 (ARM v8)
64-bit SoC @ 1.8GHz CPU and 4GB RAM. In addition, two more edge-devices: NVIDIA Jetson
Nano [32] and Raspberry Zero 2 W [39] are also utilized for latency measurements.

A.1 Baseline implementation details

In this study, we utilized the official implementations of the baseline methods. To ensure consistency,
we adopted the reported best hyperparameters documented in the respective papers or source code
repositories as much as possible. Also, we present information about the implementation specifics of
the baseline methods and provide a comprehensive overview of our experimental setup, including
detailed descriptions of the employed hyperparameters.

We adopt hyperparameters from the original papers or the official code of the baselines for consistency.
To assess the generality of SNAP, the test batch sizes were set to 16 for all baseline methods to ensure
a fair comparison. To minimize overhead and maintain consistency with inference batches, we set
the size of CnDRM equal to the batch size. TTA is conducted in an online manner, with adaptation
or inference performed per batch. When there was a conflict between the implementation of SNAP
and certain components of the existing baseline methods, we prioritized SNAP’s features for fair
evaluation at the STTA setting.

Tent [48] We update the BN affine parameters using the SGD optimizer [24] with a learning rate of
l = 1e− 3 for CIFAR10/100C and l = 1e− 4 for ImageNet-C. For separate experimentation on the
ViT, we used a learning rate of l = 2e− 4.

CoTTA [50] We update all model parameters using the Adam optimizer [15] with a learning rate
of l = 1e− 4. Furthermore, we set CoTTA’s teacher model EMA factor to α = 0.99, the restoration
factor to p = 0.1, and the anchor probability to pth = 0.9.

EATA [30] We use the SGD optimizer with a learning rate of l = 1e − 4. We set the entropy
threshold as E0 = 0.4× ln |N |, where N is the total number of classes.

SAR [31] We use SAM [5] with the base optimizer as SGD with a learning rate of l = 1e− 3. For
fair evaluation, we replaced the sample filtering scheme with SNAP’s CnDRM.

RoTTA [53] We use the SGD optimizer with a learning rate of l = 1e − 3. For fair evaluation,
we replaced RoTTA’s RBN and CSTU with SNAP’s CnDRM and IoBMN. For the teacher-student
structure, we set the teacher model’s exponential moving average update rate as v = 1e− 3.

Finally, we list the hyperparameters specific to the components of SNAP. The confidence threshold
for CnDRM τconf is set to 0.4 for CIFAR10-C, 0.45 for CIFAR100-C, and 0.5 for ImageNet-C.
The entropy threshold for our ablation study τentr is set to log(10) × 0.40 for CIFAR10-C and
log(100)×0.40 for CIFAR100-C, as referenced in a previous work using entropy-based filtering [30].
Additionally, the parameters for the soft shrinkage function in IoBMN are fixed with α = 4 for Tent,
CoTTA, SAR, RoTTA, and α = 2 for EATA.

B Additional discussions

B.1 Theoretical analysis on class and domain representative sampling criteria

The sampling strategy in SNAP’s CnDRM module is grounded in theoretical insights from data-
efficient learning and generalization under constrained adaptation settings. Under latency-constrained
scenarios, models can only adapt intermittently. This raises the following question:
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Which subset of streaming samples yields the greatest adaptation gain when only a fraction
ρ = n/N of them can be used for weight updates?

Selection ratio and phase transition. Let ρ = n/N ∈ (0, 1] denote the adaptation ratio, where n
is the number of selected samples for model update out of N total seen test samples. Theoretical and
empirical studies [2, 44, 17] show that the optimal selection strategy varies significantly depending
on the value of ρ:

• When ρ > 0.6 (high adaptation rate), selecting low-confidence samples near decision
boundaries provides maximal information gain.

• When ρ ≤ 0.5 (sparse adaptation), selecting high-confidence, representative samples near
class or domain centroids leads to better generalization.

This dichotomy is supported analytically in [2], which shows that in underparameterized regimes,
boundary samples may inject noisy gradients and destabilize learning.

Illustrative example. Consider a binary classification task where inputs xi ∼ N (0, 1√
d
Id), and

labels are assigned by yi = sign(xi1). The Bayes-optimal classifier aligns with e1, the first basis
vector. Suppose we select a subset (XS , yS) ∈ Rd×n × {−1, 1}n and compute the ridge regression
solution:

wS = arg min
w∈Rd

∥yS −X⊤
S w∥2. (7)

As shown in prior work [2], in the sample-deficient regime (n ≪ d), the solution wS aligns best
with the true decision direction when trained on high-confidence samples. In contrast, in the sample-
sufficient regime (n≫ d), boundary samples become more beneficial for refining decision boundaries.

Sampling criterion under sparse adaptation. Based on this, the optimal update subset S∗ ⊂ Dtest

under ρ≪ 1 can be defined as:

S∗ = argmax
S

∑
xi∈S

∥f(xi)− µci∥22 s.t. ci = argmax
j

fj(xi), (8)

where µci is the estimated feature-space class centroid. This motivates our use of class- and domain-
representative memory (CnDRM), which prioritizes confident, centroid-aligned samples for parameter
updates under low-frequency adaptation.

Under sparse adaptation (ρ ≪ 1), selecting the most informative subset of test samples becomes
critical. Our method prioritizes samples that are both semantically reliable (class-representative) and
statistically aligned (domain-representative).

For the class-representative criterion, we follow insights from [2], which show that in the sample-
deficient regime, high-confidence samples, those far from the decision boundary, yield better general-
ization than boundary samples. Rather than explicitly computing class centroids, we approximate
class-representative samples by selecting those with the highest prediction confidence:

S∗class = {xi ∈ Dtest | Conf(xi) ≥ τ}, (9)

where Conf(xi) = maxj fj(xi) is the softmax confidence score and τ is a confidence threshold.

To additionally enforce domain-level representativeness, we compute the Wasserstein-2 distance
between each candidate sample and the estimated domain distribution. Specifically, each domain d is
modeled as a Gaussian N (νd,Σd), where:

νd =
1

|Dd|
∑

xi∈Dd

f(xi), Σd =
1

|Dd|
∑

xi∈Dd

(f(xi)− νd)(f(xi)− νd)
⊤. (10)

Each sample xi is treated as an empirical distribution N (µi,Σi) using a local batch of neighboring
features. The closed-form squared 2-Wasserstein distance between two Gaussians is given by:

W 2
2 (N (µi,Σi),N (νd,Σd)) = ∥µi − νd∥22 +Tr

(
Σi +Σd − 2(Σ

1/2
d ΣiΣ

1/2
d )1/2

)
. (11)
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Combining both criteria, our final selection strategy becomes:

S∗ = arg min
S⊂S∗

class

∑
xi∈S

W 2
2 (N (µi,Σi),N (νd,Σd)), (12)

i.e., we select a subset of high-confidence samples that are also distributionally aligned with the
estimated domain centroid. This ensures that parameter updates occur on samples that are both
semantically stable and statistically representative under test-time domain shift.

Practical implementation. In our system, we operate with ρ < 0.5 (e.g., update every two test
batches). While this reduces update opportunities, the degradation in performance is mitigated
via CnDRM’s informed sample selection. In addition, SNAP integrates IoBMN (Inference-only
Batch-aware Memory Normalization), which updates batch norm statistics from all incoming samples,
even if they are not used for weight updates. This reduces covariate shift and maintains normalization
stability across domains.

B.2 Assumptions and derivation of the Wasserstein formulation

The closed-form expression in Equation 1 assumes that feature distributions are Gaussian with
diagonal covariance. This section clarifies the underlying assumptions and derivation.

Distribution definition. The distribution in Equation 1 refers to the empirical distribution of scalar
feature activations per channel, rather than the input data distribution. We consider each channel’s
activation statistics (mean and variance) in a deep layer’s feature map.

Wasserstein approximation and assumptions. To compute the Wasserstein distance efficiently, the
feature distributions are approximated as univariate Gaussian distributions for each channel. These
distributions are assumed to be independent, corresponding to a diagonal covariance assumption.
The detailed assumptions are as follows:

• Gaussian assumption: Each channel’s activations are assumed to follow a Gaussian distri-
bution N (µ, σ2), which simplifies the formulation since Gaussian distributions are fully
determined by their mean µ and variance σ2. This approximation is commonly adopted in
deep learning, where normalized feature activations tend to exhibit near-Gaussian behavior
in high-dimensional feature spaces.

• Diagonal covariance: The covariance matrix for each Gaussian is assumed to be diago-
nal, implying independence across channels. This assumption is widely used in domain
adaptation and transport-based methods, as it reduces the computational complexity of full
covariance estimation while focusing on per-channel variance shifts.

• 2-Wasserstein distance for Gaussian distributions: Under these assumptions (independent
Gaussian distributions), the squared 2-Wasserstein distance between two univariate Gaussian
distributions N (µ1, σ

2
1) and N (µ2, σ

2
2) is given by:

W 2
2 = (µ1 − µ2)

2 + (σ1 − σ2)
2.

This closed-form expression enables efficient computation of the Wasserstein distance
without estimating full covariance matrices, which is computationally expensive.

Such approximations are widely adopted in the domain adaptation literature [20, 27], as they balance
computational efficiency and empirical performance while providing a meaningful measure of
domain-level similarity.

B.3 Comparison with prior TTAs under sparse update constraints

While prior TTA studies have partially explored using memory banks and the correction of Batch
Normalization (BN) statistics at inference time, our key contribution lies in systematically redesigning
these components for sparse-update regimes in resource-constrained environments, which impose
fundamentally different computational and statistical constraints.
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CnDRM vs. Prior memory-based sampling (RoTTA [53], NOTE [6], SAR [31], and EATA [30])
Previous methods assume frequent adaptation, updating every batch and using more than 50% of test
samples. They typically select temporally balanced or low-entropy samples for updates. In contrast,
our goal is Sparse TTA (e.g., 10% adaptation rate), where such filtering leaves too few useful samples
for effective adaptation. To address this, CnDRM avoids low-entropy filtering and instead selects
representative samples based on domain centroids and class confidence. This approach enables
efficient adaptation with minimal latency. Theoretical analysis (Appendix B.1) and ablation results
(Table 2, Appendix C.4) show that prior entropy-based filtering performs worse than even random
selection under sparse-update settings.

IoBMN vs. Instance-wise BN correction (NOTE [6]) NOTE corrects BN statistics per instance,
which introduces latency proportional to the number of test samples. In contrast, IoBMN leverages
domain-class statistics from CnDRM’s memory to correct batch BN statistics efficiently while
remaining compatible with batch inference. The memory statistics are adaptively shifted toward
batch statistics to mitigate skew from sparse updates. This design enhances computational efficiency
and normalizes using adaptation-involved samples, yielding consistent performance gains (Table 2,
Appendix C.4).

B.4 Domain influence in early layer representations
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Figure 7: PCA embedding of
early layer features for one do-
main from each of the four
main CIFAR10-C corruption
categories, showing clear sep-
aration between domains.

In deep learning models, early layers capture low-level features such
as textures, edges, and frequency components [54]. These features
are inherently domain-specific, making these layers more sensitive to
shifts in input data distribution—a critical challenge for tasks requir-
ing domain adaptation and generalization [19, 42]. This sensitivity
arises because early layers encapsulate domain-specific patterns that
may not generalize to new distributions. Under the covariate shift
assumption [37], while input distributions differ between source and
target domains, the conditional distribution of labels remains the
same. This discrepancy between input distributions makes early
layers particularly vulnerable to domain shifts.

Visualizing early layer feature embeddings using 2D PCA on CIFAR-
10C domains reveals distinct domain-specific patterns, highlighting
the significant influence of domain information in these representations (Figure 7). Our preliminary
experiments further confirm that sparse TTA, using the Wasserstein distance between moving batch
normalization statistics and instance-specific statistics derived from early layer hidden features,
can significantly improve performance. Selecting instances closer to the target domain distribution
center using this distance metric yields better adaptation results, as demonstrated by performance
comparisons between the top 20% and bottom 20% of samples (Figure 4). These findings emphasize
the crucial role of domain-sensitive early layers in achieving effective adaptation.

B.5 Analysis on confidence threshold on pseudo-label accuracy

We analyzed the impact of using a confidence threshold for pseudo-label selection by comparing ran-
dom sampling with high-confidence sampling across three benchmarks: CIFAR10-C, CIFAR100-C,
and ImageNet-C. Table 3 shows that high-confidence sampling consistently outperformed random
sampling, achieving significantly higher pseudo-label accuracy in all datasets. This result demon-
strates the effectiveness of selecting high-confidence samples to improve the quality of pseudo-labels,
thereby enhancing model adaptation under domain shift conditions.

Table 3: Pseudo-label accuracy comparison between random and high-confidence sampling on three
benchmakrs: CIFAR10-C, CIFAR100-C, and ImageNet-C. Bold numbers are the highest accuracy.

CIFAR10-C CIFAR100-C ImageNet-C

Random 69.91±0.31 45.30±0.20 23.90±0.19

HighConf 74.80±0.15 59.38±0.26 59.40±0.04
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B.6 Latency tracking of SNAP on diverse edge-devices

To evaluate the latency efficiency of SNAP on resource-constrained edge devices, we measured
the adaptation latency across three devices: NVIDIA Jetson Nano [32], Raspberry Pi 4 [38], and
Raspberry Pi Zero 2 W [39]. These experiments compared the latency of SNAP with the Original
TTA framework, specifically focusing on five state-of-the-art TTA algorithms: Tent [48], EATA [30],
SAR [31], RoTTA [53], and CoTTA [50]. The experiments were conducted at an adaptation rate
of 0.1, demonstrating the effectiveness of SNAP in reducing adaptation latency while maintaining
competitive accuracy. Figure 8 illustrates the latency performance for each device. It is evident
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Figure 8: Latency comparison between SNAP-TTA and Original TTA across five state-of-the-art TTA
algorithms (Tent, EATA, SAR, RoTTA, CoTTA) on three edge devices: (a) NVIDIA Jetson Nano,
(b) Raspberry Pi 4, and (c) Raspberry Pi Zero 2 W. SNAP-TTA demonstrates significant latency
reductions while maintaining competitive adaptation performance. The experiments were conducted
at an adaptation rate of 0.1.

that SNAP achieves a significant reduction in adaptation latency compared to the Original TTA
framework. Notably, the latency reduction was proportional to the adaptation rate, validating the
efficiency of SNAP in sparse adaptation scenarios. For instance, the latency for CoTTA was reduced
by up to 87.5% on the Raspberry Pi 4, emphasizing the practical benefits of SNAP in latency-sensitive
environments. Additionally, similar trends were observed across other devices, including the resource-
limited Raspberry Pi Zero 2 W. Since SNAP is hardware-agnostic, accuracy was not measured
separately for each device, and no accuracy differences are expected. The results confirm that SNAP
not only ensures substantial latency reductions but also adapts effectively to real-world conditions on
diverse edge devices, proving its suitability for deployment in latency-sensitive applications.

Table 4: Latency Measurements (AR=1, 0.3, 0.1, 0.05) on Jetson Nano [32].
Methods AR=1 AR=0.3 AR=0.1 AR=0.05

Tent 2.57 1.97 (-23.51%) 1.35 (-47.62%) 1.19 (-53.75%)
EATA 2.52 1.90 (-24.70%) 1.33 (-47.22%) 1.19 (-52.79%)
SAR 5.15 2.87 (-44.29%) 1.60 (-68.94%) 1.32 (-74.28%)
RoTTA 5.24 2.91 (-44.46%) 1.62 (-69.13%) 1.32 (-74.81%)
CoTTA 13.18 6.13 (-53.46%) 2.61 (-80.22%) 1.82 (-86.19%)

Table 5: Latency Measurements (AR=1, 0.3, 0.1, 0.05) on Raspberry Pi 4 [38].
Methods AR=1 AR=0.3 AR=0.1 AR=0.05

Tent 4.78 3.54 (-26.09%) 3.09 (-35.45%) 2.35 (-50.87%)
EATA 5.68 3.52 (-38.00%) 2.87 (-49.45%) 2.31 (-59.28%)
SAR 9.45 4.88 (-48.34%) 2.98 (-68.41%) 2.54 (-73.16%)
RoTTA 12.07 4.95 (-58.97%) 2.94 (-75.62%) 2.91 (-75.91%)
CoTTA 41.77 11.80 (-71.76%) 4.93 (-88.19%) 3.64 (-91.29%)

Table 6: Latency Measurements (AR=1, 0.3, 0.1, 0.05) on Raspberry Pi Zero 2 W [39].
Methods AR=1 AR=0.3 AR=0.1 AR=0.05

Tent 34.96 24.67 (-29.42%) 25.06 (-28.32%) 17.07 (-51.16%)
EATA 50.72 27.01 (-46.75%) 28.43 (-43.93%) 17.00 (-66.48%)
SAR 74.64 47.79 (-35.96%) 29.56 (-60.40%) 18.64 (-75.02%)
RoTTA 154.88 86.54 (-44.13%) 44.08 (-71.54%) 22.44 (-85.51%)
CoTTA 622.28 228.03 (-63.36%) 92.01 (-85.21%) 39.22 (-93.70%)

19



B.7 Memory overhead of SNAP

The SNAP framework achieves substantial latency reduction and accuracy improvements with
minimal memory overhead, even under resource-constrained scenarios like edge devices. In this
section, we present both a theoretical analysis of the memory requirements and empirical results
obtained from evaluations on a Raspberry Pi 4[38] (CPU-only edge device).

The memory overhead of SNAP arises from two main components: (1) the memory buffer in
Class and Domain Representative Memory (CnDRM) for storing representative samples, includ-
ing both feature statistics (mean and variance) and the raw image samples, and (2) the statis-
tics required for Inference-only Batch-aware Memory Normalization (IoBMN). For a batch size
B, the total theoretical memory overhead can be expressed as: Memory Overhead = B ×
(Image Size + 2× Feature Dimension× Bytes per Value)+Feature Dimension×Bytes per Value×
2. The last term accounts for the storage of IoBMN statistics (mean and variance for each feature
channel). The image size is calculated based on the dataset resolution and data type.

For ResNet18 on CIFAR10-C, CIFAR10 images have a resolution of 32× 32× 3 with each value
stored as 1 byte. For a feature dimension of 512 and batch size B = 16, the total overhead is:
Image Overhead = 16×(32×32×3×1) = 49, 152 bytes (48 KB), Feature Overhead (CnDRM) =
16 × (512 × 2 × 4) = 65, 536 bytes (64 KB), Feature Overhead (IoBMN) = 512 × 2 × 4 =
4, 096 bytes (4 KB). Thus, the total memory overhead is: Total Overhead = 48 KB + 64 KB +
4 KB = 116 KB.

For ResNet50 on ImageNet-C, ImageNet images have a resolution of 224 × 224 × 3, stored
as 1 byte per value. For a feature dimension of 2048 and batch size B = 16, the total
overhead is: Image Overhead = 16 × (224 × 224 × 3 × 1) = 12, 044, 928 bytes (11.5 MB),
Feature Overhead (CnDRM) = 16 × (2048 × 2 × 4) = 262, 144 bytes (256 KB),
Feature Overhead (IoBMN) = 2048 × 2 × 4 = 16, 384 bytes (16 KB). Thus, the total memory
overhead is: Total Overhead = 11.5 MB + 256 KB + 16 KB ≈ 11.77 MB.

Table 7 shows the empirical memory usage of SNAP compared to Original TTA methods (Tent,
EATA, CoTTA, SAR, and RoTTA). The results were averaged across three seeds of experiments and
represent the memory footprint observed in a CPU-only edge device, Raspberry Pi 4. While minor
variations in measurements are expected due to the nature of CPU memory footprint tracking, the
results robustly indicate that the actual memory overhead of SNAP on edge devices is extremely low
across all algorithms, ranging from 0.02% to 1.74%. Furthermore, while peak memory usage is either
slightly increased or remains comparable to Original TTA methods, the average memory usage of
SNAP is consistently lower. This is because SNAP performs backpropagation infrequently, which is
the most memory-intensive operation in TTA.

Table 7: Comparison of memory usage (Average Memory, Peak Memory, and Memory Overhead)
between Original TTA and SNAP (adaptation rate 0.3) across various methods (Tent, EATA, CoTTA,
SAR, and RoTTA) tested on Raspberry Pi 4. Bold numbers are the lowest memory usage.

Average Mem (MB) Peak Mem (MB) Mem Overhead (MB)
Methods Original TTA SNAP Original TTA SNAP SNAP - Original

Tent 764.24 751.35 822.93 828.46 5.52 (0.67%)
CoTTA 1133.52 1099.64 1211.21 1227.99 16.78 (1.13%)
EATA 816.69 749.95 847.73 862.51 14.78 (1.74%)
SAR 786.65 753.69 863.77 865.18 1.41 (0.02%)
RoTTA 933.23 871.64 972.23 983.94 11.71 (1.20%)

These findings demonstrate that SNAP’s memory overhead is negligible compared to its benefits
in latency reduction and accuracy improvements. By leveraging a small memory buffer for
representative samples and minimizing backpropagation operations, SNAP not only achieves a
lightweight memory profile but also becomes more efficient in terms of average memory usage
compared to Original TTA. This lightweight design, combined with its advantages in latency and
accuracy, underscores the practicality of SNAP for deployment in latency-sensitive applications on
edge devices.
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B.8 Integration of SNAP with memory-efficient TTA algorithm

This section evaluates the integration of SNAP with MECTA [12], a memory-efficient TTA algorithm,
to demonstrate its applicability for resource-constrained edge devices. The experimental setup follows
the evaluation settings presented in the MECTA paper to ensure a fair and consistent comparison.
Specifically, we analyze the performance of Tent and EATA, enhanced with MECTA and further
integrated with SNAP, using the ResNet50 model with a batch size of 64 on the ImageNet-C dataset.

Table 8 presents the classification accuracy and peak memory usage for Tent+MECTA and
EATA+MECTA configurations with and without SNAP. Integrating SNAP with Tent+MECTA
improves accuracy from 35.21% to 39.52%, while reducing peak memory usage by approximately
30% compared to the Tent baseline. Similarly, SNAP boosts the accuracy of EATA+MECTA from
35.55% to 42.86% while maintaining an efficient memory footprint.

Table 8: Comparison of classification (%) and memory peak (MB) in STTA with an adaptation rate of
0.1. MECTA significantly reduces memory consumption, and SNAP is applied alongside it to boost
the performance of sparse adaptation. The accuracy is the average over 15 corruptions in ImageNet-C.
Bold numbers indicate either the lowest memory usage or the highest accuracy.

Methods Accuracy (%) Max Memory (MB)

Tent 35.21±0.09 6805.26
+MECTA 37.62±0.16 4620.25 (-32.10%)

+ SNAP 39.52±0.13 4622.12 (-32.08%)

EATA 35.55±0.19 6541.02
+MECTA 41.41±0.37 4512.38 (-31.01%)

+ SNAP 42.86±0.20 4535.44 (-30.66%)

Further details are provided in Table 9, which evaluates the combination of SNAP with MECTA
across various corruption types and adaptation rates (AR = 0.3, 0.1, and 0.05). These results show
that SNAP consistently outperforms baseline configurations across all adaptation rates and corruption
types. This demonstrates the robustness of SNAP when integrated with MECTA and its suitability for
real-world applications.

By adhering to the evaluation settings of the MECTA paper, this study ensures high reliability
and comparability of results. The findings confirm that SNAP is highly compatible with MECTA,
significantly improving both accuracy and memory efficiency. This synergy highlights the potential
of combining SNAP and MECTA for deployment in resource-constrained environments such as edge
devices.

Table 9: Evaluation of SNAP with MECTA on ImageNet-C through Adaptation Rates(AR) (0.3, 0.1,
and 0.05). Bold numbers are the highest accuracy.

AR Methods Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg.

28.20 30.13 29.58 23.07 23.35 34.49 45.95 40.97 35.68 55.66 66.56 14.72 53.09 57.16 50.74 39.29Tent + MECTA ±0.30 ±0.41 ±0.08 ±0.22 ±0.47 ±0.13 ±0.13 ±0.15 ±0.41 ±0.04 ±0.06 ±0.47 ±0.18 ±0.05 ±0.15 ±0.22
30.49 31.98 31.66 26.29 26.19 38.47 47.38 43.79 40.12 56.38 66.81 28.87 53.53 57.61 50.86 42.03+ SNAP ±0.26 ±0.14 ±0.21 ±0.32 ±0.02 ±0.30 ±0.11 ±0.11 ±0.12 ±0.05 ±0.07 ±0.28 ±0.09 ±0.10 ±0.08 ±0.15
32.18 34.85 33.06 28.80 29.18 41.02 49.24 47.10 41.56 57.35 66.27 34.56 55.38 58.19 52.87 44.11EATA + MECTA ±0.60 ±0.49 ±0.31 ±0.22 ±0.18 ±0.26 ±0.08 ±0.20 ±0.25 ±0.12 ±0.05 ±0.12 ±0.10 ±0.04 ±0.26 ±0.22
33.67 35.76 34.86 30.35 30.29 42.78 49.55 47.46 42.32 57.50 66.18 39.08 55.38 58.35 52.72 45.08

0.3

+ SNAP ±0.19 ±0.24 ±0.10 ±0.11 ±0.04 ±0.06 ±0.10 ±0.10 ±0.05 ±0.15 ±0.06 ±0.81 ±0.16 ±0.12 ±0.02 ±0.15
24.94 26.73 25.63 21.11 21.46 32.11 44.05 38.22 36.36 53.92 66.48 18.50 50.80 55.67 48.33 37.62Tent + MECTA ±0.15 ±0.20 ±0.07 ±0.22 ±0.18 ±0.02 ±0.19 ±0.27 ±0.09 ±0.12 ±0.02 ±0.45 ±0.12 ±0.18 ±0.11 ±0.16
27.49 28.90 28.26 23.49 23.76 34.92 45.18 40.21 38.40 53.78 66.54 27.72 51.00 55.48 47.61 39.52+ SNAP ±0.08 ±0.14 ±0.16 ±0.17 ±0.12 ±0.06 ±0.13 ±0.09 ±0.18 ±0.14 ±0.03 ±0.20 ±0.20 ±0.13 ±0.17 ±0.13
29.42 31.72 29.44 24.41 25.48 37.04 47.10 43.60 39.43 55.95 66.42 28.85 53.70 57.34 51.20 41.41EATA + MECTA ±0.67 ±0.30 ±0.32 ±0.74 ±0.45 ±0.18 ±0.15 ±0.19 ±0.38 ±0.13 ±0.14 ±1.18 ±0.15 ±0.15 ±0.36 ±0.37
31.26 32.71 32.22 27.31 27.61 38.88 47.83 44.52 40.58 56.42 66.24 35.38 53.67 57.39 50.83 42.86

0.1

+ SNAP ±0.11 ±0.17 ±0.17 ±0.46 ±0.28 ±0.28 ±0.09 ±0.14 ±0.05 ±0.06 ±0.21 ±0.63 ±0.17 ±0.13 ±0.12 ±0.20
21.22 23.19 21.90 18.69 19.39 29.89 42.02 36.53 35.23 51.75 66.23 19.64 48.43 53.54 45.43 35.54Tent + MECTA ±0.13 ±0.22 ±0.13 ±0.18 ±0.20 ±0.13 ±0.10 ±0.22 ±0.05 ±0.15 ±0.04 ±0.27 ±0.03 ±0.13 ±0.11 ±0.14
23.93 25.37 24.10 20.42 21.14 31.83 42.68 37.53 36.31 51.42 66.19 23.84 48.62 53.20 44.57 36.74+ SNAP ±0.27 ±0.22 ±0.15 ±0.18 ±0.07 ±0.06 ±0.04 ±0.16 ±0.20 ±0.17 ±0.04 ±0.24 ±0.05 ±0.17 ±0.17 ±0.15
24.97 26.95 21.87 21.19 21.94 33.61 45.11 40.92 37.73 54.64 66.60 23.03 51.87 56.60 49.15 38.41EATA + MECTA ±0.42 ±0.27 ±3.29 ±0.90 ±0.45 ±0.08 ±0.11 ±0.19 ±0.42 ±0.10 ±0.07 ±0.59 ±0.35 ±0.25 ±0.23 ±0.51
28.39 30.10 29.45 24.32 25.12 35.54 46.04 41.87 39.16 55.12 66.61 30.34 52.06 56.42 49.11 40.64

0.05

+ SNAP ±0.57 ±0.38 ±0.22 ±0.20 ±0.07 ±0.20 ±0.27 ±0.07 ±0.15 ±0.01 ±0.09 ±0.34 ±0.24 ±0.11 ±0.07 ±0.20
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Table 10: Classification accuracy (%) on ImageNet-C through SNAP (AR=0.1) using ViT-Base [4].
Method Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg.

Tent 40.56 41.30 41.69 35.76 31.81 42.01 38.02 44.33 53.53 20.69 72.41 30.42 45.87 51.95 56.11 43.10
±0.11 ±0.28 ±0.22 ±0.15 ±0.07 ±0.26 ±0.13 ±0.18 ±0.06 ±0.25 ±0.14 ±0.21 ±0.17 ±0.12 ±0.29 ±0.19
40.98 41.72 42.18 37.16 32.30 42.89 38.44 46.19 52.50 53.11 72.25 39.25 46.77 51.53 55.99 46.22+ SNAP ±0.08 ±0.24 ±0.19 ±0.06 ±0.27 ±0.15 ±0.13 ±0.23 ±0.29 ±0.18 ±0.12 ±0.26 ±0.14 ±0.11 ±0.22 ±0.09

CoTTA 20.05 17.12 20.43 20.06 16.62 12.87 14.50 9.68 28.31 16.01 35.79 1.96 15.60 12.09 15.99 17.14
±0.16 ±0.20 ±0.21 ±0.14 ±0.25 ±0.13 ±0.12 ±0.23 ±0.27 ±0.19 ±0.20 ±0.11 ±0.22 ±0.29 ±0.17 ±0.18
34.85 33.35 36.21 31.54 25.77 35.57 32.96 42.23 55.10 51.63 71.72 5.86 42.18 39.96 52.27 39.41+ SNAP ±0.13 ±0.22 ±0.28 ±0.18 ±0.06 ±0.24 ±0.11 ±0.25 ±0.07 ±0.27 ±0.16 ±0.29 ±0.08 ±0.19 ±0.21 ±0.13

EATA 20.12 21.52 21.40 20.90 23.42 15.71 18.00 16.12 28.35 22.24 35.97 11.33 19.78 20.22 19.99 21.00
±0.14 ±0.17 ±0.21 ±0.09 ±0.20 ±0.10 ±0.27 ±0.11 ±0.24 ±0.16 ±0.22 ±0.15 ±0.29 ±0.18 ±0.23 ±0.12
40.74 43.22 43.11 40.63 44.59 51.58 50.63 54.77 58.32 61.50 73.91 33.85 60.19 63.35 63.01 52.23+ SNAP ±0.15 ±0.19 ±0.13 ±0.27 ±0.11 ±0.21 ±0.18 ±0.12 ±0.25 ±0.20 ±0.14 ±0.29 ±0.10 ±0.17 ±0.23 ±0.13

RoTTA 21.44 18.64 22.08 19.97 16.87 13.70 14.42 15.73 28.57 17.71 35.05 8.52 15.80 13.03 13.27 18.32
±0.14 ±0.21 ±0.13 ±0.18 ±0.22 ±0.09 ±0.27 ±0.15 ±0.19 ±0.24 ±0.26 ±0.13 ±0.20 ±0.11 ±0.25 ±0.10
35.68 34.60 36.86 31.20 25.81 36.24 33.47 42.72 55.50 51.74 71.84 17.84 42.86 42.24 52.67 40.75+ SNAP ±0.16 ±0.17 ±0.21 ±0.13 ±0.23 ±0.09 ±0.26 ±0.12 ±0.27 ±0.18 ±0.15 ±0.29 ±0.14 ±0.10 ±0.24 ±0.11

Table 11: SNAP accuracy and latency per batch, using Vit-Base [4]. Performance averaged over
ImageNet-C. Values in parentheses show the performance difference from full adaptation.

Accuracy (%) Latency per batch (s)Methods Original TTA SNAP (AR=0.1) Original TTA SNAP (AR=0.1)

Tent 39.53 ±0.14 46.22 ±0.13 (+6.69) 28.19 ±0.08 15.66 ±0.06 (-44.43%)
CoTTA 41.25 ±0.12 39.41 ±0.15 (-1.83) 523.26 ±0.27 182.20 ±0.18 (-65.18%)
EATA 48.43 ±0.11 52.23 ±0.13 (+3.79) 28.69 ±0.07 16.44 ±0.06 (-42.71%)
SAR 43.86 ±0.13 47.77 ±0.12 (+3.91) 44.28 ±0.09 17.76 ±0.07 (-59.90%)
RoTTA 42.93 ±0.15 40.75 ±0.14 (-2.18) 42.70 ±0.10 16.28 ±0.08 (-61.88%)

B.9 Modification for layer normalization of Vision Transformer

The main text describes the use of Batch Normalization (BN) statistics for calculating domain
centroids and centroid-instance distances, with subsequent adjustment of memory statistics to match
the target test batch using the Inference-only Batch-aware Memory Normalization (IoBMN) method.
Specifically, these calculations leverage the mean and variance across batches as follows:

µ̄c =
1

B × L

B∑
b=1

L∑
l=1

fb,c,l, σ̄2
c =

1

B × L

B∑
b=1

L∑
l=1

(fb,c,l − µb,c)
2, (13)

where B represents the batch size, L the number of spatial locations, and c the channel index.

However, modern models like Vision Transformer (ViT) utilize Layer Normalization (LN) instead
of BN. Unlike BN, which calculates statistics across the entire batch, LN normalizes each instance
independently by using the statistics calculated over individual feature dimensions. Specifically, for a
feature vector fb belonging to the b-th instance, LN computes:

µb =
1

C

C∑
c=1

fb,c, σ2
b =

1

C

C∑
c=1

(fb,c − µb)
2, (14)

where C is the number of channels. This difference implies that LN operates without batch-level
interactions, focusing solely on within-instance normalization, which makes the method inherently
more suitable for handling variable batch sizes, particularly in latency-sensitive applications like
those considered in our Test-Time Adaptation (TTA) setting.

Despite the differences between BN and LN, the fundamental mechanism of using feature statistics to
capture domain information remains valid. The key domain characteristics in early layer features are
preserved in both normalization types, enabling the construction of a domain centroid that reflects the
distributional characteristics of the test data. For LN, this centroid can be computed by aggregating
across instances instead of across batches:

µ̄LN
c =

1

M

M∑
b=1

µb, σ̄2LN
c =

1

M

M∑
b=1

σ2
b , (15)

where M is memory capacity. This modified approach allows the domain centroid to still represent
the overall domain-specific characteristics effectively, despite the lack of direct batch-level statistics.

Furthermore, this methodology extends seamlessly to other normalization layers, such as Group
Normalization (GN). In GN, the statistics are computed across smaller groups of channels within

22



each instance, but the procedure for aggregating these statistics to form a domain centroid remains
the same—by averaging the group-level statistics across instances.

To maintain the core concept of selecting domain-representative samples with minimal modifications,
we continue to use the memory of high-confidence domain-representative samples in the Inference-
only Batch-aware Memory Normalization (IoBMN) strategy. The adjustment for LN requires: 1.
Calculating LN-specific centroids as described in Equation 15. 2. Replacing BN statistics with LN
statistics in the IoBMN module, thereby aligning the feature normalization during inference with the
domain-representative information derived from memory.

The effectiveness of this modification was validated experimentally, as shown in Table 10, 11,
where ViT models using LN showed improved performance even under sparse TTA conditions. This
indicates that, with minimal adjustments, SNAP remains effective for ViT with LN. The core principle
of utilizing domain-representative statistics for aligning test-time feature distributions continues to
provide significant benefits, ensuring robust adaptation in shifting domains with limited latency and
computational overhead.

B.10 Comparison with forward-only TTA methods

Forward-only TTA methods, such as T3A [13] and FOA [29], aim to reduce computational burden by
removing gradient-based updates. Instead, they update lightweight components: class prototypes
in T3A and learned prompts in FOA. While these methods improve runtime efficiency, they exhibit
structural limitations that hinder their robustness under dynamic distribution shifts.

Table 12: Performance comparison between T3A [13] and FOA [29] against Tent [48] + SNAP
(adaptation rate 0.1) on ImageNet-C (i.i.d and non-i.i.d). Latency is measured on Raspberry Pi 4.

Dataset Method Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg. Lat.(s)

ResNet50

ImageNet-C
(i.i.d)

14.03 14.21 14.56 12.97 13.07 23.02 34.67 30.79 27.84 43.95 61.51 12.57 39.79 44.50 36.11 28.24 18.35T3A ±0.09 ±0.43 ±0.07 ±0.18 ±0.06 ±0.21 ±1.17 ±0.15 ±0.29 ±0.06 ±0.22 ±0.91 ±0.19 ±1.46 ±0.51 ±0.39 ±0.59
26.21 27.85 27.50 23.62 22.73 36.01 44.11 42.19 38.15 52.95 64.57 30.23 48.56 53.71 47.09 39.03 18.76Tent+SNAP ±0.14 ±0.19 ±0.16 ±0.10 ±0.15 ±0.23 ±0.17 ±0.12 ±0.21 ±0.18 ±0.11 ±0.27 ±0.15 ±0.13 ±0.26 ±0.19 ±0.30

ViT-Base
41.34 40.96 42.68 36.27 29.94 40.34 40.89 47.20 59.07 63.71 72.95 46.98 44.75 45.40 55.87 47.22 694.8FOA (K=28) ±0.21 ±0.39 ±0.20 ±0.06 ±0.27 ±0.34 ±0.35 ±2.03 ±1.56 ±0.14 ±0.07 ±0.12 ±0.14 ±0.38 ±0.38 ±0.51 ±8.41
37.53 35.84 39.36 34.25 27.45 37.85 34.43 43.65 56.10 62.84 71.79 39.38 44.29 41.33 53.06 43.94 81.43FOA (K=2) ±0.30 ±0.12 ±0.03 ±0.27 ±0.16 ±0.10 ±0.12 ±0.06 ±0.11 ±0.19 ±0.04 ±0.68 ±0.18 ±0.09 ±0.05 ±0.37 ±4.12
41.98 42.72 43.18 38.16 33.30 43.89 39.44 47.19 53.50 54.11 73.25 40.25 47.77 52.53 56.99 47.23 83.51Tent+SNAP ±0.12 ±0.22 ±0.13 ±0.11 ±0.13 ±0.21 ±0.18 ±0.09 ±0.18 ±0.20 ±0.08 ±0.25 ±0.17 ±0.12 ±0.24 ±0.16 ±0.32

ResNet50

ImageNet-C
(non-i.i.d)

11.75 11.94 11.44 11.30 10.98 19.98 31.30 27.16 24.51 38.35 56.31 10.89 37.41 42.95 32.52 25.25 18.82T3A ±0.10 ±0.38 ±0.06 ±0.22 ±0.05 ±0.17 ±1.34 ±0.12 ±0.27 ±0.07 ±0.18 ±1.02 ±0.23 ±1.39 ±0.49 ±0.42 ±0.57
24.00 24.69 24.78 21.37 21.15 32.20 42.83 39.26 35.41 51.17 62.89 21.25 46.95 52.31 45.60 36.39 18.98Tent+SNAP ±0.11 ±0.25 ±0.14 ±0.13 ±0.12 ±0.19 ±0.22 ±0.10 ±0.16 ±0.24 ±0.09 ±0.28 ±0.18 ±0.15 ±0.23 ±0.14 ±0.29

ViT-Base
38.36 36.23 39.47 33.07 25.35 36.44 35.80 42.86 55.45 61.67 70.60 39.87 41.81 43.05 52.42 43.50 710.2FOA (K=28) ±0.11 ±0.41 ±0.05 ±0.20 ±0.04 ±0.19 ±1.26 ±0.14 ±0.24 ±0.08 ±0.19 ±0.96 ±0.20 ±1.43 ±0.54 ±0.40 ±7.33
35.84 33.74 36.03 30.48 23.24 34.34 32.03 40.98 53.98 59.78 68.24 29.79 39.50 39.50 50.80 40.62 85.19FOA (K=2) ±0.17 ±0.00 ±0.81 ±0.09 ±0.04 ±0.04 ±0.06 ±0.06 ±0.07 ±0.09 ±0.04 ±0.22 ±0.03 ±0.07 ±0.10 ±0.13 ±5.84
38.02 38.31 40.22 35.37 30.20 40.17 37.20 44.57 54.78 52.01 73.19 24.68 45.64 47.08 55.66 43.81 87.54Tent+SNAP ±0.73 ±0.50 ±0.83 ±0.11 ±0.60 ±0.48 ±0.35 ±0.54 ±0.27 ±0.77 ±0.22 ±0.32 ±0.47 ±0.81 ±0.83 ±0.52 ±0.51

Prototype-based. T3A maintains a fixed feature extractor and updates per-class prototypes using
pseudo-labels from incoming samples. Although it avoids backpropagation, T3A accumulates a
growing support set of query features per pseudo-label to refine class-wise prototypes. This not
only increases memory usage, but also incurs non-negligible latency during inference, especially
when the number of classes is large (e.g., 1000-way classification in ImageNet) or when operating
on edge devices. Matching a test sample against all stored support features becomes increasingly
costly in such settings. As shown in Table 12, T3A achieves latency comparable to Tent+SNAP
but consistently performs worse in accuracy, especially under non-i.i.d. ImageNet-C streams. This
illustrates the limitation of relying solely on forward-only label-space correction without feature-level
adaptation.

Prompt-based. FOA [29] introduces learnable prompts to adapt ViT encoders without backpropa-
gation. However, it suffers from a trade-off between latency and accuracy, which is determined by
the number of forward passes (K) required per test sample. While FOA theoretically avoids gradients,
it performs K repeated forward steps to refine prompts, still incurring notable cost on edge devices.
As shown in Table 12, FOA with its default configuration (K = 28) incurs significantly higher latency
than Tent+SNAP, while achieving similar accuracy. Reducing K to 2 reduces latency to a comparable
level, but results in substantial performance degradation, showing strong sensitivity to prompt update
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depth. Moreover, FOA fails to generalize to CNNs, where the original paper [29] reports lower
performance than Tent due to structural misalignment with the ViT-specific prompt.

Conclusion. In contrast, SNAP with Tent performs sparse backpropagation on confidently selected
samples, striking a balance between low latency and high robustness. Despite using gradients, our
latency profiling shows that Tent+SNAP remains within the latency range of forward-only methods,
while outperforming them in accuracy across both i.i.d. and non-i.i.d. domains. This demonstrates
the efficacy of targeted feature-level adaptation over purely forward-only correction.

B.11 Robustness in challenging out-of-distribution domains

To validate SNAP under more visually challenging and abstract domain shifts, we additionally
apply SNAP to two nontrivial out-of-distribution datasets: ImageNet-R and ImageNet-Sketch.
These datasets feature semantic deformation (R), sketch-style abstraction (Sketch), and both differ
significantly from typical texture- and structure-rich natural images seen in ImageNet.

We test SNAP with an adaptation rate (AR) of AR=0.1 on five representative TTA backbones
(Tent, CoTTA, EATA, SAR, and RoTTA) and compare results with full adaptation (AR=1.0). As
summarized in Table 13, SNAP consistently maintains competitive performance with considerably
reduced latency, demonstrating its suitability for low-overhead deployment under difficult real-world
shifts.

Table 13: Performance of SNAP (AR=0.1) on ImageNet-R and ImageNet-Sketch. Accuracy and
latency are reported as the mean ± standard deviation over 3 seeds (0, 1, 2). Latency is measured by
Raspberry Pi 4.

Method ImageNet-R ImageNet-Sketch
Accuracy (%) Latency (s) Accuracy (%) Latency (s)

Tent (Full) 40.53 ± 0.22 34.30 ± 0.06 28.43 ± 0.18 38.12 ± 0.05
+ SNAP (AR=0.1) 38.26 ± 0.20 17.73 ± 0.05 28.42 ± 0.16 18.50 ± 0.11

CoTTA (Full) 37.53 ± 0.25 295.19 ± 0.07 24.07 ± 0.19 302.80 ± 0.12
+ SNAP (AR=0.1) 36.73 ± 0.21 150.40 ± 0.06 23.01 ± 0.19 158.32 ± 0.21

EATA (Full) 42.88 ± 0.18 29.22 ± 0.02 30.52 ± 0.20 32.99 ± 0.08
+ SNAP (AR=0.1) 39.45 ± 0.17 15.50 ± 0.08 27.43 ± 0.18 17.53 ± 0.23

SAR (Full) 40.37 ± 0.22 72.51 ± 0.05 27.03 ± 0.19 76.37 ± 0.05
+ SNAP (AR=0.1) 37.32 ± 0.20 19.59 ± 0.06 27.95 ± 0.17 22.52 ± 0.06

RoTTA (Full) 39.08 ± 0.21 78.05 ± 0.09 26.05 ± 0.16 84.98 ± 0.06
+ SNAP (AR=0.1) 36.79 ± 0.19 41.15 ± 0.06 24.08 ± 0.15 49.33 ± 0.16

B.12 Efficient strategy for re-calculation of sample’s distance

The domain centroid in our framework is updated using a momentum-based approach to effectively
capture recent shifts in the target domain. This ensures that the centroid remains adaptive to evolving
distributions without being overly influenced by temporary fluctuations. However, during sparse
adaptation (SA), where model updates occur at extended intervals, the data distribution can shift
substantially between updates. Consequently, distances calculated for older samples may become
outdated, leading to inconsistencies when comparing them to more recently added samples that are
evaluated based on the updated centroid.

To address this issue efficiently, our Class and Domain Representative Memory (CnDRM) recalculates
the distance of samples only when the shift in the domain centroid exceeds a predefined significance
threshold. Specifically, if the change in the domain centroid ∆cdomain surpasses a threshold τ∆,
the distances of all samples in memory are updated to reflect the new domain conditions. This
threshold-based approach ensures that recalculations occur only when necessary, thereby minimizing
computational costs while maintaining the representativeness of the memory.

In practice, we observed that the performance was not significantly affected as long as the threshold
τ∆ was not set too high, indicating robustness to the choice of threshold. Based on these observations,
we set τ∆ = 0.1 and used this value consistently for all evaluations. By focusing recalculations on
significant shifts, this strategy preserves consistency in sample selection, ensuring that both older
and newer samples are compared fairly in the context of the current domain characteristics without
excessive computational overhead.
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B.13 Strategy for continuous domain shift setting

In our proposed framework, the centroid used for selecting domain-representative samples naturally
adapts to changes in the domain as new data is encountered. This mechanism inherently ensures
that the centroid evolves to reflect the characteristics of the current domain, allowing for effective
performance even under continual Test-Time Adaptation (TTA) scenarios, where the domain may
gradually or abruptly shift during adaptation.

Instead of employing additional mechanisms like z-score evaluation to detect domain shifts, we rely
on the natural adaptability of the centroid to adjust to the incoming data. This simplifies the design
and avoids unnecessary overhead while maintaining robustness. As the domain characteristics evolve,
the centroid continuously aligns with the new domain without requiring explicit detection of changes
or manual intervention.

To validate the effectiveness of SNAP under continual domain shift scenarios, we conducted ex-
periments across various benchmark datasets with incremental and abrupt domain shifts. Table 14
summarizes the results, demonstrating that SNAP maintains strong performance across evolving
domains without requiring additional computational overhead for explicit domain shift detection.

These results indicate that SNAP effectively handles both incremental and abrupt domain shifts,
consistently outperforming baseline methods. By leveraging the natural adaptability of the centroid,
SNAP provides a robust solution for continual domain adaptation in real-world scenarios. Notably,
SNAP mitigates catastrophic forgetting not only through its sparse adaptation strategy but also by
leveraging domain centroid-based sampling, allowing performance to be sustained longer in continual
shift scenarios. Unlike Tent, CoTTA is specifically designed for continual domain shift environments,
which highlights its superior performance under such conditions.

Future work could explore augmenting this adaptive mechanism by incorporating techniques like z-
score evaluation to enable even more responsive adjustments. For instance, a z-score-based approach
could further refine the centroid’s responsiveness to subtle, gradual domain shifts by monitoring
discrepancies between incoming data statistics and the current centroid. Such enhancements could
make the system even more effective at handling continual domain evolution, particularly in scenarios
with complex or noisy data streams.

Table 14: Performance of SNAP under continual domain shift scenarios. The table reports the
accuracy (%) for different datasets with incremental and abrupt shifts. Bold numbers are the highest
accuracy.

AR Method Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg.

24.68 19.65 5.12 0.63 0.43 0.40 0.44 0.41 0.30 0.33 0.42 0.24 0.32 0.31 0.31 3.60Tent ±0.45 ±1.27 ±1.22 ±0.05 ±0.02 ±0.04 ±0.06 ±0.03 ±0.03 ±0.04 ±0.05 ±0.04 ±0.02 ±0.05 ±0.04 ±0.23
28.71 30.60 22.91 6.13 1.62 0.87 0.88 0.64 0.64 0.66 0.75 0.44 0.60 0.63 0.61 6.45+ SNAP ±0.66 ±1.82 ±2.25 ±0.90 ±0.20 ±0.13 ±0.07 ±0.08 ±0.06 ±0.05 ±0.01 ±0.05 ±0.08 ±0.07 ±0.07 ±0.43
10.99 12.21 11.54 11.28 11.13 22.08 34.80 30.69 29.45 43.87 61.92 12.76 40.03 44.99 36.43 27.61CoTTA ±0.40 ±0.04 ±0.30 ±0.13 ±0.15 ±0.07 ±0.18 ±0.10 ±0.04 ±0.19 ±0.09 ±0.16 ±0.13 ±0.14 ±0.16 ±0.15
15.19 15.97 15.91 13.94 14.18 24.76 36.50 32.61 31.76 46.14 63.60 15.60 42.17 46.77 38.08 30.21

0.1

+ SNAP ±0.17 ±0.11 ±0.02 ±0.04 ±0.03 ±0.07 ±0.23 ±0.04 ±0.06 ±0.10 ±0.14 ±0.04 ±0.02 ±0.06 ±0.12 ±0.08
23.31 27.08 22.71 9.72 4.14 2.03 1.16 0.66 0.45 0.47 0.61 0.33 0.47 0.47 0.46 6.27Tent ±0.37 ±1.13 ±2.50 ±3.35 ±3.00 ±1.53 ±0.75 ±0.22 ±0.12 ±0.09 ±0.16 ±0.09 ±0.08 ±0.08 ±0.07 ±0.90
27.10 33.41 31.78 19.85 16.94 14.75 12.46 5.53 2.69 1.47 1.52 0.67 0.88 0.89 0.84 11.39+ SNAP ±0.23 ±0.10 ±0.62 ±0.79 ±1.50 ±2.53 ±4.27 ±2.30 ±1.18 ±0.49 ±0.40 ±0.09 ±0.10 ±0.10 ±0.07 ±0.98
11.04 12.25 11.73 11.62 11.25 22.05 34.89 30.73 29.50 44.09 61.87 12.87 40.15 45.06 36.53 27.71CoTTA ±0.38 ±0.39 ±0.42 ±0.10 ±0.59 ±0.13 ±0.13 ±0.20 ±0.17 ±0.18 ±0.09 ±0.18 ±0.17 ±0.19 ±0.14 ±0.23
15.20 15.89 15.93 13.81 14.15 24.74 36.68 32.51 31.71 46.11 63.48 15.73 42.20 46.69 38.05 30.19

0.05

+ SNAP ±0.15 ±0.02 ±0.10 ±0.04 ±0.03 ±0.16 ±0.27 ±0.04 ±0.20 ±0.05 ±0.09 ±0.19 ±0.12 ±0.10 ±0.04 ±0.10

B.14 Robustness under persistent distribution shifts

To evaluate the long-term stability of SNAP under temporally correlated and recurring domain
shifts, we adopt the evaluation setup (persist-TTA) of work [11], which repeatedly cycles through
non-i.i.d. CIFAR10-C corruptions across 10 rounds. This scenario emulates continual adaptation in
environments where domain drift is both persistent and revisited.

We apply SNAP on top of CoTTA [50], a method specifically designed for continual test-time
adaptation. While CoTTA alone initially performs well, we observe a steady degradation across
rounds as it accumulates shift-induced bias and overfits to recent domains. In contrast, combining
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CoTTA with SNAP enables the model to preserve robust performance even after multiple adaptation
cycles.

The key to this stability lies in SNAP’s architecture: (1) class-balanced memory to prevent label
bias, (2) sparse but confident updates to mitigate overfitting, (3) IoBMN for adapting normalization
statistics to each incoming sample, and (4) exponential moving average (EMA) domain centroids to
smooth domain shift tracking. These collectively stabilize long-term adaptation dynamics without
the need for explicit shift detection.

Table 15: Long-term TTA accuracy, cycling through all CIFAR10-C corruptions each round (R).
Method R1 =⇒ R2 =⇒ R3 =⇒ R4 =⇒ R5 =⇒ R6 =⇒ R7 =⇒ R8 =⇒ R9 =⇒ R10
CoTTA (Full adapt) 58.49 ±0.12 50.32 ±0.09 48.71 ±0.15 44.92 ±0.10 31.86 ±0.17 29.81 ±0.13 25.39 ±0.16 21.43 ±0.11 28.46 ±0.18 16.97 ±0.14

+ SNAP (AR=0.1) 50.50 ±0.10 49.32 ±0.08 52.57 ±0.11 49.90 ±0.09 50.17 ±0.12 50.58 ±0.14 49.01 ±0.07 49.56 ±0.13 54.16 ±0.10 52.89 ±0.09

Experimental results. Table 15 and Figure 9 shows adaptation accuracy over 10 rounds. While
CoTTA gradually collapses after the 5th round, integration with SNAP maintains accuracy above
50%, showing clear stability under persistent shifts.

These results confirm that SNAP enhances long-term TTA robustness by stabilizing both parameter
and feature statistics over time. This makes it a reliable plug-in module for continual test-time
adaptation pipelines.

B.15 Robustness in single-sample (BS=1) adaptation scenario

To investigate the robustness of SNAP when adaptation is performed on a per-sample basis, we
evaluate its performance in a single-sample adaptation setting, where the adaptation batch size is
limited to 1. This scenario reflects highly constrained edge environments with limited memory or
streaming inputs, where adaptation must occur with minimal latency and granularity.

To support this setup, we adopt the SAR [31] architecture, which natively supports a batch size of 1
and sparse update routines. SAR allows us to test SNAP with an adaptation rate of 0.1, meaning only
one in every ten test samples is used for weight updates, using a single memory sample.

Table 16: Evaluation of SNAP (AR=0.1) with SAR on a single-sample (BS=1) adaptation scenario
on ImageNet-C. Results are averaged over 3 random seeds (0, 1, 2).

Method Accuracy (%)

SAR (single-sample) 52.21± 0.28
+ STTA 8.06± 0.12

+ SNAP 51.80± 0.25

SNAP achieves strong gains even when adapting from just one memory sample. When only one
sample is used for adaptation, our method still selects the representative sample with high prediction
confidence and low Wasserstein distance to the domain centroid, enabling stable model updates.
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Figure 9: Long-term TTA accuracy over 10 adaptation rounds. Shaded regions indicate std over 3
seeds. SNAP maintains stable performance, while original CoTTA alone degrades over time.
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Meanwhile, IoBMN continues to apply adaptive normalization to every incoming test sample,
mitigating covariate shift even when parameter updates are sparse. Although small batches can slow
the class distribution balancing process and moving domain centroid updates under skewed domains,
we found that this effect has limited influence on overall adaptation performance and stability.

Evaluation protocol. We average performance over three random seeds (0, 1, 2) to ensure stability
across different data orderings. Table 16 reports both the mean and standard deviation of accuracy.

These results demonstrate that SNAP preserves its robustness and sample-wise adaptability even
under minimal adaptation frequency and granularity. CnDRM identifies meaningful memory samples,
while IoBMN provides per-sample normalization, together enabling consistent performance in BS=1
settings.

B.16 Impact of memory size on SNAP performance

The memory size of the Class and Domain Representative Memory (CnDRM) in SNAP has implica-
tions for both performance and privacy. Increasing memory size allows storing more samples, which
intuitively could improve adaptation. However, such an approach raises privacy concerns and needs
additional memory and latency when storing sensitive samples. To evaluate the trade-off, we con-
ducted experiments on ImageNet-C under Gaussian noise corruption, using Tent + SNAP(adaptation
rate 0.3) with a batch size of 16 and varying the memory size.

Table 17: Performance com-
parison with varying memory
sizes on ImageNet-C.

Memory Size Accuracy (%)
16 (Base) 26.60 ±0.11

32 28.44 ±0.17

64 28.89 ±0.06

128 28.60 ±0.09

As shown in Table 17, increasing the memory size beyond the base
configuration of 16 does not lead to significant performance gains.
This observation highlights the efficiency of SNAP’s representative
sampling strategy, which prioritizes storing samples based on prox-
imity to class and domain centroids. The saturation in accuracy
suggests that a carefully aligned memory size to the batch size is suf-
ficient to balance computational efficiency, performance, and privacy
considerations.

In conclusion, to minimize computational overhead while ensuring robust test-time adaptation,
the memory size in SNAP is designed to align with the batch size. This configuration addresses
privacy and memory overhead risks by limiting the number of stored samples without compromising
adaptation effectiveness.

B.17 Effect of learning rate on sparse and full adaptation

To investigate the impact of learning rates on the performance of SNAP and baseline methods,
we conducted experiments under sparse adaptation settings. Initially, the same learning rate was
applied for each SOTA TTA algorithms across all adaptation rates to ensure fair comparisons
(Table 26, 27, 22, 23, 24,and 25). However, as sparse adaptation inherently limits the number
of updates, the updates might be insufficient at lower adaptation rates and explored the effect of
increasing the learning rate.

The results, summarized in Table 18, 19, and 20, reveal that higher learning rates improve the
accuracy of both the naive baseline and SNAP under sparse settings. Notably, while the naive TTA
baseline benefits from a higher learning rate, its performance still falls short of that achieved with
full adaptation. In contrast, SNAP surpasses the performance of full adaptation at optimal learning
rates, demonstrating its ability to leverage sparse adaptation effectively. At the same time, applying
these higher learning rates to full adaptation results in model instability and collapse, underscoring
the need to carefully tune learning rates based on adaptation frequency. Therefore, we selected a
stable learning rate of 1× 10−4 for the evaluations in our work that balances model convergence and
performance across all adaptation rates. These findings suggest that SNAP not only adapts effectively
under sparse settings but also maintains robustness under optimized learning rates.
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Table 18: Accuracy with varying learning rates on ImageNet-C Gaussian noise adaptation rate 0.5.
Bold numbers are the highest accuracy.

Tent CoTTA EATA
Learning rate Full naïve STTA SNAP Full naïve STTA SNAP Full naïve STTA SNAP

2× 10−3 2.31 ±0.08 4.16 ±0.12 6.68 ±0.14 13.31 ±0.10 12.03 ±0.09 14.58 ±0.11 0.36 ±0.05 0.48 ±0.07 0.69 ±0.06

1× 10−3 4.54 ±0.11 10.19 ±0.14 16.37 ±0.09 13.18 ±0.13 11.98 ±0.08 14.63 ±0.12 1.31 ±0.06 1.36 ±0.05 22.11 ±0.15

5× 10−4 10.22 ±0.12 18.43 ±0.13 28.36 ±0.10 13.15 ±0.09 11.95 ±0.07 15.17 ±0.11 21.96 ±0.14 13.97 ±0.12 25.42 ±0.13

1× 10−4 27.03 ±0.13 25.24 ±0.10 28.05 ±0.09 13.12 ±0.10 11.99 ±0.08 15.16 ±0.07 29.42 ±0.11 28.62 ±0.13 30.00 ±0.12

5× 10−5 26.34 ±0.09 22.62 ±0.10 26.32 ±0.11 13.34 ±0.10 12.10 ±0.07 14.93 ±0.09 29.37 ±0.13 27.30 ±0.11 28.76 ±0.12

Table 19: Accuracy with varying learning rates on ImageNet-C Gaussian noise adaptation rate 0.3.
Bold numbers are the highest accuracy.

Tent CoTTA EATA
Learning rate Full naïve STTA SNAP Full naïve STTA SNAP Full naïve STTA SNAP

2× 10−3 2.31 ±0.09 7.04 ±0.13 13.69 ±0.15 13.31 ±0.10 11.88 ±0.08 14.67 ±0.11 0.36 ±0.04 0.59 ±0.05 0.75 ±0.06

1× 10−3 4.54 ±0.12 16.13 ±0.14 27.63 ±0.13 13.18 ±0.09 11.86 ±0.07 14.68 ±0.10 1.31 ±0.06 0.95 ±0.05 24.35 ±0.14

5× 10−4 10.22 ±0.13 24.96 ±0.15 29.95 ±0.12 13.15 ±0.08 11.85 ±0.06 15.11 ±0.10 21.96 ±0.13 20.96 ±0.12 27.72 ±0.11

1× 10−4 27.03 ±0.10 23.63 ±0.11 26.60 ±0.12 13.12 ±0.07 11.74 ±0.06 15.26 ±0.08 29.42 ±0.10 27.35 ±0.09 29.48 ±0.10

5× 10−5 26.34 ±0.09 20.94 ±0.12 24.87 ±0.13 13.34 ±0.07 11.92 ±0.06 14.85 ±0.09 29.37 ±0.11 26.07 ±0.10 27.90 ±0.11

Table 20: Accuracy with varying learning rates on ImageNet-C Gaussian noise adaptation rate 0.1.
Bold numbers are the highest accuracy.

Tent CoTTA EATA
Learning rate Full naïve STTA SNAP Full naïve STTA SNAP Full naïve STTA SNAP

2× 10−3 2.31 ±0.10 18.06 ±0.14 27.41 ±0.12 13.31 ±0.08 10.93 ±0.07 14.80 ±0.11 0.36 ±0.03 1.86 ±0.06 9.59 ±0.15

1× 10−3 4.54 ±0.11 25.46 ±0.13 31.12 ±0.14 13.18 ±0.09 10.93 ±0.07 14.73 ±0.10 1.31 ±0.05 2.86 ±0.08 24.95 ±0.13

5× 10−4 10.22 ±0.12 24.71 ±0.14 28.01 ±0.11 13.15 ±0.07 10.92 ±0.06 15.18 ±0.09 21.96 ±0.12 18.76 ±0.10 28.09 ±0.11

1× 10−4 27.03 ±0.10 22.00 ±0.12 26.21 ±0.13 13.12 ±0.08 11.74 ±0.06 15.13 ±0.09 29.42 ±0.11 22.43 ±0.10 26.10 ±0.12

5× 10−5 26.34 ±0.09 16.72 ±0.13 19.31 ±0.12 13.34 ±0.08 10.92 ±0.07 14.76 ±0.09 29.37 ±0.11 20.32 ±0.10 23.28 ±0.10

In conclusion, selecting an appropriately high learning rate for sparse adaptation significantly en-
hances performance while ensuring model stability. This strategy is particularly useful for real-world
deployment of SNAP, where computational efficiency and robust performance are paramount.

B.18 Evaluation on real-world sensor data

To validate SNAP’s generalizability to other real-world domains, we further test SNAP on
HARTH [23], a human activity recognition dataset that collects data from two three-axial accelerom-
eters attached to participants’ thigh and lower back. Unlike our main evaluations, which focus on
2D vision and corruption-based domain shifts, HARTH introduces a distinct domain shift caused by
sensor positioning and user variation.

We evaluate SNAP with an adaptation rate (AR) of 0.1 on Tent [48] and SAR [31]. The base model
is composed of four one-dimensional convolutional layers followed by a fully-connected layer, and
is trained on the source domain, composing of data collected from the back of 15 participants. The
target domain is the data collected from the thigh of the remaining 7 participants. As shown in
Table 21, SNAP improves accuracy even with sparse updates, demonstrating its effectiveness under
realistic shifts

Table 21: Performance of SNAP (AR=0.1) on HARTH. Accuracy is averaged over all target domain
users.

Method Average Accuracy (%)
Tent (Naïve STTA) 19.64

+ SNAP 30.67
SAR (Naïve STTA) 21.10

+ SNAP 26.63
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C Detailed experiment results

In this section, we provide detailed experimental results for the performance comparison of SNAP
across a wide range of adaptation rates. We evaluated the performance on CIFAR10-C, CIFAR100-C,
and ImageNet-C datasets with adaptation rates of 0.01, 0.03, 0.05, 0.1, 0.3, and 0.5, and across
five state-of-the-art (SOTA) TTA algorithms: Tent [48], EATA [30], SAR [31], CoTTA [50], and
RoTTA [53]. This comprehensive evaluation resulted in a total of 150 combinations (3 datasets, 6
adaptation rates, 5 algorithms).

The results demonstrate that, regardless of the adaptation rate, dataset, or the TTA algorithm, integrat-
ing SNAP consistently outperforms the baseline methods. Specifically, SNAP achieved the highest
accuracy across nearly all of these 150 combinations, effectively demonstrating its robustness in
both high and low adaptation settings. For CIFAR10-C and CIFAR100-C, SNAP showed substantial
performance improvements compared to the baseline, even at very low adaptation rates (e.g., 0.01
and 0.05). Similarly, for ImageNet-C, SNAP maintained superior accuracy across diverse corruption
types.

These results highlight that SNAP effectively balances adaptation and latency, ensuring optimal
performance even when the adaptation rate is sparse and regardless of the underlying TTA algorithm.
This consistent superiority across all 150 combinations underscores SNAP’s suitability for practical,
real-world applications on resource-constrained devices.
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C.1 CIFAR10-C

Table 22: STTA classification accuracy (%) comparing with and without SNAP on CIFAR10-C
through Adaptation Rates(AR) (0.5, 0.3, and 0.1), including results for full adaptation (AR=1). Bold
numbers are the highest accuracy.

AR Methods Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg.
22.13 29.25 22.53 54.54 55.10 67.45 64.37 78.25 69.93 74.26 91.29 35.45 77.20 46.56 73.38 57.45Source ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00
63.72 65.67 57.14 84.99 62.72 83.86 84.26 78.98 76.95 83.32 88.46 84.60 73.96 76.61 68.79 75.60BN stats ±0.48 ±0.12 ±0.25 ±0.31 ±0.23 ±0.48 ±0.30 ±0.30 ±0.08 ±0.17 ±0.16 ±0.17 ±0.18 ±0.02 ±0.42 ±0.24
73.66 76.18 68.04 86.61 67.12 85.73 86.24 82.34 81.56 86.02 89.99 87.16 76.40 82.95 76.45 80.43Tent ±0.88 ±0.94 ±1.32 ±0.50 ±0.76 ±0.38 ±0.09 ±0.94 ±0.64 ±0.18 ±0.16 ±2.50 ±0.82 ±0.15 ±0.46 ±0.71
71.95 73.97 67.03 83.91 66.75 82.64 83.34 79.92 79.49 82.41 88.39 80.14 75.38 79.24 75.42 78.00CoTTA ±0.32 ±0.48 ±0.66 ±0.20 ±0.08 ±0.34 ±0.19 ±0.09 ±0.13 ±0.23 ±0.18 ±0.17 ±0.09 ±0.07 ±0.25 ±0.23
75.82 77.61 69.63 87.14 69.41 85.96 87.08 83.42 82.28 86.58 90.40 89.26 77.62 83.35 77.77 81.56EATA ±0.50 ±0.27 ±0.87 ±0.29 ±0.68 ±0.39 ±0.27 ±0.38 ±0.29 ±0.41 ±0.17 ±0.39 ±0.28 ±0.32 ±0.20 ±0.38
73.52 74.03 65.45 85.69 65.01 84.63 85.01 81.47 80.91 84.18 88.70 86.23 74.94 81.20 74.84 79.05SAR ±1.53 ±0.46 ±1.81 ±0.37 ±0.35 ±0.53 ±0.34 ±0.37 ±0.72 ±0.09 ±0.12 ±0.16 ±0.03 ±0.28 ±0.69 ±0.52
66.54 68.60 60.27 85.73 64.84 84.68 85.01 80.15 78.02 84.13 89.00 84.91 75.06 77.96 70.12 77.00

1

RoTTA ±0.46 ±0.23 ±0.46 ±0.35 ±0.63 ±0.36 ±0.45 ±0.56 ±0.06 ±0.09 ±0.27 ±0.19 ±0.15 ±0.16 ±0.36 ±0.32

73.44 75.93 67.18 86.52 67.28 85.25 86.23 82.24 80.35 85.39 89.80 87.77 77.00 82.08 75.58 80.14Tent ±0.61 ±0.44 ±0.78 ±0.17 ±1.78 ±0.49 ±0.42 ±0.77 ±0.14 ±0.20 ±0.28 ±0.27 ±0.65 ±0.68 ±0.60 ±0.55
75.17 77.66 68.78 88.25 69.18 87.11 88.19 84.21 82.72 87.34 91.63 86.30 78.76 83.43 77.28 81.74+ SNAP ±0.00 ±0.78 ±1.26 ±0.38 ±0.51 ±0.18 ±0.13 ±0.29 ±0.45 ±0.51 ±0.12 ±1.07 ±0.28 ±0.18 ±0.50 ±0.44
65.08 66.67 61.30 77.50 61.36 77.70 77.37 74.05 72.86 77.43 82.69 72.44 70.52 70.94 69.79 71.85CoTTA ±0.26 ±0.21 ±0.16 ±0.48 ±0.15 ±0.37 ±0.37 ±0.22 ±0.44 ±0.19 ±0.30 ±0.72 ±0.07 ±0.27 ±0.10 ±0.29
71.89 74.18 66.92 85.46 67.57 84.27 84.91 81.10 80.62 84.06 90.16 82.14 76.75 80.23 75.98 79.08+ SNAP ±0.45 ±0.33 ±0.19 ±0.32 ±0.26 ±0.22 ±0.18 ±0.09 ±0.46 ±0.24 ±0.17 ±0.33 ±0.16 ±0.38 ±0.50 ±0.28
73.95 75.82 68.00 86.83 67.83 85.27 86.48 82.63 80.99 85.45 89.86 87.61 77.01 82.13 76.11 80.40EATA ±0.22 ±0.18 ±0.70 ±0.25 ±0.50 ±0.39 ±0.15 ±0.50 ±0.05 ±0.16 ±0.18 ±0.53 ±0.31 ±0.18 ±0.45 ±0.32
74.85 77.63 68.43 88.53 69.70 87.19 88.16 83.87 82.84 87.18 91.54 89.62 78.91 83.76 77.36 81.97+ SNAP ±0.51 ±0.46 ±0.43 ±0.17 ±0.69 ±0.35 ±0.18 ±0.42 ±0.33 ±0.15 ±0.12 ±0.38 ±0.48 ±0.14 ±0.22 ±0.33
69.10 72.37 63.22 85.18 64.30 83.94 85.07 80.11 79.64 83.91 88.64 84.21 75.70 79.10 72.92 77.83SAR ±1.63 ±1.05 ±0.44 ±0.25 ±1.02 ±0.12 ±0.45 ±0.17 ±0.60 ±0.37 ±0.10 ±0.30 ±0.34 ±0.52 ±0.09 ±0.50
73.98 75.48 66.41 86.63 68.15 85.50 86.53 81.62 80.20 85.06 91.46 87.04 77.22 81.16 75.53 80.13+ SNAP ±0.48 ±0.65 ±1.26 ±0.15 ±0.07 ±0.15 ±0.10 ±0.39 ±0.17 ±0.27 ±0.03 ±0.11 ±0.45 ±0.27 ±0.23 ±0.32
65.02 66.84 58.38 85.26 63.51 83.81 84.66 79.26 76.76 83.46 88.27 83.47 74.43 77.39 69.13 75.98RoTTA ±0.04 ±0.52 ±0.33 ±0.42 ±0.18 ±0.15 ±0.20 ±0.29 ±0.49 ±0.21 ±0.04 ±0.05 ±0.16 ±0.29 ±0.41 ±0.25
66.03 68.09 58.88 87.09 64.55 85.70 86.48 80.97 78.87 85.29 90.28 86.22 76.05 78.76 70.51 77.58

0.5

+ SNAP ±0.14 ±0.15 ±0.06 ±0.27 ±0.07 ±0.03 ±0.02 ±0.22 ±0.20 ±0.22 ±0.13 ±0.10 ±0.22 ±0.22 ±0.35 ±0.16
71.18 74.06 65.44 85.93 66.01 84.37 85.90 81.31 79.80 84.80 89.58 84.01 75.96 80.46 74.09 78.86Tent ±0.99 ±0.80 ±1.17 ±0.28 ±0.97 ±0.14 ±0.17 ±0.40 ±0.09 ±0.25 ±0.23 ±0.30 ±0.30 ±0.39 ±0.54 ±0.47
74.95 77.29 67.59 88.27 67.46 86.97 87.64 83.46 82.45 86.72 91.22 87.79 78.26 82.61 75.79 81.23+ SNAP ±0.84 ±0.55 ±0.46 ±0.27 ±0.26 ±0.21 ±0.16 ±0.40 ±0.19 ±0.19 ±0.21 ±0.98 ±0.35 ±0.38 ±0.32 ±0.39
63.01 64.38 58.95 75.43 59.65 76.08 75.47 71.75 70.33 75.52 80.94 70.53 68.75 67.87 67.55 69.75CoTTA ±0.12 ±0.64 ±0.74 ±0.61 ±0.48 ±0.58 ±0.16 ±0.55 ±0.48 ±0.32 ±0.49 ±0.51 ±0.65 ±0.30 ±0.37 ±0.47
71.39 73.57 66.29 85.22 66.71 84.20 84.64 80.77 80.56 84.06 89.85 81.86 76.48 79.94 75.69 78.75+ SNAP ±0.31 ±0.27 ±0.10 ±0.22 ±0.19 ±0.18 ±0.13 ±0.21 ±0.32 ±0.15 ±0.17 ±0.08 ±0.07 ±0.24 ±0.27 ±0.19
70.98 73.70 65.73 86.01 66.71 84.36 86.10 80.92 79.87 84.48 89.29 86.33 76.19 80.66 73.98 79.02EATA ±1.05 ±0.28 ±1.68 ±0.35 ±0.81 ±0.23 ±0.38 ±0.47 ±0.09 ±0.04 ±0.19 ±0.31 ±0.20 ±0.58 ±0.52 ±0.48
74.19 76.64 67.89 87.93 68.56 87.08 87.89 83.56 82.20 86.60 91.11 88.94 78.10 83.03 75.83 81.30+ SNAP ±0.38 ±0.68 ±0.19 ±0.25 ±0.20 ±0.05 ±0.34 ±0.30 ±0.25 ±0.23 ±0.22 ±0.61 ±0.14 ±0.20 ±0.43 ±0.30
69.10 72.37 63.22 85.18 64.30 83.94 85.07 80.11 79.64 83.91 88.64 84.21 75.70 79.10 72.92 77.83SAR ±1.63 ±1.05 ±0.44 ±0.25 ±1.02 ±0.12 ±0.45 ±0.17 ±0.60 ±0.37 ±0.10 ±0.30 ±0.34 ±0.52 ±0.09 ±0.50
72.72 75.25 65.78 86.53 66.19 85.53 86.40 81.61 80.53 85.08 91.41 86.74 77.23 81.00 74.52 79.77+ SNAP ±0.94 ±0.30 ±1.06 ±0.16 ±0.60 ±0.26 ±0.27 ±0.45 ±0.64 ±0.23 ±0.14 ±0.08 ±0.41 ±0.37 ±1.04 ±0.46
64.09 66.07 57.58 84.97 62.66 83.06 84.08 78.60 76.40 82.86 88.03 83.21 74.14 76.35 68.70 75.39RoTTA ±0.44 ±0.13 ±0.63 ±0.20 ±0.15 ±0.18 ±0.17 ±0.34 ±0.36 ±0.05 ±0.22 ±0.24 ±0.58 ±0.47 ±0.17 ±0.29
65.83 67.57 58.39 86.97 64.22 85.63 86.39 80.75 78.90 85.21 90.19 85.92 75.92 78.91 70.42 77.41

0.3

+ SNAP ±0.18 ±0.19 ±0.29 ±0.33 ±0.16 ±0.18 ±0.09 ±0.15 ±0.08 ±0.17 ±0.16 ±0.21 ±0.09 ±0.05 ±0.37 ±0.18
67.32 69.39 60.69 85.34 63.82 83.52 84.70 79.68 77.79 83.75 88.53 83.12 75.18 77.82 71.47 76.81Tent ±0.93 ±0.96 ±0.36 ±0.24 ±0.41 ±0.13 ±0.15 ±0.41 ±0.50 ±0.08 ±0.49 ±0.66 ±0.68 ±0.69 ±0.44 ±0.48
70.22 71.48 63.08 87.35 65.74 85.89 86.38 81.93 80.00 85.62 90.34 87.47 76.44 79.63 72.72 78.95+ SNAP ±0.44 ±0.91 ±0.04 ±0.20 ±0.26 ±0.25 ±0.32 ±0.33 ±0.21 ±0.14 ±0.22 ±0.11 ±0.12 ±0.14 ±0.39 ±0.27
59.11 60.26 56.07 72.23 56.77 73.55 72.20 68.05 66.68 72.88 77.66 65.95 65.67 64.12 65.16 66.42CoTTA ±0.43 ±0.56 ±0.65 ±0.69 ±0.64 ±0.68 ±0.94 ±0.63 ±0.52 ±0.56 ±1.15 ±1.17 ±0.83 ±0.95 ±0.58 ±0.73
71.70 73.54 66.70 85.16 66.83 84.30 84.88 81.02 80.61 84.20 89.84 81.71 76.60 79.66 75.71 78.83+ SNAP ±0.40 ±0.21 ±0.02 ±0.19 ±0.39 ±0.08 ±0.20 ±0.25 ±0.24 ±0.23 ±0.08 ±0.20 ±0.20 ±0.14 ±0.25 ±0.20
66.65 68.96 59.73 84.93 63.26 83.10 84.53 79.28 77.46 83.48 88.12 82.46 74.49 77.48 70.43 76.29EATA ±0.43 ±0.47 ±0.15 ±0.27 ±0.36 ±0.24 ±0.15 ±0.44 ±0.42 ±0.13 ±0.09 ±0.24 ±0.20 ±0.69 ±0.25 ±0.30
69.29 70.49 61.71 87.32 65.48 85.96 86.64 81.44 79.56 85.47 90.50 86.84 76.32 79.64 72.51 78.61+ SNAP ±0.39 ±0.57 ±0.37 ±0.42 ±0.38 ±0.29 ±0.21 ±0.34 ±0.47 ±0.23 ±0.38 ±0.36 ±0.21 ±0.12 ±0.32 ±0.34
66.11 68.18 59.15 84.91 62.87 82.33 84.27 79.23 77.58 83.21 88.29 82.60 74.65 75.92 70.79 76.01SAR ±0.59 ±0.83 ±0.72 ±0.45 ±0.27 ±0.60 ±0.13 ±0.32 ±0.43 ±0.18 ±0.09 ±0.57 ±0.46 ±0.77 ±0.40 ±0.45
67.76 70.68 60.82 86.78 64.73 85.29 86.22 80.82 79.30 84.95 91.33 86.59 75.72 78.72 71.24 78.06+ SNAP ±0.22 ±0.14 ±1.08 ±0.26 ±0.43 ±0.10 ±0.11 ±0.23 ±0.48 ±0.28 ±0.17 ±0.14 ±0.26 ±0.35 ±0.46 ±0.31
63.12 64.84 56.72 84.49 62.15 82.53 83.84 78.03 76.13 82.88 87.48 81.49 73.75 76.04 68.24 74.78RoTTA ±0.33 ±0.21 ±0.30 ±0.04 ±0.17 ±0.30 ±0.02 ±0.29 ±0.71 ±0.16 ±0.08 ±0.11 ±0.14 ±0.29 ±0.27 ±0.23
65.35 66.99 58.09 86.77 63.63 85.47 86.01 80.54 78.38 84.99 90.00 85.99 75.67 78.14 70.09 77.07

0.1

+ SNAP ±0.20 ±0.15 ±0.18 ±0.18 ±0.18 ±0.13 ±0.21 ±0.11 ±0.24 ±0.43 ±0.23 ±0.03 ±0.17 ±0.06 ±0.23 ±0.18
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Table 23: STTA classification accuracy (%) comparing with and without SNAP on CIFAR10-C
through Adaptation Rates(AR) (0.05, 0.03, and 0.01). Bold numbers are the highest accuracy.

AR Methods Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg.
64.65 67.08 58.48 85.00 62.61 82.76 84.63 79.01 77.66 83.32 88.00 82.34 74.16 77.11 69.40 75.75Tent ±0.55 ±0.58 ±0.42 ±0.60 ±0.44 ±0.70 ±0.55 ±0.74 ±0.91 ±0.48 ±0.56 ±0.93 ±0.10 ±0.60 ±0.48 ±0.57
67.71 69.84 59.53 87.10 64.66 85.73 86.35 80.68 78.92 85.60 90.19 86.72 76.16 78.86 70.95 77.93+ SNAP ±0.38 ±0.82 ±1.10 ±0.15 ±0.25 ±0.20 ±0.20 ±0.23 ±0.14 ±0.08 ±0.31 ±0.20 ±0.17 ±0.42 ±0.30 ±0.33
59.27 61.18 56.33 72.22 57.37 74.27 72.61 70.03 68.68 74.82 79.72 65.57 66.92 64.13 65.25 67.22CoTTA ±0.66 ±1.12 ±0.06 ±1.43 ±1.10 ±1.46 ±1.11 ±1.02 ±0.92 ±1.09 ±1.07 ±1.38 ±1.14 ±1.27 ±0.98 ±1.05
71.42 73.31 65.91 85.23 67.01 84.19 84.91 80.80 80.56 84.19 90.00 82.09 76.31 79.79 75.18 78.73+ SNAP ±0.29 ±0.12 ±0.13 ±0.11 ±0.21 ±0.20 ±0.14 ±0.19 ±0.34 ±0.14 ±0.23 ±0.35 ±0.05 ±0.29 ±0.21 ±0.20
64.68 67.01 58.07 84.90 62.56 82.64 84.57 78.77 77.16 83.09 87.80 81.62 74.05 76.99 69.31 75.55EATA ±0.31 ±0.37 ±0.24 ±0.54 ±0.33 ±0.67 ±0.61 ±0.71 ±0.92 ±0.44 ±0.47 ±0.59 ±0.28 ±0.41 ±0.71 ±0.51
67.36 68.73 59.35 87.05 64.36 85.62 86.48 81.31 78.73 85.33 90.03 86.31 76.04 78.79 70.90 77.76+ SNAP ±0.33 ±0.26 ±0.37 ±0.22 ±0.18 ±0.18 ±0.25 ±0.24 ±0.22 ±0.15 ±0.24 ±0.07 ±0.12 ±0.27 ±0.38 ±0.23
64.79 66.32 57.58 84.66 62.46 81.42 84.13 78.87 77.20 82.62 88.10 82.12 74.04 75.38 69.13 75.25SAR ±0.13 ±0.86 ±0.69 ±0.72 ±0.26 ±1.52 ±0.34 ±0.26 ±0.81 ±1.24 ±0.41 ±0.74 ±0.05 ±0.80 ±0.52 ±0.62
66.00 68.85 58.47 86.54 63.06 85.26 86.13 80.38 78.17 85.17 90.93 85.96 75.27 77.37 70.61 77.21+ SNAP ±0.17 ±0.75 ±0.42 ±0.25 ±0.28 ±0.09 ±0.38 ±0.09 ±0.27 ±0.13 ±0.36 ±0.20 ±0.31 ±0.28 ±0.30 ±0.29
63.21 64.87 56.60 84.64 62.16 82.31 84.13 78.16 76.39 82.90 87.44 81.47 73.59 76.02 68.09 74.80RoTTA ±0.37 ±0.62 ±0.28 ±0.52 ±0.31 ±0.63 ±0.56 ±0.71 ±0.95 ±0.62 ±0.46 ±0.65 ±0.42 ±0.40 ±0.33 ±0.52
65.28 66.91 57.88 86.75 63.51 85.48 86.17 80.46 78.38 85.24 89.99 85.82 75.66 77.98 70.15 77.05

0.05

+ SNAP ±0.32 ±0.22 ±0.06 ±0.25 ±0.13 ±0.13 ±0.10 ±0.23 ±0.26 ±0.13 ±0.23 ±0.03 ±0.16 ±0.19 ±0.29 ±0.18
64.36 66.21 57.65 84.73 62.95 83.07 84.50 78.46 76.99 83.00 88.07 82.62 73.93 76.50 68.82 75.46Tent ±0.43 ±0.16 ±1.01 ±0.48 ±0.52 ±0.50 ±0.32 ±0.82 ±0.32 ±0.36 ±0.43 ±0.34 ±0.23 ±0.46 ±0.48 ±0.46
66.32 68.38 59.00 86.93 64.04 85.58 86.35 80.78 78.68 85.34 90.08 86.19 75.77 78.37 70.49 77.49+ SNAP ±0.61 ±0.71 ±0.52 ±0.19 ±0.24 ±0.34 ±0.05 ±0.10 ±0.02 ±0.05 ±0.10 ±0.31 ±0.05 ±0.06 ±0.08 ±0.23
60.38 61.26 56.71 72.44 57.58 74.64 72.73 69.68 68.34 74.64 79.52 67.28 67.42 64.89 66.19 67.58CoTTA ±1.71 ±1.94 ±2.47 ±2.23 ±1.85 ±1.74 ±2.61 ±2.03 ±2.02 ±2.52 ±2.37 ±1.89 ±1.77 ±0.79 ±1.73 ±1.98
71.12 73.68 66.34 85.30 66.64 84.25 84.55 80.88 80.11 84.06 89.89 81.98 76.27 79.77 75.35 78.68+ SNAP ±0.47 ±0.29 ±0.24 ±0.01 ±0.12 ±0.34 ±0.13 ±0.15 ±0.15 ±0.14 ±0.14 ±0.37 ±0.19 ±0.26 ±0.08 ±0.21
63.99 65.95 57.39 84.71 62.66 83.11 84.44 78.42 76.63 82.97 88.00 82.55 73.85 76.46 68.91 75.34EATA ±0.87 ±0.44 ±1.05 ±0.48 ±0.62 ±0.52 ±0.33 ±0.75 ±0.26 ±0.26 ±0.47 ±0.34 ±0.33 ±0.29 ±0.56 ±0.50
66.16 67.60 58.81 86.95 64.06 85.49 86.34 80.79 78.65 85.24 90.09 86.23 75.88 78.48 70.56 77.42+ SNAP ±0.03 ±0.41 ±0.36 ±0.13 ±0.17 ±0.36 ±0.08 ±0.01 ±0.25 ±0.13 ±0.12 ±0.08 ±0.18 ±0.10 ±0.47 ±0.19
63.72 65.75 57.89 84.37 62.45 81.47 82.46 78.32 76.79 81.93 88.60 82.72 73.89 74.55 68.79 74.91SAR ±0.46 ±0.29 ±0.65 ±0.81 ±0.69 ±1.61 ±2.95 ±0.81 ±0.24 ±1.33 ±0.68 ±0.29 ±0.43 ±0.98 ±0.61 ±0.85
65.40 67.68 58.37 86.72 63.11 85.10 86.18 79.93 78.05 84.92 90.93 85.58 75.30 77.22 69.97 76.96+ SNAP ±0.33 ±0.60 ±0.45 ±0.18 ±0.16 ±0.16 ±0.29 ±0.17 ±0.31 ±0.22 ±0.35 ±0.14 ±0.14 ±0.30 ±0.30 ±0.27
63.36 65.10 56.64 84.62 62.41 82.96 84.35 78.10 76.42 82.69 87.90 82.34 73.56 76.09 68.39 75.00RoTTA ±0.80 ±0.55 ±0.56 ±0.49 ±0.79 ±0.67 ±0.43 ±0.80 ±0.23 ±0.25 ±0.53 ±0.32 ±0.25 ±0.44 ±0.31 ±0.50
65.27 67.05 58.05 86.79 63.48 85.46 86.25 80.39 78.34 85.19 90.10 85.94 75.67 78.04 69.75 77.05

0.03

+ SNAP ±0.32 ±0.19 ±0.22 ±0.21 ±0.18 ±0.33 ±0.09 ±0.08 ±0.15 ±0.10 ±0.16 ±0.08 ±0.12 ±0.09 ±0.27 ±0.17
62.43 64.13 55.85 84.03 62.21 82.47 83.87 77.71 76.55 82.75 87.35 81.83 73.24 75.34 67.73 74.50Tent ±1.70 ±1.51 ±1.35 ±1.07 ±1.20 ±0.88 ±0.93 ±0.66 ±0.18 ±0.14 ±1.11 ±1.81 ±1.33 ±1.18 ±1.50 ±1.10
65.51 67.26 58.05 86.89 63.53 85.44 85.97 80.58 78.35 85.12 90.09 85.86 75.66 78.38 70.12 77.12+ SNAP ±0.24 ±0.31 ±0.34 ±0.28 ±0.07 ±0.33 ±0.20 ±0.12 ±0.12 ±0.16 ±0.21 ±0.11 ±0.08 ±0.21 ±0.33 ±0.21
59.75 59.44 54.47 71.12 57.11 72.47 72.83 66.05 65.14 69.75 75.12 64.31 66.22 62.65 64.76 65.41CoTTA ±4.69 ±6.21 ±5.57 ±5.10 ±4.35 ±4.52 ±4.80 ±7.60 ±7.65 ±9.79 ±6.79 ±6.46 ±4.50 ±5.27 ±5.36 ±5.91
71.79 73.61 65.98 85.34 66.76 84.26 84.93 80.64 80.38 83.94 89.98 82.47 76.48 79.61 75.60 78.79+ SNAP ±0.22 ±0.29 ±0.58 ±0.36 ±0.26 ±0.12 ±0.21 ±0.45 ±0.30 ±0.42 ±0.08 ±0.64 ±0.26 ±0.24 ±0.29 ±0.31
62.36 63.92 55.73 84.05 62.24 82.38 83.90 77.66 76.48 82.67 87.34 81.82 73.30 75.31 67.76 74.46EATA ±1.73 ±1.66 ±1.39 ±1.10 ±1.18 ±0.85 ±0.93 ±0.72 ±0.15 ±0.17 ±1.12 ±1.81 ±1.24 ±1.20 ±1.52 ±1.12
65.49 67.19 57.93 86.92 63.65 85.42 85.97 80.46 78.13 85.07 90.03 85.87 75.69 78.20 70.03 77.07+ SNAP ±0.29 ±0.04 ±0.40 ±0.41 ±0.18 ±0.28 ±0.24 ±0.18 ±0.27 ±0.13 ±0.10 ±0.20 ±0.11 ±0.13 ±0.46 ±0.23
62.50 64.13 55.65 82.30 62.22 77.21 80.11 77.66 76.75 79.12 89.45 81.97 73.39 69.39 67.83 73.31SAR ±1.69 ±1.83 ±1.38 ±3.37 ±1.21 ±6.27 ±6.19 ±0.80 ±0.34 ±3.28 ±1.79 ±1.97 ±1.21 ±5.48 ±1.65 ±2.57
65.06 66.93 57.66 86.76 62.78 85.05 85.94 79.95 77.62 84.65 90.72 85.48 75.34 75.72 69.61 76.62+ SNAP ±0.17 ±0.11 ±0.51 ±0.29 ±0.24 ±0.21 ±0.48 ±0.18 ±0.37 ±0.21 ±0.62 ±0.35 ±0.13 ±1.35 ±0.25 ±0.36
62.25 63.71 55.59 84.05 62.17 82.32 83.86 77.56 76.39 82.64 87.27 81.75 73.21 75.15 67.75 74.38RoTTA ±1.65 ±1.68 ±1.46 ±1.12 ±1.37 ±0.83 ±0.90 ±0.75 ±0.24 ±0.10 ±1.12 ±1.82 ±1.21 ±1.27 ±1.48 ±1.13
65.32 66.94 57.85 86.91 63.44 85.32 85.98 80.49 78.22 85.04 90.01 85.77 75.75 78.15 70.06 77.02

0.01

+ SNAP ±0.25 ±0.12 ±0.29 ±0.31 ±0.24 ±0.22 ±0.14 ±0.24 ±0.20 ±0.15 ±0.06 ±0.24 ±0.11 ±0.07 ±0.47 ±0.21
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C.2 CIFAR100-C

Table 24: STTA classification accuracy (%) comparing with and without SNAP on CIAFR100-C
through Adaptation Rates(AR) (0.5, 0.3, and 0.1), including results for full adaptation (AR=1). Bold
numbers are the highest accuracy.

AR Methods Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg.
10.26 11.87 6.48 35.16 20.33 44.42 42.13 45.99 34.84 41.12 66.37 19.54 50.59 22.68 45.48 33.15Source ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00
36.90 37.96 32.13 62.65 39.14 60.05 61.16 50.68 50.38 54.81 64.40 60.33 50.48 53.49 41.98 50.44BN stats ±0.10 ±0.24 ±0.44 ±0.26 ±0.19 ±0.42 ±0.05 ±0.13 ±0.09 ±0.24 ±0.05 ±0.12 ±0.24 ±0.11 ±0.49 ±0.21
46.71 48.06 40.98 65.19 44.10 62.78 63.95 55.43 55.46 59.32 67.43 63.83 53.89 59.40 49.91 55.76Tent ±0.29 ±0.47 ±0.13 ±0.40 ±0.41 ±0.24 ±0.23 ±0.36 ±0.49 ±0.30 ±0.17 ±0.42 ±0.15 ±0.32 ±0.66 ±0.33
42.14 42.92 37.92 55.40 41.01 55.18 55.39 49.46 50.61 50.86 61.35 47.44 48.69 54.38 48.11 49.39CoTTA ±0.34 ±0.44 ±0.18 ±0.12 ±0.39 ±0.10 ±0.58 ±0.23 ±0.63 ±0.31 ±0.27 ±0.37 ±0.18 ±0.16 ±0.65 ±0.33
38.42 39.96 32.64 62.35 38.73 59.93 61.07 50.50 50.79 55.30 64.38 60.63 49.66 53.63 43.02 50.74EATA ±0.41 ±0.47 ±0.71 ±0.41 ±0.33 ±0.17 ±0.19 ±0.36 ±0.34 ±0.23 ±0.12 ±0.13 ±0.32 ±0.41 ±0.20 ±0.32
50.75 52.00 43.87 65.44 46.30 63.60 64.68 58.41 58.26 61.34 68.03 67.68 54.53 61.52 52.72 57.94SAR ±0.44 ±0.22 ±0.40 ±0.39 ±0.22 ±0.17 ±0.09 ±0.48 ±0.09 ±0.40 ±0.15 ±0.31 ±0.25 ±0.21 ±0.21 ±0.27
38.54 39.85 33.73 63.45 40.74 60.54 62.03 51.61 51.75 56.20 65.14 61.55 51.22 54.42 42.50 51.55

1

RoTTA ±0.22 ±0.24 ±0.37 ±0.17 ±0.32 ±0.19 ±0.26 ±0.09 ±0.14 ±0.31 ±0.10 ±0.14 ±0.14 ±0.22 ±0.35 ±0.22

43.96 45.42 36.57 62.28 36.57 59.96 61.90 53.25 53.14 57.36 65.20 60.14 49.72 57.62 46.83 52.66Tent ±0.85 ±1.34 ±1.57 ±0.13 ±2.97 ±0.59 ±0.48 ±0.72 ±1.70 ±0.22 ±0.20 ±2.77 ±0.08 ±0.61 ±0.52 ±0.98
49.06 50.43 41.49 65.55 44.09 63.31 65.62 57.62 56.81 60.75 68.72 67.52 54.08 61.15 51.54 57.18+ SNAP ±0.00 ±0.13 ±0.80 ±0.24 ±0.06 ±0.53 ±0.37 ±0.09 ±0.31 ±0.48 ±0.31 ±0.64 ±0.19 ±0.14 ±0.11 ±0.29
34.31 35.16 31.42 47.78 34.99 48.91 47.79 41.27 41.42 43.77 52.16 38.30 42.25 44.12 41.58 41.68CoTTA ±0.09 ±0.46 ±0.28 ±0.45 ±0.40 ±0.48 ±0.46 ±0.86 ±0.37 ±0.57 ±0.27 ±0.46 ±0.49 ±0.41 ±0.22 ±0.42
41.28 42.23 37.17 58.29 40.70 57.32 57.78 49.85 50.82 52.21 63.69 51.30 49.41 55.15 47.92 50.34+ SNAP ±0.46 ±0.16 ±0.19 ±0.21 ±0.08 ±0.12 ±0.09 ±0.38 ±0.11 ±0.28 ±0.18 ±0.23 ±0.14 ±0.09 ±0.25 ±0.20
38.02 39.48 32.77 61.68 38.42 59.11 60.63 50.15 49.92 54.60 63.43 58.70 49.42 53.08 42.62 50.13EATA ±0.22 ±0.15 ±0.17 ±0.38 ±0.07 ±0.09 ±0.18 ±0.25 ±0.67 ±0.13 ±0.21 ±0.44 ±0.22 ±0.20 ±0.21 ±0.24
39.75 41.14 34.15 63.75 40.55 61.09 62.81 52.12 52.12 56.47 65.73 61.85 51.14 55.75 44.86 52.22+ SNAP ±0.11 ±0.26 ±0.10 ±0.23 ±0.21 ±0.08 ±0.19 ±0.08 ±0.30 ±0.18 ±0.23 ±0.34 ±0.28 ±0.15 ±0.51 ±0.22
49.00 50.00 42.99 65.10 45.21 62.51 64.43 55.78 56.59 60.21 67.33 65.17 53.90 60.22 51.28 56.65SAR ±0.61 ±0.42 ±0.30 ±0.44 ±0.41 ±0.20 ±0.43 ±0.27 ±0.46 ±0.48 ±0.44 ±0.46 ±0.50 ±0.29 ±0.23 ±0.40
51.71 52.79 44.95 66.59 47.84 64.40 66.15 59.02 59.12 62.62 69.15 68.20 55.89 62.66 53.77 58.99+ SNAP ±0.46 ±0.08 ±0.54 ±0.10 ±0.01 ±0.18 ±0.28 ±0.20 ±0.37 ±0.16 ±0.06 ±0.16 ±0.26 ±0.31 ±0.23 ±0.23
37.12 38.34 32.54 62.25 38.91 59.52 61.19 50.22 49.91 54.69 63.74 59.40 50.32 53.29 41.94 50.22RoTTA ±0.09 ±0.20 ±0.22 ±0.09 ±0.13 ±0.19 ±0.21 ±0.23 ±0.56 ±0.15 ±0.19 ±0.47 ±0.29 ±0.29 ±0.15 ±0.23
38.33 39.12 32.93 64.01 40.36 61.30 62.96 51.77 51.54 56.15 66.13 61.67 51.60 54.90 43.14 51.73

0.5

+ SNAP ±0.30 ±0.24 ±0.28 ±0.15 ±0.44 ±0.38 ±0.16 ±0.22 ±0.19 ±0.28 ±0.05 ±0.17 ±0.24 ±0.23 ±0.36 ±0.25
44.41 46.79 38.72 62.98 39.79 60.38 62.25 52.47 53.69 57.47 65.80 60.13 50.03 58.21 47.23 53.36Tent ±0.80 ±0.72 ±1.17 ±0.28 ±0.92 ±0.53 ±0.33 ±0.76 ±0.65 ±0.63 ±0.28 ±2.70 ±0.60 ±0.81 ±0.43 ±0.77
49.23 50.15 42.19 65.85 45.12 63.39 64.91 57.45 57.13 60.72 68.86 66.65 54.25 61.38 51.80 57.27+ SNAP ±0.04 ±0.48 ±0.75 ±0.15 ±1.15 ±0.28 ±0.26 ±0.51 ±0.37 ±0.17 ±0.31 ±1.52 ±0.41 ±0.54 ±0.68 ±0.51
31.74 32.66 29.28 44.98 32.96 46.51 44.96 38.57 38.16 41.91 49.38 35.53 40.04 40.77 39.12 39.11CoTTA ±0.43 ±0.38 ±0.15 ±0.45 ±0.56 ±0.48 ±0.37 ±0.90 ±0.78 ±0.39 ±0.86 ±0.33 ±0.61 ±0.67 ±0.43 ±0.52
41.44 42.49 37.08 58.27 40.99 57.24 57.68 50.36 51.09 51.66 63.50 50.90 49.49 54.75 47.81 50.32+ SNAP ±0.38 ±0.09 ±0.13 ±0.24 ±0.37 ±0.37 ±0.17 ±0.22 ±0.18 ±0.22 ±0.13 ±0.52 ±0.26 ±0.42 ±0.13 ±0.26
37.97 39.47 32.69 61.45 37.96 59.02 60.79 49.73 49.55 54.63 63.38 58.16 49.07 53.17 42.49 49.97EATA ±0.04 ±0.34 ±0.12 ±0.19 ±0.17 ±0.28 ±0.12 ±0.05 ±0.38 ±0.41 ±0.07 ±0.21 ±0.24 ±0.41 ±0.44 ±0.23
40.03 41.39 34.91 63.58 40.29 61.58 62.56 51.85 51.78 56.13 65.70 61.68 51.25 55.28 44.80 52.19+ SNAP ±0.26 ±0.29 ±0.58 ±0.15 ±0.28 ±0.12 ±0.25 ±0.25 ±0.21 ±0.01 ±0.22 ±0.29 ±0.35 ±0.23 ±0.17 ±0.24
49.00 50.00 42.99 65.10 45.21 62.51 64.43 55.78 56.59 60.21 67.33 65.17 53.90 60.22 51.28 56.65SAR ±0.61 ±0.42 ±0.30 ±0.44 ±0.41 ±0.20 ±0.43 ±0.27 ±0.46 ±0.48 ±0.44 ±0.46 ±0.50 ±0.29 ±0.23 ±0.40
50.63 52.03 44.89 66.28 47.08 64.32 65.90 57.98 58.09 61.88 69.17 67.82 55.47 62.02 53.09 58.44+ SNAP ±0.31 ±0.32 ±0.54 ±0.13 ±0.26 ±0.09 ±0.21 ±0.27 ±0.49 ±0.24 ±0.42 ±0.29 ±0.29 ±0.31 ±0.15 ±0.29
36.83 37.94 32.00 61.90 38.67 59.15 60.97 49.92 49.32 54.62 63.71 58.31 49.79 52.88 41.59 49.84RoTTA ±0.18 ±0.22 ±0.05 ±0.20 ±0.10 ±0.14 ±0.24 ±0.23 ±0.38 ±0.21 ±0.18 ±0.11 ±0.22 ±0.34 ±0.27 ±0.21
38.11 39.21 32.80 63.72 40.01 61.51 62.74 51.37 51.49 55.68 65.90 61.56 51.50 54.67 43.01 51.55

0.3

+ SNAP ±0.13 ±0.23 ±0.14 ±0.13 ±0.23 ±0.13 ±0.16 ±0.15 ±0.30 ±0.25 ±0.13 ±0.29 ±0.08 ±0.13 ±0.19 ±0.18
43.55 44.25 37.95 62.56 41.80 59.45 62.13 53.04 51.60 56.76 64.60 61.19 51.01 56.42 46.28 52.84Tent ±0.66 ±0.54 ±0.72 ±0.47 ±0.04 ±0.20 ±0.21 ±0.84 ±0.39 ±0.15 ±0.56 ±1.68 ±0.39 ±0.27 ±0.49 ±0.51
46.51 47.68 39.92 65.39 44.14 63.29 64.53 55.20 55.55 59.71 68.05 64.90 53.91 59.28 49.58 55.84+ SNAP ±0.35 ±0.23 ±0.48 ±0.11 ±0.60 ±0.18 ±0.38 ±0.47 ±0.11 ±0.33 ±0.17 ±0.90 ±0.30 ±0.16 ±0.75 ±0.37
28.53 29.53 26.45 42.19 30.34 44.69 41.88 34.44 33.93 39.03 45.49 31.17 37.25 36.17 36.84 35.86CoTTA ±0.90 ±0.86 ±0.60 ±1.19 ±0.77 ±1.07 ±0.62 ±0.84 ±1.07 ±0.89 ±1.36 ±0.60 ±0.80 ±1.20 ±0.71 ±0.90
41.72 42.62 37.46 58.43 41.24 57.33 57.96 50.34 51.17 52.29 63.59 51.32 49.68 54.78 47.89 50.52+ SNAP ±0.25 ±0.60 ±0.13 ±0.13 ±0.21 ±0.07 ±0.30 ±0.38 ±0.18 ±0.16 ±0.20 ±0.36 ±0.21 ±0.28 ±0.35 ±0.25
38.41 39.03 32.29 61.07 38.45 58.21 60.62 49.59 49.19 54.23 62.88 57.39 49.00 53.01 42.05 49.70EATA ±0.53 ±0.45 ±0.32 ±0.36 ±0.29 ±0.47 ±0.36 ±0.30 ±0.34 ±0.50 ±0.28 ±0.62 ±0.65 ±0.60 ±0.15 ±0.42
40.62 41.53 34.31 64.08 40.29 61.32 63.04 52.00 51.77 56.85 65.98 61.96 51.05 55.67 44.80 52.35+ SNAP ±0.26 ±0.49 ±0.24 ±0.30 ±0.21 ±0.24 ±0.16 ±0.53 ±0.40 ±0.43 ±0.09 ±0.34 ±0.09 ±0.28 ±0.15 ±0.28
43.92 45.28 38.64 63.36 42.58 60.36 62.78 53.39 52.23 57.54 65.41 60.88 52.07 56.80 47.16 53.49SAR ±0.52 ±0.55 ±0.28 ±0.25 ±0.44 ±0.42 ±0.23 ±0.86 ±0.28 ±0.32 ±0.41 ±0.88 ±0.59 ±0.13 ±0.20 ±0.43
46.29 47.60 39.95 65.26 44.00 63.09 64.97 55.08 55.17 59.73 68.13 64.72 53.84 58.98 49.54 55.76+ SNAP ±0.68 ±0.06 ±0.21 ±0.18 ±0.22 ±0.25 ±0.36 ±0.24 ±0.17 ±0.24 ±0.09 ±0.44 ±0.31 ±0.35 ±0.65 ±0.30
36.28 37.12 31.38 61.20 38.36 58.26 60.30 49.20 48.21 53.54 62.80 56.78 49.61 52.28 41.26 49.11RoTTA ±0.15 ±0.41 ±0.27 ±0.07 ±0.15 ±0.24 ±0.47 ±0.23 ±0.14 ±0.23 ±0.40 ±0.51 ±0.24 ±0.41 ±0.11 ±0.27
37.83 38.42 32.38 63.73 39.72 61.32 62.58 51.38 51.18 55.61 65.70 61.39 51.36 54.51 42.85 51.33

0.1

+ SNAP ±0.13 ±0.36 ±0.20 ±0.09 ±0.38 ±0.18 ±0.19 ±0.18 ±0.13 ±0.07 ±0.29 ±0.21 ±0.09 ±0.24 ±0.33 ±0.21
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Table 25: STTA classification accuracy (%) comparing with and without SNAP on CIFAR100-C
through Adaptation Rates(AR) (0.05, 0.03, and 0.01). Bold numbers are the highest accuracy.

AR Methods Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg.
40.69 41.55 35.14 62.26 40.26 58.92 61.06 51.21 50.00 55.52 64.05 58.45 50.50 54.68 44.36 51.24Tent ±0.35 ±0.62 ±0.38 ±0.52 ±0.23 ±0.60 ±0.43 ±0.88 ±0.31 ±0.33 ±0.62 ±1.06 ±0.80 ±0.26 ±0.69 ±0.54
42.87 44.87 37.60 65.01 42.22 62.22 63.72 54.03 53.68 58.03 67.05 63.08 52.97 57.67 46.94 54.13+ SNAP ±0.37 ±0.70 ±0.08 ±0.01 ±0.35 ±0.31 ±0.45 ±0.46 ±0.39 ±0.47 ±0.50 ±0.10 ±0.15 ±0.12 ±0.13 ±0.31
26.15 26.89 25.26 39.48 28.34 41.41 38.77 32.06 30.84 35.56 41.60 28.52 34.99 33.60 34.54 33.20CoTTA ±0.60 ±0.32 ±0.44 ±0.71 ±0.74 ±0.76 ±1.14 ±0.85 ±0.65 ±1.12 ±1.36 ±0.79 ±0.45 ±0.82 ±0.54 ±0.75
42.02 42.70 37.67 58.30 41.57 57.47 58.02 50.55 51.31 52.34 63.63 51.25 49.76 54.94 47.98 50.63+ SNAP ±0.21 ±0.13 ±0.31 ±0.26 ±0.37 ±0.14 ±0.18 ±0.27 ±0.32 ±0.17 ±0.16 ±0.49 ±0.18 ±0.05 ±0.12 ±0.22
38.46 39.05 33.47 61.07 38.52 58.16 60.59 49.60 49.18 54.41 63.15 57.06 49.09 52.87 42.49 49.81EATA ±0.14 ±0.58 ±0.23 ±0.63 ±0.29 ±0.46 ±0.48 ±0.55 ±0.47 ±0.24 ±0.43 ±1.37 ±0.88 ±0.42 ±0.34 ±0.50
40.49 41.64 34.37 64.28 40.38 61.52 63.17 51.66 52.12 56.50 66.03 62.01 51.76 55.66 44.83 52.43+ SNAP ±0.21 ±0.43 ±0.15 ±0.20 ±0.51 ±0.30 ±0.18 ±0.53 ±0.52 ±0.21 ±0.36 ±0.12 ±0.12 ±0.23 ±0.32 ±0.29
40.28 41.62 35.35 62.84 40.37 59.51 61.68 51.29 50.66 55.60 64.43 58.49 50.90 54.82 44.64 51.50SAR ±0.07 ±0.62 ±0.04 ±0.26 ±0.41 ±0.38 ±0.28 ±0.81 ±0.38 ±0.40 ±0.62 ±0.82 ±0.64 ±0.27 ±0.43 ±0.43
41.76 44.24 36.89 64.34 41.54 62.13 63.39 53.24 52.91 57.54 66.89 62.41 52.70 57.23 46.63 53.59+ SNAP ±0.29 ±0.44 ±0.21 ±0.38 ±0.37 ±0.15 ±0.24 ±0.33 ±0.02 ±0.22 ±0.60 ±0.50 ±0.15 ±0.47 ±0.57 ±0.33
36.38 37.38 31.78 61.44 38.26 58.18 60.19 48.98 48.30 53.50 62.73 56.52 49.37 52.19 41.60 49.12RoTTA ±0.12 ±0.42 ±0.45 ±0.06 ±0.20 ±0.42 ±0.53 ±0.18 ±0.28 ±0.17 ±0.42 ±0.90 ±0.49 ±0.19 ±0.28 ±0.34
37.67 38.66 32.47 63.95 40.18 61.33 62.52 51.47 51.32 55.67 65.89 61.24 51.47 54.52 42.84 51.41

0.05

+ SNAP ±0.12 ±0.21 ±0.12 ±0.16 ±0.20 ±0.47 ±0.35 ±0.14 ±0.36 ±0.21 ±0.24 ±0.15 ±0.14 ±0.15 ±0.38 ±0.23
38.55 39.28 33.77 61.64 39.66 58.83 60.89 49.45 49.51 54.64 63.48 57.29 50.34 53.44 43.28 50.27Tent ±0.17 ±0.15 ±0.16 ±0.25 ±0.39 ±0.48 ±0.29 ±0.51 ±0.78 ±0.42 ±0.58 ±0.33 ±0.34 ±0.38 ±0.26 ±0.37
41.22 42.20 35.31 64.48 40.82 61.96 63.50 52.84 52.36 57.18 66.50 62.17 52.12 56.48 45.72 52.99+ SNAP ±0.33 ±0.27 ±0.36 ±0.06 ±0.60 ±0.02 ±0.30 ±0.40 ±0.40 ±0.33 ±0.02 ±0.41 ±0.17 ±0.18 ±0.40 ±0.28
27.11 27.73 25.87 40.25 29.52 42.16 39.60 32.74 32.23 36.60 43.33 29.13 36.45 34.51 35.96 34.21CoTTA ±1.11 ±2.05 ±1.41 ±2.62 ±1.49 ±2.21 ±2.51 ±2.42 ±1.71 ±2.75 ±2.80 ±2.42 ±1.82 ±1.66 ±1.75 ±2.05
41.77 42.85 37.50 58.61 41.15 57.65 58.05 50.45 51.34 52.72 63.49 51.63 49.87 55.24 48.14 50.70+ SNAP ±0.24 ±0.19 ±0.08 ±0.22 ±0.16 ±0.22 ±0.32 ±0.65 ±0.20 ±0.35 ±0.07 ±0.61 ±0.17 ±0.13 ±0.36 ±0.26
37.94 38.63 32.00 61.02 39.08 58.52 60.28 48.73 49.15 53.89 63.03 56.64 49.45 52.93 42.11 49.56EATA ±0.32 ±0.21 ±0.91 ±0.33 ±0.30 ±0.66 ±0.42 ±0.32 ±0.97 ±0.53 ±0.34 ±0.49 ±0.47 ±0.35 ±0.44 ±0.47
39.87 41.12 34.48 64.14 40.27 61.91 63.09 52.37 51.93 56.36 66.02 61.88 51.83 55.60 44.59 52.36+ SNAP ±0.89 ±0.20 ±0.08 ±0.23 ±0.09 ±0.00 ±0.43 ±0.42 ±0.44 ±0.26 ±0.05 ±0.15 ±0.04 ±0.11 ±0.45 ±0.26
38.33 39.19 33.15 61.77 39.78 59.09 61.02 49.67 49.86 54.71 63.59 57.45 50.37 53.67 42.88 50.30SAR ±0.25 ±0.26 ±0.43 ±0.21 ±0.06 ±0.33 ±0.25 ±0.54 ±0.65 ±0.31 ±0.49 ±0.18 ±0.39 ±0.32 ±0.51 ±0.35
39.84 41.83 34.94 63.70 40.49 61.45 63.17 52.27 51.91 56.69 65.91 61.31 51.68 56.06 44.95 52.41+ SNAP ±0.07 ±0.78 ±0.28 ±0.26 ±0.16 ±0.28 ±0.07 ±0.51 ±0.17 ±0.25 ±0.27 ±0.52 ±0.22 ±0.18 ±0.16 ±0.28
36.24 36.94 31.15 60.87 38.28 58.25 59.88 48.43 48.17 53.32 62.73 56.18 49.23 52.12 41.28 48.87RoTTA ±0.03 ±0.21 ±0.09 ±0.17 ±0.14 ±0.53 ±0.36 ±0.52 ±0.61 ±0.47 ±0.46 ±0.34 ±0.39 ±0.31 ±0.61 ±0.35
37.85 38.68 32.78 63.97 39.75 61.41 62.57 51.53 51.38 55.68 65.56 61.25 51.53 54.84 42.96 51.45

0.03

+ SNAP ±0.20 ±0.20 ±0.31 ±0.24 ±0.17 ±0.16 ±0.52 ±0.27 ±0.28 ±0.37 ±0.20 ±0.13 ±0.19 ±0.26 ±0.33 ±0.25
36.08 36.95 31.31 61.03 38.09 57.63 58.76 48.24 48.65 53.45 62.14 55.07 48.59 51.82 40.68 48.57Tent ±0.42 ±0.21 ±0.47 ±0.51 ±0.56 ±0.53 ±0.31 ±0.47 ±0.87 ±0.19 ±0.49 ±2.13 ±0.25 ±0.58 ±0.04 ±0.54
38.40 39.40 33.26 63.85 40.36 61.23 62.79 51.92 51.73 56.20 65.83 60.95 51.82 54.75 43.53 51.73+ SNAP ±0.06 ±0.16 ±0.10 ±0.11 ±0.36 ±0.34 ±0.24 ±0.06 ±0.00 ±0.34 ±0.17 ±0.29 ±0.00 ±0.30 ±0.16 ±0.18
26.59 27.92 24.86 41.34 28.91 43.09 40.11 34.33 33.32 37.99 44.78 28.80 36.26 34.70 35.67 34.58CoTTA ±1.64 ±1.79 ±1.51 ±2.21 ±1.96 ±2.85 ±2.87 ±1.61 ±2.67 ±2.03 ±3.61 ±2.18 ±1.90 ±1.66 ±1.47 ±2.13
42.05 42.91 37.50 58.70 41.22 57.38 58.14 50.39 51.13 52.23 63.42 51.74 49.87 54.84 47.72 50.62+ SNAP ±0.05 ±0.17 ±0.08 ±0.12 ±0.36 ±0.17 ±0.33 ±0.68 ±0.43 ±0.12 ±0.35 ±0.17 ±0.50 ±0.09 ±0.25 ±0.26
36.10 37.05 31.03 60.86 37.83 57.64 58.77 48.02 48.75 53.37 62.18 54.95 48.55 51.89 40.75 48.51EATA ±0.27 ±0.59 ±0.34 ±0.50 ±0.37 ±0.57 ±0.32 ±0.50 ±1.26 ±0.09 ±0.43 ±2.22 ±0.15 ±0.65 ±0.02 ±0.55
38.54 39.78 33.11 63.82 39.98 61.33 62.53 51.76 51.50 56.03 65.94 61.16 51.47 54.52 43.67 51.68+ SNAP ±0.14 ±0.15 ±0.22 ±0.10 ±0.53 ±0.20 ±0.24 ±0.12 ±0.32 ±0.44 ±0.19 ±0.11 ±0.04 ±0.27 ±0.04 ±0.21
36.04 37.02 31.38 61.13 38.07 58.00 59.08 48.44 48.84 53.52 62.57 55.19 48.87 52.01 40.71 48.72SAR ±0.00 ±0.26 ±0.30 ±0.35 ±0.44 ±0.59 ±0.36 ±0.47 ±0.92 ±0.16 ±0.50 ±2.20 ±0.15 ±0.57 ±0.19 ±0.50
37.91 38.85 32.92 63.17 39.35 60.51 62.01 51.11 50.48 55.47 65.07 59.69 51.24 54.10 42.80 50.98+ SNAP ±0.39 ±0.25 ±0.38 ±0.23 ±0.45 ±0.51 ±0.26 ±0.11 ±0.28 ±0.41 ±0.16 ±0.15 ±0.15 ±0.47 ±0.06 ±0.28
35.55 36.34 30.55 60.76 37.42 57.50 58.57 47.87 48.31 53.11 61.90 54.70 48.25 51.37 40.29 48.16RoTTA ±0.33 ±0.31 ±0.45 ±0.50 ±0.50 ±0.56 ±0.30 ±0.28 ±0.97 ±0.23 ±0.62 ±1.98 ±0.08 ±0.62 ±0.11 ±0.52
37.82 38.72 32.60 63.53 39.80 61.00 62.27 51.42 51.33 55.71 65.64 60.89 51.50 54.27 42.92 51.30

0.01

+ SNAP ±0.16 ±0.05 ±0.10 ±0.01 ±0.49 ±0.37 ±0.23 ±0.06 ±0.12 ±0.42 ±0.14 ±0.18 ±0.18 ±0.19 ±0.47 ±0.21
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C.3 ImageNet-C

Table 26: STTA classification accuracy (%) comparing with and without SNAP on ImageNet-C
through Adaptation Rates(AR) (0.5, 0.3, and 0.1), including results for full adaptation (AR=1). Bold
numbers are the highest accuracy.

AR Methods Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg.
3.00 3.70 2.64 17.90 9.74 14.72 22.45 16.60 23.06 24.00 59.11 5.37 16.50 20.88 32.63 18.15Source ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00

14.29 15.06 14.89 13.30 13.38 23.78 35.22 31.78 30.26 44.40 62.39 15.14 40.42 45.25 36.53 29.07BN stats ±0.05 ±0.02 ±0.08 ±0.08 ±0.08 ±0.05 ±0.06 ±0.04 ±0.07 ±0.14 ±0.11 ±0.05 ±0.10 ±0.04 ±0.16 ±0.07
27.03 28.98 28.64 24.66 23.63 38.70 45.77 44.82 38.06 54.59 64.61 16.84 51.64 55.54 49.38 39.53Tent ±0.05 ±0.08 ±0.29 ±0.27 ±0.25 ±0.10 ±0.12 ±0.08 ±0.35 ±0.08 ±0.10 ±1.51 ±0.10 ±0.15 ±0.07 ±0.24
13.12 13.98 13.94 12.44 12.18 23.74 35.22 31.78 30.26 44.40 62.40 15.13 40.42 45.26 36.53 28.72CoTTA ±0.08 ±0.07 ±0.01 ±0.10 ±0.04 ±0.04 ±0.06 ±0.05 ±0.06 ±0.14 ±0.11 ±0.03 ±0.10 ±0.04 ±0.16 ±0.07
29.62 31.79 31.17 26.89 26.30 40.65 47.44 46.29 40.78 55.57 64.97 38.02 52.66 56.03 50.26 42.56EATA ±0.02 ±0.09 ±0.19 ±0.03 ±0.15 ±0.12 ±0.06 ±0.09 ±0.05 ±0.08 ±0.08 ±0.08 ±0.20 ±0.04 ±0.16 ±0.10
29.23 31.14 29.88 29.29 27.39 39.76 44.13 45.98 29.39 55.13 63.71 17.34 52.31 56.09 49.35 39.34SAR ±0.40 ±1.44 ±0.96 ±0.72 ±0.97 ±0.63 ±0.11 ±0.23 ±0.30 ±0.20 ±0.08 ±0.61 ±0.08 ±0.18 ±0.13 ±0.47
20.60 22.83 19.81 10.46 10.10 21.31 31.83 39.66 32.09 46.08 62.22 20.27 42.54 47.47 40.67 31.20

1

RoTTA ±0.07 ±0.09 ±0.24 ±0.04 ±0.26 ±0.27 ±0.23 ±0.18 ±0.18 ±0.23 ±0.27 ±0.49 ±0.29 ±0.23 ±0.10 ±0.21

25.24 26.86 26.35 23.26 22.41 35.99 44.60 42.96 37.68 53.60 64.40 21.35 50.23 54.32 47.93 38.48Tent ±0.10 ±0.27 ±0.08 ±0.06 ±0.05 ±0.09 ±0.10 ±0.13 ±0.17 ±0.15 ±0.12 ±0.94 ±0.12 ±0.15 ±0.04 ±0.17
28.05 29.97 29.39 25.73 23.39 38.49 45.65 44.21 39.57 53.90 64.52 34.39 49.99 54.88 48.72 40.72+ SNAP ±0.00 ±0.04 ±0.19 ±0.15 ±0.06 ±0.17 ±0.03 ±0.09 ±0.10 ±0.10 ±0.09 ±1.83 ±0.14 ±0.07 ±0.09 ±0.21
11.99 13.04 12.86 11.90 11.64 22.92 35.06 31.20 29.97 44.28 62.16 14.02 40.39 45.29 36.58 28.22CoTTA ±0.13 ±0.20 ±0.10 ±0.07 ±0.07 ±0.02 ±0.06 ±0.09 ±0.06 ±0.07 ±0.07 ±0.09 ±0.05 ±0.09 ±0.12 ±0.09
15.16 15.96 15.86 13.98 14.13 24.69 36.51 32.59 31.71 45.98 63.62 15.72 42.05 46.71 37.93 30.17+ SNAP ±0.14 ±0.02 ±0.14 ±0.04 ±0.00 ±0.09 ±0.07 ±0.16 ±0.06 ±0.09 ±0.05 ±0.04 ±0.09 ±0.24 ±0.14 ±0.09
28.62 30.12 29.94 25.34 24.48 38.94 46.85 45.20 40.03 55.04 64.84 34.48 52.06 55.57 49.85 41.42EATA ±0.10 ±0.10 ±0.14 ±0.20 ±0.44 ±0.10 ±0.25 ±0.12 ±0.01 ±0.06 ±0.07 ±0.41 ±0.24 ±0.13 ±0.05 ±0.16
30.00 31.88 31.47 26.93 26.64 39.16 47.23 45.36 39.75 55.30 64.52 33.75 52.29 55.66 50.48 42.03+ SNAP ±0.29 ±0.17 ±0.13 ±0.21 ±0.28 ±0.15 ±0.07 ±0.13 ±0.14 ±0.14 ±0.10 ±0.07 ±0.09 ±0.18 ±0.08 ±0.15
26.74 28.56 28.77 19.90 21.50 39.97 44.98 45.95 34.22 55.04 63.93 6.58 52.50 55.98 49.71 38.29SAR ±0.25 ±1.75 ±0.13 ±0.21 ±0.38 ±0.10 ±0.12 ±0.17 ±0.80 ±0.05 ±0.03 ±0.64 ±0.10 ±0.19 ±0.09 ±0.33
31.58 33.22 33.77 26.47 26.26 44.01 47.94 48.77 42.51 56.96 64.86 28.31 54.23 57.55 51.90 43.22+ SNAP ±0.38 ±2.44 ±0.56 ±1.69 ±0.94 ±0.10 ±0.04 ±0.12 ±0.09 ±0.13 ±0.10 ±10.99 ±0.08 ±0.16 ±0.19 ±1.20
18.17 19.59 18.49 12.32 11.79 23.56 34.62 37.84 32.91 47.86 63.94 18.68 43.21 48.54 40.20 31.45RoTTA ±0.05 ±0.03 ±0.10 ±0.11 ±0.13 ±0.15 ±0.14 ±0.11 ±0.06 ±0.05 ±0.16 ±0.42 ±0.08 ±0.23 ±0.23 ±0.14
20.43 22.03 21.05 15.47 14.49 26.36 36.46 38.98 34.15 48.41 64.02 20.74 43.66 49.16 41.05 33.10

0.5

+ SNAP ±0.03 ±0.08 ±0.11 ±0.11 ±0.07 ±0.06 ±0.10 ±0.09 ±0.12 ±0.13 ±0.13 ±0.23 ±0.10 ±0.10 ±0.15 ±0.11
23.63 25.18 24.80 21.81 20.97 34.11 43.60 41.44 36.98 52.66 64.21 22.74 48.96 53.46 46.80 37.42Tent ±0.08 ±0.37 ±0.28 ±0.02 ±0.18 ±0.07 ±0.04 ±0.05 ±0.04 ±0.15 ±0.13 ±0.04 ±0.16 ±0.07 ±0.09 ±0.12
26.60 28.21 27.94 24.37 22.39 36.45 44.36 42.64 38.54 52.91 64.26 33.47 48.58 53.90 47.41 39.47+ SNAP ±0.20 ±0.19 ±0.33 ±0.36 ±0.12 ±0.07 ±0.13 ±0.07 ±0.15 ±0.06 ±0.10 ±0.44 ±0.10 ±0.14 ±0.11 ±0.17
11.74 12.74 12.68 11.77 11.62 22.64 34.97 31.05 29.81 44.24 62.12 13.73 40.31 45.19 36.71 28.09CoTTA ±0.09 ±0.06 ±0.07 ±0.17 ±0.14 ±0.14 ±0.07 ±0.01 ±0.13 ±0.05 ±0.06 ±0.02 ±0.15 ±0.08 ±0.09 ±0.09
15.26 16.00 15.83 13.81 14.13 24.84 36.46 32.58 31.73 46.04 63.52 15.69 42.18 46.74 38.00 30.19+ SNAP ±0.16 ±0.09 ±0.06 ±0.04 ±0.01 ±0.03 ±0.13 ±0.03 ±0.08 ±0.21 ±0.06 ±0.08 ±0.07 ±0.05 ±0.14 ±0.08
27.35 29.03 28.62 23.94 23.45 37.21 46.18 44.05 39.19 54.52 64.54 32.20 51.22 55.00 49.27 40.38EATA ±0.04 ±0.15 ±0.27 ±0.06 ±0.60 ±0.30 ±0.13 ±0.20 ±0.22 ±0.01 ±0.06 ±0.62 ±0.16 ±0.10 ±0.21 ±0.21
29.48 31.20 30.69 26.68 25.90 38.24 46.60 44.62 39.31 54.82 64.44 32.87 51.41 55.41 49.78 41.43+ SNAP ±0.14 ±0.04 ±0.11 ±0.14 ±0.25 ±0.01 ±0.22 ±0.06 ±0.19 ±0.06 ±0.13 ±0.29 ±0.25 ±0.06 ±0.14 ±0.14
28.12 29.30 29.63 22.37 23.88 39.34 45.36 45.69 36.73 54.91 64.11 10.96 52.22 55.76 49.60 39.20SAR ±0.13 ±0.89 ±0.17 ±0.47 ±0.33 ±0.18 ±0.11 ±0.18 ±0.79 ±0.07 ±0.02 ±1.33 ±0.19 ±0.13 ±0.08 ±0.34
32.63 34.69 34.26 28.91 27.96 43.51 47.79 48.27 42.41 56.45 64.77 32.76 53.74 57.21 51.67 43.80+ SNAP ±0.11 ±0.23 ±0.18 ±0.27 ±0.29 ±0.14 ±0.03 ±0.11 ±0.13 ±0.09 ±0.07 ±3.04 ±0.13 ±0.28 ±0.12 ±0.35
16.90 17.88 17.25 12.89 12.51 23.96 35.26 36.26 32.32 47.25 63.98 17.46 42.77 48.21 39.35 30.95RoTTA ±0.15 ±0.11 ±0.08 ±0.17 ±0.05 ±0.03 ±0.16 ±0.01 ±0.07 ±0.02 ±0.13 ±0.18 ±0.09 ±0.24 ±0.15 ±0.11
18.63 19.94 19.35 14.88 14.34 25.88 36.47 37.13 33.32 47.74 63.96 19.08 42.98 48.73 40.27 32.18

0.3

+ SNAP ±0.07 ±0.08 ±0.06 ±0.08 ±0.05 ±0.03 ±0.03 ±0.02 ±0.11 ±0.17 ±0.06 ±0.21 ±0.07 ±0.17 ±0.20 ±0.09
22.00 23.51 23.07 19.38 18.86 32.15 42.29 39.70 34.33 51.62 63.70 15.79 47.74 52.35 45.54 35.47Tent ±3.47 ±3.92 ±3.85 ±2.30 ±2.06 ±3.40 ±2.45 ±3.27 ±0.60 ±2.30 ±0.29 ±4.61 ±2.84 ±2.27 ±2.98 ±2.71
26.21 27.85 27.50 23.62 22.73 36.01 44.11 42.19 38.15 52.95 64.57 30.23 48.56 53.71 47.09 39.03+ SNAP ±4.92 ±5.36 ±5.30 ±4.23 ±4.11 ±5.57 ±3.72 ±4.49 ±3.37 ±3.47 ±1.18 ±5.15 ±4.29 ±3.31 ±4.09 ±4.17
10.97 11.92 11.98 11.45 11.38 22.39 34.96 30.88 29.89 44.09 61.96 13.08 40.20 45.27 36.71 27.81CoTTA ±0.32 ±0.32 ±0.18 ±0.04 ±0.34 ±0.02 ±0.15 ±0.14 ±0.09 ±0.23 ±0.05 ±0.28 ±0.18 ±0.16 ±0.10 ±0.17
15.13 16.03 15.91 13.86 14.02 24.90 36.51 32.56 31.81 46.02 63.60 15.69 41.94 46.78 38.03 30.19+ SNAP ±0.06 ±0.09 ±0.04 ±0.00 ±0.07 ±0.05 ±0.05 ±0.06 ±0.12 ±0.06 ±0.10 ±0.04 ±0.09 ±0.09 ±0.12 ±0.07
22.43 23.78 23.26 19.38 19.42 32.18 43.22 40.65 36.64 52.38 63.87 24.59 48.13 52.89 46.33 36.61EATA ±0.05 ±0.16 ±0.43 ±0.26 ±0.51 ±0.31 ±0.19 ±0.15 ±0.16 ±0.27 ±0.05 ±1.52 ±0.40 ±0.12 ±0.14 ±0.32
26.10 27.29 27.13 22.38 22.15 33.45 43.92 40.96 36.68 52.71 63.77 27.93 48.47 53.23 47.46 38.24+ SNAP ±0.09 ±0.13 ±0.20 ±0.32 ±0.14 ±0.27 ±0.08 ±0.16 ±0.01 ±0.09 ±0.10 ±0.18 ±0.24 ±0.10 ±0.17 ±0.15
26.12 27.56 26.93 22.51 23.35 36.03 44.48 43.19 37.26 53.82 64.15 19.87 50.78 54.78 48.43 38.62SAR ±0.17 ±0.01 ±0.11 ±0.24 ±0.21 ±0.21 ±0.09 ±0.09 ±0.32 ±0.21 ±0.11 ±2.10 ±0.12 ±0.18 ±0.07 ±0.28
30.28 31.97 31.30 26.67 26.31 39.66 46.08 45.43 40.26 54.76 64.62 36.12 51.26 55.42 49.63 41.99+ SNAP ±0.16 ±0.24 ±0.12 ±0.34 ±0.37 ±0.25 ±0.04 ±0.09 ±0.13 ±0.23 ±0.05 ±0.67 ±0.06 ±0.20 ±0.06 ±0.20
14.77 15.59 15.33 13.17 13.19 23.85 35.38 32.73 30.77 45.22 63.08 15.62 41.05 46.15 37.19 29.54RoTTA ±0.04 ±0.04 ±0.04 ±0.07 ±0.10 ±0.05 ±0.05 ±0.03 ±0.04 ±0.15 ±0.12 ±0.02 ±0.10 ±0.07 ±0.13 ±0.07
15.35 16.20 16.01 13.67 13.66 24.27 35.62 33.04 31.02 45.38 62.95 15.96 41.06 46.17 37.44 29.85

0.1

+ SNAP ±0.03 ±0.01 ±0.07 ±0.09 ±0.07 ±0.03 ±0.01 ±0.07 ±0.04 ±0.11 ±0.08 ±0.08 ±0.11 ±0.07 ±0.19 ±0.07
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Table 27: STTA classification accuracy (%) comparing with and without SNAP on ImageNet-C
through Adaptation Rates(AR) (0.05, 0.03, and 0.01). Bold numbers are the highest accuracy.

AR Methods Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg.
23.77 24.65 24.44 20.54 20.27 32.73 43.57 40.82 35.92 52.78 63.82 15.95 49.33 53.46 47.19 36.62Tent ±0.40 ±0.43 ±0.58 ±0.70 ±0.69 ±0.30 ±0.14 ±0.15 ±0.33 ±0.12 ±0.02 ±1.18 ±0.18 ±0.09 ±0.03 ±0.35
29.12 30.46 30.30 25.77 25.22 38.21 46.14 44.29 39.95 54.65 65.47 33.81 50.83 55.59 49.21 41.27+ SNAP ±0.09 ±0.22 ±0.48 ±0.20 ±0.23 ±0.43 ±0.00 ±0.13 ±0.07 ±0.15 ±0.09 ±1.10 ±0.13 ±0.10 ±0.03 ±0.23
11.03 11.91 11.75 11.03 11.20 22.30 34.98 30.87 29.78 43.99 61.87 12.92 40.26 45.23 36.63 27.72CoTTA ±0.30 ±0.57 ±0.33 ±0.24 ±0.46 ±0.18 ±0.05 ±0.08 ±0.01 ±0.11 ±0.06 ±0.36 ±0.19 ±0.17 ±0.07 ±0.21
15.22 15.97 15.93 13.91 14.05 24.87 36.48 32.60 31.65 46.09 63.59 15.67 42.00 46.71 37.96 30.18+ SNAP ±0.08 ±0.11 ±0.03 ±0.06 ±0.12 ±0.04 ±0.00 ±0.07 ±0.04 ±0.03 ±0.07 ±0.05 ±0.03 ±0.09 ±0.09 ±0.06
19.53 20.65 20.72 16.74 16.96 29.11 41.22 37.96 34.84 50.75 63.29 19.86 45.92 51.15 44.13 34.19EATA ±0.31 ±0.66 ±0.75 ±0.41 ±0.58 ±0.49 ±0.27 ±0.18 ±0.23 ±0.21 ±0.13 ±1.26 ±0.35 ±0.17 ±0.09 ±0.41
22.83 23.95 23.62 19.43 19.70 30.34 41.59 38.06 35.06 50.98 63.30 23.72 46.26 51.52 45.46 35.72+ SNAP ±0.10 ±0.34 ±0.30 ±0.09 ±0.19 ±0.56 ±0.08 ±0.11 ±0.21 ±0.18 ±0.13 ±0.30 ±0.16 ±0.16 ±0.18 ±0.21
23.25 24.23 23.66 19.98 20.38 33.05 43.04 40.73 36.06 52.61 64.09 20.17 49.00 53.35 46.73 36.69SAR ±0.21 ±0.34 ±0.30 ±0.09 ±0.16 ±0.30 ±0.16 ±0.02 ±0.12 ±0.09 ±0.07 ±0.84 ±0.11 ±0.10 ±0.11 ±0.20
27.54 29.03 28.66 24.05 23.42 36.28 44.12 42.89 38.54 53.24 64.25 31.83 48.79 54.04 47.80 39.63+ SNAP ±0.16 ±0.05 ±0.04 ±0.16 ±0.08 ±0.12 ±0.10 ±0.11 ±0.07 ±0.07 ±0.05 ±0.24 ±0.23 ±0.19 ±0.08 ±0.12
14.42 15.22 15.02 13.25 13.31 23.79 35.27 32.09 30.43 44.71 62.64 15.24 40.63 45.55 36.75 29.22RoTTA ±0.06 ±0.05 ±0.10 ±0.11 ±0.07 ±0.03 ±0.08 ±0.05 ±0.07 ±0.13 ±0.14 ±0.09 ±0.10 ±0.07 ±0.16 ±0.09
14.65 15.48 15.29 13.43 13.45 23.93 35.33 32.18 30.53 44.71 62.58 15.41 40.64 45.55 36.81 29.33

0.05

+ SNAP ±0.06 ±0.02 ±0.08 ±0.09 ±0.09 ±0.03 ±0.05 ±0.04 ±0.05 ±0.16 ±0.10 ±0.04 ±0.09 ±0.10 ±0.14 ±0.08
21.76 22.76 22.58 19.06 18.90 30.85 42.34 38.94 35.53 51.58 63.42 18.61 47.96 52.41 45.56 35.48Tent ±0.17 ±0.35 ±0.17 ±0.04 ±0.12 ±0.22 ±0.12 ±0.26 ±0.31 ±0.18 ±0.11 ±0.91 ±0.26 ±0.21 ±0.08 ±0.23
26.42 28.20 27.81 23.79 22.82 35.77 44.80 42.37 38.81 53.34 64.95 30.05 49.28 54.16 47.57 39.34+ SNAP ±0.14 ±0.26 ±0.37 ±0.46 ±0.21 ±0.11 ±0.16 ±0.34 ±0.14 ±0.06 ±0.11 ±0.62 ±0.17 ±0.09 ±0.08 ±0.22
10.61 12.36 11.78 11.66 11.32 22.25 35.01 30.88 29.84 44.09 61.83 12.92 40.26 45.20 36.58 27.77CoTTA ±0.18 ±0.36 ±0.57 ±0.57 ±0.26 ±0.11 ±0.18 ±0.24 ±0.07 ±0.11 ±0.16 ±0.12 ±0.19 ±0.11 ±0.09 ±0.22
15.29 16.02 16.00 13.99 14.06 24.78 36.54 32.62 31.70 46.01 63.49 15.69 42.05 46.75 37.97 30.20+ SNAP ±0.08 ±0.07 ±0.09 ±0.07 ±0.11 ±0.05 ±0.07 ±0.06 ±0.08 ±0.01 ±0.04 ±0.04 ±0.18 ±0.19 ±0.08 ±0.08
17.17 18.34 17.94 14.48 15.04 26.31 39.47 35.51 33.41 49.16 63.06 18.01 44.16 49.90 42.47 32.30EATA ±0.41 ±0.19 ±0.36 ±0.82 ±0.22 ±0.25 ±0.33 ±0.50 ±0.33 ±0.19 ±0.05 ±0.88 ±0.31 ±0.09 ±0.31 ±0.35
20.75 21.87 21.28 17.34 17.90 28.08 39.84 36.27 33.54 49.50 63.04 20.86 44.68 49.97 43.53 33.90+ SNAP ±0.32 ±0.41 ±0.35 ±0.30 ±0.34 ±0.34 ±0.16 ±0.13 ±0.11 ±0.12 ±0.07 ±0.33 ±0.28 ±0.13 ±0.03 ±0.23
20.38 21.34 21.18 18.24 18.28 30.56 41.63 38.57 35.23 51.19 63.74 20.40 47.32 52.02 44.81 34.99SAR ±0.10 ±0.14 ±0.36 ±0.18 ±0.27 ±0.08 ±0.12 ±0.17 ±0.28 ±0.22 ±0.04 ±0.20 ±0.09 ±0.09 ±0.19 ±0.17
25.11 26.27 26.00 22.02 21.25 33.51 42.86 40.83 37.09 51.87 63.83 28.36 47.19 52.63 45.80 37.64+ SNAP ±0.23 ±0.31 ±0.10 ±0.49 ±0.56 ±0.31 ±0.14 ±0.16 ±0.21 ±0.18 ±0.10 ±0.29 ±0.34 ±0.06 ±0.30 ±0.25
14.36 15.12 14.95 13.30 13.34 23.78 35.23 31.89 30.33 44.52 62.48 15.20 40.50 45.36 36.63 29.13RoTTA ±0.04 ±0.03 ±0.08 ±0.08 ±0.08 ±0.04 ±0.05 ±0.04 ±0.07 ±0.11 ±0.12 ±0.01 ±0.11 ±0.07 ±0.17 ±0.07
14.45 15.21 15.06 13.35 13.42 23.83 35.26 31.92 30.36 44.53 62.47 15.27 40.50 45.39 36.65 29.18

0.03

+ SNAP ±0.04 ±0.02 ±0.08 ±0.08 ±0.07 ±0.04 ±0.06 ±0.02 ±0.08 ±0.10 ±0.09 ±0.04 ±0.10 ±0.08 ±0.16 ±0.07
17.09 17.70 17.69 14.91 15.25 25.23 38.66 34.15 32.28 48.14 62.65 15.76 43.44 49.14 41.18 31.55Tent ±0.14 ±0.10 ±0.13 ±0.23 ±0.09 ±0.25 ±0.27 ±0.27 ±0.21 ±0.21 ±0.16 ±0.48 ±0.23 ±0.04 ±0.10 ±0.19
20.66 21.73 21.55 18.46 18.28 29.88 40.63 36.97 34.89 49.85 64.29 22.64 45.13 50.77 43.17 34.59+ SNAP ±0.02 ±0.12 ±0.18 ±0.34 ±0.33 ±0.12 ±0.14 ±0.21 ±0.10 ±0.26 ±0.10 ±0.14 ±0.29 ±0.07 ±0.51 ±0.19
11.11 13.24 11.86 10.85 10.97 22.18 34.96 30.88 29.63 44.09 61.71 12.81 40.16 45.14 36.73 27.75CoTTA ±0.61 ±0.12 ±0.65 ±0.59 ±0.98 ±0.05 ±0.18 ±0.14 ±0.21 ±0.21 ±0.22 ±0.53 ±0.20 ±0.22 ±0.12 ±0.34
15.09 16.00 15.83 13.84 14.06 24.70 36.47 32.59 31.66 46.10 63.62 15.60 42.03 46.74 38.17 30.17+ SNAP ±0.04 ±0.09 ±0.14 ±0.09 ±0.02 ±0.07 ±0.02 ±0.11 ±0.03 ±0.15 ±0.07 ±0.06 ±0.10 ±0.01 ±0.20 ±0.08
14.85 15.61 15.69 13.26 13.37 23.72 36.18 32.57 31.14 46.06 62.35 13.88 41.91 47.00 38.88 29.76EATA ±0.13 ±0.21 ±0.21 ±0.04 ±0.06 ±0.19 ±0.13 ±0.09 ±0.06 ±0.29 ±0.09 ±0.35 ±0.17 ±0.15 ±0.09 ±0.15
16.73 17.55 17.30 14.35 14.64 24.13 36.83 32.81 31.09 46.63 62.20 15.26 42.34 47.44 39.81 30.61+ SNAP ±0.12 ±0.10 ±0.19 ±0.09 ±0.10 ±0.36 ±0.23 ±0.08 ±0.10 ±0.19 ±0.16 ±0.54 ±0.12 ±0.18 ±0.34 ±0.19
16.08 17.04 16.69 14.72 14.78 25.92 37.85 34.07 32.25 47.66 63.15 17.20 43.05 48.78 40.14 31.29SAR ±0.08 ±0.07 ±0.10 ±0.16 ±0.12 ±0.13 ±0.05 ±0.24 ±0.11 ±0.13 ±0.05 ±0.15 ±0.20 ±0.09 ±0.20 ±0.13
18.89 19.45 19.70 16.70 16.55 27.69 38.57 35.34 33.09 48.08 63.04 20.39 42.95 48.76 40.99 32.68+ SNAP ±0.15 ±0.15 ±0.12 ±0.14 ±0.15 ±0.16 ±0.11 ±0.22 ±0.09 ±0.31 ±0.07 ±0.12 ±0.29 ±0.26 ±0.33 ±0.18
14.30 15.06 14.89 13.30 13.37 23.78 35.22 31.79 30.27 44.40 62.40 15.16 40.42 45.27 36.54 29.08RoTTA ±0.05 ±0.03 ±0.07 ±0.07 ±0.08 ±0.04 ±0.06 ±0.04 ±0.06 ±0.14 ±0.11 ±0.06 ±0.10 ±0.05 ±0.16 ±0.07
14.30 15.07 14.92 13.30 13.38 23.78 35.22 31.78 30.26 44.41 62.40 15.15 40.43 45.27 36.54 29.08

0.01

+ SNAP ±0.06 ±0.03 ±0.08 ±0.08 ±0.07 ±0.04 ±0.06 ±0.04 ±0.07 ±0.14 ±0.11 ±0.05 ±0.09 ±0.04 ±0.15 ±0.07

C.4 Additional results on ablation study

In this section, we provide additional details on the ablation study to evaluate the contributions of the
CnDRM and IoBMN components in SNAP. Specifically, we measured the average accuracy across
15 corruption types on CIFAR10-C and CIFAR100-C datasets under varying adaptation rates (0.3,
0.1, 0.05) to thoroughly assess the effectiveness of each component.

Tables 28 and 29 summarize the results for different combinations of CnDRM and IoBMN across
these adaptation rates. The results indicate that the combination of CnDRM (Class and Domain
Representative sampling) and IoBMN (inference using memory statistics corrected to match the test
batch) consistently yields the highest accuracy. This trend is observed across all evaluated adaptation
rates, suggesting that both components contribute significantly to enhancing adaptation performance.

Moreover, individual evaluations show that each component has a distinct positive effect, as evidenced
by consistently higher accuracy compared to using no adaptation or only a single component. This
emphasizes the complementary nature of CnDRM and IoBMN, which together provide robust
adaptation capabilities for domain-shifted scenarios. These tables provide further insight into the
benefits of each configuration and how the synergy of CnDRM and IoBMN results in improved
robustness against various corruptions.
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Table 28: STTA classification accuracy (%) of ablative settings on the CIFAR10-C, adaptation rate
(AR) 0.3, 0.1, and 0.05. Averaged over all 15 corruptions. Bold numbers are the highest accuracy.

AR Methods Tent CoTTA EATA SAR RoTTA

0.3

Naïve 78.86 ±0.12 69.75 ±0.08 79.02 ±0.14 77.83 ±0.11 75.39 ±0.09
Random 78.90 ±0.15 66.04 ±0.10 78.97 ±0.13 77.77 ±0.12 75.06 ±0.07
LowEntropy 78.68 ±0.11 63.74 ±0.16 78.42 ±0.09 76.21 ±0.10 72.83 ±0.14
CRM 80.32 ±0.07 66.50 ±0.12 80.14 ±0.08 75.78 ±0.13 75.49 ±0.06

CnDRM 79.62 ±0.13 77.68 ±0.10 79.63 ±0.12 78.22 ±0.09 75.85 ±0.08
CnDRM+EMA 80.96 ±0.06 72.42 ±0.14 80.27 ±0.11 78.19 ±0.13 76.73 ±0.07
CnDRM+IoBMN 81.23 ±0.09 78.75 ±0.10 81.30 ±0.07 79.77 ±0.08 77.41 ±0.06

0.1

Naïve 76.81 ±0.18 66.42 ±0.12 76.29 ±0.11 76.01 ±0.07 74.78 ±0.15
Random 77.08 ±0.14 65.61 ±0.08 76.59 ±0.10 76.33 ±0.13 75.01 ±0.16
LowEntropy 75.66 ±0.09 63.19 ±0.14 74.89 ±0.12 74.41 ±0.18 72.60 ±0.10
CRM 77.77 ±0.05 65.71 ±0.19 77.18 ±0.08 74.36 ±0.11 75.27 ±0.17

CnDRM 77.46 ±0.07 77.69 ±0.10 77.17 ±0.06 76.85 ±0.09 75.64 ±0.08
CnDRM+EMA 78.02 ±0.12 72.19 ±0.15 77.05 ±0.11 76.84 ±0.13 76.18 ±0.05
CnDRM+IoBMN 78.95 ±0.09 78.83 ±0.06 78.61 ±0.13 78.06 ±0.07 77.07 ±0.10

0.05

Naïve 75.75 ±0.18 67.22 ±0.12 75.55 ±0.14 75.25 ±0.17 74.80 ±0.11
Random 75.82 ±0.13 65.90 ±0.21 75.56 ±0.16 75.27 ±0.15 74.91 ±0.10
LowEntropy 74.07 ±0.20 64.08 ±0.25 73.73 ±0.19 73.58 ±0.22 72.83 ±0.14
CRM 76.55 ±0.11 66.14 ±0.17 76.06 ±0.13 74.02 ±0.15 75.23 ±0.09

CnDRM 76.53 ±0.14 77.67 ±0.16 76.29 ±0.18 76.18 ±0.12 75.61 ±0.13
CnDRM+EMA 76.86 ±0.10 71.69 ±0.19 75.98 ±0.15 75.43 ±0.14 75.95 ±0.11
CnDRM+IoBMN 77.93 ±0.09 78.73 ±0.13 77.76 ±0.12 77.21 ±0.11 77.05 ±0.08

Table 29: STTA classification accuracy (%) of ablative settings on the CIFAR100-C, adaptation rate
(AR) 0.3, 0.1, and 0.05. Averaged over all 15 corruptions. Bold numbers are the highest accuracy.

AR Methods Tent CoTTA EATA SAR RoTTA

0.3

Naïve 53.36 ±0.22 39.11 ±0.17 49.97 ±0.19 56.65 ±0.20 49.84 ±0.18
Random 53.00 ±0.24 33.49 ±0.21 49.24 ±0.17 56.06 ±0.26 49.00 ±0.16
LowEntropy 53.53 ±0.20 32.29 ±0.28 45.51 ±0.23 55.84 ±0.22 44.77 ±0.19
CRM 54.21 ±0.18 32.86 ±0.24 47.42 ±0.20 56.40 ±0.19 46.68 ±0.17

CnDRM 55.15 ±0.21 50.02 ±0.14 51.36 ±0.16 57.72 ±0.18 50.74 ±0.15
CnDRM+EMA 55.39 ±0.16 41.34 ±0.20 50.11 ±0.19 57.68 ±0.21 49.88 ±0.17
CnDRM+IoBMN 57.27 ±0.13 50.32 ±0.15 52.19 ±0.14 58.44 ±0.16 51.55 ±0.12

0.1

Naïve 52.84 ±0.19 35.86 ±0.23 49.70 ±0.18 53.49 ±0.21 49.11 ±0.17
Random 52.68 ±0.22 33.18 ±0.26 49.39 ±0.20 53.42 ±0.18 48.84 ±0.14
LowEntropy 51.76 ±0.20 32.30 ±0.28 46.03 ±0.23 52.15 ±0.24 45.18 ±0.19
CRM 52.43 ±0.17 32.54 ±0.25 47.68 ±0.21 53.12 ±0.20 47.01 ±0.16

CnDRM 54.46 ±0.16 50.06 ±0.13 51.41 ±0.19 55.24 ±0.14 50.47 ±0.12
CnDRM+EMA 54.36 ±0.15 41.63 ±0.22 50.21 ±0.18 54.84 ±0.17 49.95 ±0.13
CnDRM+IoBMN 55.84 ±0.14 50.52 ±0.11 52.35 ±0.15 55.76 ±0.13 51.33 ±0.10

0.05

Naïve 51.24 ±0.18 33.20 ±0.25 49.81 ±0.16 51.50 ±0.21 49.12 ±0.19
Random 51.35 ±0.20 33.71 ±0.22 49.57 ±0.17 51.48 ±0.20 48.98 ±0.15
LowEntropy 49.79 ±0.24 32.36 ±0.26 46.65 ±0.19 49.51 ±0.23 45.41 ±0.18
CRM 50.17 ±0.19 32.74 ±0.27 47.47 ±0.20 50.49 ±0.22 46.58 ±0.16

CnDRM 52.86 ±0.14 50.08 ±0.13 51.47 ±0.17 53.09 ±0.15 50.44 ±0.13
CnDRM+EMA 52.68 ±0.13 41.43 ±0.21 50.32 ±0.18 52.80 ±0.17 50.04 ±0.14
CnDRM+IoBMN 54.13 ±0.11 50.63 ±0.14 52.43 ±0.16 53.59 ±0.12 51.41 ±0.10

D License of assets

Datasets CIFAR10/CIFAR100 (MIT License), CIFAR10-C/CIFAR100-C (Creative Commons
Attribution 4.0 International), ImageNet-C (Apache 2.0), and ImageNet-R/Scketch (MIT License).

Codes Torchvision for ResNet18, ResNet50, and VitBase-LN (Apache 2.0), the official repository
of CoTTA (MIT License), the official repository of Tent (MIT License), the official repository of
EATA (MIT License), the official repository of SAR (BSD 3-Clause License), the official repository
of RoTTA (MIT License), the official repository of T3A (MIT License), the official repository of
FOA (NTUITIVE License) and the official repository of MECTA (Sony AI).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims in the abstract and introduction accurately reflect the paper’s
contributions and are supported by the presented results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

37



Justification: No theoretical result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Experimental details for reproducibility are provided in Section 5 and Ap-
pendix A. Also, we provided source code in the supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Anonymized source code and instructions are provided in the supplemen-
tary material. The complete codebase and scripts will be made publicly available upon
publication.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Details are provided in Section 5 and Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All experiments were conducted using three random seeds (0, 1, and 2), and
the corresponding standard deviations are reported and visualized as error bars. Note that
standard deviations omitted from Table 1 are reported in Appendix C. Detailed descriptions
are provided in Section 5 and Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Details are provided in Section 5 and Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Ensure that our work adheres to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Potential societal impacts are described in Section 6.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No such components.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All licenses and credits are described in Appendix D.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets are introduced.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing or human-subject experiments were required.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No IRB approvals were required.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No LLMs were used in this research components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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