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ABSTRACT

Conveying complex objectives to reinforcement learning (RL) agents often re-
quires meticulous reward engineering. Preference-based RL methods are able
to learn a more flexible reward model based on human preferences by actively
incorporating human feedback, i.e. teacher’s preferences between two clips of
behaviors. However, poor feedback-efficiency still remains a problem in current
preference-based RL algorithms, as tailored human feedback is very expensive.
To handle this issue, previous methods have mainly focused on improving query
selection and policy initialization. At the same time, recent exploration methods
have proven to be a recipe for improving sample-efficiency in RL. We present an
exploration method specifically for preference-based RL algorithms. Our main
idea is to design an intrinsic reward by measuring the novelty based on learned
reward. Specifically, we utilize disagreement across ensemble of learned reward
models. Our intuition is that disagreement in learned reward model reflects un-
certainty in tailored human feedback and could be useful for exploration. Our
experiments show that reward uncertainty exploration improves both feedback-
and sample-efficiency of preference-based RL algorithms on complex robot ma-
nipulation tasks from Meta-World benchmarks, compared with other existing ex-
ploration methods that measure the novelty of state visitation.

1 INTRODUCTION

In reinforcement learning (RL), reward function specifies correct objectives to RL agents. How-
ever, it is difficult and time-consuming to carefully design suitable reward functions for a variety of
complex behaviors (e.g., cooking or book summarization (Wu et al., 2021)). Furthermore, if there
are complicated social norms we want RL agents to understand and follow, conveying a reliable re-
ward function to include such information may remain to be an open problem (Amodei et al., 2016;
Hadfield-Menell et al., 2017). Overall, engineering reward functions purely by human efforts for all
tasks remains to be a significant challenge.

An alternative to resolve the challenge of reward engineering is preference-based RL (Christiano
et al., 2017; Ibarz et al., 2018; Lee et al., 2021b). Compared to traditional RL setup, preference-
based RL algorithms are able to teach RL agents without the necessity of designing reward functions.
Instead, the agent uses feedback, usually in the form of (human) teacher preferences between two
behaviors, to learn desired behaviors indicated by teacher. Therefore, instead of using carefully-
designed rewards from the environment, the agent is able to learn a more flexible reward function
suitably aligned to teacher feedback.

However, preference-based RL usually requires a large amount of teacher feedback, which may
be timely or sometimes infeasible to collect. To improve feedback-efficiency, prior works have
investigated several sampling strategies (Biyik & Sadigh, 2018; Sadigh et al., 2017; Biyik et al.,
2020; Lee et al., 2021c). These methods aim to select more informative queries to improve the
quality of the learned reward function while asking for fewer feedback from teacher. Another line of
works focus on policy initialization. Ibarz et al. (2018) initialized the agent’s policy with imitation
learning from the expert demonstrations, and Lee et al. (2021b) utilized unsupervised pre-training
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Figure 1: Illustration of RUNE. The agent interacts with the environment and learns an ensemble
of reward functions based on teacher preferences. For each state-action pair, the total reward is a
combination of the extrinsic reward, the mean of the ensemble’s predicted values, and the intrinsic
reward, the standard deviation between the ensemble’s predicted values.

of RL agents before collecting for teacher preferences in the hope of learning diverse behaviors in a
self-supervised way to reduce total amount of human feedback.

Exploration, in the context of standard RL, has addressed the problems of sample-efficiency (Stadie
et al., 2015; Bellemare et al., 2016; Pathak et al., 2017; 2019; Liu & Abbeel, 2021; Seo et al., 2021b).
When extrinsic rewards from the environment is limited, exploration has been demonstrated to allow
RL agents to learn diverse behaviors. However, limited previous works have studied the effects of
exploration in preference-based RL.

Inspired by the impact of exploration, we present RUNE: Reward UNcertainty for Exploration, a
simple and efficient exploration method specifically for preference-based RL algorithms. Our main
idea is to incorporate uncertainty from learned reward function as an exploration bonus. Specifi-
cally, we capture the novelty of human feedback by measuring the reward uncertainty (e.g., variance
in predictions of ensemble of reward functions). Since reward functions is optimized and learned
to align to human feedback, exploration based on reward uncertainty may also reflect high uncer-
tainty in information from teacher feedback. We hope that the proposed intrinsic reward contains
information from teacher feedback and can guide exploration that better align to human prefer-
ences. Our experiment results show that RUNE can improve both sample- and feedback-efficiency
of preference-based RL algorithms (Lee et al., 2021b).

We highlight the main contributions of our paper below:

• For preference-based RL, we propose a new exploration method based on uncertainty in learned
reward functions.

• For the first time, we show that exploration can improve the sample- and feedback-efficiency of
preference-based RL algorithms.

2 RELATED WORK

Human-in-the-loop reinforcement learning. We mainly focus on one promising direction that uti-
lizes the human preferences (Akrour et al., 2011; Christiano et al., 2017; Ibarz et al., 2018; Lee et al.,
2021b; Leike et al., 2018; Pilarski et al., 2011; Wilson et al., 2012) to train RL agents. Christiano
et al. (2017) scaled preference-based learning to utilize modern deep learning techniques, and Ibarz
et al. (2018) improved the efficiency of this method by introducing additional forms of feedback
such as demonstrations. Recently, Lee et al. (2021b) proposed a feedback-efficient RL algorithm by
utilizing off-policy learning and pre-training.

To improve sample- and feedback-efficiency of human-in-the-loop RL, previous works (Christiano
et al., 2017; Ibarz et al., 2018; Lee et al., 2021b; Leike et al., 2018) mainly focus on methods such
as selecting more informative queries Christiano et al. (2017) and pre-training of RL agents Ibarz
et al. (2018); Lee et al. (2021b). We further investigate effects of different exploration methods
in preference-based RL algorithm. We follow a common approach of exploration methods in RL:
generating intrinsic rewards as exploration bonus Pathak et al. (2019). Instead of only using learned
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reward function from human feedback as RL training objective, we alter the reward function to
include a combination of the extrinsic reward (the learned rewards) and an intrinsic reward (explo-
ration bonus). In particular, we present an exploration method with intrinsic reward that measures
the disagreement from learned reward models.

Exploration in reinforcement learning. The trade off between exploitation and exploration is a
critical topic in RL. If agents don’t explore enough, then they may learn sub optimal actions. Explo-
ration algorithms aim to encourage the RL agent to visit a wide range of states in the environment.
Thrun (1992) showed that exploration methods that utilize the agent’s history has been shown to
perform much better than random exploration. Hence, a common setup is to include an intrinsic re-
ward as an exploration bonus. The intrinsic reward can be defined by Count-Based methods which
keep count of previously visited states and rewards the agents for visiting new states Bellemare et al.
(2016); Tang et al. (2017); Ostrovski et al. (2017).

Another option is to use a curiosity bonus for the intrinsic reward Houthooft et al. (2016); Pathak
et al. (2017); Sekar et al. (2020). Curiosity represents how expected and unfamiliar the state is. One
way to quantify curiosity is to predict the next state from current state and action Pathak et al. (2017),
then use prediction error as an estimate of curiosity. If the error is high, that means the next state is
unfamiliar and should be explored more. Similarly, instead of predicting the next state, prediction
errors from training a neural network to approximate a random function Burda et al. (2018) can serve
as a valid estimate of curiosity. If there are multiple models, then curiosity can also be described
as the disagreement between the models Pathak et al. (2019). A high disagreement means that the
models are unsure about the prediction and need to explore in that direction more.

A different approach maximizes the entropy of visited states by incorporating state entropy into
the intrinsic reward. State entropy can be estimated by approximating the state density distribution
Hazan et al. (2019); Lee et al. (2019), approximating the k-nearest neighbor entropy of a randomly
initialized encoder Seo et al. (2021a), or using off-policy RL algorithms to maximize the k-nearest
neighbor state entropy estimate in contrastive representation space for unsupervised pre-training
Srinivas et al. (2020); Liu & Abbeel (2021). These methods all encourage agents to explore diverse
states.

Our approach adds an intrinsic reward that drives exploration to preference-based RL algorithms.
We take advantage of an ensemble of reward models in preference-based RL algorithms, which is
not available in other traditional RL settings. To estimate novelty of states and actions, we utilize the
disagreement between reward models for our intrinsic reward, in hope of encouraging exploration
aligned to directions of human preferences.

Trajectory generation in preference-based reinforcement learning. Previous works in
preference-based reinforcement learning have investigated several methods to better explore diverse
trajectories but close to current optimal policy Wirth et al. (2017).

One line of works computes agent’s stochastic policies that are slightly deviated from optimal poli-
cies. Christiano et al. (2017) uses Trust Region Policy Optimization (TRPO) Schulman et al. (2015)
and synchronized A3C Mnih et al. (2016). These RL algorithms define stochastic policies to en-
sure exploration of action space and deviations from optimal policies. However, these exploration
methods based on stochastic RL algorithms does not include information from human preferences
to drive exploration.

Another line of works designs one or multiple criterion to select from multiple possible stochastic
policy candidates. Wilson et al. (2012) proposes to sample several policies from posterior distribu-
tion of policy space after updating human preferences. However, such methods come a the cost of
requiring many samples collected beforehand. While these methods similarly aims to reduce un-
certainty in human preferences, RUNE uses a different metric to estimate such uncertainty through
reward functions ensemble. This is different from previous works and is simple, scalable, and easy
to implement.

A different approach allows human to guide exploration by directly providing additional trajectories.
Zucker et al. (2010) proposes a user-guided exploration method that shows samples of trajectories
to human. Human can provide additional feedback to guide exploration. While this method receives
exact information from human, it requires additional human labels, which are usually expensive
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and time-consuming to collect. RUNE however tries to extract information from human feedback
revealed in learned reward functions, which doesn’t require additional human input.

3 PRELIMINARIES

Preference-based reinforcement learning. We consider an agent interacting with an environment
in discrete time Sutton & Barto (2018). At each timestep t, the agent receives a state st from the
environment and chooses an action at based on its policy π.

In traditional reinforcement learning, the environment also returns a reward r(st,at) that evaluates
the quality of agent’s behavior at timestep t. The goal of agent is to maximize the discounted sum
of rewards. However, in the preference-based RL framework, we don’t have such a reward function
returned from the environment. Instead, a (human) teacher provides preferences between the agent’s
behaviors and the agent learns its policy from feedbacks (Christiano et al., 2017; Ibarz et al., 2018;
Lee et al., 2021b; Leike et al., 2018).

Formally, a segment σ is a sequence of time-indexed observations and actions
{(s1,a1), ..., (sH ,aH)}. Given a pair of segments (σ0, σ1) that describe two behaviors, a
teacher indicates which segment is preferred, i.e., y = (σ0 � σ1) or (σ1 � σ0), that the two
segments are equally preferred y = (σ1 = σ0), or that two segments are incomparable, i.e.,
discarding the query. The goal of preference-based RL is to train an agent to perform behaviors
desirable to a human teacher using as few feedback as possible.

In preference-based RL algorithms, a policy πφ and reward function r̂ψ are updated as follows:

• Step 1 (agent learning): The policy πφ interacts with environment to collect experiences and
we update it using existing RL algorithms to maximize the sum of the learned rewards r̂ψ .

• Step 2 (reward learning): The reward function r̂ψ is optimized based on the feedback received
from a teacher.

• Repeat Step 1 and Step 2.

To incorporate human preferences into reward learning, we optimize reward function r̂ψ as follows.
Following the Bradley-Terry model (Bradley & Terry, 1952), we first model preference predictor of
a pair of segments based on reward function r̂ψ as follows:

Pψ[σ
1 � σ0] =

exp
∑
t r̂ψ(s

1
t ,a

1
t )∑

i∈{0,1} exp
∑
t r̂ψ(s

i
t,a

i
t)
, (1)

where σi � σj denotes the event that segment i is preferable to segment j. Here, the intuition is
that segments with more desirable behaviors should have higher predicted reward values from r̂ψ .
To align preference predictors of r̂ψ with labels received from human preferences, preference-based
RL algorithms translate updating reward function to a binary classification problem. Specifically,
the reward function r̂ψ parametrized by ψ is updated to minimize the following cross-entropy loss:

LReward = − E
(σ0,σ1,y)∼D

[
I{y = (σ0 � σ1)} logPψ[σ0 � σ1] + I{y = (σ1 � σ0)} logPψ[σ1 � σ0]

]
.

(2)

where we are given a set D of segment pairs and corresponding human preferences.

Once reward function r̂ψ has been optimized from human preferences, preference-based RL al-
gorithms train RL agents with any existing RL algorithms, treating predicted rewards from r̂ψ as
reward function returned from the environment.

4 RUNE

In this section, we present RUNE: Reward UNcertainty for Exploration (Figure 1), which encour-
ages human-guided exploration for preference-based RL. The key idea of RUNE is to incentivize
exploration by providing an intrinsic reward based on reward uncertainty. Our main hypothesis
is that the reward uncertainty captures the novelty of human feedback, which can lead to useful
behaviors for preference-based RL.
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(a) Door Close (b) Door Open (c) Drawer Open

Figure 2: Rendered images of robotic manipulation tasks from Meta-world. We consider learning
several manipulation skills using preferences from a teacher.

4.1 REWARD UNCERTAINTY FOR EXPLORATION

In preference-based RL, capturing the novelty of human feedback can be crucial for efficient re-
ward learning. To this end, we propose to utilize an intrinsic reward based on ensemble of reward
functions. Specifically, for each timestep, the intrinsic reward is defined as follows:

rint (st,at) := r̂std(st,at), (3)

where r̂std is the empirical standard deviation of all reward functions {r̂ψi
}Ni=1. We initialize the

model parameters of all reward functions with random parameter values for inducing an initial di-
versity. Here, our intuition is high variance of reward functions indicates high uncertainty from
human preferences, which means we collected less teacher preferences on those states and actions.
Therefore, in order to generate more informative queries and improve confidence in learned re-
ward functions, we encourage our agent to visit more uncertain state-action pairs with respect to the
learned reward functions.

We remark that exploration based on ensembles has been studied in the literature (Osband et al.,
2016; Chen et al., 2017; Pathak et al., 2019; Lee et al., 2021a). For example, Chen et al. (2017)
proposed an exploration strategy that considers both best estimates (i.e., mean) and uncertainty
(i.e., variance) of Q-functions and Pathak et al. (2019) utilized the disagreement between forward
dynamics models. However, our method is different in that we propose an alternative intrinsic reward
based on reward ensembles, which can capture the uncertainty from human preferences.

4.2 TRAINING OBJECTIVE BASED ON INTRINSIC REWARDS

Once we learn reward functions {r̂ψi
}Ni=1 from human preferences, agent is usually trained with RL

algorithm guided by extrinsic reward:

rext(st,at) = r̂mean(st,at), (4)

where r̂mean is the empirical mean of all reward functions {r̂ψi}Ni=1. To encourage exploration, we
train a policy to maximize the sum of both extrinsic reward and intrinsic reward in equation 3:

rtotalt := rext(st,at) + βt · rint(st,at), (5)

where βt ≥ 0 is a hyperparameter that determines the trade off between exploration and exploitation
at training time step t. Similar to Seo et al. (2021b), we use an exponential decay schedule for βt
throughout training to encourage the agent to focus more on extrinsic reward from learned reward
function predictions as training proceeds, i.e., βt = β0(1− ρ)t, where ρ is a decay rate.

While the proposed intrinsic reward would converge to 0 as more feedback queries are collected
during training, we believe our learned reward functions improve over training as we collect more
feedback queries from teacher preferences. The full procedure of RUNE is summarized in Algo-
rithm 1.

5 EXPERIMENTS

We designed our experiments to answer the following questions:
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(b) Door Open (feedback = 5K)
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(c) Drawer Open (feedback = 10K)

Figure 3: Learning curves on robotic manipulation tasks as measured on the success rate. Ex-
ploration methods consistently improves the sample-efficiency of PEBBLE. In particular, RUNE
provides larger gains than other existing exploration baselines. The solid line and shaded regions
represent the mean and standard deviation, respectively, across five runs.

• Can exploration methods improve the sample- and feedback-efficiency of preference-based
RL algorithms?

• How does RUNE compare to other exploration schemes in preference-based RL setting?
• How does RUNE influence query selection and reward learning?

5.1 SETUP

In order to verify the efficacy of exploration in preference-based RL, we focus on having an agent
solve a range of complex robotic manipulation skills from Meta-World (Yu et al., 2020) (see Fig-
ure 2). Similar to prior works (Christiano et al., 2017; Lee et al., 2021b;c), the agent learns to
perform a task only by getting feedback from a scripted teacher that provides preferences between
trajectory segments according to the ground truth reward function. Because the simulated human
teacher’s preferences are generated by a ground truth reward, we measure the true average return of
trained agents as evaluation metric.

For our method, we consider a combination of RUNE and PEBBLE (Lee et al., 2021b), a
preference-based RL algorithm that utilizes unsupervised pre-training and soft actor-critic (SAC)
method (Haarnoja et al., 2018) (see Appendix A for more details about algorithm procedure and
Appendix B for more experimental details). For all experiments, we use original hyperparameters
of preference-based RL algorithm; we train an ensemble of 3 reward functions according to Equation
2; we report mean and standard deviations across 5 runs respectively.

5.2 IMPROVING SAMPLE-EFFICIENCY

To evaluate sample-efficiency of our method, we compare to the following exploration methods:

• State entropy maximization (StateEnt; Mutti et al. 2021; Liu & Abbeel 2021): Maximizing
the entropy of state visitation distribution H(s). We utilize a particle estimator (Singh
et al., 2003), which approximates the entropy by measuring the distance between k-nearest
neighbors (k-NN) for each state.

• Disagreement (Pathak et al. (2019)): Maximizing disagreement proportional to vari-
ance in predictions from ensembles V ar{gi(st+1|st,at)}Ni=1. We train an en-
semble of forward dynamics models to predict ground truth next state from cur-
rent state and action gi(st+1|st,at) by minimizing sum of prediction errors, i.e.∑N
i=1 ||gi(st+1|st,at)− st+1||2.

• ICM (Pathak et al. (2017)): Maximizing intrinsic reward proportional to prediction error
||g(st+1|st,at) − st+1||2. We train a single dynamics model to predict ground truth next
state from current state and action g(st+1|st,at) via regression.

For all methods we consider, we carefully tune a range of hyperparameters and report the best results.
In particular, we consider β0 = 0.05 and ρ ∈ {0.001, 0.0001, 0.00001} for all exploration methods,
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Task Queries Method Final Convergence Success Rate

Door Close
1000 PEBBLE 1 (± 0)

PEBBLE + RUNE 1 (± 0)

500 PEBBLE 0.8 (± 0.4)
PEBBLE + RUNE 1 (± 0)

Door Open
4000 PEBBLE 1 (± 0)

PEBBLE + RUNE 1 (± 0)

2000 PEBBLE 0.9 (± 0.2)
PEBBLE + RUNE 1 (± 0)

Drawer Open
10000 PEBBLE 0.98 (± 0.08)

PEBBLE + RUNE 1 (± 0)

5000 PEBBLE 0.94 (± 0.08)
PEBBLE + RUNE 0.99 (± 0.02)

Sweep Into
10000 PEBBLE 0.8 (± 0.4)

PEBBLE + RUNE 1 (± 0)

5000 PEBBLE 0.8 (± 0.08)
PEBBLE + RUNE 0.9 (± 0.14)

Window Close
1000 PEBBLE 0.94 (± 0.08)

PEBBLE + RUNE 1 (± 0)

500 PEBBLE 0.86 (± 0.28)
PEBBLE + RUNE 0.99 (± 0.02)

Door Unlock
5000 PEBBLE 0.66 (± 0.42)

PEBBLE + RUNE 0.8 (± 0.4)

2500 PEBBLE 0.64 (± 0.45)
PEBBLE + RUNE 0.8 (± 0.4)

Table 1: Success rate of PEBBLE and PEBBLE + RUNE with different budgets of feedback queries.
The results show the mean averaged and standard deviation computed over five runs and the best
results are indicated in bold. All learning curves (including means and standard deviations) are in
Appendix C.

and k ∈ {5, 10} for state entropy based exploration. For all experiements, we train an ensemble of 3
reward functions according to Equation 2 respectively. We provide more details about training and
implementation in Appendix B.

Figure 3 shows the learning curves of PEBBLE with various exploration methods. First, we remark
that previous exploration methods (i.e., StateEnt, Disagree and ICM), which encourage agents to
visit novel states, consistently improve sample-efficiency of PEBBLE on various tasks. In particular,
the proposed exploration method (i.e., RUNE) consistently exhibits superior sample efficiency in
most tasks. This further demonstrates that exploration based on reward uncertainty is suitable for
preference-based RL algorithms, as such it can capture the novelty of human feedback. We also
emphasize the simplicity and efficiency of RUNE compared to other existing schemes (such as ICM
and Disagree) because our method does not introduce additional model architectures (e.g., ensemble
of forward dynamics models).

5.3 IMPROVING FEEDBACK-EFFICIENCY

In this section, we also verify whether our proposed exploration method can improve the feedback-
efficiency of preference-based RL. As shown in Table 1, we compare performance PEBBLE and
RUNE using different budgets of feedback queries during training. With fewer total queries, we
stop asking for human preferences earlier in the middle of training. We use asymptotic success
rate evaluated at the end of training as evaluation metric. Table 1 suggests that RUNE achieves
consistently better asymptotic performance using fewer number of human feedback; additionally
RUNE has more robust performance with respect to different budgets of available human feedbacks.
This shows potential of exploration in scaling preference-based RL to real world scenarios where
human feedback are usually expensive and time-consuming to obtain. We report corresponding
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Figure 4: Ablation study on (a)/(c) Door Open (feedback = 5K) and (b) Window Close. (a) Effects
of different number of learned reward model ensembles on RUNE. (b) Effects of different number
of queries received per feedback session on PEBBLE and RUNE. (c) We measure average value
of disagreement over 50 selected queries per feedback session. The solid line and shaded regions
represent the mean and standard deviation, respectively, across five runs.

learning curves to show better sample efficiency of RUNE compared to PEBBLE in Figure 7 of
Appendix C.

5.4 ABLATION STUDY

Ensemble size. As intrinsic rewards of RUNE only depend on learned reward functions, we investi-
gate the effects of different number of reward function ensembles. In particular, we consider {3, 5, 7}
number of reward function ensembles. In Figure 4(a), RUNE can achieve better sample-efficiency
in preference-based RL while learning fewer number of reward functions ensembles. This shows
potentials of RUNE specifically suitable for preference-based RL in improving compute efficiency
because it reduces the necessity of training additional reward functions architectures.

Number of queries per feedback session. Human preferences are usually expensive and time-
consuming to collect. As shown in Table 1, RUNE is able to achieve better asymptotic performance
under different budgets of total human preferences. We further investigate the effects of different
queries in each feedback session on performance of PEBBLE and RUNE. In particular, we consider
{10, 50} number of queries per feedback session equally spread out throughout training. In Figure
4(b), as 80% of feedbacks are eliminated, asymptotic success rate of PEBBLE baseline largely drops,
while in contrast RUNE remains stable asymptotic performance. This shows RUNE is more robust
to different number of available feedback queries and thus a suitable exploration method specifically
for preference-based RL setting.

Disagreement level of selected feedback queries. To improve the feedback-efficiency, many
preference-based RL algorithms (Christiano et al., 2017; Lee et al., 2021c) utilize an uncertainty
sampling scheme, which selects queries with high uncertainty. To understand whether RUNE can
change query selection, we measure average uncertainty value of 50 selected queries per feedback
session in Door Open.

Specifically, we measure the disagreement value of a segment pair (σ0, σ1) is introduced in Chris-
tiano et al. (2017). For each learned reward function r̂ψi

, we model a preference predictor
Pψi [σ

1 � σ0] between (σ0, σ1) from r̂ψi based on Equation 1. An ensemble of reward functions
{r̂ψi
}Ni=1 predicts preferences {Pψ1

[σ1 � σ0], ..., PψN
[σ1 � σ0]} from (σ0, σ1). Disagreement

level of (σ0, σ1) is defined as variance of preference predictions from learned reward functions,
i.e. V ar{Pψ1

[σ1 � σ0], ..., PψN
[σ1 � σ0]}. Higher disagreement level means that learned reward

functions are uncertain to recognize which behavior is preferred in (σ0, σ1).

As in Figure 4(c), we found that average disagreement of selected queries generated by both PEB-
BLE and RUNE increase in early training and decrease at the end. While with RUNE, the curve
decreases slightly faster in the middle of training. This observation shows the possibility of faster
reward learning with RUNE. Since learned reward functions should be confident in predicting pref-
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erence between pair of segments at the end of training, faster decrease with RUNE should indicate
better reward learning in the middle of the training.

6 DISCUSSION

In this paper, we present RUNE, a simple and efficient exploration method for preference-based
RL algorithms. To improve sample- and feedback-efficiency of preference-based RL, different from
previous works, we investigate the benefits of exploration methods in preference-based RL. We show
the significant potential of incorporating intrinsic rewards to drive exploration because it improves
sample-efficiency of preference-based RL. For our proposed exploration scheme RUNE, we show
that it is useful for preference-based RL because it showcases consistently superior performance
in both sample- and feedback-efficiency compared to other existing exploration methods. Here
we emphasize that RUNE takes advantage of information in reward functions learned from human
feedback, to measure the novelty of states and actions for exploration. This is different from existing
estimates of uncertainty for exploration, as our method in particular encourages exploration aligned
to teacher preferences. In conclusion, we hope that our work could demonstrate the potential of
exploration to improve sample- and feedback-efficiency of preference-based RL, and to encourage
future works to develop novel exploration methods guided by human feedback.
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Appendix

A ALGORITHM DETAILS

RUNE. We provide the full procedure for RUNE with PEBBLE Lee et al. (2021b) in Algorithm 1.

Algorithm 1 RUNE: Reward Uncertainty for Exploration

1: Initialize policy πφ and reward model r̂ψ
2: Initialize replay buffer B
3: Unsupervised Pre-training
4: // POLICY LEARNING
5: for each training step t do
6: // REWARD LEARNING
7: if iteration % K == 0 then
8: Generate queries from replay buffer {(σ0, σ1)}Nquery

i=1 ∼ B and corresponding human
feedback (yi)

Nquery
i=1

9: Update reward model r̂ψ according to equation 2
10: // RELABEL BOTH EXTRINSIC AND INTRINSIC REWARD
11: Relabel entire replay buffer B using r̂ψ
12: Relabel extrinsic reward rextψ (sj ,aj) = r̂mean(sj ,aj)

13: Relabel intrinsic reward rintψ (sj ,aj) = r̂std(sj ,aj)
14: end if
15: // UPDATE POLICY
16: for each gradient step do
17: Sample minibatch from replay buffer {(sj ,aj , sj+1, r

ext
ψ (sj ,aj), r

int
ψ (sj ,aj)}Bj=1 ∼ B

18: Update βt ← β0(1− ρ)t
19: Let rtotalj ← rextj + βt · rintj

20: Update φ with transitions {(sj ,aj , sj+1, r
total
ψ (sj ,aj)}Bj=1

21: end for
22: // INTERACTION WITH ENVIRONMENT
23: for each timestep t do
24: Collect st+1 by taking at ∼ πφ(at|st)
25: Store transitions B ← B ∪ {(st,at, st+1, r̂ψ(st,at))}
26: end for
27: end for

Hyperparameter Value
Segment Length 50
Number of Unsupervised Pre-training Steps 9000
Interaction time 10000
Reward batch 50 (Door Close, Door Open), 100 (Drawer Open)
Total feedback 1000 (Door Close), 5000 (Door Open), 10000 (Drawer Open)
Sampling scheme Disagreement Sampling
Reward model number of layers 3
Reward model number of hidden units 256
Reward model activation functions LeakyRelu
Reward model output activation function TanH
Number of reward functions 3
Optimizer Adam (Kingma & Ba, 2015)
Initial learning rate 0.0003

Table 2: Hyperparameters of the PEBBLE algorithm.
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Hyperparameter Value Hyperparameter Value
Initial temperature 0.1 Hidden units per each layer 256
Learning rate 0.0003 Batch Size 512
Critic target update freq 2 Critic EMA τ 0.005
(β1, β2) (.9, .999) Discount γ .99
Optimizer Adam (Kingma & Ba, 2015)

Table 3: Hyperparameters of the SAC algorithm. Most hyperparameters values are unchanged across
environments with the exception for learning rate.

B EXPERIMENTAL DETAILS

B.1 TRAINING DETAILS

For our method, we use the publicly released implementation repository of the PEBBLE algorithm
(https://github.com/pokaxpoka/B_Pref) with the full list of hyperparameters specified
in Table 2 and the SAC algorithm (https://github.com/denisyarats/pytorch_sac)
with the full list of hyperparameters specified in Table 3.

B.2 IMPLEMENTATION DETAILS OF EXPLORATION METHODS

For all exploration methods, we follow implementation of the publicly release repository of RE3
(https://github.com/younggyoseo/RE3) to update policy with rtotal = rext+βt · rint.

RUNE. We emphasize one simplicity in the implementation of RUNE. Following relabeling tech-
nique in Lee et al. (2021b), after each update in reward learning step, we relabel the entire re-
play buffer B to store both predicted reward functions learned from human feedback (extrinsic
rewards rext), and uncertainty in updated reward functions (intrinsic rewards rint in RUNE). This is
because our learned reward functions parameters remain unchanged during RL training or agent
interaction with the environment between subsequent feedback sessions. Thus, in RL training,
rtotal = rext + βt · rint can be directly taken from replay buffer. As for hyperparameter related to
exploration, we consider β0 = 0.05, ρ ∈ {0.001, 0.0001, 0.00001}.
State Entropy Maximization. Seo et al. (2021b) We use intrinsic reward rint(st) = ||st−sk-NN

t ||2
followed Seo et al. (2021b) and Liu & Abbeel (2021). We use raw state space to compute entropy
values as intrinsic rewards. We use code for unsupervised pre-training from the publicly release
implementation repository of PEBBLE algorithm (https://github.com/pokaxpoka/B_
Pref) to compute k-NN and estimate state entropy. As the size of replay buffer grows signif-
icantly as training time increases, we sample a random mini-batch B′ from replay buffer B and
compute k-NN with respect to random mini-batch. We use minibatch size 512, which is reported as
a default hyperparameter in Seo et al. (2021b). As for hyperparameters related to exploration, we
consider β0 = 0.05, ρ ∈ {0.001, 0.0001, 0.00001}, and k ∈ {5, 10}.
Disagreement. Pathak et al. (2019) We train an ensemble of 5 forward dynamics model gi, fol-
lowing original results in Pathak et al. (2019). These dynamics models are trained to predict next
state st+1 based on current state and action (st,at), i.e. minimize

∑5
i=1 ||gi(st+1|st,at)− st+1||2.

We use intrinsic reward proportional to variance in ensemble of predictions rint(st,at) =
V ar{gi(st+1|st,at)}Ni=1. For consistency we use same neural network architecture and opti-
mization hyperparameters as reward functions specified in Table 2. We follow implementation
of Disagreement agent in publicly released repository URLB (https://anonymous.4open.
science/r/urlb). As for hyperparameter related to exploration, we consider β0 = 0.05,
ρ ∈ {0.001, 0.0001, 0.00001}.
ICM. Pathak et al. (2017) We train a single forward dynamics model g to predict next state
st+1 based on current state and action (st,at), i.e. minimize ||g(st+1|st,at) − st+1||2. We use
intrinsic reward proportional to prediction error of trained dynamics model, i.e. rint(st,at) =
||g(st+1|st,at)−st+1||2. For consistency we use same neural network architecture and optimization
hyperparameters as reward functions specified in Table 2. We follow implementation of ICM agent
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Figure 5: (a) RUNE achieves better sample-efficiency on manipulation tasks from Meta-World mea-
sured on the episode return. (b/c) Compare average disagreement value of selected queries by PEB-
BLE and RUNE on Door Close and Drawer Open. The solid/dashed line and shaded regions repre-
sent the mean and standard deviation, respectively, across five runs.
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(b) Door Open (feedback = 5K)
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Figure 6: Time series of normalized learned reward (blue) and the ground truth reward (red) using
rollouts from a policy optimized by RUNE.

in publicly released repository URLB (https://anonymous.4open.science/r/urlb).
As for hyperparameter related to exploration, we consider β0 = 0.05, ρ ∈ {0.001, 0.0001, 0.00001}.

C ADDITIONAL EXPERIMENT RESULTS

Improving Feedback-Efficiency. We provide additional experimental results on various tasks from
Meta-World benchmark Yu et al. (2020) using different budgets of feedback queries during training.
We report asymptotic evaluation success rate at the end of training in Table 1. Here we report
corresponding learning curves and additional results of wider choices of total feedback queries. We
observe RUNE performs consistently at least same or better than PEBBLE baseline in different tasks
with different budgets of feedback queries.

Improving Sample-Efficiency. As shown in Figure 5, RUNE outperforms other existing explo-
ration baselines measured on the episode return of Pick Place. This shows applicability of our
method on harder tasks.

Disagreement Level of Selected Queries. We provide additional analysis of selected queries by
PEBBLE and RUNE in more environments in Figure 5. There is no significant difference between
two curves, so RUNE exploration and PEBBLE generate feedback queries with similar average
disagreement values throughout training.

Reward Functions Learned by RUNE. We provide additional analysis of reward functions learned
by RUNE, compared to true reward function defined by Meta-World environments. Figure 6 demon-
strates in all tasks we consider, learned reward functions optimized by RUNE is well-aligned to true
reward from teacher feedback, because it can capture diverse patterns of true reward values from the
environment.

15

https://anonymous.4open.science/r/urlb


0.00 0.05 0.10 0.15 0.20 0.25 0.30
Environment Steps (×106)

0

20

40

60

80

100

Su
cc

es
s 

Ra
te

 (%
)

PEBBLE
PEBBLE + RUNE

(a) Door Close (feedback = 500)

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Environment Steps (×106)

0

20

40

60

80

100

Su
cc

es
s 

Ra
te

 (%
)

(b) Door Close (feedback = 250)
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(c) Door Open (feedback = 4K)
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(d) Door Open (feedback = 3K)
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(e) Door Open (feedback = 2K)
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(f) Drawer Open (feedback = 10K)
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(g) Drawer Open (feedback = 7K)
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(h) Drawer Open (feedback = 5K)
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(i) Drawer Open (feedback = 3K)
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(j) Sweep Into (feedback = 10K)
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(k) Sweep Into (feedback = 5K)
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(l) Window Close (feedback = 1K)
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(m) Window Close(feedback=500)
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(n) Door Unlock (feedback = 5K)
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(o) Door Unlock (feedback=2500)

Figure 7: RUNE performs better than PEBBLE in variety of manipulation tasks using different
budgets of feedback queries. The solid/dashed line and shaded regions represent the mean and
standard deviation, respectively, across five runs.
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