SNAP: Low-Latency Test-Time Adaptation with
Sparse Updates

Hyeongheon Cha! Dong Min Kim! Hye Won Chung! Taesik Gong?>* Sung-Ju Lee!*

!School of Electrical Engineering, KAIST, Daejeon, Republic of Korea
?Department of Computer Science and Engineering, UNIST, Ulsan, Republic of Korea

{hyeongheon,dongmin.kim,hwchung,profsj}@kaist.ac.kr
taesik.gong@unist.ac.kr

Abstract

Test-Time Adaptation (TTA) adjusts models using unlabeled test data to handle
dynamic distribution shifts. However, existing methods rely on frequent adaptation
and high computational cost, making them unsuitable for resource-constrained
edge environments. To address this, we propose SNAP, a sparse TTA framework
that reduces adaptation frequency and data usage while preserving accuracy. SNAP
maintains competitive accuracy even when adapting based on only 1% of the in-
coming data stream, demonstrating its robustness under infrequent updates. Our
method introduces two key components: (i) Class and Domain Representative
Memory (CnDRM), which identifies and stores a small set of samples that are
representative of both class and domain characteristics to support efficient adapta-
tion with limited data; and (ii) Inference-only Batch-aware Memory Normalization
(IoBMN), which dynamically adjusts normalization statistics at inference time by
leveraging these representative samples, enabling efficient alignment to shifting
target domains. Integrated with five state-of-the-art TTA algorithms, SNAP reduces
latency by up to 93.12%, while keeping the accuracy drop below 3.3%, even across
adaptation rates ranging from 1% to 50%. This demonstrates its strong potential
for practical use on edge devices serving latency-sensitive applications. The source
code is available at https://github.com/chahh9808/SNAP.

1 Introduction

Deep learning models often suffer performance degradation under domain shifts caused by environ-
mental changes or noise [37]. Test-Time Adaptation (TTA) offers a promising solution for domain
shifts by utilizing only unlabeled test data without requiring source data. While TTA algorithms
have advanced in complexity to improve accuracy in data streams [48, 30, 50, 53, 31, 43], they are
typically designed for resource-rich servers, overlooking the computational limitations crucial for
real-world deployment. Operations such as backpropagation, data augmentation, and model ensem-
bling [50, 53, 55] result in substantial latency and memory consumption, making state-of-the-art
(SOTA) TTA methods inefficient for practical use.

For edge devices with limited computational power, such as mobile devices or 10T sensors, the
adaptation latency from TTA methods becomes a critical bottleneck, particularly in delay-sensitive
applications such as autonomous driving and real-time health monitoring. Moreover, the model must
keep up with the data stream in those applications, but high computational overhead could cause it to
miss critical samples, resulting in inference lags and reduced accuracy. This issue is exacerbated with
fast data streams, such as high-frame-rate videos or high-performance sensors. For example, even a

*Corresponding authors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/chahh9808/SNAP

Online data stream ([(2 (8) lllea ! f,

Original TTA Del
ela
batcn ulllE} el > Latency: 6.7s 4
Timeline| Adaptation 1 n| Adaptation2 12| Adaptaton3 13| Acc: 81% =—
- Naive Sparse TTA
re-traine
Model ﬁ;’?fﬁ Inference-Only ([ll4] Inféerence-Only - Latency: 2.1s

TTA on Timeline[Adaptation 1 1|12 3] Adaptation4 _ 4] 15]16] Adapt Acc: 69% &
Edge devices D: Adaptation D: Inference *Adaptation Rate: 0.33

Figure 1: Comparison of average latency per batch and accuracy between the Original and Naive
Sparse TTA approaches on edge devices processing an online data stream. With an adaptation rate of
0.33, adaptation occurs once every three batches, reducing latency proportional to the rate but leading
to a significant accuracy drop compared with fully adapting Original TTA.

slight delay in processing sensor data can lead to dangerous situations in autonomous driving. A high
adaptation latency accumulating with each batch not only undermines real-time performance but also
limits the potential of TTA algorithms in latency-sensitive applications (Section 3). In response to
this challenge, forward-only TTA methods [13, 29] propose adjusting lightweight components such
as prototypes or prompts during inference. While these mechanisms improve efficiency, their reliance
on fixed model parameters fails to adapt to dynamic distribution shifts [7, 53, 29]. Consequently, a
robust performance of backpropagation-based approaches across diverse conditions (Appendix B.10)
underscores the necessity of efficient model updates.

In online TTA scenarios where rapid response is required under strict resource constraints, Sparse
TTA (STTA) offers a practical compromise by reducing the frequency of adaptation rather than
eliminating it entirely. By adapting intermittently instead of at every batch, STTA significantly
reduces computational overhead and latency. However, naively reducing update frequency degrades
performance since only a limited data portion is utilized (Figure 1). Thus, the success of STTA hinges
on strategically selecting representative stream samples to enable effective adaptation under sparse
update schedules (detailed analysis in Section 5).

Existing sampling-based TTA methods are especially designed for handling dynamic data stream
such as non-i.i.d. [6, 31, 53] or noisy data [7]. However, they are not optimized for data efficiency
and continue to utilize a large proportion of samples. For example, EATA [30] reduces sample usage
by filtering out unreliable samples but experiences performance degradation when reductions become
too aggressive. Meanwhile, research in data-efficient deep learning has shown that selecting easy,
class-representative samples is effective at low sampling rates (e.g., below 0.4) [51, 2]. However,
these approaches depend on ground-truth labels, which are not available in TTA.

We propose SNAP: Sparse Network Adaptation for Practical Test-Time Adaptation, a low-latency
unsupervised domain adaptation framework for resource-constrained devices. SNAP balances
adaptation accuracy with computational efficiency through two key components: Class and Domain
Representative Memory (CnDRM) and Inference-only Batch-aware Memory Normalization (IoBMN).
CnDRM stores a pool of class-representative samples (high pseudo-label confidence, balanced across
predictions) and domain-representative samples (closest to the target domain centroid in feature
space). This approach enables the model to adapt effectively to domain shifts with minimal data
(Section 4.1). Meanwhile, [oBMN dynamically refines the normalization layers during inference
by utilizing CnDRM’s class-domain representative statistics to correct skewed feature distributions
at each inference step. This keeps the model aligned with the evolving data distribution, enabling
effective batch-wise adaptation without backpropagation (Section 4.2).

SNAP is a lightweight module that reduces latency while seamlessly integrating with existing TTA
methods, preserving their adaptation behavior. To assess its effectiveness, we integrated SNAP
with five SOTA TTA algorithms: Tent [48], EATA [30], SAR [31], CoTTA [50], and RoTTA [53].
We tested it on three widely-used TTA benchmarks (CIFAR10-C, CIFAR100-C, and ImageNet-
C [10]) across various adaptation rates (Section 5). We also validate SNAP on ImageNet-R [9] and
ImageNet-Sketch [49] to assess generalization (Appendix B.11).

In addition, we measured SNAP’s latency and memory usage on three popular edge de-
vices—Raspberry Pi 4 [38], Raspberry Pi Zero 2 W [39], and NVIDIA Jetson Nano [32]—to
assess its real-world applicability. SNAP significantly reduces latency while minimizing performance
degradation from existing TTA methods. On a Raspberry Pi 4 testbed, it reduced CoTTA’s latency by

up to 93.12% at an adaptation rate of 0.1 in CIFAR10-C, with no loss in performance. Moreover,
SNAP maintained performance comparable to original TTA methods across adaptation rates from
0.01 to 0.5, achieving 77.12%-81.74% for Tent, close to the full adaptation accuracy of 80.43%.
SNAP also operates efficiently under memory constraints, with low memory overhead and seamless
integration with a memory-efficient TTA module [12], as detailed in Appendices B.7 and B.8.

2 Related work

Test-time adaptation. Test-time adaptation aims to improve model performance on out-of-
distribution data by using only the unlabeled test data stream to adapt the model. Test-time normaliza-
tion [28, 40] adjusts the batch normalization (BN) statistics using test data to improve performance.
Other works mainly involve updating the parameters of the model during test time. Tent [48] adapts
the affine parameters of the BN layers to minimize the entropy of its predictions. EATA [30] builds
upon Tent, sampling reliable and non-redundant samples and utilizing an anti-forgetting regularizer
for efficiency. Other works introduce more complex schemes, primarily to improve robustness against
more practical test-time scenarios. CoTTA [50] addresses a continually changing test-time environ-
ment by using weight-averaged and augmentation-averaged predictions with stochastic restoring.
SAR [31] filters samples with large and noisy gradients to stabilize the model during wilder test-time
scenarios. RoTTA [53] targets a practical test-time setting of changing distributions and correlative
sampling by introducing a memory bank and a teacher-student model. We further analyze how prior
TTA methods perform under sparse-update regimes and how our approach differs in Appendix B.3.

Test-time adaptation on edge devices. TTA on edge devices primarily inherit the challenges of
on-device learning:, including limited memory and reduced computational efficiency [21]. Several
memory-efficient TTA works have been proposed in this regard. MECTA [12] aims to reduce
the memory consumption of gradient-based TTA, proposing an adaptive normalization layer to
reduce the intermediate caches for backpropagation. EcoTTA [43] proposes memory-efficient
continual TTA by adapting lightweight meta networks instead of the originals to reduce the size of
intermediate activations. Despite works to promote memory-efficiency, the latency of TTA, especially
on resource-constrained edge devices, has been generally overlooked. While many adaptation-based
TTA [48, 30, 31, 53] update only the affine parameters for general time and memory concerns, they
still involve computationally-heavy operations every batch, which can lead to high latency on edge
devices. A recent work [1] introduces a more practical TTA evaluation protocol that penalizes slow
TTA methods by providing them with fewer samples for adaptation.

Data-efficient deep learning. Data-efficient deep learning methods enable deep learning models
to achieve competitive performance with less data. Among these methods, data selection, or data
sampling, involves utilizing a small subset of the training data in an attempt to match that of full-
dataset training. A branch of data-selection is score-based selection, which scores each sample
based on some predefined metric, such as a sample’s influence [16], difficulty [46, 34], prediction
confidence [35], or consistency [14], and selects samples with scores in a certain range. Another set
of data-selection methods involves optimization-based selection, which formulates an optimization
problem to find an optimal subset that can best approximate full-dataset training [26, 52, 36]. While
these approaches work well in their preconceived settings, they generally suffer performance drop
as their settings change, such as a change in sampling rates. More recent studies such as Moderate
Coreset [51] propose a more robust selection approach by using the distance of a sample to the class
center as a score criterion, for an effective representation of the dataset.

3 Preliminaries

Our work addresses the challenge of test-time adaptation latency on edge devices, where efficient,
low-latency inference must be achieved despite limited resources.

Test-time adaptation and its latency challenge on edge devices. In unsupervised domain adapta-
tion, the source domain data Dg = X ‘5, Y is drawn from the distribution Ps(x, y), while the target
domain data D7 = X7, Y follows Pr(x, y), typically without known labels y;. Given a pre-trained
model f(-; ©) on the source domain Ds, TTA adjusts the model to the target distribution Py using
only target instances x;, updating the parameters O to reduce domain discrepancy [48].

On resource-constrained edge devices, frequent Tent Components 55.76

adaptation poses a significant bottleneck. Our +snap _— 55.84
experiments on a Raspberry Pi 4 [38] revealed gata = fonward student moe 5074
that existing TTA methods incur a minimum +snap = augmentations 52351 p
latency of 3.83 seconds per batch (Figure 2), sar o sugmentation & ensemble forloss k| 57,041 £
severely limiting real-time inference for fast +snap 5576 &
data streams (e.g., autonomous driving [45, 22]). roTTA 5155 &
Additional latency tracking for other devices is +snap 51.33
reported in Appendix B.6. Even lightweight i rra 7/ 49.39
TTA algorithms suffer from considerable back- +snap 50.70
propagation overhead, creating bottlenecks on 0.0 50 16.0 150 // 650 70.0
resource-constrained devices without GPU-level Average Latency per batch (s)

computation. More computationally intensive Figure 2: Component-wise latency and overall
methods like CoTTA, which depend on data accuracy comparison between full SOTA TTA
augmentation and ensembles, require over 70 and SNAP (sparse update with frequency 0.1) on
seconds per adaptation step, rendering them im- CIFAR100-C, measured on Raspberry Pi 4. SNAP

practical for edge devices (Figure 2). matches accuracy with significantly lower cost.

A recent work [1] recognized latency as a crucial problem and proposed a TTA evaluation protocol
that penalizes methods slower than the data stream rate. Instead of penalizing a model for being slow,
we propose Sparse TTA, where the model adapts at sparse intervals to sustain real-time throughput.
As real deployments involve devices with different computational capabilities and data streams of
varying speeds, we believe a framework that effectively maintains various TTA methods’ performance
across different latency requirements is crucial.

Sparse test-time adaptation and adaptation rates. Sparse Test-Time Adaptation (STTA) lowers
the frequency of model updates, a key factor in reducing adaptation latency on resource-constrained
devices. Unlike conventional TTA methods that process full batches and incur significant overhead,
STTA updates the model using only a subset of batches (Figure 1). The core parameter of STTA, the
Adaptation Rate (AR), determines the proportion of batches or samples used for adaptation compared
to the Original TTA. By tuning the AR, STTA balances the performance and computational latency.
Furthermore, STTA’s periodic adaptation can be optimized by strategically distributing sparse model
updates across selected intervals during inference. This approach helps distribute the adaptation
overhead, smooths latency fluctuations across inference batches, and preserves overall performance.

4 Methodology

SNAP framework resolves the high latency and inefficiency issue of existing TTA methods. By
introducing a Sparse TTA (STTA) strategy combined with a novel sampling method, SNAP minimizes
adaptation delays while maintaining accuracy. The overall system, illustrated in Figure 3, consists
of two primary components: (i) Class and Domain Representative Memory (CnDRM) for efficient
sampling and (ii) Inference-only Batch-aware Memory Normalization (IoBMN) to correct feature
distribution shifts during inference. Together, these components enable effective STTA with minimal
computational overhead.

4.1 Class and Domain Representative Memory

CnDRM is a core component of SNAP that addresses the challenges of efficient data sampling
for STTA. As the adaptation rate directly impacts the number of samples used for adaptation, this
necessitates a careful sampling strategy to optimize performance with minimal data. Given this
limited sampling rate, CnDRM selects both class and domain-representative samples to maintain
model performance while minimizing adaptation overhead.

Motivation. Effective data sampling is essential for data-efficient deep learning, particularly when
only a few samples are available. While score-based methods that prioritize difficult samples perform
well at high sampling rates, selecting easy, class-representative samples is more effective at lower
rates [2]. Moderate Coreset [51] also demonstrates that selecting samples near the class center
improves performance in noisy-label settings, a principle that aligns with the STTA scenario where
ground truth is unavailable.

S':glz‘l’;‘s)] update i\&mory)] update @ory Latency
~a
Timeline | Adaptation [IA[l[E] Adaptation [IZ[E 5] Adapt - | Acc

Adapt via CnDRM Inference via loBMN
(a) Sparse adaptation via (b) Inference-only Batch aware
Class-Domain Representative Memory Batch 2 corv Memory Normalization

Hish Coidence o @ Patch3 J0BMN = 1/ + ,(1/1~IoBN)
O (1,00 i % @

) . > S;: soft shrink
DX CoDRM(F Test Batch 10BN
Domain o i
i \ 10BN ;
g =l @ wlD——"— @3
(0 bomain cent, Close Bgl Utilize Memory Norrgallzatlon (MN) stats
(Jpomain cent. Far Correct via Inference-only BN (I0BN) stats

Figure 3: Design overview of SNAP. The framework consists of two primary components: (a) Class
and Domain Representative Memory (CnDRM), which efficiently selects representative samples to
minimize adaptation overhead, and (b) Inference-only Batch-aware Memory Normalization (IoBMN),
which corrects feature distribution shifts during inference. Together, these components implement
the Sparse TTA (STTA) strategy, reducing latency while maintaining model accuracy.

In addition, on real-world deployments, latency constraints often limit adaptation frequency, requiring
models to function at low adaptation rates (e.g., 0.1). At such low rates, class-representative sampling
alone is insufficient (Table 2), as it fails to capture distributional shifts between source and target
domains. To overcome this limitation, we propose selecting both class- and domain-representative
samples to enhance adaptation efficiency in low-data environments. Detailed theoretical analysis on
the proposed efficient sampling strategy is in Appendix B.1.

Criteria 1: class representation. To ensure stable adaptation without ground truth labels, CnDRM
selects high-confidence samples, avoiding low-confidence samples that often lie near decision
boundaries and carry incorrect pseudo-labels. This ensures stable learning signals and reduces
error propagation from incorrect pseudo-labels, supporting more effective and stable adaptation
(Details in Appendix B.5). The confidence score C(x) for each sample x is calculated as: C(x) =
maxyey p(y|x; ©) where p(y|x; ©) is the softmax probability for class y. Only samples with
confidence above a threshold 7.,,, s are retained. For a balanced representation across diverse classes,
CnDRM selects these high-confidence samples in a prediction-balanced manner. This helps maintain
the model’s overall classification capability by preventing bias towards certain classes when only
a low sample rate is available for adaptation. By leveraging both high confidence and prediction
balance, CnDRM effectively selects class-representative samples that are diverse and reliable, even
without access to ground-truth labels.

Criteria 2: domain representation. In addition to class-representative sampling, Cn-
DRM selects domain-representative samples to facilitate adaptation to new domain condi-
tions. Building on the efficient class-representative sampling criteria, we argue that select-
ing samples close to the domain centroid would enhance performance in STTA. Our prelim-
inary experiment results validate improved performance when selecting samples near the cen-
troid (Figure 4). For ImageNet-C Gaussian noise, TTA with the closest 20% of samples
achieved 26.65% accuracy, whereas the farthest 20% showed a lower accuracy of 18.52%.

Close Wasserstein distance (Instance < Domain centroid) Far

As early layers in deep learning mod- —

els tend to retain domain-specific fea- PCA Feature 1 PCA Feature 1
tures [54, 19, 42], we utilize the hid-
den features of early layers to identify
domain-representative samples (Ap-
pendix B.4). Specifically, CnDRM
uses the feature statistics (mean and 1 L—
variance) of the first normalization Accuracy: 26.65 % Accuracy: 18.52 %
layer to assess domain representation, Figure 4: Sampling visualization and accuracy comparison
since domain discrepancies can be ef- between the closest 20% and farthest 20% samples from the
fectively mitigated through normaliza- domain centroid on ImageNet-C Gaussian noise.

_ PCAFeature2
PCA Feature 2

tion adjustments using these statistics [28, 40]. Domain discrepancies in hidden features are substan-
tially reduced after passing through a single normalization layer, significantly minimizing domain
shift [20]. While deeper layers provide detailed information, using the first layer balances capturing
domain-specific information and maintaining computational efficiency.

The domain centroid c; is computed using a momentum-based update of batch statistics from the
normalization layer: faomain < (1 — B)fidomain + Bue and 03, .« (1 — B)o2 . + Bo?,
where p; and 0,52 are the mean and variance of the current batch ¢, and 3 is the momentum parameter.
In our preliminary study, we found that using only the mean and standard deviation values before
the first normalization was sufficient to calculate the domain centroid. The sampled instances
effectively represented the domain and were correctly positioned in the embedding space for each
criterion (Figure 4).

We formally define a domain-representative sample as one whose early-layer feature statistics are
closest to the domain centroid, as measured by the Wasserstein distance [47]. The Wasserstein distance
quantifies the similarity between two distributions by considering their mean and variance, evaluating
how well a sample represents the domain. It is useful for capturing domain characteristics, thus
widely used in domain generalization [42]. Following common practice in domain adaptation [20, 27],
we approximate channel-wise feature distributions as independent univariate Gaussians (i.e., with
diagonal covariance) to efficiently estimate mean/variance-level domain shifts, which yields the
following closed-form expression:

W(Xt, Cdomain) = \/(,U/xt - ,U*domain)2 + (Uxt - Udomain)2- (1)
For each sample x¢, the feature statistics (i, , 0x,) are taken from the input to the normalization
layer. Further clarification and assumption details are provided in Appendix B.2.

Algorithm 1 Class and Domain Representative Memory (CnDRM) Management

Require: test data stream x;, memory M with capacity N, confidence threshold 7., s, adaptation
rate 1/k
1: forbatchb € {1,...,B} do

2 Yy« f(b; @)

3 for each sample x; in batch b do

4 Gt + Yolt]

5: confidence <— C(zy; O)

6: ct(ix, » Ox,) < mean & variance of early feature

7 Wy, W(xtv Cdmnain)

8: if confidence > 7., ¢ then

o: Add s (x4, G, ¢ty Wy,) to M > Add class-representative samples
10: if |[M| > N then
11: L* « class with most samples in M
12: if §+ ¢ L* then > Remove domain-centroid farthest sample
13: Sfarthest < arg maXs, e MAj; eL* Wy,
14: else
15: Sfarthest < argMaxXs, e Mag; =9, Wa;

16: Remove sqrthest from M

17: Cdomain < (1 — B)Cdomain + BCt > Update domain-centroid
18: Recalculate wg, for all s; in M

19: if b mod k == 0 then > Adaptation occurs every k batches
20: Update model © using samples in M

Memory management algorithm. CnDRM maintains a compact yet adaptive memory that jointly
preserves class balance and domain representativeness while keeping computational overhead min-
imal. To achieve this, the memory size is fixed to match the batch size for efficiency. Within this
limited capacity, samples are managed so that each class remains well-represented while the overall
memory distribution stays close to the domain centroid. Specifically, when the memory reaches its
capacity, the farthest samples from the domain centroid (those with the largest Wasserstein distance)
are replaced by new, high-confidence samples that better align with both class balance and domain
characteristics. This joint management ensures that the memory continually retains the most class-
and domain-representative samples under dynamic distribution shifts.

Algorithm 1 implements these procedures: lines 8~16 handle both class balancing and the remove
domain-centroid farthest sample operation, where the least representative sample (i.e., the one with
the largest Wasserstein distance within an overrepresented class) is discarded. Lines 17~20 perform
the update domain-centroid operation using a momentum-based moving average (with 5 = 0.9) that
enables the centroid to smoothly adapt to the evolving feature distribution. This linkage clarifies how
CnDRM maintains a unified class-domain representative memory throughout continuous adaptation
on edge devices.

4.2 Inference-only Batch-aware Memory Normalization

Motivation. Sparse Test-Time Adaptation (STTA) requires models to adapt to domain shifts
with limited update opportunities. Consequently, stored adaptation batch statistics may become
misaligned with subsequent inference data when updates are skipped. Traditional normalization
methods, relying solely on test batch statistics, also struggle with such shifts. To address this, we
propose Inference-only Batch-aware Memory Normalization (IoBMN), which stabilizes adaptation by
leveraging representative memory statistics while selectively adjusting for distributional mismatches.
This approach ensures both robustness and adaptability in STTA, significantly improving model
stability, as demonstrated in our ablation study (Section 5).

Approach. Given a feature map f € REXC*L where B is the batch size, C' is the number of
channels, and L is the number of spatial locations, the batch-wise statistics ji. and 52 for the c-th

channel are calculated as follows:
B L

1 & 1
e = BXLZZfbyc,lv 532 BXLZZ(fb,c,l_Nb,c)v @)
b=1 I=1 b=1 I=1
where [i,, and 52, are calculated from the most recent adapted CnDRM samples in the same way
with Equation 2, using the memory capacity M with m representing the memory. We assume that
tm and o2, follow the sampling distribution of the feature map size L and memory capacity M. The

corresponding variances for the memory mean j,,, and variance o2, are calculated as:

2 =4
s On 2 20, 3

st' LXM, 50_72”. 7LXM—]_ ()

For the normalization process to adapt efficiently to the current inference batch statistics, [o0BMN
corrects (fiy,2,) only when fi. (and 52) significantly differ from fi,, (and &2,) through soft

shrinkage function:
IoBMN _ - == IoBMN)\ 2 ~2 2 _ =2

P = B+ S\(fle = fim; @Sy,), (o)" =0p + 8207 — 05 ass2), (D)
where o > 0 in IoBMN controls the reliance on the normalization layer statistics. A larger o gives
more weight to the last adapted memory normalization statistics, whereas a smaller o emphasizes the
current inference batch normalization statistics. The soft shrinkage function S (z; A) is defined as:
Sa(a; A) = sign() - max(|a| - A,0), s)
where) is the threshold and z is the input. The function allows for proportional adjustments based on

the magnitude of the values, where smaller values are adjusted less and larger values more, preserving
the critical information inherent in the adapted memory normalization statistics.

Finally, the output of the IoBMN for each feature f; .; is computed as:

TOBMN(fy o 1: fim, 52, pl9BMN (G1OBMNY2y Foea =™ iy (6)
b,e,ls Bms Oy Moy »\¥'m =7 ToBMN)2 ’
(0oBMN)2 €

where - and f3 are learnable affine parameters of normalization layer, and € is a small constant added
for numerical stability. In our experiments, we chose « as 4 to handle various out-of-distribution
scenarios effectively. The parameter s is a hyperparameter that determines the degree of adjustment
desired and can be tuned based on specific requirements.

IoBMN utilizes CnDRM’s class-domain representative statistics and adjusts them based on the current
inferencing batch statistics. This dual-statistic approach allows IoBMN to correct the outdated and
skewed distribution of the memory, ensuring alignment with the data distribution at each inference
point. By leveraging the statistics of the data used during model update points, [oBMN adapts
effectively without significant computational overhead. Additionally, this method mitigates the
performance degradation caused by the prolonged intervals between adaptations so that the model
remains well-aligned with the evolving data distribution.

Table 1: Classification accuracy (%) and latency per batch (s) measured on a Raspberry Pi 4, compar-
ing with and without SNAP (AR=0.1) on CIFAR100-C (ResNet18) and ImageNet-C (ResNet50).
Bold numbers indicate the highest accuracy on the sparse setting. Extended results for CIFAR10-C
and other ARs (0.01, 0.03, 0.05, 0.3, and 0.5) are in Appendix C.

Methods Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg. A(Acc.) Lat.
CIFAR100-C
Tent 46.71 48.06 4098 65.19 44.10 62.78 63.95 5543 5546 5932 6743 6383 53.89 5940 4991 5576 4.54

+STTA 4355 4425 3795 6256 41.80 5945 62.13 53.04 51.60 5676 64.60 61.19 51.01 5642 4628 5284 (-2.92) 334
+SNAP 46.51 47.68 39.92 6539 44.14 6329 64.53 5520 5555 59.71 68.05 64.90 5391 59.28 49.58 5584 (+0.08) 3.67
CoTTA 42,14 4292 3792 5540 41.01 5518 5539 4946 50.61 5086 6135 4744 48.69 5438 48.11 49.39 - 74.77
+STTA 28.53 2953 2645 4219 3034 44.69 4188 3444 3393 39.03 4549 31.17 3725 36.17 36.84 3586 (-13.53) 4.94
+SNAP 4172 42.62 3746 5843 4124 5733 5796 5034 51.17 5229 63.59 51.32 49.68 5478 47.89 50.52 (+1.13) 495
EATA 3842 3996 3264 6235 3873 59.93 61.07 5050 5079 5530 64.38 60.63 49.66 53.63 43.02 50.74 - 4.25
+STTA 3841 39.03 3229 61.07 3845 5821 60.62 49.59 49.19 5423 62.88 5739 49.00 53.01 42.05 49.70 (-1.04) 3.13
+SNAP 40.62 41.53 3431 64.08 4029 6132 63.04 52.00 5177 5685 6598 61.96 51.05 5567 4480 5235 (+1.61) 351
SAR 50.75 52.00 4387 6544 4630 63.60 64.68 5841 5826 61.34 68.03 67.68 5453 61.52 5272 57.94 - 6.68
+STTA 4392 4528 38.64 6336 4258 6036 6278 53.39 5223 5754 6541 6088 52.07 56.80 47.16 5349 (-4.45) 2.95
+SNAP 4629 47.60 39.95 6526 44.00 63.09 6497 5508 5517 59.73 68.13 64.72 53.84 5898 49.54 5576 (-2.18) 3.09
ROTTA 38.54 39.85 3373 6345 4074 60.54 62.03 51.61 51.75 5620 65.14 6155 5122 5442 4250 51.55 - 6.71
+STTA 36.28 37.12 3138 6120 3836 5826 6030 4920 4821 53.54 62.80 56.78 49.61 5228 4126 49.11 (-2.44) 2.96
+SNAP 37.83 3842 3238 63.73 39.72 61.32 6258 5138 51.18 55.61 6570 61.39 51.36 54.51 4285 51.33 (-0.22) 2.99
ImageNet-C
Tent 27.03 2898 28.64 2466 23.63 3870 4577 4482 38.06 5459 64.61 1684 51.64 5554 4938 39.53 - 38.33
+STTA 22.00 2351 2307 1938 1886 32.15 4229 3970 3433 51.62 63.70 1579 4774 5235 4554 3547 (-406) 1801
+SNAP 2621 27.85 27.50 23.62 22.73 36.01 44.11 4219 3815 5295 64.57 3023 4856 5371 47.09 39.03 (-0.50) 18.76

CoTTA 13.12 1398 13.94 1244 1218 2374 3522 31.78 3026 4440 6240 15.13 4042 4526 36.53 28.72 - 300.23
+STTA 1097 11.92 1198 1145 1138 2239 3496 30.88 2989 4409 6196 13.08 4020 4527 36.71 27.81 (-091) 161.98
+SNAP 1513 16.03 1591 13.86 14.02 2490 36.51 3256 31.81 46.02 63.60 15.69 41.94 46.78 38.03 30.19 (+1.47) 163.24
EATA 29.62 31.79 31.17 2689 2630 40.65 4744 4629 40.78 5557 6497 38.02 5266 56.03 50.26 42.56 - 31.98

+STTA 2243 2378 2326 1938 1942 32,18 4322 40.65 36.64 5238 63.87 2459 4813 5289 4633 36.61 (-5.95) 16.00
+SNAP 2610 2729 27.13 2238 2215 3345 4392 4096 36.68 52.71 63.77 2793 4847 5323 4746 3824 (-4.32) 17.45

SAR 29.23 31.14 29.88 2929 2739 39.76 44.13 4598 2939 55.13 63.71 1734 5231 56.09 4935 39.34 78.15
+STTA 2612 2756 2693 2251 2335 36.03 4448 4319 3726 53.82 64.15 19.87 50.78 5478 4843 3862 (-0.72) 21.39
+SNAP 30.28 3197 3130 26.67 2631 39.66 46.08 4543 40.26 54.76 64.62 36.12 5126 5542 49.63 4199 (+2.65) 23.99
RoTTA 20.60 22.83 19.81 1046 10.10 21.31 31.83 39.66 32.09 46.08 62.22 2027 4254 4747 40.67 31.20 - 87.00
+STTA 1477 1559 1533 13.17 13.19 2385 3538 3273 30.77 4522 63.08 15.62 41.05 46.15 37.19 29.54 (-1.66) 4598
+SNAP 1535 16.20 16.01 13.67 13.66 24.27 35.62 33.04 31.02 4538 62.95 1596 41.06 46.17 3744 29.85 (-136) 4747

5 Experiments

This section outlines our experimental setup and presents the results obtained under various STTA
settings. Refer to Appendix A for further details.

Scenario. We varied the Adaptation Rates (AR) to examine how different update frequencies
affect both model accuracy and latency under latency-constrained scenarios. In our setup, AR
controls how frequently the model is adapted and also corresponds to the memory sampling rate,
as the memory size equals the batch size. The main evaluation was run with diverse AR values:
0.01, 0.03, 0.05, 0.1, 0.3, and 0.5. We report the mean accuracy and standard deviation over three
random seeds. Latency was measured on three representative edge devices: Raspberry Pi 4 [38], Zero
2W [39], and Jetson Nano [32].

Dataset and model. We used three standard TTA benchmarks: CIFAR10-C, CIFAR100-C and
ImageNet-C [10] for main evaluation. These datasets include 15 different types of corruption with
five levels of severity, and we used the highest one. We employed ResNet18 [8] as the backbone
network, utilizing models pre-trained on CIFAR10 and CIFAR100 [18]. We also use ResNet50 [8]
and Vit-Base [4] pre-trained on ImageNet [3] from the TorchVision [25] library.

Baselines. SNAP is designed to integrate with existing TTA algorithms. Therefore, testing existing
TTA algorithms under different ARs serves as our baseline (implementation details, including
hyperparameters, are in Appendix A.1). We selected five SOTA TTA algorithms: (i) Tent [48]
updates only BN affine parameters, (ii) CoTTA [50] updates the entire model parameters using a
teacher-student framework, (iii) EATA [30], (iv) SAR [31], and (v) RoTTA[53].

Overall performance across various adaptation rates. Table 1 and Appendix C provide a perfor-
mance comparison of baseline state-of-the-art (SOTA) TTA methods and SNAP integration across
adaptation rates from 0.01 to 0.5 on CIFAR10/100-C and ImageNet-C. The results reveal that while
STTA reduces adaptation latency by up to 93.38%, conventional SOTA algorithms suffer significant
accuracy degradation in STTA settings. In contrast, SNAP effectively mitigates this performance drop.
By utilizing minimal updates with only a fraction of the samples, SNAP consistently outperforms
baseline methods and achieves accuracy comparable to fully adapted models. These findings highlight
SNAP’s ability to balance efficiency and performance, preserving or even improving classification
accuracy in sparse adaptation scenarios.

maintains STTA performance even
at adaptation rates as low as 0.01
while significantly reducing latency.
In contrast, naive STTA suffers sub-
stantial performance degradation as
the adaptation rate decreases. No-
tably, computationally complex and

@
&

@
&

Figure 5 further illustrates that SNAP « l &

Latency per Batch (s)
Accuracy (%)

4
2

o .,

. _ - T e ..

6 6 e .
4 \—.\

2

0

Adaptation Rate Adaptation Rate

latency_intensive method COTTA ben_ 1 05 03 0.1 0.05 0.03 0.01 1 05 03 01 0.05 0.03 0.01
. . s TENT+SNAP =@ EATA+SNAP === SAR+SNAP ROTTA+SNAP e=@== CoTTA+SNAP
efits more from SNAP. This is be- ceo0e TENT ceeoe EATA coee SAR ROTTA g CaTTA

cause CoTTA updates all model pa-
rameters, making it highly dependent
on an effective sampling strategy, un-
derscoring the effectiveness of Cn-
DRM. At higher adaptation rates (0.5
or 0.3), SNAP can even surpass fully adapted methods by selectively utilizing the most informative
samples, similar to existing sampling-based TTA methods [30, 31, 6, 7]. With sufficient samples and
update frequency, SNAP’s class-domain representative sampling filters harmful data points, further
improving performance. Overall, these results confirm that SNAP significantly reduces per-batch
latency while preserving accuracy, demonstrating its effectiveness in resource-constrained environ-
ments. Extended results on various adaptation rates and datasets (CIFAR10/100-C and ImageNet-C)
are reported in Appendix C.

Figure 5: Latency on Raspberry Pi 4 and CIFAR10-C ac-
curacy across adaptation rates. Due to SNAP’s negligible
overhead, solid and dotted lines overlap in the latency plot.
Marker size indicates standard deviation.

Contribution of SNAP’s individual components. We conducted an ablative evaluation to under-
stand the effects of the individual components of SNAP (Table 2; more results on various adaptation
rates and datasets are in Appendix C.4). CRM denotes prediction-balanced sampling with a confi-
dence threshold, and CnDRM denotes both Class and Domain Representative sampling (the first
component of SNAP). For inference, the default uses test batch normalization statistics, EMA uses the
exponential moving average of the test batch, and [oBMN uses memory samples’ statistics corrected
to match that of the test batch (the second component of SNAP).

Contrary to the belief that low-entropy sam- Table 2: Classification accuracy (%) comparison of
ples benefit TTA [30, 31], LowEntropy per- ablative settings on the STTA (AR=0.1). Perfor-

formed worse than Rand for STTA, due to lim- mance averaged over all 15 CIFAR10-C corruptions.
ited updates causing poor or slow convergence.

CRM, originally for data-efficient supervised Methods Tent CoTTA BATA SAR RoTTA
1 . 2 5 1 I'f d R d b Naive 76.81 +0.18 66.42 £012 76.29 +0.11 76.01 007 74.78 +0.15
earnlng [bl]9 OUtpe orme an ut re- Random 77.08 014 65.61 £008 76.59 010 76.33 £013 75.01 +0.16
: : H 3 LowEntropy 75.66 £009 63.19 +0.14 74.89 2012 74.41 o018 72.60 +0.10
malned lnferlor to CnDRM due to rehance CRM 77.77 005 65.71 0.9 77.18 008 74.36 0.1 75.27 +0.17
on uncertain pS€Ud0-labGIS instead of grOund CnDRM 77.46 007 77.69 0.0 77.17 006 76.85 +0.09 75.64 +0.08

truth. The highest accuracy was achieved GIDRNiloun 7595 w0 7883 com 78610 7806 co 7707 201
with ToBMN, which mainly leverages memory

statistics and adapts minimally to each test batch. These indicate that combining CnDRM and [oBMN
in SNAP enhances performance in low-latency STTA.

Performance validation across diverse edge-devices. SNAP significantly reduces adaptation
latency across a range of edge devices. At an adaptation rate of 0.05, latency was reduced by up to
91.3% on Raspberry Pi 4 [38], 86.2% on Jetson Nano [32], and 93.7% on Raspberry Pi Zero 2 W [39].
This consistent trend across varying hardware confirms SNAP’s effectiveness in latency-sensitive edge
deployments. Complete results across all adaptation rates and devices are provided in Appendix B.6.

Memory overhead and compatibility with memory-efficient TTA. SNAP’s memory overhead
primarily comes from the memory buffer in CnDRM and statistics stored for [oOBMN. Empirical
results confirm that this overhead is minimal, accounting for only 0.02% to 1.74% of the original
memory usage across all algorithms. Additionally, SNAP improves average memory efficiency by
reducing backpropagation frequency. Further theoretical and experimental analyses of memory usage
are provided in Appendix B.7. SNAP is also compatible with memory-efficient TTA modules like
MECTA [12]. Integrating MECTA with Tent + SNAP reduces peak memory usage by 32.08%,
showecasing its effectiveness in meeting both latency and memory constraints (Appendix B.8).

SNAP on vision transformer. We validate SNAP
on ViT-Base [4] by adapting CnDRM and IoBMN
to instance-level layer normalization (LN), replacing
batch statistics. This confirms that our core strategies,
class-domain sample selection and normalization shift
mitigation, generalize to LN. SNAP achieves up to 2.9x

latency reduction while preserving or improving full F :
adaptation accuracy across all five baselines (Figure 6). "MPEARE% _____, 6y,

Details are in Appendix B.9. CoTTA 41.25%
+SNAP 39.41% 2.9% L

. . .. 13 20 30 50 200 400 600
Robustness under continuous and persistent distri- Latency per batch (s, log scale)

bution shifts. SNAP adapts efficiently to evolving
domains by smoothly moving its domain centroid with
minimal overhead. In a continuous stream of corrup-
tions from ImageNet-C, it outperforms naive STTA by
over 2.5% on average. We further assess long-term
robustness under temporally correlated and recurring shifts [11]. Combined with SNAP, accuracy
remains consistently above 50% over 10 adaptation rounds, whereas naive STTA alone degrades
sharply, dropping to 16.97%. These results highlight SNAP’s ability to maintain stable performance
across both continuous and persistent distribution changes. Details are in Appendices B.13 and B.14.

[Original (Full)
B SNAP (Sparse)

Figure 6: Latency comparison of full (orig-
inal) and sparse (SNAP) TTA on ViT-
Base [4], ImageNet-C. Accuracy values are
annotated to the right of each bar.

Robustness in single-sample (BS=1) adaptation scenario. In highly constrained environments
where the batch size is limited to one, SNAP maintains strong performance. It achieves 51.80%
accuracy with an adaptation rate of 0.1, closely matching the full SAR [31] baseline at 52.21% and
performing over 5x better than naive STTA. CnDRM continues to effectively select informative
samples, while Io0BMN leverages memory-based statistics to adaptively normalize each input under
this extreme regime. Further details are provided in Appendix B.15.

Impact of memory size and learning rate. SNAP demonstrates robustness to both memory sizes
and learning rates. It adapts effectively with a memory size equal to the batch size, as larger sizes offer
only 1~2% marginal gains before saturation. Likewise, it outperforms all baselines across learning
rates, showing up to 5~10% absolute gains under sparse adaptation. These results underscore SNAP’s
efficiency and stability under constrained adaptation. Full analyses are in Appendices B.16 and B.17.

6 Discussion and conclusion

Limitations and societal impacts. SNAP uses a fixed adaptation rate, but dynamically adjusting it
based on distribution shifts or system load could improve responsiveness. The confidence threshold
in CnDRM is also fixed as a simple safeguard, which may limit adaptability. Dynamically tuning this
threshold based on data characteristics could further enhance sampling efficiency. In addition, our
implementation reduces average latency by adapting sparsely across batches, rather than explicitly
optimizing backpropagation delay, due to PyTorch [33] constraints that require backpropagation to
run as a single block. Future work could explore distributing the backpropagation step allocation
across batches to further enhance applicability. Furthermore, deploying deep learning on edge devices
at scale can raise societal concerns, such as carbon emissions [41]. By lowering computational
overhead, SNAP helps mitigate these environmental impacts. It also reduces the need to transmit user
data to the server, supporting stronger privacy in real-world applications.

Conclusion. We highlight the often-overlooked issue of TTA latency, a critical factor for resource-
constrained edge devices. To address this, we propose SNAP, a lightweight STTA framework that
significantly reduces latency while preserving accuracy. SNAP leverages class-domain representative
memory for adaptation and optimizes inference by adapting normalization layers using memory to
account for domain shifts. Extensive experiments and ablation studies validate its effectiveness.

10

Acknowledgments and Disclosure of Funding

This work was partly supported by the Institute of Information & communications Technology
Planning & Evaluation (II'TP) grant funded by the Korea government (MSIT) (No.2024-00444862,
Non-invasive near-infrared based Al technology for the diagnosis and treatment of brain diseases),
the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)
(RS-2024-00337007), and the Institute of Information & Communications Technology Planning
& Evaluation (II'TP) grant funded by the Korea government (MSIT) (RS-2025-25442824, Al Star
Fellowship Program (Ulsan National Institute of Science and Technology)). % MSIT: Ministry of
Science and ICT

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

Motasem Alfarra, Hani Itani, Alejandro Pardo, Shyma Yaser Alhuwaider, Merey Ramazanova,
Juan Camilo Perez, Zhipeng Cai, Matthias Miiller, and Bernard Ghanem. Evaluation of test-
time adaptation under computational time constraints. In Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research,
pages 976-991. PMLR, 21-27 Jul 2024.

Hoyong Choi, Nohyun Ki, and Hye Won Chung. Bws: best window selection based on sample
scores for data pruning across broad ranges. In Proceedings of the 41st International Conference
on Machine Learning. IMLR.org, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248-255, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, G Heigold, S Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. In International
Conference on Learning Representations, 2020.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware min-
imization for efficiently improving generalization. In International Conference on Learning
Representations, 2021.

Taesik Gong, Jongheon Jeong, Taewon Kim, Yewon Kim, Jinwoo Shin, and Sung-Ju Lee.
NOTE: Robust continual test-time adaptation against temporal correlation. In Advances in
Neural Information Processing Systems, 2022.

Taesik Gong, Yewon Kim, Taeckyung Lee, Sorn Chottananurak, and Sung-Ju Lee. SoTTA:
Robust test-time adaptation on noisy data streams. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for im-
age recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, June 2016.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo,
Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin
Gilmer. The many faces of robustness: A critical analysis of out-of-distribution generalization.
ICCV, 2021.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In International Conference on Learning Representations, 2019.

Trung-Hieu Hoang, Duc Minh Vo, and Minh N. Do. Persistent test-time adaptation in recurring
testing scenarios. In Thirty-eighth Conference on Neural Information Processing Systems, 2024.

Junyuan Hong, Lingjuan Lyu, Jiayu Zhou, and Michael Spranger. Mecta: Memory-economic
continual test-time model adaptation. In International Conference on Learning Representations,
2023.

11

[13] Yusuke Iwasawa and Yutaka Matsuo. Test-time classifier adjustment module for model-agnostic
domain generalization. In Advances in Neural Information Processing Systems, volume 34,
pages 2427-2440. Curran Associates, Inc., 2021.

[14] Ziheng Jiang, Chiyuan Zhang, Kunal Talwar, and Michael C Mozer. Characterizing structural
regularities of labeled data in overparameterized models. In Proceedings of the 38th Interna-
tional Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pages 5034-5044. PMLR, 18-24 Jul 2021.

[15] Diederick P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations, 2015.

[16] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions.
In Proceedings of the 34th International Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pages 1885-1894. PMLR, 06-11 Aug 2017.

[17] Germain Kolossov, Andrea Montanari, and Pulkit Tandon. Towards a statistical theory of
data selection under weak supervision. In The Twelfth International Conference on Learning
Representations, 2024.

[18] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Master’s
thesis, Department of Computer Science, University of Toronto, 2009.

[19] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for
detecting out-of-distribution samples and adversarial attacks. Advances in neural information
processing systems, 31, 2018.

[20] Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and Xiaodi Hou. Revisiting batch
normalization for practical domain adaptation. Pattern Recognition, 80, 03 2016.

[21] Ji Lin, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and Song Han. Mcunet: Tiny deep
learning on iot devices. In In Advances in Neural Information Processing Systems, volume 33,
pages 11711-11722. Curran Associates, Inc., 2020.

[22] Haolan Liu, Zixuan Wang, and Jishen Zhao. Cola: characterizing and optimizing the tail
latency for safe level-4 autonomous vehicle systems. In 2025 IEEE International Conference
on Robotics and Automation (ICRA), pages 3709-3719. IEEE, 2025.

[23] Aleksej Logacjov, Kerstin Bach, Atle Kongsvold, Hilde Bremseth Bardstu, and Paul Jarle Mork.
Harth: A human activity recognition dataset for machine learning. Sensors, 21(23):7853, 2021.

[24] Tlya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In
International Conference on Learning Representations, 2017.

[25] TorchVision maintainers and contributors. Torchvision: Pytorch’s computer vision library.
https://github.com/pytorch/vision, 2016.

[26] Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training
of machine learning models. In Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pages 6950-6960. PMLR,
13-18 Jul 2020.

[27] Eduardo Fernandes Montesuma, Fred Maurice NGOLE MBOULA, and Antoine Souloumiac.
Optimal transport for domain adaptation through gaussian mixture models. Transactions on
Machine Learning Research, 2025.

[28] Zachary Nado, Shreyas Padhy, D Sculley, Alexander D’ Amour, Balaji Lakshminarayanan, and
Jasper Snoek. Evaluating prediction-time batch normalization for robustness under covariate
shift. arXiv preprint arXiv:2006.10963, 2020.

[29] Shuaicheng Niu, Chunyan Miao, Guohao Chen, Pengcheng Wu, and Peilin Zhao. Test-time

model adaptation with only forward passes. In The International Conference on Machine
Learning, 2024.

12

https://github.com/pytorch/vision

[30] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, and
Mingkui Tan. Efficient test-time model adaptation without forgetting. In Proceedings of the
39th International Conference on Machine Learning, volume 162 of Proceedings of Machine
Learning Research, pages 16888-16905. PMLR, 17-23 Jul 2022.

[31] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan Wen, Yaofo Chen, Peilin Zhao, and
Mingkui Tan. Towards stable test-time adaptation in dynamic wild world. In The Eleventh
International Conference on Learning Representations, 2023.

[32] NVIDIA Corporation. NVIDIA Jetson Nano, 2019. Accessed: 2024-11-20.

[33] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Thirty-second Advances in Neural Information
Processing Systems, pages 8024—8035. Curran Associates, Inc., 2019.

[34] Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet:
Finding important examples early in training. In Advances in Neural Information Processing
Systems, 2021.

[35] Geoff Pleiss, Tianyi Zhang, Ethan Elenberg, and Kilian Q Weinberger. Identifying mislabeled
data using the area under the margin ranking. In Advances in Neural Information Processing
Systems, volume 33, pages 17044—17056. Curran Associates, Inc., 2020.

[36] Omead Pooladzandi, David Davini, and Baharan Mirzasoleiman. Adaptive second order coresets
for data-efficient machine learning. In Proceedings of the 39th International Conference on
Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 17848—
17869. PMLR, 17-23 Jul 2022.

[37] Joaquin Quifionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D Lawrence.
Dataset shift in machine learning. Mit Press, 2008.

[38] Raspberry Pi Foundation. Raspberry Pi 4 Model B, 2019. Accessed: 2024-11-20.
[39] Raspberry Pi Foundation. Raspberry Pi Zero 2 W, 2021. Accessed: 2024-11-20.

[40] Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and Matthias
Bethge. Improving robustness against common corruptions by covariate shift adaptation. In

Advances in Neural Information Processing Systems, volume 33, pages 11539-11551. Curran
Associates, Inc., 2020.

[41] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. Green ai. Commun. ACM,
63(12):54-63, November 2020.

[42] Mattia Segu, Alessio Tonioni, and Federico Tombari. Batch normalization embeddings for deep
domain generalization. Pattern Recognition, 135:109115, 2023.

[43] Junha Song, Jungsoo Lee, In So Kweon, and Sungha Choi. Ecotta: Memory-efficient continual
test-time adaptation via self-distilled regularization. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11920-11929, 2023.

[44] Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari S. Morcos. Beyond
neural scaling laws: beating power law scaling via data pruning. In Proceedings of the 36th
International Conference on Neural Information Processing Systems, NIPS *22, Red Hook, NY,
USA, 2022. Curran Associates Inc.

[45] Ardi Tampuu, Kristjan Roosild, and Ilmar Uduste. The effects of speed and delays on test-time
performance of end-to-end self-driving. Sensors, 24(6):1963, 2024.

[46] Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio,
and Geoffrey J. Gordon. An empirical study of example forgetting during deep neural network
learning. In International Conference on Learning Representations, 2019.

13

[47] Cédric Villani. The Wasserstein distances, pages 93—111. Springer Berlin Heidelberg, Berlin,

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Heidelberg, 2009.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent:
Fully test-time adaptation by entropy minimization. In International Conference on Learning
Representations, 2021.

Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global represen-
tations by penalizing local predictive power. In Advances in Neural Information Processing
Systems, pages 10506-10518, 2019.

Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Continual test-time domain adaptation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 7201-7211, June 2022.

Xiaobo Xia, Jiale Liu, Jun Yu, Xu Shen, Bo Han, and Tongliang Liu. Moderate coreset: A
universal method of data selection for real-world data-efficient deep learning. In The Eleventh
International Conference on Learning Representations, 2022.

Shuo Yang, Zeke Xie, Hanyu Peng, Min Xu, Mingming Sun, and Ping Li. Dataset pruning:
Reducing training data by examining generalization influence. In The Eleventh International
Conference on Learning Representations, 2023.

Longhui Yuan, Binhui Xie, and Shuang Li. Robust test-time adaptation in dynamic scenarios.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 1592215932, June 2023.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
Computer Vision—ECCV 2014: 13th European Conference, Zurich, Switzerland, September
6-12, 2014, Proceedings, Part I 13, pages 818-833. Springer, 2014.

Marvin Zhang, Sergey Levine, and Chelsea Finn. Memo: Test time robustness via adaptation
and augmentation. In Advances in Neural Information Processing Systems, volume 35, pages
38629-38642. Curran Associates, Inc., 2022.

14

A Experiment details

All experiments presented in this paper were conducted using three random seeds (0, 1, 2), and we
report the average accuracies along with their corresponding standard deviations. To ensure efficiency
in experimentation, accuracy measurements were obtained using NVIDIA GeForce RTX 3090 GPUs,
as the performance differences attributable to the random seed are negligible. Latency measurements
were mainly conducted on a Raspberry Pi 4 [38], equipped with a Quad-core Cortex-A72 (ARM v8)
64-bit SoC @ 1.8GHz CPU and 4GB RAM. In addition, two more edge-devices: NVIDIA Jetson
Nano [32] and Raspberry Zero 2 W [39] are also utilized for latency measurements.

A.1 Baseline implementation details

In this study, we utilized the official implementations of the baseline methods. To ensure consistency,
we adopted the reported best hyperparameters documented in the respective papers or source code
repositories as much as possible. Also, we present information about the implementation specifics of
the baseline methods and provide a comprehensive overview of our experimental setup, including
detailed descriptions of the employed hyperparameters.

We adopt hyperparameters from the original papers or the official code of the baselines for consistency.
To assess the generality of SNAP, the test batch sizes were set to 16 for all baseline methods to ensure
a fair comparison. To minimize overhead and maintain consistency with inference batches, we set
the size of CnDRM equal to the batch size. TTA is conducted in an online manner, with adaptation
or inference performed per batch. When there was a conflict between the implementation of SNAP
and certain components of the existing baseline methods, we prioritized SNAP’s features for fair
evaluation at the STTA setting.

Tent [48] We update the BN affine parameters using the SGD optimizer [24] with a learning rate of
l = 1e — 3 for CIFAR10/100C and [= 1e — 4 for ImageNet-C. For separate experimentation on the
ViT, we used a learning rate of [= 2e — 4.

CoTTA [50] We update all model parameters using the Adam optimizer [15] with a learning rate
of | = 1e — 4. Furthermore, we set CoTTA’s teacher model EMA factor to o = 0.99, the restoration
factor to p = 0.1, and the anchor probability to py, = 0.9.

EATA [30] We use the SGD optimizer with a learning rate of [= le — 4. We set the entropy
threshold as Fy = 0.4 X In|N|, where N is the total number of classes.

SAR [31] We use SAM [5] with the base optimizer as SGD with a learning rate of [= 1e — 3. For
fair evaluation, we replaced the sample filtering scheme with SNAP’s CnDRM.

ROTTA [53] We use the SGD optimizer with a learning rate of [= le — 3. For fair evaluation,
we replaced RoTTA’s RBN and CSTU with SNAP’s CnDRM and IoBMN. For the teacher-student
structure, we set the teacher model’s exponential moving average update rate as v = le — 3.

Finally, we list the hyperparameters specific to the components of SNAP. The confidence threshold
for CnDRM 7oy, is set to 0.4 for CIFAR10-C, 0.45 for CIFAR100-C, and 0.5 for ImageNet-C.
The entropy threshold for our ablation study 7., is set to log(10) x 0.40 for CIFAR10-C and
log(100) x 0.40 for CIFAR100-C, as referenced in a previous work using entropy-based filtering [30].
Additionally, the parameters for the soft shrinkage function in [oBMN are fixed with oo = 4 for Tent,
CoTTA, SAR, RoTTA, and o« = 2 for EATA.

B Additional discussions

B.1 Theoretical analysis on class and domain representative sampling criteria
The sampling strategy in SNAP’s CnDRM module is grounded in theoretical insights from data-

efficient learning and generalization under constrained adaptation settings. Under latency-constrained
scenarios, models can only adapt intermittently. This raises the following question:

15

Which subset of streaming samples yields the greatest adaptation gain when only a fraction
p = n/N of them can be used for weight updates?

Selection ratio and phase transition. Let p = n/N € (0, 1] denote the adaptation ratio, where n
is the number of selected samples for model update out of N total seen test samples. Theoretical and
empirical studies [2, 44, 17] show that the optimal selection strategy varies significantly depending
on the value of p:

* When p > 0.6 (high adaptation rate), selecting low-confidence samples near decision
boundaries provides maximal information gain.

* When p < 0.5 (sparse adaptation), selecting high-confidence, representative samples near
class or domain centroids leads to better generalization.

This dichotomy is supported analytically in [2], which shows that in underparameterized regimes,
boundary samples may inject noisy gradients and destabilize learning.

Hlustrative example. Consider a binary classification task where inputs z; ~ AN (0, %I 4), and
labels are assigned by y; = sign(x;1). The Bayes-optimal classifier aligns with e;, the first basis
vector. Suppose we select a subset (Xg,ys) € R4*" x {—1,1}" and compute the ridge regression
solution:

ws = arg min [lys — Xgw|*. @)

As shown in prior work [2], in the sample-deficient regime (n < d), the solution wg aligns best
with the true decision direction when trained on high-confidence samples. In contrast, in the sample-
sufficient regime (n. > d), boundary samples become more beneficial for refining decision boundaries.

Sampling criterion under sparse adaptation. Based on this, the optimal update subset S* C D;q¢
under p < 1 can be defined as:

5" =argmax 3 | f(ws) = e} st e = argmas £, (z;), ®)
S ;€S J

where (., is the estimated feature-space class centroid. This motivates our use of class- and domain-
representative memory (CnDRM), which prioritizes confident, centroid-aligned samples for parameter
updates under low-frequency adaptation.

Under sparse adaptation (p < 1), selecting the most informative subset of test samples becomes
critical. Our method prioritizes samples that are both semantically reliable (class-representative) and
statistically aligned (domain-representative).

For the class-representative criterion, we follow insights from [2], which show that in the sample-
deficient regime, high-confidence samples, those far from the decision boundary, yield better general-
ization than boundary samples. Rather than explicitly computing class centroids, we approximate
class-representative samples by selecting those with the highest prediction confidence:

:lass = {xl € Diest | COIlf(.TZ) > T}a)
where Conf(z;) = max; f;(z;) is the softmax confidence score and 7 is a confidence threshold.

To additionally enforce domain-level representativeness, we compute the Wasserstein-2 distance
between each candidate sample and the estimated domain distribution. Specifically, each domain d is
modeled as a Gaussian N (v4, 24), where:

1 1
va= o D J@), Ba=gpr 3 (la) —v)(f@) —v)". (0

x;€Dy z;€Dq

Each sample z; is treated as an empirical distribution A/(p;, ;) using a local batch of neighboring
features. The closed-form squared 2-Wasserstein distance between two Gaussians is given by:

W2 (N (s, S0), N (va, £a)) = |lps — va2 + T (Ei . 2(23/221-2;/2)1/2) .an

16

Combining both criteria, our final selection strategy becomes:

S* = argsmig Z W3 (N (1, 22), N (va, £4)), 12)

class 2,€ES

i.e., we select a subset of high-confidence samples that are also distributionally aligned with the
estimated domain centroid. This ensures that parameter updates occur on samples that are both
semantically stable and statistically representative under test-time domain shift.

Practical implementation. In our system, we operate with p < 0.5 (e.g., update every two test
batches). While this reduces update opportunities, the degradation in performance is mitigated
via CnDRM’s informed sample selection. In addition, SNAP integrates [o0BMN (Inference-only
Batch-aware Memory Normalization), which updates batch norm statistics from all incoming samples,
even if they are not used for weight updates. This reduces covariate shift and maintains normalization
stability across domains.

B.2 Assumptions and derivation of the Wasserstein formulation

The closed-form expression in Equation 1 assumes that feature distributions are Gaussian with
diagonal covariance. This section clarifies the underlying assumptions and derivation.

Distribution definition. The distribution in Equation 1 refers to the empirical distribution of scalar
feature activations per channel, rather than the input data distribution. We consider each channel’s
activation statistics (mean and variance) in a deep layer’s feature map.

Wasserstein approximation and assumptions. To compute the Wasserstein distance efficiently, the
feature distributions are approximated as univariate Gaussian distributions for each channel. These
distributions are assumed to be independent, corresponding to a diagonal covariance assumption.
The detailed assumptions are as follows:

* Gaussian assumption: Each channel’s activations are assumed to follow a Gaussian distri-
bution N (u, o), which simplifies the formulation since Gaussian distributions are fully
determined by their mean y and variance 2. This approximation is commonly adopted in
deep learning, where normalized feature activations tend to exhibit near-Gaussian behavior
in high-dimensional feature spaces.

» Diagonal covariance: The covariance matrix for each Gaussian is assumed to be diago-
nal, implying independence across channels. This assumption is widely used in domain
adaptation and transport-based methods, as it reduces the computational complexity of full
covariance estimation while focusing on per-channel variance shifts.

» 2-Wasserstein distance for Gaussian distributions: Under these assumptions (independent
Gaussian distributions), the squared 2-Wasserstein distance between two univariate Gaussian
distributions N (u1, o) and N (o, 03) is given by:

W3 = (11 — p2)® + (01 — 02)*.
This closed-form expression enables efficient computation of the Wasserstein distance
without estimating full covariance matrices, which is computationally expensive.

Such approximations are widely adopted in the domain adaptation literature [20, 27], as they balance
computational efficiency and empirical performance while providing a meaningful measure of
domain-level similarity.

B.3 Comparison with prior TTAs under sparse update constraints

While prior TTA studies have partially explored using memory banks and the correction of Batch
Normalization (BN) statistics at inference time, our key contribution lies in systematically redesigning
these components for sparse-update regimes in resource-constrained environments, which impose
fundamentally different computational and statistical constraints.

17

CnDRM vs. Prior memory-based sampling (RoTTA [53], NOTE [6], SAR [31], and EATA [30])
Previous methods assume frequent adaptation, updating every batch and using more than 50% of test
samples. They typically select temporally balanced or low-entropy samples for updates. In contrast,
our goal is Sparse TTA (e.g., 10% adaptation rate), where such filtering leaves too few useful samples
for effective adaptation. To address this, CnDRM avoids low-entropy filtering and instead selects
representative samples based on domain centroids and class confidence. This approach enables
efficient adaptation with minimal latency. Theoretical analysis (Appendix B.1) and ablation results
(Table 2, Appendix C.4) show that prior entropy-based filtering performs worse than even random
selection under sparse-update settings.

IoBMN vs. Instance-wise BN correction (NOTE [6]) NOTE corrects BN statistics per instance,
which introduces latency proportional to the number of test samples. In contrast, [oOBMN leverages
domain-class statistics from CnDRM’s memory to correct batch BN statistics efficiently while
remaining compatible with batch inference. The memory statistics are adaptively shifted toward
batch statistics to mitigate skew from sparse updates. This design enhances computational efficiency
and normalizes using adaptation-involved samples, yielding consistent performance gains (Table 2,
Appendix C.4).

B.4 Domain influence in early layer representations

In deep learning models, early layers capture low-level features such s (Gau)
as textures, edges, and frequency components [54]. These features ether o)
are inherently domain-specific, making these layers more sensitive to

shifts in input data distribution—a critical challenge for tasks requir-

ing domain adaptation and generalization [19, 42]. This sensitivity
arises because early layers encapsulate domain-specific patterns that
may not generalize to new distributions. Under the covariate shift
assumption [37], while input distributions differ between source and Figure 7: PCA embedding of
target domains, the conditional distribution of labels remains the early layer features for one do-
same. This discrepancy between input distributions makes early main from each of the four
layers particularly vulnerable to domain shifts. main CIFAR10-C corruption
categories, showing clear sep-

aration between domains.

PCA Feature 2

PCA Feature 1

Visualizing early layer feature embeddings using 2D PCA on CIFAR-
10C domains reveals distinct domain-specific patterns, highlighting
the significant influence of domain information in these representations (Figure 7). Our preliminary
experiments further confirm that sparse TTA, using the Wasserstein distance between moving batch
normalization statistics and instance-specific statistics derived from early layer hidden features,
can significantly improve performance. Selecting instances closer to the target domain distribution
center using this distance metric yields better adaptation results, as demonstrated by performance
comparisons between the top 20% and bottom 20% of samples (Figure 4). These findings emphasize
the crucial role of domain-sensitive early layers in achieving effective adaptation.

B.5 Analysis on confidence threshold on pseudo-label accuracy

We analyzed the impact of using a confidence threshold for pseudo-label selection by comparing ran-
dom sampling with high-confidence sampling across three benchmarks: CIFAR10-C, CIFAR100-C,
and ImageNet-C. Table 3 shows that high-confidence sampling consistently outperformed random
sampling, achieving significantly higher pseudo-label accuracy in all datasets. This result demon-
strates the effectiveness of selecting high-confidence samples to improve the quality of pseudo-labels,
thereby enhancing model adaptation under domain shift conditions.

Table 3: Pseudo-label accuracy comparison between random and high-confidence sampling on three
benchmakrs: CIFAR10-C, CIFAR100-C, and ImageNet-C. Bold numbers are the highest accuracy.

CIFAR10-C CIFAR100-C ImageNet-C

Random 69.91+031 45.30+0.20 23.90+0.19
HighConf 74.80+0.15 59.38+0.26 59.40+0.04

18

B.6 Latency tracking of SNAP on diverse edge-devices

To evaluate the latency efficiency of SNAP on resource-constrained edge devices, we measured
the adaptation latency across three devices: NVIDIA Jetson Nano [32], Raspberry Pi 4 [38], and
Raspberry Pi Zero 2 W [39]. These experiments compared the latency of SNAP with the Original
TTA framework, specifically focusing on five state-of-the-art TTA algorithms: Tent [48], EATA [30],
SAR [31], RoTTA [53], and CoTTA [50]. The experiments were conducted at an adaptation rate
of 0.1, demonstrating the effectiveness of SNAP in reducing adaptation latency while maintaining
competitive accuracy. Figure 8 illustrates the latency performance for each device. It is evident

Original TTA Original TTA Original TTA
Tent] Tent [} Tent]
B SNAP-TTA M SNAP-TTA M SNAP-TTA
EATA] EATA [EATA]
SAR] SAR] SAR]
RoTTA] RoTTA [} RoTTA]
CoTTA . CoTTA m CoTTA [
0 5 10 15 0 10 20 30 40 50 0 200 400 600 800
Average Latency per Batch (s) Average Latency per Batch (s) Average Latency per Batch (s)
(a) NVIDIA Jetson Nano (b) Raspberry Pi 4 (c) Raspberry Pi Zero 2 W

Figure 8: Latency comparison between SNAP-TTA and Original TTA across five state-of-the-art TTA
algorithms (Tent, EATA, SAR, RoTTA, CoTTA) on three edge devices: (a) NVIDIA Jetson Nano,
(b) Raspberry Pi 4, and (c) Raspberry Pi Zero 2 W. SNAP-TTA demonstrates significant latency
reductions while maintaining competitive adaptation performance. The experiments were conducted
at an adaptation rate of 0.1.

that SNAP achieves a significant reduction in adaptation latency compared to the Original TTA
framework. Notably, the latency reduction was proportional to the adaptation rate, validating the
efficiency of SNAP in sparse adaptation scenarios. For instance, the latency for CoTTA was reduced
by up to 87.5% on the Raspberry Pi 4, emphasizing the practical benefits of SNAP in latency-sensitive
environments. Additionally, similar trends were observed across other devices, including the resource-
limited Raspberry Pi Zero 2 W. Since SNAP is hardware-agnostic, accuracy was not measured
separately for each device, and no accuracy differences are expected. The results confirm that SNAP
not only ensures substantial latency reductions but also adapts effectively to real-world conditions on
diverse edge devices, proving its suitability for deployment in latency-sensitive applications.

Table 4: Latency Measurements (AR=1, 0.3, 0.1, 0.05) on Jetson Nano [32].

Methods AR=1 AR=0.3 AR=0.1 AR=0.05

Tent 257 1.97(2351%) 1.35(-47.62%) 1.19 (-53.75%)
EATA 252 1.90(-24.70%) 1.33(-47.22%) 1.19 (-52.79%)
SAR 5.15 2.87(-44.29%) 1.60 (-68.94%) 1.32 (-74.28%)
ROTTA 524 291 (-44.46%) 1.62(-69.13%) 1.32 (-74.81%)
CoTTA 13.18 6.13(-53.46%) 2.61 (-80.22%) 1.82 (-86.19%)

Table 5: Latency Measurements (AR=1, 0.3, 0.1, 0.05) on Raspberry Pi 4 [38].

Methods AR=1 AR=0.3 AR=0.1 AR=0.05

Tent 4.78 3.54 (-26.09%) 3.09 (-35.45%) 2.35 (-50.87%)
EATA 5.68 3.52(-38.00%) 2.87 (-49.45%) 2.31 (-59.28%)
SAR 9.45 4.88 (-48.34%) 2.98 (-68.41%) 2.54 (-73.16%)
RoTTA 12.07 4.95(-58.97%) 2.94 (-75.62%) 2.91 (-75.91%)
CoTTA 41.77 11.80(-71.76%) 4.93 (-88.19%) 3.64 (-91.29%)

Table 6: Latency Measurements (AR=1, 0.3, 0.1, 0.05) on Raspberry Pi Zero 2 W [39].

Methods AR=1 AR=0.3 AR=0.1 AR=0.05

Tent 3496 24.67(-29.42%) 25.06 (-28.32%) 17.07 (-51.16%)
EATA 5072 27.01 (-46.75%) 28.43 (-43.93%) 17.00 (-66.48%)
SAR 74.64 4779 (-35.96%) 29.56 (-60.40%) 18.64 (-75.02%)
ROTTA 154.88 86.54 (-44.13%) 44.08 (-71.54%) 22.44 (-85.51%)
CoTTA 62228 228.03 (-63.36%) 92.01 (-85.21%) 39.22 (-93.70%)

19

B.7 Memory overhead of SNAP

The SNAP framework achieves substantial latency reduction and accuracy improvements with
minimal memory overhead, even under resource-constrained scenarios like edge devices. In this
section, we present both a theoretical analysis of the memory requirements and empirical results
obtained from evaluations on a Raspberry Pi 4[38] (CPU-only edge device).

The memory overhead of SNAP arises from two main components: (1) the memory buffer in
Class and Domain Representative Memory (CnDRM) for storing representative samples, includ-
ing both feature statistics (mean and variance) and the raw image samples, and (2) the statis-
tics required for Inference-only Batch-aware Memory Normalization (IoBMN). For a batch size
B, the total theoretical memory overhead can be expressed as: Memory Overhead = B X
(Image Size + 2 x Feature Dimension x Bytes per Value)+Feature Dimension x Bytes per Value x
2. The last term accounts for the storage of [oBMN statistics (mean and variance for each feature
channel). The image size is calculated based on the dataset resolution and data type.

For ResNet18 on CIFAR10-C, CIFAR10 images have a resolution of 32 x 32 x 3 with each value
stored as 1 byte. For a feature dimension of 512 and batch size B = 16, the total overhead is:
Image Overhead = 16 x (32x32x 3 x 1) = 49, 152 bytes (48 KB), Feature Overhead (CnDRM) =
16 x (512 x 2 x 4) = 65,536 bytes (64 KB), Feature Overhead (IoBMN) = 512 x 2 x 4 =
4,096 bytes (4 KB). Thus, the total memory overhead is: Total Overhead = 48 KB + 64 KB +
4 KB =116 KB.

For ResNet50 on ImageNet-C, ImageNet images have a resolution of 224 x 224 x 3, stored

as 1 byte per value. For a feature dimension of 2048 and batch size B = 16, the total
overhead is: Image Overhead = 16 x (224 x 224 x 3 x 1) = 12,044,928 bytes (11.5 MB),
Feature Overhead (CnDRM) = 16 x (2048 x 2 x 4) = 262,144 bytes (256 KB),

Feature Overhead IoBMN) = 2048 x 2 x 4 = 16, 384 bytes (16 KB). Thus, the total memory
overhead is: Total Overhead = 11.5 MB + 256 KB + 16 KB ~ 11.77 MB.

Table 7 shows the empirical memory usage of SNAP compared to Original TTA methods (Tent,
EATA, CoTTA, SAR, and RoTTA). The results were averaged across three seeds of experiments and
represent the memory footprint observed in a CPU-only edge device, Raspberry Pi 4. While minor
variations in measurements are expected due to the nature of CPU memory footprint tracking, the
results robustly indicate that the actual memory overhead of SNAP on edge devices is extremely low
across all algorithms, ranging from 0.02% to 1.74%. Furthermore, while peak memory usage is either
slightly increased or remains comparable to Original TTA methods, the average memory usage of
SNAP is consistently lower. This is because SNAP performs backpropagation infrequently, which is
the most memory-intensive operation in TTA.

Table 7: Comparison of memory usage (Average Memory, Peak Memory, and Memory Overhead)
between Original TTA and SNAP (adaptation rate 0.3) across various methods (Tent, EATA, CoTTA,
SAR, and RoTTA) tested on Raspberry Pi 4. Bold numbers are the lowest memory usage.

Average Mem (MB) Peak Mem (MB) Mem Overhead (MB)
Methods "5 iginal TTA SNAP Original TTA SNAP SNAP - Original
Tent 764.24 751.35 822,93 828.46 5.52(0.67%)
CoTTA 1133.52 1099.64 1211.21 1227.99 16.78 (1.13%)
EATA 816.69 749.95 847.73 862.51 14.78 (1.74%)
SAR 786.65 753.69 863.77 865.18 1.41 (0.02%)
RoTTA 933.23 871.64 972.23 983.94 11.71 (1.20%)

These findings demonstrate that SNAP’s memory overhead is negligible compared to its benefits
in latency reduction and accuracy improvements. By leveraging a small memory buffer for
representative samples and minimizing backpropagation operations, SNAP not only achieves a
lightweight memory profile but also becomes more efficient in terms of average memory usage
compared to Original TTA. This lightweight design, combined with its advantages in latency and
accuracy, underscores the practicality of SNAP for deployment in latency-sensitive applications on
edge devices.

20

B.8 Integration of SNAP with memory-efficient TTA algorithm

This section evaluates the integration of SNAP with MECTA [12], a memory-efficient TTA algorithm,
to demonstrate its applicability for resource-constrained edge devices. The experimental setup follows
the evaluation settings presented in the MECTA paper to ensure a fair and consistent comparison.
Specifically, we analyze the performance of Tent and EATA, enhanced with MECTA and further
integrated with SNAP, using the ResNet50 model with a batch size of 64 on the ImageNet-C dataset.

Table 8 presents the classification accuracy and peak memory usage for Tent+MECTA and
EATA+MECTA configurations with and without SNAP. Integrating SNAP with Tent+MECTA
improves accuracy from 35.21% to 39.52%, while reducing peak memory usage by approximately
30% compared to the Tent baseline. Similarly, SNAP boosts the accuracy of EATA+MECTA from
35.55% to 42.86% while maintaining an efficient memory footprint.

Table 8: Comparison of classification (%) and memory peak (MB) in STTA with an adaptation rate of
0.1. MECTA significantly reduces memory consumption, and SNAP is applied alongside it to boost
the performance of sparse adaptation. The accuracy is the average over 15 corruptions in ImageNet-C.
Bold numbers indicate either the lowest memory usage or the highest accuracy.

Methods Accuracy (%) Max Memory (MB)
Tent 35.21+0.09 6805.26
+MECTA 37.62+016 4620.25 (-32.10%)

+ SNAP 39.52+0.13 4622.12 (-32.08%)
EATA 35.55+0.19 6541.02
+MECTA 41.41+037 4512.38 (-31.01%)

+ SNAP 42.86+020 4535.44 (-30.66%)

Further details are provided in Table 9, which evaluates the combination of SNAP with MECTA
across various corruption types and adaptation rates (AR = 0.3, 0.1, and 0.05). These results show
that SNAP consistently outperforms baseline configurations across all adaptation rates and corruption
types. This demonstrates the robustness of SNAP when integrated with MECTA and its suitability for
real-world applications.

By adhering to the evaluation settings of the MECTA paper, this study ensures high reliability
and comparability of results. The findings confirm that SNAP is highly compatible with MECTA,
significantly improving both accuracy and memory efficiency. This synergy highlights the potential
of combining SNAP and MECTA for deployment in resource-constrained environments such as edge
devices.

Table 9: Evaluation of SNAP with MECTA on ImageNet-C through Adaptation Rates(AR) (0.3, 0.1,
and 0.05). Bold numbers are the highest accuracy.

AR Methods Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg.

28.20 30.13 29.58 23.07 2335 3449 4595 4097 3568 55.66 6656 14.72 53.09 57.16 50.74 39.29

Tent+ MECTA 1530 1041 008 +022 047 +0.13 013 #0.15 =041 004 +006 047 0.8 +0.05 015 +0.22

+ SNAP 3049 3198 3166 2629 2619 3847 4738 4379 4012 5638 6681 2887 5353 57.61 5086 42.03

0 1026 014 021 032 002 030 011 011 012 005 007 028 009 0.10 008 0.15
B ATAsMECTA 218 3485 3306 2880 2918 4102 4924 4710 4156 5735 6627 3456 5538 5819 5287 4411
1060 049 031 022 0.8 026 008 020 025 0.12 £0.05 0.12 0.10 004 026 022

+ SNAP 3367 3576 3486 3035 3029 4278 4955 4746 4232 5750 6618 39.08 5538 5835 5272 45.08

1019 024 010 011 004 006 010 010 005 015 006 0.81 016 0.02 002 0.15

TemtsMECTA 2494 2673 2563 2111 2146 3211 4405 3822 3636 5392 6648 1850 5080 55.67 4833 3762

1015 £020 007 022 $0.I8 002 0.19 027 009 012 002 045 0.12 0.18 011 +0.16

+ SNAP 2749 2890 2826 2349 2376 3492 4518 4021 3840 5378 6654 2772 5100 5548 4761 39.52

ol 1008 014 016 +0.17 +0.12 006 0.13 009 0.18 0,14 £0.03 020 020 0.13 0.7 +0.13
L EATAsMECTA 2942 3172 2044 2441 2548 3704 4700 4360 3943 5595 6642 2885 5370 5734 5120 414l
1067 030 032 074 045 018 0.5 0.19 038 0.13 0.14 118 0.5 0.15 036 037

+ SNAP 3126 3271 3222 2731 27.61 3888 4783 4452 4058 5642 6624 3538 53.67 5739 50.83 42.86

011 017 017 046 028 028 009 014 005 006 021 0.63 0.17 013 0.12 020

TemtsMECTA 2122 2309 2190 1869 1939 2989 4202 3653 3523 5175 6623 1964 4843 5354 4543 3554

1013 $022 0.13 0.8 020 0.13 0.10 2022 005 0.15 0.04 027 003 003 0.1 +0.14

+ SNAP 2393 2537 2410 2042 2114 3183 4268 3753 3631 5142 6619 2384 4862 5320 44.57 3674

005 1027 $022 015 018 007 006 004 016 020 0.17 004 024 005 0.17 0.17 0.15
05 ATAsMECTA 2497 2695 2087 2119 2194 3361 4501 4092 3773 5464 6660 2303 5187 5660 4915 3841
1042 £027 329 090 045 008 001 0.19 042 0.10 007 059 035 025 023 +051

+ SNAP 2839 3010 2945 2432 2512 3554 4604 4187 3916 5512 6661 3034 5206 5642 4911 40.64

+0.57 £0.38 022 +0.20 £0.07 020 £0.27 +0.07 £0.15 0.01 =+0.09 =£0.34 024 =0.11 #0.07 =£0.20

21

Table 10: Classification accuracy (%) on ImageNet-C through SNAP (AR=0.1) using ViT-Base [4].

Method Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg.
40.56 4130 41.69 3576 31.81 42.01 38.02 4433 53.53 20.69 7241 3042 4587 5195 56.11 43.10

Tent +0.11 £0.28 £0.22 £0.15 +£0.07 =+£026 +£0.13 =+0.18 =+0.06 +0.25 +0.14 +021 =£0.17 =£0.12 £0.29 =£0.19
+ SNAP 4098 41.72 4218 37.16 3230 42.89 3844 46.19 5250 5311 7225 3925 46.77 5153 5599 46.22
+0.08 +£0.24 £0.19 =£0.06 +£0.27 =+£0.15 =+£0.13 023 029 +0.18 +0.12 +026 =£0.14 =£0.11 =+0.22 +£0.09
CoTTA 2005 17.12 2043 20.06 16.62 1287 1450 9.68 2831 16.01 35.79 1.96 15.60 12.09 1599 17.14
+0.16 +£0.20 =+0.21 £0.14 +£025 =+£0.13 +£0.12 +023 =027 =+0.19 +020 =£0.11 =+0.22 =£0.29 =£0.17 =£0.18
+ SNAP 3485 3335 36.21 31.54 2577 3557 3296 4223 5510 51.63 71.72 586 42.18 3996 5227 3941
+0.13 +0.22 +0.28 +£0.18 +£0.06 +024 +£0.11 =025 =+0.07 =+027 =+0.16 +029 =+0.08 =£0.19 =£0.21 =£0.13
EATA 20.12 21.52 2140 2090 2342 1571 18.00 16.12 2835 2224 3597 1133 19.78 2022 19.99 21.00
+0.14 +£0.17 +0.21 +0.09 =£020 =£0.10 +£0.27 £0.11 +£024 =£0.16 +£0.22 +0.15 £029 =£0.18 £0.23 +0.12
+ SNAP 40.74 4322 4311 40.63 4459 5158 50.63 54.77 5832 61.50 7391 3385 60.19 6335 63.01 52.23
+0.15 £0.19 +0.13 +0.27 =£0.11 £021 +£0.18 £0.12 +£025 =£020 +£0.14 029 =£0.10 =£0.17 £023 +0.13
ROTTA 2144 1864 2208 1997 16.87 13.70 1442 1573 2857 17.71 35.05 8.52 15.80 13.03 1327 18.32
+0.14 +£0.21 +0.13 +0.18 £0.22 +£0.09 +£0.27 =£0.15 =£0.19 £024 +£0.26 +0.13 £020 =£0.11 £0.25 =0.10
+ SNAP 35.68 3460 36.86 31.20 2581 3624 3347 4272 5550 51.74 71.84 17.84 42.86 4224 52.67 40.75

+0.16 £0.17 021 £0.13 £023 +£0.09 +£026 =£0.12 £027 £0.18 +£0.15 029 =£0.14 £0.10 £0.24 Z£0.11

Table 11: SNAP accuracy and latency per batch, using Vit-Base [4]. Performance averaged over
ImageNet-C. Values in parentheses show the performance difference from full adaptation.

Methods Accuracy (%) Latency per batch (s)

Original TTA SNAP (AR=0.1) Original TTA SNAP (AR=0.1)
Tent 39.53 +0.14 46.22 +0.13 (+6.69) 28.19 +0.08 15.66 +0.06 (-44.43%)
CoTTA 41.25 +0.12 39.41 +0.15 (-1.83) 523.26 +0.27 182.20 +0.18 (-65.18%)
EATA 48.43 +o0.11 52.23 +0.13 (+3.79) 28.69 +0.07 16.44 +0.06 (-42.71%)
SAR 43.86 +0.13 47.77 +0.12 (+3.91) 44.28 +0.09 17.76 +0.07 (-59.90%)
ROoTTA 42.93 +0.15 40.75 +0.14 (-2.18) 42.70 +0.10 16.28 +0.08 (-61.88%)

B.9 Modification for layer normalization of Vision Transformer

The main text describes the use of Batch Normalization (BN) statistics for calculating domain
centroids and centroid-instance distances, with subsequent adjustment of memory statistics to match
the target test batch using the Inference-only Batch-aware Memory Normalization (IoBMN) method.
Specifically, these calculations leverage the mean and variance across batches as follows:

| BL | B
fre = BxL ZZfb,c,l, o= 5w ZZ(fb,c,l — tpe) (13)

b=1 I=1 b=1 l=1
where B represents the batch size, L the number of spatial locations, and ¢ the channel index.

However, modern models like Vision Transformer (ViT) utilize Layer Normalization (LN) instead
of BN. Unlike BN, which calculates statistics across the entire batch, LN normalizes each instance
independently by using the statistics calculated over individual feature dimensions. Specifically, for a
feature vector f}, belonging to the b-th instance, LN computes:

1 & 1 &
_ 2 _ 2
Mo = C ;:1 fo,en o0 = bol ;Zl(fb,c — 1p)*, (14)

where C' is the number of channels. This difference implies that LN operates without batch-level
interactions, focusing solely on within-instance normalization, which makes the method inherently
more suitable for handling variable batch sizes, particularly in latency-sensitive applications like
those considered in our Test-Time Adaptation (TTA) setting.

Despite the differences between BN and LN, the fundamental mechanism of using feature statistics to
capture domain information remains valid. The key domain characteristics in early layer features are
preserved in both normalization types, enabling the construction of a domain centroid that reflects the
distributional characteristics of the test data. For LN, this centroid can be computed by aggregating
across instances instead of across batches:

LM LM
QENZM;M” 52LN:M;UE7 (15)

where M is memory capacity. This modified approach allows the domain centroid to still represent
the overall domain-specific characteristics effectively, despite the lack of direct batch-level statistics.

Furthermore, this methodology extends seamlessly to other normalization layers, such as Group
Normalization (GN). In GN, the statistics are computed across smaller groups of channels within

22

each instance, but the procedure for aggregating these statistics to form a domain centroid remains
the same—by averaging the group-level statistics across instances.

To maintain the core concept of selecting domain-representative samples with minimal modifications,
we continue to use the memory of high-confidence domain-representative samples in the Inference-
only Batch-aware Memory Normalization (IoBMN) strategy. The adjustment for LN requires: 1.
Calculating LN-specific centroids as described in Equation 15. 2. Replacing BN statistics with LN
statistics in the [oBMN module, thereby aligning the feature normalization during inference with the
domain-representative information derived from memory.

The effectiveness of this modification was validated experimentally, as shown in Table 10, 11,
where ViT models using LN showed improved performance even under sparse TTA conditions. This
indicates that, with minimal adjustments, SNAP remains effective for ViT with LN. The core principle
of utilizing domain-representative statistics for aligning test-time feature distributions continues to
provide significant benefits, ensuring robust adaptation in shifting domains with limited latency and
computational overhead.

B.10 Comparison with forward-only TTA methods

Forward-only TTA methods, such as T3A [13] and FOA [29], aim to reduce computational burden by
removing gradient-based updates. Instead, they update lightweight components: class prototypes
in T3A and learned prompts in FOA. While these methods improve runtime efficiency, they exhibit
structural limitations that hinder their robustness under dynamic distribution shifts.

Table 12: Performance comparison between T3A [13] and FOA [29] against Tent [48] + SNAP
(adaptation rate 0.1) on ImageNet-C (i.i.d and non-i.i.d). Latency is measured on Raspberry Pi 4.

Dataset Method Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg. Lat.(s)

ResNet50
14.03 14.21 14.56 12.97 13.07 23.02 34.67 3079 2784 4395 6151 1257 3979 4450 36.11 28.24 18.35
+0.09 +0.43 +0.07 +0.18 +0.06 +0.21 *1.17 #0.15 +0.29 +0.06 +0.22 +0.91 +0.19 +1.46 +0.51 +0.39 +0.59
Tent+SNAP 26.21 2785 2750 23.62 2273 36.01 44.11 42.19 3815 5295 6457 3023 4856 5371 47.09 39.03 18.76
+0.14 £0.19 £0.16 x0.10 +0.15 023 0.17 0.12 +0.21 +0.18 +0.11 +0.27 £0.15 £0.13 026 0.19 +0.30

ImageNet-C ViT-Base
(i.i.d) FOA (K=28) 41.34 4096 42.68 3627 2994 4034 4089 4720 59.07 63.71 7295 4698 4475 4540 5587 47.22 694.8
+0.21 +0.39 +0.20 +0.06 +0.27 +0.34 +0.35 *2.03 +1.56 +0.14 +0.07 +0.12 +0.14 +0.38 +0.38 +0.51 +8.41

T3A

37.53 35.84 39.36 34.25 2745 37.85 34.43 43.65 56.10 62.84 71.79 39.38 44.29 4133 53.06 43.94 81.43
030 #0.12 003 #027 *0.16 #0.10 x0.12 006 0.1 £0.19 x0.04 £0.68 0.18 £0.09 005 *037 #4.12
4198 4272 4318 3816 3330 4389 3944 4719 5350 5411 7325 4025 4777 5253 5699 4723 8351
+0.12 #0.22 0.3 #0.11 0.13 #021 0.18 £0.09 0.18 £020 0.08 £025 0.17 #0.12 024 #0.16 x0.32

FOA (K=2)

Tent+SNAP

ResNet50
11.75 11.94 11.44 11.30 10.98 19.98 31.30 27.16 24.51 38.35 56.31 10.89 37.41 42.95 3252 25.25 18.82
+0.10 #0.38 006 +0.22 005 #0.17 134 £0.12 027 £0.07 0.18 £1.02 023 £1.39 049 042 x0.57
Tent+SNAP 2400 2469 2478 2137 2115 3220 4283 3926 3541 SLI7 6289 2125 4695 5231 4560 36.39 18.98
+0.11 #0.25 +0.14 #0.13 0.12 #0.19 022 £0.10 #0.16 024 x0.09 £0.28 0.18 #0.15 023 *0.14 x0.29

ImageNet-C ViT-Base
(non-i.i.d) FOA (K=28) 38.36 36.23 39.47 33.07 25.35 36.44 35.80 42.86 55.45 61.67 70.60 39.87 41.81 43.05 52.42 43.50 710.2
- +0.11 041 005 £0.20 004 +0.19 126 £0.14 024 008 x0.19 096 020 *143 054 040 £7.33
3584 3374 3603 3048 2324 3434 3203 4098 5398 5978 68.24 2979 3950 3950 50.80 40.62 85.19
+0.17 #0.00 081 #0.09 0.04 004 006 006 *0.07 £0.09 *0.04 £022 x0.03 *0.07 0.10 *0.13 584
3802 3831 4022 3537 3020 40.17 3720 4457 5478 5201 7319 2468 4564 47.08 55.66 43.81 87.54
+0.73 +0.50 +0.83 #0.11 +0.60 +0.48 +0.35 +0.54 +0.27 +0.77 +0.22 +0.32 +0.47 +0.81 +0.83 +0.52 +0.51

T3A

FOA (K=2)

Tent+SNAP

Prototype-based. T3A maintains a fixed feature extractor and updates per-class prototypes using
pseudo-labels from incoming samples. Although it avoids backpropagation, T3A accumulates a
growing support set of query features per pseudo-label to refine class-wise prototypes. This not
only increases memory usage, but also incurs non-negligible latency during inference, especially
when the number of classes is large (e.g., 1000-way classification in ImageNet) or when operating
on edge devices. Matching a test sample against all stored support features becomes increasingly
costly in such settings. As shown in Table 12, T3A achieves latency comparable to Tent+SNAP
but consistently performs worse in accuracy, especially under non-i.i.d. ImageNet-C streams. This
illustrates the limitation of relying solely on forward-only label-space correction without feature-level
adaptation.

Prompt-based. FOA [29] introduces learnable prompts to adapt ViT encoders without backpropa-
gation. However, it suffers from a trade-off between latency and accuracy, which is determined by
the number of forward passes (K) required per test sample. While FOA theoretically avoids gradients,
it performs K repeated forward steps to refine prompts, still incurring notable cost on edge devices.
As shown in Table 12, FOA with its default configuration (K = 28) incurs significantly higher latency
than Tent+SNAP, while achieving similar accuracy. Reducing K to 2 reduces latency to a comparable
level, but results in substantial performance degradation, showing strong sensitivity to prompt update

23

depth. Moreover, FOA fails to generalize to CNNs, where the original paper [29] reports lower
performance than Tent due to structural misalignment with the ViT-specific prompt.

Conclusion. In contrast, SNAP with Tent performs sparse backpropagation on confidently selected
samples, striking a balance between low latency and high robustness. Despite using gradients, our
latency profiling shows that Tent+SNAP remains within the latency range of forward-only methods,
while outperforming them in accuracy across both i.i.d. and non-i.i.d. domains. This demonstrates
the efficacy of targeted feature-level adaptation over purely forward-only correction.

B.11 Robustness in challenging out-of-distribution domains

To validate SNAP under more visually challenging and abstract domain shifts, we additionally
apply SNAP to two nontrivial out-of-distribution datasets: ImageNet-R and ImageNet-Sketch.
These datasets feature semantic deformation (R), sketch-style abstraction (Sketch), and both differ
significantly from typical texture- and structure-rich natural images seen in ImageNet.

We test SNAP with an adaptation rate (AR) of AR=0.1 on five representative TTA backbones
(Tent, CoTTA, EATA, SAR, and RoTTA) and compare results with full adaptation (AR=1.0). As
summarized in Table 13, SNAP consistently maintains competitive performance with considerably
reduced latency, demonstrating its suitability for low-overhead deployment under difficult real-world
shifts.

Table 13: Performance of SNAP (AR=0.1) on ImageNet-R and ImageNet-Sketch. Accuracy and
latency are reported as the mean + standard deviation over 3 seeds (0, 1, 2). Latency is measured by
Raspberry Pi 4.

Method ImageNet-R ImageNet-Sketch

Accuracy (%) Latency (s) Accuracy (%) Latency (s)
Tent (Full) 40.53 £0.22 34.30 £ 0.06 2843 £0.18 38.12 4+ 0.05
+ SNAP (AR=0.1) 38.26 + 0.20 17.73 4+ 0.05 28.42 £ 0.16 18.50 £ 0.11
CoTTA (Full) 37.53+£0.25 295.19 £ 0.07 24.07 £ 0.19 302.80 £ 0.12
+ SNAP (AR=0.1) 36.73 + 0.21 150.40 £ 0.06 23.01 £0.19 158.32 +0.21
EATA (Full) 42.88 £0.18 29.22 +0.02 30.52 +0.20 32.99 4 0.08
+ SNAP (AR=0.1) 39.45 4+ 0.17 15.50 4 0.08 2743 £0.18 17.53 £0.23
SAR (Full) 40.37 £0.22 72.51 +0.05 27.03 £0.19 76.37 + 0.05
+ SNAP (AR=0.1) 37.32 + 0.20 19.59 4 0.06 27.95 £0.17 22.52 + 0.06
ROTTA (Full) 39.08 + 0.21 78.05 £ 0.09 26.05 £ 0.16 84.98 1 0.06
+ SNAP (AR=0.1) 36.79 +0.19 41.15 £ 0.06 24.08 +0.15 4933 £0.16

B.12 Efficient strategy for re-calculation of sample’s distance

The domain centroid in our framework is updated using a momentum-based approach to effectively
capture recent shifts in the target domain. This ensures that the centroid remains adaptive to evolving
distributions without being overly influenced by temporary fluctuations. However, during sparse
adaptation (SA), where model updates occur at extended intervals, the data distribution can shift
substantially between updates. Consequently, distances calculated for older samples may become
outdated, leading to inconsistencies when comparing them to more recently added samples that are
evaluated based on the updated centroid.

To address this issue efficiently, our Class and Domain Representative Memory (CnDRM) recalculates
the distance of samples only when the shift in the domain centroid exceeds a predefined significance
threshold. Specifically, if the change in the domain centroid Acgomain surpasses a threshold 74,
the distances of all samples in memory are updated to reflect the new domain conditions. This
threshold-based approach ensures that recalculations occur only when necessary, thereby minimizing
computational costs while maintaining the representativeness of the memory.

In practice, we observed that the performance was not significantly affected as long as the threshold
TA Was not set too high, indicating robustness to the choice of threshold. Based on these observations,
we set 7a = 0.1 and used this value consistently for all evaluations. By focusing recalculations on
significant shifts, this strategy preserves consistency in sample selection, ensuring that both older
and newer samples are compared fairly in the context of the current domain characteristics without
excessive computational overhead.

24

B.13 Strategy for continuous domain shift setting

In our proposed framework, the centroid used for selecting domain-representative samples naturally
adapts to changes in the domain as new data is encountered. This mechanism inherently ensures
that the centroid evolves to reflect the characteristics of the current domain, allowing for effective
performance even under continual Test-Time Adaptation (TTA) scenarios, where the domain may
gradually or abruptly shift during adaptation.

Instead of employing additional mechanisms like z-score evaluation to detect domain shifts, we rely
on the natural adaptability of the centroid to adjust to the incoming data. This simplifies the design
and avoids unnecessary overhead while maintaining robustness. As the domain characteristics evolve,
the centroid continuously aligns with the new domain without requiring explicit detection of changes
or manual intervention.

To validate the effectiveness of SNAP under continual domain shift scenarios, we conducted ex-
periments across various benchmark datasets with incremental and abrupt domain shifts. Table 14
summarizes the results, demonstrating that SNAP maintains strong performance across evolving
domains without requiring additional computational overhead for explicit domain shift detection.

These results indicate that SNAP effectively handles both incremental and abrupt domain shifts,
consistently outperforming baseline methods. By leveraging the natural adaptability of the centroid,
SNAP provides a robust solution for continual domain adaptation in real-world scenarios. Notably,
SNAP mitigates catastrophic forgetting not only through its sparse adaptation strategy but also by
leveraging domain centroid-based sampling, allowing performance to be sustained longer in continual
shift scenarios. Unlike Tent, CoTTA is specifically designed for continual domain shift environments,
which highlights its superior performance under such conditions.

Future work could explore augmenting this adaptive mechanism by incorporating techniques like z-
score evaluation to enable even more responsive adjustments. For instance, a z-score-based approach
could further refine the centroid’s responsiveness to subtle, gradual domain shifts by monitoring
discrepancies between incoming data statistics and the current centroid. Such enhancements could
make the system even more effective at handling continual domain evolution, particularly in scenarios
with complex or noisy data streams.

Table 14: Performance of SNAP under continual domain shift scenarios. The table reports the
accuracy (%) for different datasets with incremental and abrupt shifts. Bold numbers are the highest
accuracy.

AR Method Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg.

2468 1965 502 063 043 040 044 041 030 033 042 024 032 031 031 360

Tent +0.45 *127 122 #0.05 =0.02 =0.04 006 003 003 0.04 =005 =004 =002 =0.05 =0.04 =023

+ SNAP 2871 30.60 2291 613 1.62 0.87 088 0.64 064 066 075 044 0.60 0.63 0.61 6.45

0.1 +0.66 +1.82 225 +0.90 +0.20 +0.13 0.07 0.08 +0.06 =+0.05 +0.01 +0.05 +0.08 +0.07 +0.07 +0.43
. CoTTA 10.99 1221 11.54 11.28 11.13 22.08 3480 30.69 2945 4387 6192 1276 40.03 4499 3643 27.61
+0.40 +0.04 030 =0.13 =0.15 =0.07 #0.18 +0.10 0.04 0.19 0.09 =+0.16 =+0.13 0.14 =0.16 =0.15

+ SNAP 15.19 1597 1591 1394 14.18 24.76 36.50 32.61 3176 46.14 63.60 1560 42.17 46.77 38.08 30.21

+0.17 +0.11 +0.02 +0.04 +0.03 +0.07 023 +0.04 =+0.06 =+0.10 =+0.14 +0.04 =+0.02 =+0.06 =+0.12 =+0.08

Tent 2331 27.08 2271 972 414 203 .16 0.66 045 047 0.1 033 047 047 046 627

+0.37 #1.13 £2.50 335 #£3.00 #£1.53 =0.75 =022 #0.12 #0.09 =#0.16 =#0.09 =#0.08 =£0.08 =+0.07 =+0.90

+ SNAP 27.10 3341 31.78 19.85 1694 1475 1246 553 2.69 147 152 0.67 0.88 0.89 0.84 11.39

0.05 +0.23 +0.10 +0.62 +0.79 +1.50 +2.53 427 230 *1.18 049 040 +0.09 +0.10 =+0.10 =+0.07 =+0.98
CoTTA 11.04 1225 11.73 11.62 11.25 22.05 3489 30.73 2950 44.09 61.87 1287 40.15 4506 36.53 27.71

+0.38 #0.39 #0422 #0.10 #0.59 #0.13 =x0.13 £0.20 #0.17 #0.18 #0.09 #0.18 #0.17 £0.19 =+0.14 =+0.23

+ SNAP 1520 1589 1593 1381 14.15 2474 36.68 3251 3171 46.11 6348 1573 4220 46.69 38.05 30.19

+0.15 +0.02 +0.10 =+0.04 +0.03 =+0.16 027 0.04 020 =0.05 =+0.09 =+0.19 =+0.12 =+0.10 =+0.04 =+0.10

B.14 Robustness under persistent distribution shifts

To evaluate the long-term stability of SNAP under temporally correlated and recurring domain
shifts, we adopt the evaluation setup (persist-TTA) of work [11], which repeatedly cycles through
non-i.i.d. CIFAR10-C corruptions across 10 rounds. This scenario emulates continual adaptation in
environments where domain drift is both persistent and revisited.

We apply SNAP on top of CoTTA [50], a method specifically designed for continual test-time
adaptation. While CoTTA alone initially performs well, we observe a steady degradation across
rounds as it accumulates shift-induced bias and overfits to recent domains. In contrast, combining

25

CoTTA with SNAP enables the model to preserve robust performance even after multiple adaptation
cycles.

The key to this stability lies in SNAP’s architecture: (1) class-balanced memory to prevent label
bias, (2) sparse but confident updates to mitigate overfitting, (3) loBMN for adapting normalization
statistics to each incoming sample, and (4) exponential moving average (EMA) domain centroids to
smooth domain shift tracking. These collectively stabilize long-term adaptation dynamics without
the need for explicit shift detection.

Table 15: Long-term TTA accuracy, cycling through all CIFAR10-C corruptions each round (R).
Method Rl = R2 — R3 = R4 = RS = R6 = R7 = R8 = R9 = R10

CoTTA (Full adapt) 58.49 +012 50.32 +009 48.71 +015 4492 +o10 31.86 +0.17 29.81 +0.13 2539 +0.16 21.43 +0.11 28.46 +018 16.97 +0.14
+SNAP (AR=0.1) 50.50 +0.10 49.32 008 52.57 011 49.90 +009 50.17 £0.12 50.58 014 49.01 007 49.56 +0.13 54.16 +0.10 52.89 +0.09

Experimental results. Table 15 and Figure 9 shows adaptation accuracy over 10 rounds. While
CoTTA gradually collapses after the 5th round, integration with SNAP maintains accuracy above
50%, showing clear stability under persistent shifts.

These results confirm that SNAP enhances long-term TTA robustness by stabilizing both parameter
and feature statistics over time. This makes it a reliable plug-in module for continual test-time
adaptation pipelines.

B.15 Robustness in single-sample (BS=1) adaptation scenario

To investigate the robustness of SNAP when adaptation is performed on a per-sample basis, we
evaluate its performance in a single-sample adaptation setting, where the adaptation batch size is
limited to 1. This scenario reflects highly constrained edge environments with limited memory or
streaming inputs, where adaptation must occur with minimal latency and granularity.

To support this setup, we adopt the SAR [31] architecture, which natively supports a batch size of 1
and sparse update routines. SAR allows us to test SNAP with an adaptation rate of 0.1, meaning only
one in every ten test samples is used for weight updates, using a single memory sample.

Table 16: Evaluation of SNAP (AR=0.1) with SAR on a single-sample (BS=1) adaptation scenario
on ImageNet-C. Results are averaged over 3 random seeds (0, 1, 2).

Method Accuracy (%)

SAR (single-sample) ~ 52.21 + 0.28
+STTA 8.06 +0.12
+ SNAP 51.80 £ 0.25

SNAP achieves strong gains even when adapting from just one memory sample. When only one
sample is used for adaptation, our method still selects the representative sample with high prediction
confidence and low Wasserstein distance to the domain centroid, enabling stable model updates.

60 —— COTTA (Full adapt)
—— SNAP (AR=0.1)

Accuracy (%)
w B
o o

N
o

W% 3 4 5 6 7 8 9 10
Adaptation Round

Figure 9: Long-term TTA accuracy over 10 adaptation rounds. Shaded regions indicate std over 3
seeds. SNAP maintains stable performance, while original CoTTA alone degrades over time.

26

Meanwhile, IoBMN continues to apply adaptive normalization to every incoming test sample,
mitigating covariate shift even when parameter updates are sparse. Although small batches can slow
the class distribution balancing process and moving domain centroid updates under skewed domains,
we found that this effect has limited influence on overall adaptation performance and stability.

Evaluation protocol. We average performance over three random seeds (0, 1, 2) to ensure stability
across different data orderings. Table 16 reports both the mean and standard deviation of accuracy.

These results demonstrate that SNAP preserves its robustness and sample-wise adaptability even
under minimal adaptation frequency and granularity. CnDRM identifies meaningful memory samples,
while IoBMN provides per-sample normalization, together enabling consistent performance in BS=1
settings.

B.16 Impact of memory size on SNAP performance

The memory size of the Class and Domain Representative Memory (CnDRM) in SNAP has implica-
tions for both performance and privacy. Increasing memory size allows storing more samples, which
intuitively could improve adaptation. However, such an approach raises privacy concerns and needs
additional memory and latency when storing sensitive samples. To evaluate the trade-off, we con-
ducted experiments on ImageNet-C under Gaussian noise corruption, using Tent + SNAP(adaptation
rate 0.3) with a batch size of 16 and varying the memory size.

As shown in Table 17, increasing the memory size beyond the base Table 17: Performance com-
configuration of 16 does not lead to significant performance gains. parison with varying memory
This observation highlights the efficiency of SNAP’s representative sizes on ImageNet-C.

sampling strategy, which prioritizes storing samples based on prox-
imity to class and domain centroids. The saturation in accuracy

Memory Size Accuracy (%)

suggests that a carefully aligned memory size to the batch size is suf- 16 (;éase) %g'ig iz:;
ficient to balance computational efficiency, performance, and privacy 64 28.89 £0.06
considerations. 128 28.60 +0.09

In conclusion, to minimize computational overhead while ensuring robust test-time adaptation,
the memory size in SNAP is designed to align with the batch size. This configuration addresses
privacy and memory overhead risks by limiting the number of stored samples without compromising
adaptation effectiveness.

B.17 Effect of learning rate on sparse and full adaptation

To investigate the impact of learning rates on the performance of SNAP and baseline methods,
we conducted experiments under sparse adaptation settings. Initially, the same learning rate was
applied for each SOTA TTA algorithms across all adaptation rates to ensure fair comparisons
(Table 26, 27, 22, 23, 24,and 25). However, as sparse adaptation inherently limits the number
of updates, the updates might be insufficient at lower adaptation rates and explored the effect of
increasing the learning rate.

The results, summarized in Table 18, 19, and 20, reveal that higher learning rates improve the
accuracy of both the naive baseline and SNAP under sparse settings. Notably, while the naive TTA
baseline benefits from a higher learning rate, its performance still falls short of that achieved with
full adaptation. In contrast, SNAP surpasses the performance of full adaptation at optimal learning
rates, demonstrating its ability to leverage sparse adaptation effectively. At the same time, applying
these higher learning rates to full adaptation results in model instability and collapse, underscoring
the need to carefully tune learning rates based on adaptation frequency. Therefore, we selected a
stable learning rate of 1 x 10~ for the evaluations in our work that balances model convergence and
performance across all adaptation rates. These findings suggest that SNAP not only adapts effectively
under sparse settings but also maintains robustness under optimized learning rates.

27

Table 18: Accuracy with varying learning rates on ImageNet-C Gaussian noise adaptation rate 0.5.
Bold numbers are the highest accuracy.

Tent CoTTA EATA
Learning rate Full naive STTA ~ SNAP Full naive STTA ~ SNAP Full naive STTA ~ SNAP
2x 1073 2.31 +0.08 4.16 +0.12 6.68 +0.14 13.31 010 12.03 £009 14.58 x0.11 0.36 +0.05 0.48 +0.07 0.69 +0.06
1x 1073 4.54 +o.11 10.19 +0.14 16.37 009 13.18 013 11.98 +008 14.63 0.2 1.31 +0.06 1.36 +o0.05 22.11 +o0.15
5x 1074 10.22 +o.12 18.43 +013 28.36 +0.10 13.15 +0.09 11.95 +007 1517 0.1 21.96 +0.14 13.97 +0.12 25.42 +0.13
1x107* 27.03 013 25.24 x0.10 28.05 009 13.12 +010 11.99 008 15.16 £007 29.42 +011 28.62 +0.13 30.00 +o.12

5x107° 26.34 +009 22.62 010 26.32 4011 13.34 4010 12.10 +007 14.93 009 29.37 +0.13 27.30 011 28.76 +0.12

Table 19: Accuracy with varying learning rates on ImageNet-C Gaussian noise adaptation rate 0.3.
Bold numbers are the highest accuracy.

Tent CoTTA EATA
Full naiveSTTA SNAP Full naiveSTTA SNAP Full naiveSTTA SNAP

2x 1073 2.31 +0.09 7.04 +0.13 13.69 +015 13.31 010 11.88 +o0s 14.67 +0.11 0.36 +0.04 0.59 +0.05 0.75 +0.06
1x 1073 4.54 +o.12 16.13 +014 27.63 013 13.18 009 11.86 007 14.68 0.0 1.31 +0.06 0.95 +0.05 24.35 +0.14
5x 1074 10.22 013 24.96 015 29.95 +0.12 13.15 008 11.85 006 15.11 £0.10 21.96 013 20.96 0.2 27.72 +o0.11
1x107* 27.03 o010 23.63 o1 26.60 012 13.12 4007 11.74 +o06 15.26 +008 29.42 +o0.10 27.35 +0.09 29.48 +o.10
5x107° 26.34 +009 2094 x0.12 24.87 +013 13.34 007 11.92 toos 14.85 +009 29.37 +o11 26.07 010 27.90 +o.11

Learning rate

Table 20: Accuracy with varying learning rates on ImageNet-C Gaussian noise adaptation rate 0.1.
Bold numbers are the highest accuracy.

Tent CoTTA EATA
Learning rate Full naive STTA ~ SNAP Full naive STTA ~ SNAP Full naive STTA ~ SNAP
2x 1073 2.31 0.10 18.06 z0.14 27.41 0.2 13.31 008 10.93 007 14.80 0.1 0.36 +£0.03 1.86 +0.06 9.59 +0.15
1x1073 4.54 +o.11 25.46 013 31.12 +o14 13.18 009 1093 007 14.73 010 1.31 +o.05 2.86 +0.08 24.95 +o0.13
5x 1074 10.22 +012 24.71 014 28.01 +o11 13.15 2007 10.92 +006 15.18 +0.09 21.96 012 18.76 +o.10 28.09 +o.11

1x1074 27.03 010 22.00 £0.12 26.21 013 13.12 2008 11.74 £006 15.13 £0.09 29.42 +011 22.43 +0.10 26.10 +0.12
5x107° 26.34 +009 1672 +013 19.31 4012 13.34 1008 1092 +007 14.76 +009 29.37 0.1 20.32 +010 23.28 +o0.10

In conclusion, selecting an appropriately high learning rate for sparse adaptation significantly en-
hances performance while ensuring model stability. This strategy is particularly useful for real-world
deployment of SNAP, where computational efficiency and robust performance are paramount.

B.18 Evaluation on real-world sensor data

To validate SNAP’s generalizability to other real-world domains, we further test SNAP on
HARTH [23], a human activity recognition dataset that collects data from two three-axial accelerom-
eters attached to participants’ thigh and lower back. Unlike our main evaluations, which focus on
2D vision and corruption-based domain shifts, HARTH introduces a distinct domain shift caused by
sensor positioning and user variation.

We evaluate SNAP with an adaptation rate (AR) of 0.1 on Tent [48] and SAR [31]. The base model
is composed of four one-dimensional convolutional layers followed by a fully-connected layer, and
is trained on the source domain, composing of data collected from the back of 15 participants. The
target domain is the data collected from the thigh of the remaining 7 participants. As shown in
Table 21, SNAP improves accuracy even with sparse updates, demonstrating its effectiveness under
realistic shifts

Table 21: Performance of SNAP (AR=0.1) on HARTH. Accuracy is averaged over all target domain
users.

Method Average Accuracy (%)
Tent (Naive STTA) 19.64

+ SNAP 30.67
SAR (Naive STTA) 21.10

+ SNAP 26.63

28

C Detailed experiment results

In this section, we provide detailed experimental results for the performance comparison of SNAP
across a wide range of adaptation rates. We evaluated the performance on CIFAR10-C, CIFAR100-C,
and ImageNet-C datasets with adaptation rates of 0.01, 0.03, 0.05, 0.1, 0.3, and 0.5, and across
five state-of-the-art (SOTA) TTA algorithms: Tent [48], EATA [30], SAR [31], CoTTA [50], and
RoTTA [53]. This comprehensive evaluation resulted in a total of 150 combinations (3 datasets, 6
adaptation rates, 5 algorithms).

The results demonstrate that, regardless of the adaptation rate, dataset, or the TTA algorithm, integrat-
ing SNAP consistently outperforms the baseline methods. Specifically, SNAP achieved the highest
accuracy across nearly all of these 150 combinations, effectively demonstrating its robustness in
both high and low adaptation settings. For CIFAR10-C and CIFAR100-C, SNAP showed substantial
performance improvements compared to the baseline, even at very low adaptation rates (e.g., 0.01
and 0.05). Similarly, for ImageNet-C, SNAP maintained superior accuracy across diverse corruption
types.

These results highlight that SNAP effectively balances adaptation and latency, ensuring optimal
performance even when the adaptation rate is sparse and regardless of the underlying TTA algorithm.
This consistent superiority across all 150 combinations underscores SNAP’s suitability for practical,
real-world applications on resource-constrained devices.

29

C.1 CIFAR10-C

Table 22: STTA classification accuracy (%) comparing with and without SNAP on CIFAR10-C
through Adaptation Rates(AR) (0.5, 0.3, and 0.1), including results for full adaptation (AR=1). Bold
numbers are the highest accuracy.

AR Methods Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg.
22,13 2925 2253 5454 5510 6745 6437 7825 69.93 7426 91.29 3545 7720 4656 7338 5745

Source £0.00 #0.00 #0.00 000 000 #0.00 #0.00 *0.00 #0.00 *0.00 #0.00 000 *0.00 #0.00 000 +0.00
BN stats 6372 65.67 S57.14 8499 6272 8386 8426 7898 7695 8332 8846 8460 7396 7661 6879 75.60
£048 2012 025 2031 023 048 030 2030 =20.08 2017 £0.16 0.17 0.18 002 042 024

Tent 7366 7618 6804 8661 67.12 8573 8624 8234 8156 8602 8999 87.16 7640 8295 7645 8043
+088 2094 132 050 076 038 009 +094 +0.64 2018 £0.16 250 082 0.5 046 20.71

. COTTA 7195 7397 6703 8391 6675 8264 8334 7992 7949 8241 8839 80.14 7538 7924 7542 78.00
$032 2048 066 020 008 034 019 2009 =20.13 2023 #0.18 0.7 009 007 025 023

EATA 7582 7761 69.63 87.14 6941 8596 8708 8342 8228 8658 9040 89.26 77.62 8335 7777 8156
£0.50 £027 +0.87 029 2068 £0.39 £027 2038 029 041 017 2039 028 032 2020 038

SAR 7352 7403 6545 8569 6501 8463 8501 8147 8091 8418 8870 8623 7494 8120 7484 79.05
£153 2046 181 037 035 053 034 2037 2072 2009 012 016 003 028 069 2052

ROTTA 66.54 68.60 6027 8573 6484 8468 8501 80.15 7802 8413 89.00 8491 7506 77.96 70.12 77.00
£046 2023 046 035 063 036 045 2056 2006 2000 027 019 0.5 2016 036 032

Tent 7344 7593 67.18 8652 67.28 8525 8623 8224 8035 8539 8980 87.77 77.00 8208 7558 80.14
$061 2044 078 2017 178 049 042 2077 2014 2020 028 027 065 068 060 0.5

Lsnap 7517 7766 6878 8825 6918 §7.11 8819 8421 8272 8734 9163 8630 7876 8343 7728 8174
£0.00 2078 126 038 051 2018 £0.13 20.29 2045 2051 £0.12 107 028 0.18 050 044

COTTA 6508 6667 6130 7750 6136 7770 7737 7405 7286 7743 8269 7244 7052 7094 6979 7185
£026 2021 016 048 $0.15 037 4037 2022 2044 2019 030 072 007 027 #0.10 029

LSNAp 7189 7418 6692 8546 6757 8427 8491 SL10 80.62 8406 90.16 8214 7675 8023 7598 7908
£045 2033 2019 2032 2026 022 0.18 20.09 2046 2024 £0.17 033 0.16 038 050 20.28

EATA 7395 7582 68.00 8683 67.83 8527 8648 8263 8099 8545 8986 87.61 7701 8213 7611 8040
05 £022 #0018 £070 025 2050 £0.39 015 2050 005 0.16 0.8 2053 031 0.18 2045 £0.32
- LSNAp 7485 7763 6843 8853 6970 8719 8816 8387 8284 718 9L54 8962 7891 8376 77.36 8197
+051 2046 043 017 069 035 018 2042 2033 2015 0.2 038 048 014 022 2033

SAR 69.10 7237 6322 8518 6430 83.94 8507 80.11 79.64 8391 8864 8421 7570 79.10 7292 77.83
£163 2105 044 025 102 0.2 045 2017 =20.60 2037 £0.10 030 034 052 009 20.50

LSNAp 7398 7548 6641 8663 6815 8550 8653 8162 80.20 8506 9146 87.04 7722 8116 7553 80.13
+048 20.65 126 2015 007 2015 £0.10 2039 2017 2027 £0.03 0.1 045 027 023 0.32

ROTTA 6502 6684 5838 8526 6351 8381 8466 7926 7676 8346 8827 8347 7443 7739 69.13 7598
£004 2052 033 2042 0.8 0.5 020 2029 2049 2021 £0.04 005 0.6 029 041 2025

LSNAp 6603 6809 5888 87.09 6455 8570 8648 80.97 7887 529 90.28 8622 7605 7876 70.51 7758
$0.14 2015 2006 027 007 003 002 2022 20.20 2022 £0.13 0.10 022 022 035 20.16

Tent 7118 7406 6544 8593 6601 8437 8590 8131 7980 8480 8958 8401 7596 8046 7409 78.86
£099 2080 .17 028 097 #0.14 #0.17 2040 =20.09 2025 023 030 030 039 054 047

LSNAp 7495 7729 6759 8827 6746 8697 8764 8346 8245 8672 9122 8779 7826 8261 7579 8123
+0.84 20.55 046 2027 026 021 016 040 2019 2019 021 098 035 038 032 2039

CoTTA 6301 6438 5895 7543 50.65 7608 7547 7175 7033 7552 8094 7053 6875 67.87 6755 69.75
£0.12 2064 074 061 048 058 016 2055 2048 2032 049 051 065 030 037 2047

LSNAp 7139 7357 6629 8522 6671 8420 8464 8077 80.56 8406 89.85 8186 7648 7994 7569 7875
$031 2027 010 022 019 2018 £0.13 2021 20.32 2015 £0.17 008 007 024 027 2019

EATA 7098 7370 6573 8601 6671 8436 8610 8092 79.87 8448 8929 8633 76.19 80.66 7398 79.02
03 £105 2028 +1.68 2035 081 023 038 2047 2009 2004 +£0.19 031 020 058 052 2048
- LSNAp 7419 7664 6789 8793 6856 8708 8789 8356 8220 8660 9Ll 8894 7810 8303 7583 8130
£038 20.68 019 025 020 005 034 2030 20.25 2023 £0.22 061 0.4 2020 043 20.30

SAR 69.10 7237 6322 8518 6430 8394 8507 80.11 79.64 8391 8864 8421 7570 79.10 7292 77.83
£1.63 105 044 025 102 012 4045 2017 20.60 2037 #0.10 030 034 052 009 +0.50

LSNAp 272 7525 6578 8653 6619 8553 8640 8L6l 80.53 8508 9141 8674 7723 SLO0 7452 7977
£0.94 £0.30 £1.06 0.16 20.60 £0.26 £0.27 2045 £0.64 023 0.4 2008 2041 037 2104 +0.46

ROTTA 6409 6607 57.58 8497 6266 83.06 8408 78.60 7640 82.86 88303 8321 7414 7635 6870 7539
+044 2013 063 020 015 2018 017 2034 2036 2005 022 024 058 047 017 2029

LSNAp 0583 6757 5839 8697 6422 8563 8639 8075 7890 8521 90.19 8592 7592 7891 7042 7741
£0.18 2019 029 2033 016 2018 £0.09 2015 =20.08 2017 £0.16 021 009 005 037 2018

Tent 6732 6939 60.69 8534 6382 8352 8470 79.68 7779 8375 8853 8312 7518 77.82 7147 7638l
£093 2096 036 024 041 2013 015 2041 2050 2008 +049 066 068 069 044 048

Lsnap 7022 7148 63.08 8735 6574 8589 8638 8193 80.00 8562 90.34 8747 7644 79.63 7272 7895
044 2091 004 020 026 025 032 2033 2021 2014 £022 011 012 0.14 2039 027

COTTA 5011 6026 5607 7223 5677 7355 7220 6805 6668 7288 77.66 6595 6567 6412 6516 6642
$043 20.56 065 069 064 068 +094 20.63 20.52 2056 £1.15 .17 083 095 058 20.73

LsNap 7170 7354 6670 8516 6683 8430 8488 8102 80.61 8420 89.84 8L71 7660 7966 7571 7883
£040 2021 2002 0.9 039 008 020 2025 20.24 2023 +0.08 020 020 0.14 025 2020

EATA 6665 6896 5973 8493 6326 83.10 8453 7928 7746 8348 88.12 8246 7449 7748 7043 7629
o1 £043 £047 015 027 2036 024 015 2044 042 0.3 009 2024 2020 £0.69 2025 £0.30
- LSNAp 6929 7049 6171 8732 6548 8596 8664 8l44 79.56 8547 90.50 8684 7632 7964 7251 7861
£039 20.57 037 042 038 029 021 2034 2047 2023 038 036 021 012 032 2034

SAR 66.11 68.18 59.15 8491 6287 8233 8427 7923 7758 8321 8829 8260 7465 7592 7079 76.01
£059 2083 072 045 027 060 0.3 2032 2043 2018 009 057 046 077 040 2045

LsNap 6776 70.68 60.82 8678 6473 8529 8622 8082 7930 8495 9133 8659 7572 7872 7124 78.06
£022 2014 108 026 043 010 £0.11 2023 2048 2028 £0.17 014 026 035 046 20.31

ROTTA 6312 6484 5672 8449 6215 8253 8384 7803 7613 8288 8748 8149 7375 7604 6824 7478
£033 2021 030 004 $0.17 030 002 2029 =071 2016 +0.08 0.11 +0.14 029 027 2023

LSNAp 0535 6699 5809 8677 6363 8547 8601 80.54 7838 8499 90.00 8599 7567 7814 7009 7707

+0.20 £0.15 £0.18 0.18 £0.18 x0.13 0.21 0.11 £0.24 043 £0.23 £0.03 £0.17 £0.06 £0.23 £0.18

30

Table 23: STTA classification accuracy (%) comparing with and without SNAP on CIFAR10-C
through Adaptation Rates(AR) (0.05, 0.03, and 0.01). Bold numbers are the highest accuracy.

AR Methods Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg.
64.65 67.08 5848 8500 62.61 82.76 84.63 79.01 77.66 8332 88.00 8234 7416 77.11 69.40 75.75

Tent +0.55 +0.58 #0422 +0.60 044 +0.70 +0.55 +0.74 +091 048 +0.56 093 £0.10 +0.60 048 +0.57

+ SNAP 67.71 69.84 59.53 87.10 64.66 85.73 86.35 80.68 78.92 85.60 90.19 86.72 76.16 78.86 7095 77.93

+0.38 +0.82 +1.10 £0.15 £0.25 +0.20 +0.20 +0.23 +0.14 £0.08 +0.31 +0.20 *0.17 042 £0.30 +0.33

CoTTA 59.27 61.18 5633 7222 5737 7427 72.61 70.03 68.68 7482 79.72 6557 6692 64.13 6525 6722

+0.66 *+1.12 +0.06 +143 =*1.10 =*1.46 *1.11 +1.02 #0922 +1.09 =*1.07 *1.38 *1.14 £1.27 +0.98 +1.05

+ SNAP 7142 7331 6591 8523 67.01 84.19 8491 80.80 80.56 84.19 90.00 82.09 7631 79.79 7518 78.73

+0.29 +0.12 *0.13 +0.11 0.21 +0.20 +0.14 +0.19 +0.34 +0.14 +0.23 035 +0.05 *0.29 +0.21 +0.20

EATA 64.68 67.01 58.07 8490 62.56 82.64 84.57 78.77 77.16 83.09 87.80 81.62 7405 7699 69.31 75.55

0.05 +0.31 +0.37 #0.24 +0.54 +0.33 +0.67 +0.61 +0.71 #0922 044 +047 +059 +0.28 +041 0.71 0.51
o + SNAP 67.36 6873 59.35 87.05 64.36 85.62 86.48 81.31 7873 85.33 90.03 8631 76.04 7879 7090 77.76
+0.33 +0.26 +0.37 +0.22 +0.18 +0.18 +0.25 +0.24 +0.22 +0.15 +0.24 +0.07 +0.12 +0.27 +0.38 +0.23

SAR 64.79 6632 57.58 84.66 6246 8142 84.13 78.87 7720 82.62 88.10 82.12 7404 7538 69.13 7525

+0.13 +0.86 #0.69 +0.72 +0.26 *1.52 +0.34 +0.26 +0.81 +1.24 +041 +0.74 #0.05 +0.80 +0.52 +0.62

+ SNAP 66.00 68.85 5847 86.54 63.06 85.26 86.13 80.38 78.17 85.17 9093 8596 7527 7737 7061 77.21

+0.17 £0.75 042 £0.25 +0.28 +0.09 +0.38 +0.09 +0.27 £0.13 +0.36 +0.20 *0.31 +0.28 +0.30 +0.29

ROTTA 6321 64.87 56.60 84.64 62.16 8231 84.13 78.16 7639 8290 87.44 8147 7359 76.02 68.09 74.80

+0.37 +0.62 #0.28 +0.52 031 +0.63 0.56 +0.71 #0.95 0.62 +0.46 +0.65 +042 +040 +0.33 #0.52

+ SNAP 6528 6691 57.88 86.75 63.51 8548 86.17 80.46 7838 8524 8999 8582 75.66 7798 70.15 77.05

+0.32 £0.22 +0.06 £0.25 £0.13 0.13 £0.10 +0.23 +0.26 £0.13 +0.23 +0.03 £0.16 *0.19 £0.29 +0.18

Tent 6436 66.21 57.65 8473 6295 83.07 84.50 78.46 7699 83.00 88.07 82.62 7393 7650 68.82 75.46

+0.43 #0.16 *1.01 *048 0.52 0.50 +032 082 032 #036 043 +0.34 £0.23 +046 +048 +0.46

+ SNAP 66.32 68.38 59.00 8693 64.04 8558 86.35 80.78 78.68 8534 90.08 86.19 75.77 7837 7049 77.49

+0.61 +0.71 +0.52 +0.19 +0.24 +0.34 +0.05 +0.10 +0.02 +0.05 +0.10 +0.31 *0.05 +0.06 +0.08 +0.23

CoTTA 6038 61.26 56.71 7244 5758 7464 7273 69.68 6834 74.64 7952 6728 6742 6489 66.19 67.58

+1.71 *1.94 +247 223 +1.85 *1.74 261 +2.03 #2.02 252 #237 *189 £1.77 #0779 *1.73 £1.98

+ SNAP 7112 73.68 66.34 8530 66.64 84.25 8455 80.88 80.11 84.06 89.89 8198 7627 79.77 7535 78.68

+0.47 +0.29 +0.24 +0.01 +0.12 +0.34 +0.13 +0.15 +0.15 +0.14 +0.14 +0.37 +0.19 +0.26 +0.08 +0.21

EATA 63.99 6595 5739 8471 62.66 83.11 84.44 7842 76.63 8297 88.00 8255 7385 7646 6891 75.34

0.03 +0.87 044 £1.05 048 +0.62 +0.52 +0.33 +0.75 +0.26 +0.26 +0.47 +034 +033 +029 +0.56 0.50
o + SNAP 66.16 67.60 58.81 8695 64.06 8549 86.34 80.79 78.65 8524 90.09 8623 75.88 7848 70.56 77.42
+0.03 +0.41 £0.36 +0.13 +0.17 +0.36 +0.08 +0.01 £0.25 +0.13 £0.12 £0.08 £0.18 £0.10 047 0.19

SAR 63.72 6575 57.89 8437 6245 8147 82.46 7832 7679 8193 88.60 8272 73.89 7455 6879 7491

+0.46 +029 #0.65 =+0.81 =0.69 =*1.61 +2.95 +0.81 +0.24 +1.33 +0.68 029 4043 4098 +0.61 +0.85

+ SNAP 6540 67.68 5837 86.72 63.11 85.10 86.18 7993 78.05 8492 9093 8558 7530 77.22 6997 76.96

+0.33 £0.60 045 £0.18 +0.16 =0.16 +0.29 +0.17 +0.31 £0.22 +0.35 0.14 £0.14 £0.30 £0.30 +0.27

ROTTA 6336 65.10 56.64 84.62 6241 8296 84.35 78.10 7642 8269 8790 8234 7356 76.09 6839 75.00

+0.80 #0.55 0.56 £049 0.79 0.67 +0.43 +0.80 023 £0.25 +0.53 +0.32 £0.25 044 £0.31 £0.50

+ SNAP 6527 67.05 58.05 86.79 63.48 8546 86.25 80.39 7834 8519 90.10 8594 75.67 78.04 69.75 77.05

+0.32 +0.19 +0.22 +0.21 +0.18 +0.33 +0.09 +0.08 +0.15 0.10 +0.16 +0.08 +0.12 +0.09 +0.27 +0.17

Tent 6243 64.13 5585 84.03 62.21 8247 83.87 7771 7655 8275 8735 81.83 7324 7534 6773 7450

+1.70 *1.51 #1.35 +1.07 120 +0.88 +0.93 +0.66 +0.18 +0.14 =*1.11 *1.81 *1.33 =+*1.18 *1.50 =+I.10

+ SNAP 65.51 6726 58.05 86.89 63.53 8544 8597 80.58 7835 85.12 90.09 8586 75.66 7838 70.12 77.12

+0.24 +0.31 +0.34 +0.28 +0.07 +0.33 +0.20 +0.12 +0.12 +0.16 +0.21 +0.11 +0.08 +0.21 +0.33 +0.21

CoTTA 59.75 5944 5447 7112 57.11 7247 72.83 66.05 6514 69.75 75.12 6431 6622 62.65 6476 65.41

+4.69 621 #5.57 510 +435 452 +4.80 +7.60 +7.65 +9.79 +6.79 646 *4.50 £527 536 591

+ SNAP 71.79 73.61 6598 8534 66.76 84.26 84.93 80.64 80.38 83.94 8998 8247 7648 79.61 75.60 78.79

+0.22 +0.29 £0.58 +0.36 +0.26 +0.12 +0.21 +0.45 +0.30 +042 £0.08 +0.64 +0.26 +0.24 +0.29 +0.31

EATA 6236 63.92 5573 84.05 6224 8238 83.90 77.66 7648 8267 8734 81.82 7330 75.31 6776 74.46

0.01 +1.73 +1.66 #1.39 +1.10 #1.18 +0.85 +0.93 +0.72 #0.15 0.17 +1.12 181 #1.24 +120 +1.52 #I1.12
: + SNAP 6549 67.19 5793 8692 63.65 8542 85.97 80.46 78.13 85.07 90.03 8587 75.69 7820 70.03 77.07
+0.29 £0.04 040 +041 +0.18 +0.28 +0.24 +0.18 +0.27 £0.13 +0.10 +0.20 *0.11 *0.13 +046 +0.23

SAR 62.50 64.13 5565 8230 6222 7721 80.11 7766 7675 79.12 89.45 8197 7339 69.39 67.83 7331

+1.69 +1.83 #1.38 337 =121 +627 +6.19 +0.80 *0.34 *3.28 *1.79 197 *1.21 £548 +1.65 +2.57

+ SNAP 65.06 6693 57.66 86.76 62.78 85.05 85.94 7995 77.62 84.65 90.72 8548 7534 7572 69.61 76.62

+0.17 +0.11 *0.51 +0.29 +0.24 +0.21 +0.48 +0.18 +0.37 +0.21 #0.62 +0.35 +0.13 +*1.35 025 +0.36

ROTTA 6225 63.71 5559 84.05 62.17 8232 83.86 77.56 7639 82.64 8727 81.75 7321 7515 6775 7438

+1.65 *+1.68 *1.46 +1.12 *1.37 +0.83 +0.90 +0.75 +0.24 +0.10 *1.12 *+1.82 *1.21 #127 148 #1.13

+ SNAP 65.32 6694 57.85 8691 6344 8532 8598 8049 7822 85.04 90.01 8577 7575 7815 70.06 77.02

+0.25 £0.12 029 £0.31 024 022 +0.14 024 020 £0.15 +0.06 +0.24 *0.11 £0.07 £047 £0.21

31

C.2 CIFAR100-C

Table 24: STTA classification accuracy (%) comparing with and without SNAP on CIAFR100-C
through Adaptation Rates(AR) (0.5, 0.3, and 0.1), including results for full adaptation (AR=1). Bold
numbers are the highest accuracy.

AR Methods Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg.

1026 1187 648 3516 2033 4442 4213 4599 3484 41.12 6637 19.54 5059 22.68 4548 33.15
+0.00 £0.00 +0.00 #0.00 =+0.00 +0.00 *0.00 +0.00 +0.00 =#*0.00 +0.00 +0.00 +0.00 +0.00 x0.00 =*0.00
3690 3796 3213 6265 39.14 60.05 61.16 50.68 50.38 5481 6440 6033 5048 5349 4198 50.44

Source

BN stats +0.10 £0.24 044 £0.26 =0.19 =042 +0.05 +0.13 +0.09 024 +0.05 0.12 #0224 =*0.11 #049 £0.21

Tent 46.71 4806 4098 65.19 44.10 6278 63.95 5543 5546 5932 6743 63.83 5389 5940 4991 5576

+0.29 047 0.13 040 041 +024 +0.23 +0.36 049 030 =0.17 042 £0.15 *0.32 £0.66 033

1 CoTTA 42.14 4292 3792 5540 4101 5518 5539 4946 50.61 50.86 61.35 4744 48.69 5438 48.11 4939
+0.34 +0.44 £0.18 0.12 #0.39 #0.10 +0.58 0.23 +0.63 *0.31 #0.27 #0.37 #0.18 #0.16 #0.65 +0.33

EATA 3842 3996 3264 6235 3873 5993 61.07 50.50 50.79 5530 6438 60.63 49.66 53.63 43.02 50.74

+0.41 £047 071 #041 =033 +0.17 #0.19 036 034 £0.23 =0.12 +0.13 £0.32 041 020 *0.32

SAR 50.75 52.00 4387 6544 4630 63.60 64.68 5841 5826 61.34 68.03 67.68 5453 6152 5272 5794

+0.44 £0.22 040 £0.39 022 +0.17 £0.09 048 0.09 *040 0.15 031 x025 =021 021 £0.27

ROTTA 38.54 3985 736345 4074 60.54 62.03 51.61 51.75 5620 65.14 61.55 51.22 5442 4250 5155

+022 #0224 037 £0.17 032 +0.19 £0.26 +0.09 +0.14 =031 0.10 +0.14 x0.14 022 035 *0.22

Tent 4396 4542 36,57 6228 3657 59.96 61.90 5325 53.14 5736 6520 60.14 4972 57.62 4683 52.66

+0.85 £1.34 *1.57 #0.13 297 059 +048 072 +1.70 £0.22 020 +2.77 *0.08 0.61 *0.52 +0.98

+ SNAP 49.06 5043 4149 6555 44.09 63.31 65.62 57.62 56.81 60.75 68.72 67.52 54.08 61.15 5154 57.18

+0.00 £0.13 0.80 £0.24 +0.06 +0.53 £0.37 0.09 031 =*048 031 0.64 x0.19 x0.14 x0.11 £0.29

CoTTA 3431 3516 3142 4778 3499 4891 47.79 41.27 4142 4377 5216 3830 4225 4412 4158 41.68

+0.09 +046 +0.28 *045 040 048 +046 +0.86 037 =*0.57 027 046 049 041 022 042

+ SNAP 41.28 4223 3717 5829 40.70 5732 57.78 49.85 50.82 5221 63.69 5130 4941 5515 4792 50.34

+0.46 +0.16 £0.19 021 £0.08 =x0.12 0.09 +0.38 *0.11 =*0.28 £0.18 *0.23 £0.14 £0.09 £0.25 *0.20

EATA 38.02 3948 3277 61.68 3842 59.11 60.63 50.15 4992 5460 6343 5870 4942 53.08 42.62 50.13

05 +022 #0.15 +0.17 #0.38 0.07 =+0.09 #0.18 +0.25 +0.67 =#0.13 021 044 022 020 021 *0.24
) + SNAP 3975 4114 3415 6375 4055 61.09 6281 5212 5212 5647 6573 61.85 51.14 5575 44.86 52.22
+0.11 £0.26 +0.10 £0.23 +0.21 +0.08 +0.19 +0.08 +0.30 =£0.18 +0.23 +0.34 +0.28 +0.15 +0.51 £0.22

SAR 49.00 50.00 4299 65.10 4521 62.51 64.43 55.78 56,59 6021 6733 65.17 5390 60.22 51.28 56.65

+0.61 £042 030 #044 041 020 +043 +0.27 046 +048 044 046 £0.50 *0.29 £0.23 040

+ SNAP 5171 5279 4495 66.59 47.84 6440 66.15 59.02 5912 6262 69.15 6820 5589 62.66 53.77 58.99

+0.46 £0.08 0.54 £0.10 +0.01 +0.18 £0.28 +0.20 0.37 =*0.16 0.06 0.16 +0.26 +0.31 +0.23 £0.23

ROTTA 37.12 3834 3254 6225 3891 5952 61.19 5022 4991 5469 63.74 5940 5032 5329 4194 5022

+0.09 £0.20 022 #0.09 0.13 £0.19 *0.21 +0.23 x0.56 *0.15 x0.19 047 £0.29 029 £0.15 023

+ SNAP 3833 39.12 3293 64.01 4036 61.30 62.96 51.77 51.54 56.15 66.13 61.67 51.60 5490 43.14 5173

+0.30 +0.24 £0.28 0.15 044 038 0.16 £0.22 £0.19 028 £0.05 £0.17 £0.24 £023 £0.36 *0.25

Tent 4441 4679 3872 6298 39.79 60.38 6225 5247 53.69 5747 6580 60.13 5003 5821 4723 5336

+0.80 +0.72 *1.17 #0228 092 053 +0.33 +0.76 +0.65 #0.63 +0.28 #2770 +0.60 +0.81 *0.43 *0.77

+ SNAP 49.23 50.15 4219 6585 4512 6339 6491 5745 5713 60.72 68.86 66.65 5425 61.38 51.80 57.27

+0.04 £048 0.75 £0.15 =1.15 +0.28 £0.26 051 037 £0.17 031 *1.52 041 +0.54 £0.68 +0.51

CoTTA 31.74 32,66 2928 4498 3296 46.51 44.96 38.57 3816 4191 4938 3553 40.04 40.77 39.12 39.11

+0.43 £0.38 +0.15 #045 056 048 +037 090 +0.78 £0.39 086 033 x0.61 +0.67 043 £0.52

+ SNAP 4144 4249 37.08 5827 4099 57.24 57.68 50.36 51.09 51.66 6350 50.90 49.49 5475 47.81 50.32

+0.38 £0.09 0.13 £0.24 +0.37 037 £0.17 022 0.18 £0.22 +0.13 +0.52 026 +0.42 x0.13 *0.26

EATA 3797 3947 3269 6145 3796 59.02 60.79 49.73 4955 5463 63.38 5816 49.07 53.17 4249 4997

03 +0.04 £0.34 012 #0.19 0.17 +0.28 £0.12 +0.05 038 =*041 007 021 024 =041 *044 £0.23
” + SNAP 40.03 4139 3491 6358 40.29 61.58 62.56 51.85 51.78 56.13 6570 61.68 51.25 5528 44.80 52.19
+0.26 £0.29 £0.58 0.15 £0.28 +0.12 0.25 £0.25 £0.21 £0.01 £0.22 £0.29 £0.35 £0.23 £0.17 £0.24

SAR 49.00 50.00 4299 65.10 4521 6251 64.43 5578 56,59 6021 6733 65.17 5390 6022 5128 56.65

+0.61 042 030 044 2041 +020 +0.43 +0.27 046 048 044 046 £0.50 029 £0.23 £0.40

+ SNAP 50.63 52.03 44.89 66.28 47.08 64.32 6590 57.98 58.09 6188 69.17 67.82 5547 62.02 53.09 58.44

+0.31 £0.32 054 £0.13 026 0.09 +0.21 +0.27 049 024 042 029 £0.29 £0.31 £0.15 +0.29

ROTTA 36.83 3794 3200 61.90 3867 59.15 6097 49.92 4932 5462 63.71 5831 4979 52.88 4159 49.84

+0.18 #0.22 +0.05 #0220 0.10 =+0.14 +0.24 +0.23 038 =+0.21 +0.18 0.1 +022 034 027 0.1

+ SNAP 38.11 3921 3280 63.72 40.01 61.51 62.74 51.37 5149 55.68 6590 61.56 51.50 54.67 43.01 51.55

+0.13 £0.23 0.14 £0.13 +0.23 +0.13 £0.16 *0.15 030 =£0.25 +0.13 +0.29 +0.08 +0.13 x0.19 £0.18

Tent 43.55 4425 3795 6256 4180 5945 62.13 53.04 51.60 56.76 64.60 61.19 5101 5642 4628 52.84

+0.66 £0.54 +0.72 £047 £0.04 020 *0.21 +0.84 +039 #0.15 +0.56 +1.68 *0.39 *0.27 £049 +0.51

+ SNAP 46.51 47.68 39.92 6539 44.14 6329 64.53 5520 5555 59.71 68.05 6490 5391 59.28 49.58 55.84

+0.35 £0.23 048 *0.11 +0.60 +0.18 *0.38 047 0.11 =£0.33 0.17 090 =030 =x0.16 =+0.75 £0.37

CoTTA 28.53 2953 2645 42.19 3034 4469 41.88 3444 3393 39.03 4549 31.17 3725 36.17 3684 35.86

+0.90 +0.86 +0.60 #£1.19 =x0.77 *1.07 +0.62 +0.84 *1.07 =*0.89 136 +0.60 =+0.80 =+1.20 =x0.71 *0.90

+ SNAP 41.72 4262 3746 5843 41.24 5733 57.96 50.34 51.17 5229 63.59 5132 49.68 5478 47.89 50.52

+0.25 #0.60 £0.13 +0.13 021 0.07 030 £0.38 £0.18 £0.16 £0.20 *0.36 +0.21 *0.28 £0.35 £0.25

EATA 3841 39.03 3229 61.07 3845 5821 60.62 49.59 49.19 5423 62.88 57.39 49.00 53.01 4205 49.70

0.1 +0.53 +045 032 £0.36 +029 047 +036 030 034 £0.50 =028 +0.62 +0.65 +0.60 *0.15 *0.42
. + SNAP 40.62 41.53 3431 64.08 40.29 61.32 63.04 52.00 51.77 5685 6598 61.96 51.05 5567 4480 5235
+0.26 £049 024 £0.30 021 024 £0.16 *0.53 +0.40 *043 +0.09 034 +0.09 028 x0.15 £0.28

SAR 4392 4528 38.64 6336 4258 6036 62.78 5339 5223 5754 6541 60.88 5207 5680 47.16 53.49

+0.52 #0.55 028 £0.25 044 042 +0.23 +0.86 +0.28 032 041 088 £0.59 £0.13 £0.20 043

+ SNAP 4629 47.60 3995 6526 44.00 63.09 64.97 55.08 5517 59.73 68.13 6472 53.84 5898 49.54 55.76

+0.68 £0.06 +0.21 *0.18 +0.22 +0.25 *0.36 +0.24 0.17 *0.24 +0.09 044 031 035 x0.65 x0.30

ROTTA 36.28 37.12 3138 6120 3836 5826 60.30 4920 4821 5354 62.80 5678 49.61 5228 4126 49.11

+0.15 #041 027 #0.07 =0.15 024 +047 023 0.14 =*0.23 040 051 024 =041 =x0.11 £0.27

+ SNAP 37.83 3842 3238 6373 39.72 6132 6258 51.38 51.18 5561 6570 61.39 51.36 5451 4285 5133

+0.13 £0.36 %020 0.09 £0.38 x0.18 0.19 £0.18 £0.13 x0.07 £0.29 021 £0.09 024 033 x0.21

32

Table 25: STTA classification accuracy (%) comparing with and without SNAP on CIFAR100-C
through Adaptation Rates(AR) (0.05, 0.03, and 0.01). Bold numbers are the highest accuracy.

AR Methods Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg.
40.69 4155 35.14 6226 4026 5892 61.06 5121 50.00 5552 64.05 5845 50.50 54.68 4436 51.24

Tent +0.35 #0.62 038 £0.52 023 0.60 +0.43 +0.88 +0.31 033 x0.62 +1.06 *0.80 =*0.26 *0.69 +0.54

+ SNAP 42.87 4487 37.60 65.01 42.22 62.22 63.72 54.03 53.68 58.03 67.05 63.08 5297 57.67 4694 54.13

+0.37 £0.70 £0.08 0.01 £0.35 031 045 046 £0.39 047 £0.50 x0.10 £0.15 x0.12 x0.13 x0.31

CoTTA 26.15 2689 2526 39.48 2834 4141 38.77 32.06 30.84 3556 41.60 2852 3499 33.60 3454 3320

+0.60 +0.32 044 071 =+0.74 =076 +1.14 085 0.65 =+£1.12 *1.36 0.79 045 082 #0.54 £0.75

+ SNAP 42.02 4270 37.67 5830 41.57 5747 58.02 50.55 51.31 5234 63.63 51.25 49.76 5494 4798 50.63

+0.21 £0.13 031 £0.26 +0.37 +0.14 £0.18 +0.27 032 £0.17 0.16 049 +0.18 +0.05 +0.12 £0.22

EATA 3846 39.05 3347 61.07 3852 58.16 60.59 49.60 49.18 5441 63.15 57.06 49.09 52.87 4249 4981

0.05 +0.14 £0.58 +0.23 #0.63 029 +046 +048 +0.55 047 =024 043 +1.37 088 042 034 £0.50
. + SNAP 4049 41.64 3437 6428 4038 61.52 63.17 51.66 5212 56.50 66.03 62.01 51.76 55.66 44.83 5243
+0.21 £043 015 £0.20 +0.51 +0.30 £0.18 0.53 +0.52 x0.21 036 0.12 x0.12 023 x0.32 x0.29

SAR 40.28 41.62 3535 6284 4037 59.51 61.68 5129 50.66 5560 6443 5849 5090 5482 44.64 5150

+0.07 £0.62 +0.04 #0.26 =041 038 +0.28 +0.81 038 =*040 0.62 082 x0.64 027 043 +043

+ SNAP 41.76 4424 36.89 64.34 4154 62.13 63.39 53.24 5291 5754 66.89 6241 5270 5723 46.63 53.59

+0.29 044 £021 038 £0.37 x0.15 0.24 033 £0.02 *0.22 £0.60 *0.50 £0.15 *0.47 £0.57 £0.33

RoTTA 36.38 3738 3178 6144 3826 58.18 60.19 48.98 4830 5350 62.73 56.52 4937 5219 41.60 49.12

+0.12 042 045 £0.06 +020 042 +0.53 +0.18 #0228 +0.17 042 090 +049 *0.19 +0.28 +0.34

+ SNAP 37.67 38.66 3247 6395 40.18 61.33 6252 5147 5132 55.67 6589 61.24 5147 5452 42.84 5141

+0.12 £0.21 012 £0.16 020 047 £0.35 +0.14 036 £0.21 +0.24 0.15 +0.14 +0.15 +0.38 £0.23

Tent 3855 39.28 3377 61.64 39.66 5883 60.89 4945 4951 5464 6348 5729 5034 5344 4328 5027

+0.17 #0.15 +0.16 #0.25 =039 048 +0.29 051 +0.78 =+042 058 033 034 038 026 +0.37

+ SNAP 4122 4220 3531 6448 4082 61.96 63.50 52.84 5236 57.18 66.50 62.17 52.12 5648 4572 52.99

+0.33 £0.27 036 £0.06 +0.60 +0.02 £0.30 040 0.40 =£0.33 +0.02 041 +0.17 =+0.18 040 *0.28

CoTTA 27.11 2773 2587 4025 2952 4216 39.60 32.74 3223 36.60 4333 29.13 3645 3451 3596 3421

+1.11 £2.05 +1.41 £2.62 149 £221 #2351 +242 x171 275 280 242 £1.82 £1.66 £1.75 +2.05

+ SNAP 41.77 4285 37.50 58.61 41.15 57.65 58.05 5045 51.34 5272 6349 51.63 4987 5524 48.14 50.70

+0.24 £0.19 £0.08 +0.22 £0.16 +0.22 032 £0.65 £0.20 *0.35 £0.07 £0.61 £0.17 £0.13 £0.36 £0.26

EATA 3794 38.63 3200 61.02 39.08 5852 60.28 48.73 49.15 5389 63.03 56.64 4945 5293 4211 49.56

0.03 +0.32 #021 #091 033 £030 =#0.66 042 032 2097 =053 £0.34 £049 2047 *035 044 £047
. + SNAP 39.87 41.12 3448 64.14 40.27 6191 63.09 52.37 5193 5636 66.02 61.88 51.83 5560 4459 5236
+0.89 £0.20 0.08 £0.23 +0.09 0.00 *043 042 044 £0.26 0.05 £0.15 +0.04 £0.11 045 £0.26

SAR 3833 39.19 3315 61.77 3978 59.09 61.02 49.67 49.86 5471 63.59 5745 5037 53.67 4288 50.30

+025 £0.26 043 £0.21 =0.06 033 +0.25 +0.54 +0.65 031 049 +0.18 £0.39 £0.32 #0.51 035

+ SNAP 39.84 41.83 3494 63.70 4049 6145 63.17 5227 5191 56.69 6591 6131 51.68 56.06 4495 52.41

+0.07 £0.78 +0.28 £0.26 +0.16 +0.28 £0.07 +0.51 0.17 =£0.25 +0.27 +0.52 +0.22 +0.18 0.16 *0.28

ROTTA 3624 3694 31.15 60.87 3828 5825 59.88 4843 4817 5332 6273 56.18 4923 52.12 4128 48.87

+0.03 £0.21 +0.09 #0.17 =0.14 +0.53 +0.36 052 +0.61 =*047 046 034 039 =031 =061 *0.35

+ SNAP 3785 38.68 3278 6397 39.75 6141 62.57 51.53 51.38 5568 6556 61.25 51.53 54.84 4296 5145

+0.20 £0.20 £0.31 024 £0.17 x0.16 0.52 £0.27 £0.28 £0.37 £0.20 £0.13 £0.19 £0.26 £0.33 £0.25

Tent 36.08 3695 3131 61.03 3809 57.63 58.76 48.24 48.65 5345 62.14 5507 4859 51.82 40.68 4857

+0.42 £0.21 047 #0.51 =056 =+0.53 +0.31 +047 +0.87 +0.19 049 +2.13 £0.25 *0.58 £0.04 +0.54

+ SNAP 3840 3940 3326 6385 4036 61.23 62.79 51.92 51.73 5620 65.83 60.95 51.82 5475 4353 5173

+0.06 +0.16 £0.10 0.11 2036 =034 0.24 20.06 20.00 =*0.34 £0.17 £0.29 £0.00 *0.30 *0.16 *0.18

CoTTA 26.59 2792 2486 41.34 2891 4309 40.11 3433 3332 3799 4478 2880 3626 3470 3567 3458

+1.64 £1.79 *1.51 £221 196 +285 +2.87 *1.61 +2.67 £2.03 +3.61 218 £1.90 =1.66 *1.47 £2.13

+ SNAP 4205 4291 3750 5870 4122 5738 58.14 50.39 5113 5223 6342 51.74 4987 54.84 4772 50.62

+0.05 £0.17 +0.08 £0.12 +0.36 +0.17 £0.33 +0.68 043 £0.12 035 0.17 £0.50 +0.09 +0.25 £0.26

EATA 36.10 37.05 31.03 60.86 37.83 57.64 58.77 48.02 4875 5337 62.18 5495 4855 51.89 4075 4851

0.01 +0.27 #0.59 034 £0.50 037 +0.57 £032 050 126 #0.09 043 222 #0.15 0.65 #0.02 *0.55
) + SNAP 38.54 3978 3311 63.82 3998 6133 6253 51.76 51.50 56.03 6594 61.16 5147 5452 43.67 51.68
+0.14 £0.15 0.22 £0.10 +0.53 0.20 *0.24 £0.12 +0.32 *044 +0.19 0.11 *0.04 027 x0.04 £0.21

SAR 36.04 37.02 3138 61.13 3807 5800 59.08 4844 4884 5352 6257 5519 4887 52.01 4071 4872

+0.00 #0.26 030 #0.35 044 059 036 047 092 =*0.16 050 220 x0.15 =0.57 x0.19 *0.50

+ SNAP 3791 3885 3292 63.17 3935 60.51 62.01 51.11 5048 5547 65.07 59.69 51.24 5410 4280 50.98

+0.39 +0.25 £0.38 +0.23 045 051 0.26 0.11 £0.28 041 £0.16 £0.15 £0.15 £0.47 £0.06 *0.28

RoTTA 3555 3634 3055 60.76 3742 5750 @ 58.57 47.87 4831 53.11 61.90 5470 4825 5137 4029 4816

+0.33 #0.31 045 #0.50 =+0.50 =056 +0.30 028 097 £0.23 0.62 198 +0.08 +0.62 #0.11 *0.52

+ SNAP 37.82 3872 32.60 6353 39.80 61.00 62.27 5142 51.33 5571 65.64 60.89 5150 5427 4292 5130

+0.16 £0.05 0.10 £0.01 =049 037 £0.23 +0.06 0.12 *042 0.14 0.18 +0.18 +0.19 047 £0.21

33

C.3 ImageNet-C

Table 26: STTA classification accuracy (%) comparing with and without SNAP on ImageNet-C
through Adaptation Rates(AR) (0.5, 0.3, and 0.1), including results for full adaptation (AR=1). Bold

numbers are the highest accuracy.
AR Methods Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg.

3.00 3.70 2,64 1790 974 1472 2245 16.60 23.06 24.00 59.11 5.37 16.50 20.88 32.63 18.15
+0.00 £0.00 #0.00 #0.00 =+0.00 +0.00 *0.00 +0.00 +0.00 =#0.00 +0.00 +0.00 +0.00 =+0.00 x0.00 =*0.00
1429 1506 1489 1330 13.38 2378 3522 31.78 3026 4440 6239 1514 4042 4525 3653 29.07

Source

BN stats +0.05 £0.02 +0.08 £0.08 =+0.08 +0.05 £0.06 +0.04 +0.07 =0.14 0.11 0.05 =x0.10 =0.04 =0.16 =*0.07

Tent 27.03 2898 28.64 24.66 23.63 3870 4577 44.82 38.06 5459 64.61 1684 51.64 5554 4938 39.53

+0.05 £0.08 029 £0.27 025 +0.10 £0.12 0.08 035 =*0.08 +0.10 *1.51 x0.10 =0.15 x0.07 =*0.24

1 CoTTA 1312 1398 1394 1244 1218 2374 3522 31.78 3026 4440 6240 1513 4042 4526 3653 2872
+0.08 £0.07 +0.01 =#0.10 0.04 =0.04 £0.06 0.05 =0.06 =0.14 =0.11 x0.03 x0.10 =0.04 =0.16 £0.07

EATA 29.62 3179 31.17 26.89 2630 40.65 47.44 46.29 40.78 5557 6497 38.02 52.66 56.03 5026 42.56

+0.02 £0.09 +0.19 £0.03 0.15 +0.12 #0.06 *0.09 +0.05 =£0.08 =+0.08 +0.08 +0.20 +0.04 0.16 0.10

SAR 2923 31.14 2988 29.29 27.39 3976 44.13 4598 2939 5513 63.71 17.34 5231 56.09 4935 39.34

+0.40 £144 096 £0.72 +097 £0.63 *0.11 +0.23 +0.30 020 =x0.08 +0.61 £0.08 £0.18 £0.13 047

ROTTA 20.60 22.83 1981 1046 10.10 21.31 31.83 39.66 32.09 46.08 62.22 2027 4254 4747 40.67 3120

+0.07 £0.09 024 £0.04 026 027 +0.23 +0.18 +0.18 +0.23 027 049 £029 023 #0.10 +0.21

Tent 2524 2686 2635 2326 2241 3599 @ 44.60 4296 37.68 53.60 6440 21.35 5023 5432 4793 3848

+0.10 £0.27 +0.08 £0.06 =+0.05 +0.09 +0.10 +0.13 +0.17 =#0.15 +0.12 094 *0.12 0.15 *0.04 =*0.17

+ SNAP 28.05 2997 2939 2573 2339 3849 4565 44.21 3957 5390 64.52 3439 4999 5488 4872 40.72

+0.00 £0.04 0.19 £0.15 x0.06 0.17 £0.03 +0.09 0.10 =£0.10 +0.09 1.83 x0.14 x0.07 =x0.09 £0.21

CoTTA 1199 13.04 1286 11.90 11.64 2292 35.06 3120 2997 4428 62.16 1402 4039 4529 3658 2822

+0.13 £0.20 +0.10 #0.07 0.07 +0.02 £0.06 +0.09 +0.06 =*0.07 =+0.07 +0.09 x0.05 =0.09 =0.12 *0.09

+ SNAP 1516 1596 1586 1398 14.13 24.69 36.51 3259 3171 4598 63.62 1572 42.05 46.71 3793 30.17

+0.14 £0.02 £0.14 +0.04 £0.00 *0.09 0.07 £0.16 20.06 =*0.09 £0.05 *0.04 £0.09 *024 £0.14 *0.09

EATA 28.62 30.12 2994 2534 2448 3894 46.85 4520 40.03 5504 64.84 3448 5206 5557 4985 4142

05 +0.10 #0.10 +0.14 £0.20 044 =+0.10 +0.25 +0.12 £0.01 +0.06 =+0.07 041 *0.24 *0.13 #0.05 +0.16
) + SNAP 30.00 31.88 3147 2693 26.64 39.16 47.23 4536 3975 5530 64.52 3375 5229 55.66 5048 42.03
+0.29 £0.17 013 £0.21 028 +0.15 £0.07 +0.13 +0.14 £0.14 0.10 0.07 +0.09 +0.18 +0.08 +0.15

SAR 26.74 2856 2877 19.90 21.50 3997 44.98 4595 3422 5504 63.93 6.58 5250 5598 49.71 38.29

+025 £1.75 +0.13 #0221 038 +0.10 #0.12 #0.17 080 #0.05 +0.03 +0.64 +0.10 =0.19 x0.09 £0.33

+ SNAP 31.58 3322 33.77 2647 2626 44.01 47.94 48.77 4251 5696 64.86 2831 5423 5755 5190 4322

+0.38 £2.44 0.56 £1.69 094 0.10 £0.04 £0.12 0.09 =£0.13 0.10 £10.99 +0.08 +0.16 =+0.19 =*1.20

ROTTA 18.17 1959 1849 1232 1179 2356 34.62 37.84 3291 4786 63.94 18.68 4321 4854 4020 3145

+0.05 £0.03 +0.10 =#0.11 =0.13 +0.15 #0.14 0.11 +0.06 =*0.05 +0.16 042 x0.08 023 023 =0.14

+ SNAP 2043 2203 21.05 1547 1449 2636 36.46 38.98 34.15 4841 64.02 20.74 43.66 49.16 41.05 33.10

+0.03 +0.08 £0.11 0.11 £0.07 0.06 0.10 £0.09 £0.12 +0.13 £0.13 023 £0.10 *0.10 *0.15 =0.11

Tent 23.63 2518 2480 21.81 2097 3411 43.60 4144 3698 5266 6421 2274 4896 5346 4680 3742

+0.08 +0.37 028 #0.02 0.18 =+0.07 £0.04 0.05 +0.04 =0.15 =0.13 x0.04 =0.16 =0.07 =x0.09 =0.12

+ SNAP 26.60 2821 27.94 2437 2239 3645 44.36 42.64 38.54 5291 64.26 3347 4858 5390 4741 3947

+0.20 £0.19 033 £0.36 +0.12 0.07 £0.13 £0.07 0.15 £0.06 0.10 044 +0.10 =+0.14 x0.11 £0.17

CoTTA 11.74 1274 12,68 11.77 11.62 22.64 34.97 31.05 29.81 4424 6212 13.73 4031 4519 3671 28.09

+0.09 #0.06 +0.07 #£0.17 =0.14 +0.14 £0.07 0.0l +0.13 #0.05 +0.06 +0.02 +0.15 =0.08 x0.09 *0.09

+ SNAP 1526 16.00 1583 13.81 14.13 24.84 36.46 32.58 3173 46.04 6352 15.69 42.18 46.74 38.00 30.19

+0.16 £0.09 0.06 £0.04 +0.01 +0.03 +0.13 +0.03 +0.08 =£0.21 0.06 +0.08 +0.07 +0.05 =0.14 *0.08

EATA 2735 29.03 28.62 2394 2345 3721 46.18 4405 39.19 5452 6454 3220 5122 5500 4927 4038

03 +0.04 £0.15 027 #0.06 =0.60 030 =+0.13 +0.20 022 +0.01 =006 +0.62 #0.16 =*0.10 *0.21 +0.21
” + SNAP 2948 3120 30.69 26.68 2590 38.24 46.60 44.62 3931 5482 6444 32.87 5141 5541 4978 4143
+0.14 £0.04 £0.11 0.14 2025 x0.01 0.22 £0.06 £0.19 =£0.06 £0.13 £0.29 £0.25 £0.06 £0.14 £0.14

SAR 28.12 2930 29.63 2237 23.88 3934 4536 45.69 3673 5491 64.11 1096 5222 5576 49.60 39.20

+0.13 +0.89 +0.17 #047 033 +0.18 =0.11 +0.18 +0.79 0.07 £0.02 133 £0.19 =*0.13 £0.08 +0.34

+ SNAP 32.63 34.69 34.26 2891 2796 43.51 47.79 48.27 4241 5645 64.77 3276 5374 5721 51.67 43.80

+0.11 £0.23 018 £0.27 029 0.14 £0.03 0.11 0.13 £0.09 0.07 £3.04 +0.13 028 +0.12 £0.35

ROTTA 1690 17.88 17.25 12.89 1251 2396 35.26 36.26 3232 4725 63.98 1746 4277 4821 3935 3095

+0.15 #0.11 +0.08 #0.17 0.05 +0.03 #0.16 #0.01 +0.07 =#0.02 #0.13 +0.18 +0.09 024 +0.15 =0.11

+ SNAP 18.63 1994 1935 14.88 1434 2588 36.47 37.13 3332 47.74 6396 19.08 4298 4873 40.27 32.18

+0.07 £0.08 +0.06 £0.08 +0.05 +0.03 £0.03 +0.02 0.11 =0.17 0.06 021 +0.07 =0.17 020 *0.09

Tent 22,00 2351 2307 1938 1886 32.15 42.29 39.70 3433 51.62 63.70 1579 4774 5235 4554 3547

+347 4392 4385 4230 206 +340 £2.45 +327 +0.60 £2.30 029 +4.61 £2.84 227 £298 +2.71

+ SNAP 2621 27.85 2750 23.62 2273 3601 44.11 42.19 3815 5295 6457 3023 4856 5371 47.09 39.03

+4.92 £5.36 530 +4.23 411 557 £3.72 449 337 347 118 515 429 331 409 2417

CoTTA 1097 1192 1198 1145 1138 2239 34.96 30.88 29.89 4409 61.96 13.08 4020 4527 3671 2781

+0.32 £0.32 +0.18 £0.04 =034 0.02 £0.15 +0.14 x0.09 023 x0.05 028 £0.18 =*0.16 +0.10 +0.17

+ SNAP 1513 16.03 1591 1386 14.02 2490 36.51 3256 31.81 46.02 63.60 15.69 4194 46.78 38.03 30.19

+0.06 £0.09 £0.04 +0.00 £0.07 x0.05 0.05 £0.06 £0.12 x0.06 £0.10 *0.04 £0.09 £0.09 £0.12 £0.07

EATA 2243 2378 2326 1938 1942 3218 4322 40.65 36.64 5238 63.87 2459 4813 52.89 4633 36.61

01 +0.05 #0.16 043 £0.26 =+0.51 =031 #0.19 *0.15 +0.16 =*0.27 =0.05 *1.52 040 =0.12 #0.14 £0.32
. + SNAP 2610 27.29 27.13 2238 2215 3345 4392 40.96 36.68 52.71 63.77 27.93 4847 5323 4746 38.24
+0.09 £0.13 020 £0.32 +0.14 +0.27 £0.08 +0.16 0.01 £0.09 0.10 +0.18 024 +0.10 =0.17 *0.15

SAR 26.12 2756 2693 2251 2335 3603 44.48 43.19 3726 5382 64.15 19.87 50.78 5478 4843 38.62

+0.17 £0.01 +0.11 £0.24 021 021 #0.09 +0.09 032 =021 0.11 +2.10 0.12 0.18 x0.07 £0.28

+ SNAP 30.28 3197 3130 26.67 2631 39.66 46.08 4543 4026 5476 64.62 3612 51.26 5542 49.63 4199

+0.16 £0.24 0.12 £0.34 +0.37 0.25 £0.04 £0.09 0.13 *0.23 +0.05 0.67 x0.06 020 x0.06 *0.20

ROTTA 1477 1559 1533 13.17 13.19 2385 35.38 3273 3077 4522 63.08 1562 41.05 46.15 37.19 29.54

+0.04 £0.04 +0.04 £0.07 =0.10 =0.05 +0.05 +0.03 +0.04 0.15 =0.12 x0.02 £0.10 *0.07 £0.13 +0.07

+ SNAP 1535 1620 16.01 13.67 13.66 24.27 35.62 33.04 31.02 4538 6295 1596 41.06 46.17 3744 29.85

+0.03 £0.01 £0.07 0.09 £0.07 x0.03 0.01 £0.07 £0.04 =x0.11 £0.08 £0.08 £0.11 £0.07 £0.19 £0.07

34

Table 27: STTA classification accuracy (%) comparing with and without SNAP on ImageNet-C
through Adaptation Rates(AR) (0.05, 0.03, and 0.01). Bold numbers are the highest accuracy.

AR Methods Gau. Shot Imp. Def. Gla. Mot. Zoom Snow Fro. Fog Brit. Cont. Elas. Pix. JPEG Avg.
2377 2465 2444 2054 2027 3273 4357 40.82 3592 5278 63.82 1595 4933 5346 47.19 36.62

Tent +0.40 +043 058 £0.70 =0.69 030 +0.14 +0.15 033 +0.12 x0.02 1.18 *0.18 *0.09 £0.03 +0.35

+ SNAP 29.12 3046 3030 2577 2522 3821 46.14 44.29 3995 54.65 6547 3381 5083 5559 4921 41.27

+0.09 £0.22 £0.48 +0.20 0.23 043 +0.00 +0.13 0.07 £0.15 0.09 £1.10 0.13 £0.10 £0.03 £0.23

CoTTA 11.03 1191 1175 11.03 11.20 2230 34.98 30.87 29.78 4399 61.87 1292 4026 4523 36.63 27.72

+0.30 #0.57 033 £0.24 046 0.18 +0.05 +0.08 +0.01 #0.11 +0.06 036 £0.19 0.17 £0.07 #0.21

+ SNAP 1522 1597 1593 1391 14.05 24.87 36.48 32.60 31.65 46.09 63.59 1567 4200 4671 37.96 30.18

+0.08 +0.11 0.03 £0.06 =0.12 0.04 +0.00 +0.07 0.04 £0.03 =+0.07 +0.05 £0.03 =x0.09 £0.09 +0.06

EATA 19.53 2065 2072 16.74 1696 29.11 41.22 3796 3484 5075 6329 19.86 4592 51.15 4413 3419

0.05 +031 #0.66 075 +041 =0.58 049 +0.27 +0.18 +023 +0.21 0.13 *1.26 *0.35 =0.17 *0.09 +0.41
o + SNAP 22.83 2395 23.62 1943 1970 3034 41.59 38.06 3506 5098 6330 2372 4626 51.52 4546 3572
+0.10 £0.34 +0.30 £0.09 =0.19 056 +0.08 +0.11 +0.21 £0.18 =+0.13 +0.30 =*0.16 =*0.16 =*0.18 +0.21

SAR 2325 2423 2366 1998 2038 33.05 43.04 40.73 36.06 52.61 64.09 20.17 49.00 5335 4673 36.69

+0.21 £0.34 030 £0.09 =0.16 =030 +0.16 +0.02 0.12 #0.09 =0.07 084 =*0.11 =*0.10 =*0.11 +0.20

+ SNAP 27.54 29.03 28.66 24.05 2342 3628 44.12 42.89 3854 5324 6425 31.83 4879 5404 4780 39.63

+0.16 £0.05 £0.04 +0.16 =£0.08 =£0.12 +0.10 +0.11 +0.07 £0.07 0.05 £0.24 0.23 *0.19 £0.08 £0.12

ROTTA 1442 1522 1502 1325 1331 2379 3527 3209 3043 4471 6264 1524 40.63 4555 3675 29.22

+0.06 +0.05 0.10 =£0.11 =0.07 0.03 +0.08 +0.05 +0.07 £0.13 0.14 x0.09 *0.10 =*0.07 *0.16 £0.09

+ SNAP 14.65 1548 1529 1343 1345 2393 3533 3218 3053 4471 62.58 1541 40.64 4555 3681 29.33

+0.06 £0.02 £0.08 +0.09 0.09 £0.03 +0.05 +0.04 £0.05 £0.16 £0.10 x0.04 £0.09 £0.10 *0.14 £0.08

Tent 21.76 2276 2258 19.06 18.90 30.85 4234 3894 3553 5158 6342 1861 4796 5241 4556 3548

+0.17 #0.35 +0.17 £0.04 0.12 022 +0.12 +0.26 +031 £0.18 0.11 091 £0.26 £0.21 +0.08 +0.23

+ SNAP 2642 2820 27.81 2379 22.82 3577 44.80 42.37 38.81 5334 6495 30.05 4928 54.16 47.57 39.34

+0.14 £0.26 037 £046 +0.21 0.11 *0.16 +0.34 +0.14 £0.06 =+0.11 +0.62 £0.17 £0.09 £0.08 +0.22

CoTTA 1061 1236 1178 11.66 11.32 2225 35.01 30.88 29.84 44.09 61.83 1292 4026 4520 36.58 27.77

+0.18 #0.36 057 £0.57 x0.26 0.11 +0.18 +024 +0.07 #0.11 0.16 0.12 #0.19 #0.11 #0.09 £0.22

+ SNAP 1529 16.02 16.00 13.99 14.06 24.78 36.54 32,62 3170 46.01 6349 1569 4205 46.75 3797 30.20

+0.08 £0.07 +0.09 £0.07 =x0.11 +0.05 £0.07 +0.06 +0.08 £0.01 +0.04 +0.04 =£0.18 =x0.19 £0.08 +0.08

EATA 17.17 1834 1794 1448 15.04 2631 39.47 3551 3341 49.16 63.06 18.01 4416 49.90 4247 3230

0.03 +0.41 £0.19 036 £0.82 022 025 +0.33 +0.50 033 £0.19 x0.05 088 £0.31 £0.09 £0.31 +0.35
o + SNAP 2075 21.87 2128 1734 17.90 28.08 39.84 36.27 3354 4950 63.04 20.86 44.68 4997 4353 33.90
+0.32 041 035 £0.30 +0.34 034 0.16 +0.13 +0.11 £0.12 +0.07 +0.33 £0.28 =*0.13 £0.03 +0.23

SAR 2038 2134 21.18 1824 1828 30.56 41.63 3857 3523 51.19 63.74 2040 4732 52.02 4481 3499

+0.10 #0.14 036 £0.18 =0.27 0.08 +0.12 +0.17 +0.28 +0.22 +0.04 020 *0.09 =*0.09 £0.19 £0.17

+ SNAP 2511 2627 2600 22.02 21.25 3351 4286 40.83 37.09 51.87 6383 2836 47.19 5263 4580 37.64

+0.23 #0331 £0.10 +0.49 0.56 031 +0.14 +0.16 0.21 £0.18 0.10 £0.29 0.34 0.06 *0.30 £0.25

ROTTA 1436 1512 1495 1330 1334 2378 3523 31.89 3033 4452 6248 1520 4050 4536 36.63 29.13

+0.04 +0.03 0.08 £0.08 +0.08 0.04 +0.05 +0.04 +0.07 #0.11 0.12 +0.01 #0.11 £0.07 #0.17 £0.07

+ SNAP 1445 1521 15.06 1335 1342 23.83 35.26 31.92 30.36 44.53 6247 1527 4050 4539 36.65 29.18

+0.04 £0.02 0.08 £0.08 =+0.07 0.04 +0.06 +0.02 +0.08 £0.10 =+0.09 +0.04 +0.10 =£0.08 *0.16 +0.07

Tent 1709 1770 17.69 1491 1525 2523 38.66 34.15 3228 4814 6265 1576 4344 49.14 41.18 3155

+0.14 #0.10 0.13 £0.23 x0.09 025 +0.27 +027 021 #021 0.16 048 £0.23 £0.04 #0.10 £0.19

+ SNAP 20.66 21.73 21.55 1846 18.28 29.88 40.63 36.97 3489 4985 6429 22.64 4513 50.77 4317 34.59

+0.02 £0.12 +0.18 £0.34 +0.33 +0.12 +0.14 021 +0.10 £0.26 +0.10 +0.14 £0.29 £0.07 £0.51 +0.19

COTTA 11.11 1324 1186 10.85 1097 22.18 34.96 30.88 29.63 44.09 61.71 12.81 40.16 45.14 3673 2775

+0.61 £0.12 +0.65 £0.59 =098 +0.05 +0.18 +0.14 021 #0.21 022 053 £0.20 *0.22 #0.12 +0.34

+ SNAP 15.09 16.00 1583 13.84 14.06 2470 36.47 3259 3166 4610 63.62 1560 42.03 46.74 38.17 30.17

+0.04 £0.09 0.14 £0.09 =x0.02 +0.07 £0.02 +0.11 +0.03 £0.15 +0.07 +0.06 =*0.10 =*0.01 *0.20 +0.08

EATA 1485 1561 1569 1326 1337 2372 36.18 3257 3114 4606 6235 13.88 4191 47.00 3888 29.76

0.01 +0.13 £0.21 021 #0.04 =0.06 0.19 +0.13 +0.09 #0.06 *029 £0.09 +035 +0.17 #0.15 *0.09 #0.15
. + SNAP 1673 17.55 1730 1435 14.64 2413 36.83 32.81 31.09 46.63 6220 1526 4234 4744 3981 30.61
+0.12 £0.10 £0.19 +0.09 0.10 *0.36 +0.23 +0.08 +0.10 £0.19 =0.16 *0.54 0.12 *0.18 £0.34 £0.19

SAR 16.08 17.04 16.69 1472 1478 2592 3785 3407 3225 47.66 63.15 1720 43.05 4878 40.14 31.29

+0.08 +0.07 #0.10 #0.16 =0.12 0.13 +0.05 +0.24 #0.11 0.13 #0.05 +0.15 +020 #0.09 020 #0.13

+ SNAP 1889 1945 1970 16.70 16.55 27.69 38.57 3534 33.09 48.08 63.04 2039 4295 4876 40.99 32.68

+0.15 £0.15 0.12 £0.14 =0.15 +0.16 +0.11 +0.22 +0.09 £0.31 £0.07 £0.12 £0.29 £0.26 *0.33 £0.18

ROTTA 1430 1506 1489 1330 13.37 2378 3522 3179 3027 4440 6240 15.16 4042 4527 3654 29.08

+0.05 £0.03 0.07 £0.07 =x0.08 0.04 +0.06 +0.04 006 =#0.14 =0.11 006 *0.10 =*0.05 =*0.16 +0.07

+ SNAP 1430 1507 1492 1330 1338 23.78 3522 3178 3026 4441 6240 1515 4043 4527 3654 29.08

+0.06 £0.03 +0.08 £0.08 =+0.07 0.04 +0.06 +0.04 +0.07 £0.14 =+0.11 +0.05 £0.09 =£0.04 £0.15 £0.07

C.4 Additional results on ablation study

In this section, we provide additional details on the ablation study to evaluate the contributions of the
CnDRM and IoBMN components in SNAP. Specifically, we measured the average accuracy across
15 corruption types on CIFAR10-C and CIFAR100-C datasets under varying adaptation rates (0.3,
0.1, 0.05) to thoroughly assess the effectiveness of each component.

Tables 28 and 29 summarize the results for different combinations of CnDRM and IoBMN across
these adaptation rates. The results indicate that the combination of CnDRM (Class and Domain
Representative sampling) and IoBMN (inference using memory statistics corrected to match the test
batch) consistently yields the highest accuracy. This trend is observed across all evaluated adaptation
rates, suggesting that both components contribute significantly to enhancing adaptation performance.

Moreover, individual evaluations show that each component has a distinct positive effect, as evidenced
by consistently higher accuracy compared to using no adaptation or only a single component. This
emphasizes the complementary nature of CnDRM and IoBMN, which together provide robust
adaptation capabilities for domain-shifted scenarios. These tables provide further insight into the
benefits of each configuration and how the synergy of CnDRM and IoBMN results in improved
robustness against various corruptions.

35

Table 28: STTA classification accuracy (%) of ablative settings on the CIFAR10-C, adaptation rate
(AR) 0.3, 0.1, and 0.05. Averaged over all 15 corruptions. Bold numbers are the highest accuracy.

AR Methods Tent CoTTA EATA SAR RoTTA
Naive 78.86 +£0.12 69.75 +0.08 79.02 +o.14 77.83 £0.11 75.39 £0.09
Random 78.90 £0.15 66.04 +0.10 78.97 +0.13 77.77 +0.12 75.06 £0.07
LowEntropy 78.68 +0.11 63.74 +o0.16 78.42 £0.09 76.21 £0.10 72.83 +0.14
0.3 CRM 80.32 +0.07 66.50 +0.12 80.14 +0.08 75.78 £0.13 75.49 +0.06
CnDRM 79.62 +0.13 77.68 +0.10 79.63 +0.12 78.22 +0.09 75.85 +0.08
CnDRM+EMA 80.96 +0.06 72.42 £+0.14 80.27 +0.11 78.19 +0.13 76.73 £0.07
CnDRM+IoBMN 81.23 +0.09 78.75 +0.10 81.30 +0.07 79.77 +0.08 77.41 +0.06
Naive 76.81 £0.18 66.42 +0.12 76.29 +o.11 76.01 £0.07 74.78 +0.15
Random 77.08 +0.14 65.61 +0.08 76.59 £0.10 76.33 +0.13 75.01 +0.16
LowEntropy 75.66 +0.09 63.19 +0.14 74.89 +0.12 74.41 +0.18 72.60 +o0.10
0.1 CRM 77.77 £0.05 65.71 +0.19 77.18 £0.08 74.36 +0.11 75.27 £0.17
CnDRM 77.46 £0.07 77.69 +0.10 77.17 £0.06 76.85 £0.09 75.64 +0.08
CnDRM+EMA 78.02 +0.12 72.19 +0.15 77.05 +o0.11 76.84 +0.13 76.18 £0.05
CnDRM-+IoBMN 78.95 +0.09 78.83 +0.06 78.61 +0.13 78.06 +0.07 77.07 +0.10
Naive 75.75 +0.18 67.22 +0.12 75.55 +o0.14 75.25 +0.17 74.80 +0.11
Random 75.82 +0.13 65.90 +0.21 75.56 +0.16 75.27 +0.15 74.91 +0.10
LowEntropy 74.07 £0.20 64.08 +0.25 73.73 £0.19 73.58 £0.22 72.83 +0.14
0.05 CRM 76.55 +0.11 66.14 +0.17 76.06 +0.13 74.02 £0.15 75.23 £0.09
CnDRM 76.53 +0.14 77.67 +0.16 76.29 +0.18 76.18 +0.12 75.61 +0.13
CnDRM+EMA 76.86 +0.10 71.69 +0.19 75.98 +o0.15 75.43 +0.14 75.95 +0.11
CnDRM+IoBMN 77.93 +0.09 78.73 +0.13 77.76 +0.12 77.21 +0.11 77.05 +0.08

Table 29: STTA classification accuracy (%) of ablative settings on the CIFAR100-C, adaptation rate
(AR) 0.3, 0.1, and 0.05. Averaged over all 15 corruptions. Bold numbers are the highest accuracy.

AR Methods Tent CoTTA EATA SAR RoTTA
Naive 53.36 £0.22 39.11 +0.17 49.97 +0.19 56.65 £0.20 49.84 +0.18
Random 53.00 +0.24 33.49 +0.21 49.24 +0.17 56.06 +0.26 49.00 +0.16
LowEntropy 53.53 +0.20 32.29 £0.28 45.51 +0.23 55.84 +0.22 44.77 +0.19
0.3 CRM 54.21 +0.18 32.86 +0.24 47.42 +0.20 56.40 +0.19 46.68 +0.17
CnDRM 55.15 +0.21 50.02 +0.14 51.36 +0.16 57.72 +0.18 50.74 +0.15
CnDRM+EMA 55.39 +o0.16 41.34 +0.20 50.11 +0.19 57.68 +0.21 49.88 +0.17
CnDRM+IoBMN 57.27 +0.13 50.32 +0.15 52.19 +0.14 58.44 +0.16 51.55 +0.12
Naive 52.84 +0.19 35.86 +0.23 49.70 +0.18 53.49 +0.21 49.11 +0.17
Random 52.68 £0.22 33.18 +0.26 49.39 40.20 53.42 +0.18 48.84 +0.14
LowEntropy 51.76 +0.20 32.30 £0.28 46.03 +0.23 52.15 +0.24 45.18 +0.19
0.1 CRM 52.43 +0.17 32.54 +0.25 47.68 +0.21 53.12 +0.20 47.01 +0.16
CnDRM 54.46 +0.16 50.06 +0.13 51.41 +0.19 55.24 +0.14 50.47 +0.12
CnDRM+EMA 54.36 +0.15 41.63 +0.22 50.21 +0.18 54.84 +0.17 49.95 +0.13
CnDRM+IoBMN 55.84 +0.14 50.52 +0.11 52.35 +0.15 55.76 +0.13 51.33 +0.10
Naive 51.24 +0.18 33.20 +0.25 49.81 +0.16 51.50 +0.21 49.12 +0.19
Random 51.35 +0.20 33.71 +0.22 49.57 +0.17 51.48 +0.20 48.98 +0.15
LowEntropy 49.79 +0.24 32.36 +£0.26 46.65 +0.19 49.51 +0.23 45.41 +0.18
0.05 CRM 50.17 +0.19 32.74 +0.27 47.47 +0.20 50.49 +0.22 46.58 +0.16
CnDRM 52.86 +0.14 50.08 +0.13 51.47 +0.17 53.09 +0.15 50.44 +0.13
CnDRM+EMA 52.68 +0.13 41.43 +0.21 50.32 +0.18 52.80 +0.17 50.04 +0.14
CnDRM+IoBMN 54.13 +o0.11 50.63 +0.14 52.43 +o.16 53.59 +o0.12 51.41 +o0.10

D License of assets

Datasets CIFAR10/CIFAR100 (MIT License), CIFAR10-C/CIFAR100-C (Creative Commons
Attribution 4.0 International), ImageNet-C (Apache 2.0), and ImageNet-R/Scketch (MIT License).

Codes Torchvision for ResNet18, ResNet50, and VitBase-LN (Apache 2.0), the official repository
of CoTTA (MIT License), the official repository of Tent (MIT License), the official repository of
EATA (MIT License), the official repository of SAR (BSD 3-Clause License), the official repository
of RoTTA (MIT License), the official repository of T3A (MIT License), the official repository of
FOA (NTUITIVE License) and the official repository of MECTA (Sony Al).

36

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction accurately reflect the paper’s
contributions and are supported by the presented results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section 6.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

37

Justification: No theoretical result.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experimental details for reproducibility are provided in Section 5 and Ap-
pendix A. Also, we provided source code in the supplemental material.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

38

Answer: [Yes]

Justification: Anonymized source code and instructions are provided in the supplemen-
tary material. The complete codebase and scripts will be made publicly available upon
publication.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Details are provided in Section 5 and Appendix A.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experiments were conducted using three random seeds (0, 1, and 2), and
the corresponding standard deviations are reported and visualized as error bars. Note that
standard deviations omitted from Table 1 are reported in Appendix C. Detailed descriptions
are provided in Section 5 and Appendix A.

Guidelines:

» The answer NA means that the paper does not include experiments.

¢ The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

39

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details are provided in Section 5 and Appendix A.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Ensure that our work adheres to the NeurIPS Code of Ethics.
Guidelines:
» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Potential societal impacts are described in Section 6.
Guidelines:
» The answer NA means that there is no societal impact of the work performed.
* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations

(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

40

https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No such components.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All licenses and credits are described in Appendix D.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

41

paperswithcode.com/datasets

13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets are introduced.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing or human-subject experiments were required.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No IRB approvals were required.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

42

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: No LLMs were used in this research components.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

43

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related work
	Preliminaries
	Methodology
	Class and Domain Representative Memory
	Inference-only Batch-aware Memory Normalization

	Experiments
	Discussion and conclusion
	Experiment details
	Baseline implementation details

	Additional discussions
	Theoretical analysis on class and domain representative sampling criteria
	Assumptions and derivation of the Wasserstein formulation
	Comparison with prior TTAs under sparse update constraints
	Domain influence in early layer representations
	Analysis on confidence threshold on pseudo-label accuracy
	Latency tracking of SNAP on diverse edge-devices
	Memory overhead of SNAP
	Integration of SNAP with memory-efficient TTA algorithm
	Modification for layer normalization of Vision Transformer
	Comparison with forward-only TTA methods
	Robustness in challenging out-of-distribution domains
	Efficient strategy for re-calculation of sample's distance
	Strategy for continuous domain shift setting
	Robustness under persistent distribution shifts
	Robustness in single-sample (BS=1) adaptation scenario
	Impact of memory size on SNAP performance
	Effect of learning rate on sparse and full adaptation
	Evaluation on real-world sensor data

	Detailed experiment results
	CIFAR10-C
	CIFAR100-C
	ImageNet-C
	Additional results on ablation study

	License of assets

