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ABSTRACT

In this paper, we propose a novel data pruning algorithm named FATB, which aims
to remove potentially redundant data and inherent noise in the original dataset dur-
ing model training, thereby identifying a core subset of data rich in informational
value necessary for effective model training. To quantify the informational con-
tent of individual samples during training, we introduce a method that compares
the loss value of each sample with the average loss of all samples, resulting in four
fundamental scenarios. These scenarios can be combined to describe the transition
process of a sample loss relative to the average loss throughout the training. The
informational value of a sample is then derived based on the influence weights as-
sociated with these four scenarios. However, computing the influence weights for
all four scenarios requires substantial computational resources. To address this
challenge, we approximate the sample transition process using a core scenario,
where the loss of a single sample transitions from above the average loss to be-
low it between adjacent phases of model training, to estimate the informational
value of the sample. Additionally, since the informational contribution of a single
sample may vary across different phases of training, we employ an early stop-
ping iteration to determine the count of such core transitions, thereby obtaining
a core subset of data enriched with high informational value for model training.
Extensive experimental results demonstrate that the proposed method effectively
eliminates redundant and noisy data, significantly enhances model performance
when training on smaller target-scale core subsets, and remains effective on large-
scale datasets.

1 INTRODUCTION

In recent years, with the continuous advancement of deep learning, large-scale datasets, which con-
tain richer information, have been widely used in model training to achieve better performance and
enable more practical applications. However, acquiring such datasets requires higher storage costs,
and training on them demands greater computational resources, which are often prohibitively ex-
pensive for many companies or institutions. Research on large datasets has revealed that they often
contain redundant data, noisy data, and other types of data that contribute minimally or even neg-
atively to model training. Therefore, developing suitable data pruning algorithms for large-scale
datasets can help remove such data, reduce model training time, lower storage and computational
costs, and maintain or only slightly compromise model performance.

According to Kaplan et al. (2020), the relationship between model performance and dataset size
follows a power law, indicating that simply following larger datasets is not optimal. Instead, a
balance must be struck between model performance and dataset size, as datasets beyond a certain
size offer diminishing returns. Thus, identifying the core subset of a large dataset is crucial to
effectively enhance model performance. Subsequently, Sorscher et al. (2022) demonstrated that
data pruning can overcome the power-law scaling limitations of test error with respect to dataset
size in neural networks. Using a teacher-student perceptron model, they proved that a well-designed
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pruning metric can achieve exponential scaling, suggesting that dataset size can be further reduced
without significant loss in model performance.

Existing data pruning algorithms can be categorized into three types based on their core param-
eters: zero-order algorithms (Toneva et al. (2018);Zhang et al. (2024);Xia et al. (2022);He et al.
(2024)), first-order algorithms (Paul et al. (2021);Tan et al. (2023);Maharana et al. (2023);Koh
et al. (2019);Zheng et al. (2022);Coleman et al. (2019)), and second-order algorithms (Yang et al.
(2022);Tan et al. (2025);Lin et al. (2024);Yang et al. (2024);Ben-Baruch et al. (2024);Chen et al.
(2024)). Algorithms later in this sequence generally require more time and computational resources.
Current research has largely focused on zero-order methods because of their efficiency and compet-
itive performance. This paper proposes a novel zero-order algorithm that requires less time and
computational resources while outperforming existing approaches. The algorithm reformulates the
data pruning problem by considering four basic scenarios derived from comparing the loss values of
individual samples with the average loss of all samples between two consecutive training iterations.
A key scenario among these is identified to efficiently solve the pruning problem. By evaluating the
information content of the samples based on this scenario, a core subset of data is selected. Since
the method relies only on the loss values and their averages from two adjacent iterations-without re-
quiring long-term loss or gradient computations-it significantly reduces time and resource demands.

Beyond high costs, current data pruning methods face additional challenges: Huang et al. (2024)
considers individual sample loss and its variation but ignores inter-sample correlations; Toneva et al.
(2018) and Paul et al. (2021) perform well at low pruning ratios but suffer sharp performance degra-
dation at high ratios, even underperforming random pruning; Tan et al. (2023) accounts for correla-
tions between samples but overlooks sample-specific dynamics during training; Zhang et al. (2024)
captures phase-wise loss changes but ignores trends. To address these issues, the proposed algorithm
compares individual sample losses with the global average loss, incorporating sample correlations.
It also uses an early stopping strategy to mitigate performance drop at high pruning ratios and lever-
ages the key scenario to capture sample-specific dynamics and trends.

In summary, the main contributions of this paper are as follows:

• We propose a novel data pruning algorithm (FATB) that reframes the pruning problem using
four basic scenarios, identifies a core scenario among them, and applies it to efficiently
prune datasets.

• The algorithm only requires comparing loss variations between consecutive iterations and
does not involve computationally expensive operations such as gradient calculations, sig-
nificantly reducing time cost. By terminating proxy model training earlier—following the
trend that lower pruning ratios correspond to later optimal phases—it further cuts training
time and enhances model performance at high pruning ratios.

• The method effectively removes redundant and noisy data across datasets with different dis-
tributions, generalizes well to various model types, and scales efficiently to large datasets,
substantially reducing training time while improving model performance.

2 RELATED WORKS

Data pruning research currently focuses on two main categories: static data pruning (also known as
coreset selection) (Toneva et al. (2018);Paul et al. (2021);Tan et al. (2023);Zhang et al. (2024);Xia
et al. (2022);Yang et al. (2022);Tan et al. (2025);He et al. (2024);Maharana et al. (2023);Marion et al.
(2023);Park et al. (2023)) and dynamic data pruning (Qin et al. (2023);Huang et al. (2024);Raju
et al. (2021);Hong et al. (2024)). Static data pruning involves first training a proxy model, then
using metrics obtained from the training process as algorithm parameters to assign scores to data
points. Samples with low scores are removed to form a new data subset. Dynamic data pruning uses
metrics obtained from earlier stages of model training as algorithm parameters to score data points.
Low-scoring samples are pruned, and the remaining samples continue training. This process forms
one cycle, which is repeated until the entire training process is complete. Whether sample scores are
recalculated in each cycle depends on the specific algorithm and scenario.

Static Data Pruning: Toneva et al. (2018) defined forgetting events and observed that certain sam-
ples are frequently forgotten while others are rarely forgotten. They proposed that removing the
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unforgettable samples can enhance training efficiency without compromising the model’s general-
ization capability. Paul et al. (2021) introduced two data pruning methods based on GraNd score
and EL2N score. The GraNd score measures a sample’s expected impact on training based on the
norm of its gradient, facilitating the early identification of important samples. The EL2N score
approximates the GraNd score more efficiently using the norm of the error between the predicted
probability and the true label, enabling effective pruning at high ratios. Tan et al. (2023) rapidly esti-
mates the MoSo score based on the alignment between a sample’s gradient and the average gradient.
This method achieves high-ratio pruning with linear complexity by evaluating a sample’s impor-
tance through its effect on the optimal empirical risk, using a first-order approximation of gradient
consistency to avoid the high cost of leave-one-out retraining.TDDS (Zhang et al. (2024)) employs
a dual-depth strategy—an inner loop assessing sample contribution and an outer loop focusing on
generalizability—to dynamically integrate sample importance throughout training, significantly im-
proving post-pruning model performance.

Dynamic Data Pruning: InfoBatch (Qin et al. (2023)) is an unbiased and lossless training accel-
eration framework based on dynamic pruning. In each iteration, it performs a random soft-pruning
on samples with losses below the average, according to a preset probability. The gradients of re-
tained low-loss samples are scaled to approximate the original gradient expectation, while the full
dataset is used in later stages to reduce variance. Huang et al. (2024) introduced the DynImpt al-
gorithm, a dynamic data selection method. After a brief warm-up phase to address cold-start, it
builds a window of recent loss values for each sample. Importance is dynamically evaluated from
three dimensions: the current loss value, the instability of recent importance (discrepancy), and the
inconsistency between individual and average importance trends. These normalized components are
equally weighted into a composite score, based on which a fixed proportion of samples near the
median within each class are selected for the next training iteration.

3 PROPOSED METHODS

3.1 PRELIMINARIES

In this paper, we denote the complete training dataset as S = {(xn,yn)}Nn=1, where xn ∈ RD

and yn ∈ R1×C are samples independently and identically distributed (i.i.d.) drawn from a natural
distributionD. The neural network model parameterized by weight matrix θ is denoted as fθ. Based
on these definitions, the optimization objective of fθ on S is to minimize the empirical risk

L(S;θ) =
1

N

N∑
n=1

ℓ(fθ(xn),yn),

where fθ(xn) ∈ R1×C outputs the predicted probabilities for each class.

Data pruning aims to construct a core data subset U = {(xm,ym)}Mm=1, where U ⊂ S, such that U
can achieve comparable performance to S. Defining the pruning ratio as pr, the size of the core data
subset U after pruning is M = N × (1− pr). The objective of data pruning can be formulated as:

E(x,y)∼D
θ0∼Pθ0

[
ℓ
(
f(U,θ0)(x),y

)]
≃ E(x,y)∼D

θ0∼Pθ0

[
ℓ
(
f(S,θ0)(x),y

)]
, (1)

where f(U,θ0) and f(S,θ0) represent the network models obtained by training on U and S, respec-
tively, using weights θ0 initialized from distribution Pθ0

.

3.2 METHOD

This paper primarily considers the scenarios involving the change in individual sample loss values
and the change in the mean loss of all samples, which can be categorized into four basic scenarios
(as shown in Figure 1).

The variation patterns throughout the entire training process can be composed of combinations of
these four basic scenarios. Instead of spending significant time determining the optimal combination
of these four basic scenarios, we can identify the most influential basic scenario among them to serve
as the core basic scenario, which approximates the optimal combination.
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Figure 1: During the model training process, the loss value of an individual sample in two consec-
utive epochs can exhibit four distinct change patterns relative to the mean loss of the entire dataset:
(a) The loss value of Sample A shifts from being greater than the mean loss of the entire dataset in
the previous epoch to being less than or equal to the mean loss in the current epoch. (b) The loss
value of Sample A shifts from being less than or equal to the mean loss of the entire dataset in the
previous epoch to being greater than the mean loss in the current epoch. (c) The loss value of Sam-
ple A remains consistently greater than the mean loss of the entire dataset across both consecutive
epochs. (d) The loss value of Sample A remains consistently less than or equal to the mean loss of
the entire dataset across both consecutive epochs. It is important to note that the mean loss of the
entire dataset is dynamic and may either decrease or increase from the previous epoch.

This paper adopts an approach similar to Toneva et al. (2018), determining the information content
of samples based on the statistical occurrence of the target scenario. Simultaneously, an effective
measure for high pruning ratios, namely using a cutoff iteration number, is employed, similar to
Zhang et al. (2024). The difference from Zhang et al. (2024) lies in the fact that the results from
all early stages of the proxy model training are beneficial for our method and do not need to be
discarded. The specific methodological formulas are as follows:

The average loss over the entire dataset can be expressed as:

L(S; θt) =
1

N

N∑
n=1

ℓ(fθt(xn), yn). (2)

The individual sample loss scenario 1 (hard-to-learn) can be expressed as:

HTL((xn, yn); t) = 1 (ℓ(fθt(xn), yn) > L(S; θt)) . (3)

The individual sample loss scenario 2 (easy-to-learn) can be expressed as:

ETL((xn, yn); t) = 1 (ℓ(fθt(xn), yn) ≤ L(S; θt)) . (4)

Basic scenario (a) can be expressed as:

BSA = 1 (HTL((xn, yn); t− 1) ∧ ETL((xn, yn); t)) . (5)

Basic scenario (b) can be expressed as:

BSB = 1 (ETL((xn, yn); t− 1) ∧ HTL((xn, yn); t)) . (6)

Basic scenario (c) can be expressed as:

BSD = 1 (HTL((xn, yn); t− 1) ∧ HTL((xn, yn); t)) . (7)

Basic scenario (d) can be expressed as:
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BSC = 1 (ETL((xn, yn); t− 1) ∧ ETL((xn, yn); t)) . (8)

The target problem can be expressed as:

TP((xn, yn); t) = 1(BS), (9)

where t ≥ 0, 1 ≤ n ≤ N , and BS represents one of BSA, BSB, BSC, and BSD.

Building upon prior theoretical foundations established in Swayamdipta et al. (2020); He et al.
(2024), we initially conjectured that basic scenarios (c) and (d) would demonstrate inferior per-
formance characteristics, while either scenario (a) or (b) would likely emerge as the dominant pat-
tern. This intuition stemmed from the theoretical framework suggesting that transitions between loss
states provide more informative signals than persistent states.

Our empirical investigation, detailed in Section 4.3 and summarized in table 5, substantiates this hy-
pothesis and specifically identifies basic scenario (a) as the core mechanism underlying the observed
phenomena. This scenario captures the critical transition where samples move from above-average
to below-average loss between consecutive training iterations.

To streamline our analytical framework and enhance computational efficiency, we subsequently re-
strict our attention to basic scenario (a). This simplification yields the following formal representa-
tion:

STP((xn, yn); t) = 1(BSA), (10)

where STP denotes the simplified target problem focusing exclusively on the transition from above-
average to below-average loss states.

In summary, we propose a zero-order data pruning algorithm (see Appendix B.1) that counts the
number of times, prior to a cutoff iteration, a sample transitions from being hard-to-learn to easy-to-
learn (as defined in Equation 10) across consecutive training iterations. To facilitate understanding
of the algorithm’s operation during proxy model training, a simple example is provided: simulating
the loss value changes for two samples, A and B, alongside the change in the mean loss of all samples
(including A and B). Our algorithm is then applied to count the points along the loss change curves
that satisfy the defined basic scenario. The final intermediate results from a complete proxy model
training session are illustrated in Figure 2.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets and Models: To evaluate the effectiveness of the new algorithm FATB, three popular
datasets were employed: CIFAR-10 (Krizhevsky et al. (2009)), CIFAR-100 (Krizhevsky et al.
(2009)), and ImageNet-1K (Deng et al. (2009)). Two model architectures, namely ResNet-18 (He
et al. (2016)) and ResNet-50 (He et al. (2016)), were used for the primary evaluations. Furthermore,
to verify the generalization capability of FATB across different models, two additional architectures,
VGG-16 (Simonyan & Zisserman (2014)) and ShuffleNet-v2 (Ma et al. (2018)), were also utilized.

Baselines: FATB was compared against the following data pruning algorithms: Random pruning:
Each sample in the entire dataset has an equal probability of being selected; a number of samples
equal to n * pr (total samples * pruning ratio) are randomly removed. Forgetting (Toneva et al.
(2018)): The number of times an example is incorrectly predicted after being correctly predicted in
a previous epoch. EL2N (Paul et al. (2021)): The L2-norm of the error vector. MoSo (Tan et al.
(2025)): Determines sample importance by assessing the change in the optimal empirical risk when
a specific sample is removed. TDDS (Zhang et al. (2024)): Employs a dual-depth strategy to balance
the integration of training dynamics with the identification of representative samples. The inner level
estimates the individual contribution of each sample during training by projecting its gradient onto
the accumulated gradient, while the outer level focuses on the variability of these contributions to
highlight samples with good generalizability.
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Figure 2: It illustrates the loss value trajectories of two samples, A and B, during the training of the
surrogate model. The three rectangular boxes demarcate three distinct training phases. Observing
from left to right: in the first phase, sample A is marked once; in the second phase, sample B is
marked twice; and in the third phase, neither sample receives a mark. The selection priority of
FATB is contingent upon the chosen cutoff iteration round: If the cutoff is set at the end of the first
phase, FATB prioritizes sample A. If the cutoff is set at the end of the second phase, FATB prioritizes
sample B. If the cutoff is set at the end of the third phase, FATB prioritizes sample B.

Implementation: FATB was implemented using PyTorch (Paszke et al. (2017)). Experiments on
the CIFAR-10 and CIFAR-100 datasets were conducted on a server with 4 NVIDIA GeForce RTX
3090 GPUs, while experiments on the ImageNet-1k dataset were performed on a server with 4
NVIDIA GeForce RTX 5090 GPUs. For the CIFAR-10 and CIFAR-100 datasets, the ResNet-18
model was trained for 200 epochs with a batch size of 128. The optimizer used was SGD with a
momentum of 0.9, weight decay of 5e-4, and a learning rate initialized at 0.1 following a cosine
annealing schedule. For the ImageNet-1k dataset, the ResNet-50 model was trained for 90 epochs
with a batch size of 256. The other hyperparameters (optimizer, momentum, weight decay, learning
rate schedule) remained the same as those used for the CIFAR datasets.

4.2 RESULTS

The experimental results were generally obtained by evaluating outcomes at intervals of 10 epochs
and comparing the results from the final epoch within each interval to determine the optimal cutoff
epoch. However, under high pruning ratios, the result at the 10th epoch could underperform com-
pared to random pruning. In such scenarios, the results from each epoch starting from the 2nd epoch
within the first 10-epoch interval were compared instead.

Benchmark Evaluation Results: Table 1 records the results of training a ResNet-18 model on
pruned subsets of the CIFAR-10 and CIFAR-100 datasets, selected by various data pruning algo-
rithms. FATB generally outperforms the other benchmark algorithms. The only exception occurs
on the CIFAR-10 dataset at a pruning ratio of pr = 0.7, where FATB’s performance is slightly
lower than the Forgetting algorithm but still superior to the others. Notably, FATB exhibits marked
superiority under high pruning ratios. For instance, when training on CIFAR-100 with pr = 0.9,
FATB achieves a performance 7.39 percent higher than Random Pruning, representing a 20 percent
performance improvement relative to it, and outperforms the TDDS algorithm by 1.96 percent, con-
stituting a 4.7 percent performance gain. These results demonstrate the outstanding effectiveness of
FATB, its substantial performance gains, and its excellence as a data pruning method.

Model Generalization Evaluation Results: Tables 2 and 3 present the results of training the pruned
subsets of CIFAR-10 and CIFAR-100 datasets, selected by various data pruning algorithms using a
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Table 1: Comparison of the Top-1 accuracy achieved by a ResNet-18 model trained on the optimal
data subsets for CIFAR-10 and CIFAR-100, obtained using different data pruning algorithms. The
best results are highlighted in bold.

Dataset CIFAR-10 CIFAR-100

Pruning ratio 0.3 0.5 0.7 0.8 0.9 0.3 0.5 0.7 0.8 0.9

FATB 95.61 95.49 93.73 91.15 82.9 78.17 75.27 67.65 60.24 43.23
Static Random 94.52 93.41 90.72 87.13 79.68 75.05 71.51 64.79 56.5 35.84

TDDS 95.27 95.19 92.93 89.62 80.49 77.84 74.79 66.87 59.92 41.27
Moso 95.03 94.25 91.06 85.83 71.69 73.99 70.36 61.27 49.47 30.23

Forgetting 95.83 95.38 86.61 61.51 43.91 75.41 65.54 49.44 35.41 19.32
EZLN-20 95.1 94.3 82.7 57.3 38 72.32 63 41.5 29.7 19.1

Whole Dataset 95.67 78.66

Table 2: Comparative Top-1 accuracy results of a VGG-16 model trained on the optimal data subsets
for CIFAR-10 and CIFAR-100, which were obtained using different data pruning algorithms with a
ResNet-18 model. The best results are highlighted in bold.

ResNet-18→ VGG-16

Dataset CIFAR-10 CIFAR-100

Pruning ratio 0.3 0.5 0.7 0.8 0.9 0.3 0.5 0.7 0.8 0.9

FATB 94.22 93.55 91.3 87.65 78.8 73.93 70.47 62.96 55.48 38.48
Static Random 92.81 91.33 87.85 85.6 77.36 71.07 66.89 59.63 52.71 32.75

TDDS 94.1 93.32 90.53 87.23 78.34 73.55 69.97 62.93 56.04 42.1
Whole Dataset 95.67 78.66

ResNet-18 model, with VGG-16 and ShuffleNet-v2 models, respectively. FATB consistently outper-
formed random pruning across all scenarios and surpassed the TDDS algorithm in most scenarios. A
notable result is that when training on CIFAR-100 with a pruning ratio of pr = 0.9, FATB achieved
a performance 7.39 percent higher than Random Pruning, representing a 20 percent relative perfor-
mance improvement, and outperformed TDDS by 1.96 percent, constituting a 4.7 percent relative
gain. These results indicate that FATB possesses strong model generalization capabilities and is not
limited to a specific model architecture.

Large-Scale Dataset Evaluation Results: Table 4 records the results on the ImageNet-1K dataset.
FATB consistently outperformed all other algorithms, particularly at higher pruning ratios. For in-
stance, at pr = 0.9, FATB’s performance was 3.5 percent higher than Random Pruning and 1.9 per-
cent higher than TDDS. This confirms the algorithm’s excellent effectiveness on large-scale datasets,
making it suitable for selecting core subsets from massive datasets.

Table 3: Comparative Top-1 accuracy results of a ShuffleNet-v2 model trained on the optimal data
subsets for CIFAR-10 and CIFAR-100, which were obtained using different data pruning algorithms
with a ResNet-18 model. The best results are highlighted in bold.

ResNet-18→ ShuffleNet-v2

Dataset CIFAR-10 CIFAR-100

Pruning ratio 0.3 0.5 0.7 0.8 0.9 0.3 0.5 0.7 0.8 0.9

FATB 92.28 92.07 89.26 85.78 73.49 70.22 66.76 60.3 53.2 39.92
Static Random 90.69 89.56 86.92 83.93 70.29 68.13 64.59 57.15 50.09 33.35

TDDS 92.81 92.69 87.82 79.13 64.51 69.45 66.39 58.9 51.62 34.13

Whole Dataset 95.67 78.66
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Table 4: Comparison of the Top-1 accuracy achieved by a ResNet-50 model trained on the optimal
data subset for ImageNet-1K, obtained using different data pruning algorithms. The best results are
highlighted in bold. The best results are highlighted in bold.

Dataset ImageNet-1K

Pruning ratio 0.7 0.8 0.9

FATB 67.504 63.516 56.418
Static Random 66.874 62.926 52.876

TDDS 67.206 62.984 54.51

Whole Dataset 72.972

Table 5: For the four basic scenarios, the optimal data subsets of the CIFAR-10 and CIFAR-100
datasets are obtained using a ResNet-18 model. Subsequently, the comparative Top-1 accuracy
results are evaluated by training a ResNet-18 model on these subsets. Each result is presented in two
parts: the top value indicates the accuracy, and the bottom value denotes the cutoff iteration number.
The highest accuracy for each case is highlighted in bold, and if the corresponding cutoff iteration
number for the highest accuracy is also the best, it is bolded as well.

Dataset CIFAR-10 CIFAR-100

Pruning ratio 0.3 0.5 0.7 0.8 0.9 0.3 0.5 0.7 0.8 0.9

BSA 95.61 95.49 93.73 91.15 82.9 78.17 75.27 67.65 60.24 43.23
(189) (159) (119) (59) (9) (99) (79) (19) (5) (3)

BSB 95.65 95.56 93.8 90.35 78.36 78.03 75.16 65.86 54.39 30.55
(169) (179) (119) (69) (29) (189) (89) (29) (9) (7)

BSC 95.67 95.47 92.74 68.66 32.6 77.78 69.79 43.23 46.51 17.98
(99) (89) (179) (199) (109) (189) (189) (9) (1) (1)

BSD 91.44 88.55 83.93 80.93 69.87 74.8 70.27 62.78 57.03 43.18
(189) (199) (199) (199) (189) (179) (199) (179) (199) (179)

Whole Dataset 95.67 78.66

4.3 ANALYSIS OF THE FOUR BASIC SCENARIOS

For the four basic scenarios, proxy model training was first conducted concurrently to obtain their
respective statistical results. Subsequently, data pruning was performed based on these results to
derive core data subsets, and finally, models were trained separately to obtain their respective per-
formance outcomes (as shown in Table 5).

Experimental results indicate that the core data subset selected based on basic scenario (a) yielded
better training outcomes in most scenarios compared to the other three scenarios. Additionally, its
corresponding cutoff iteration number was superior to those of the other basic scenarios. At low
pruning rates, the results of scenario (a) were slightly lower than those of scenarios (b) and (c), but
the difference was negligible.

In summary, basic scenario (a) is the primary factor influencing the selection results of the core data
subset.

4.4 HYPERPARAMETER ANALYSIS

To determine the appropriate cutoff iteration round for FATB, experimental results under different
rounds are provided (see Figures 3 and 4), with the training accuracy of random data pruning algo-
rithms included as a baseline. The results indicate that as the pruning ratio increases, FATB allows
earlier termination of surrogate model training, thereby reducing computational cost. Moreover, a
consistent trend is observed: on clean datasets, a smaller pruning ratio requires a later cutoff round,
while a larger ratio corresponds to an earlier cutoff. Figures 3 and 4 clearly show that without a
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predefined cutoff—i.e., using the final iteration—FATB performs poorly, even significantly worse
than random pruning algorithms, as evidenced by the considerable accuracy gaps on CIFAR-10 and
CIFAR-100. In clean data environments, effective subsets must include early hard-to-learn samples
to enhance model discriminability, necessitating an earlier cutoff to improve subset informativeness.

Figure 3: FATB obtains the optimal data subset for the CIFAR-10 dataset via surrogate training of a
ResNet-18 model at different cutoff iteration rounds. A comparative analysis of the Top-1 accuracy
(Acc) achieved by training the ResNet-18 model on these respective optimal subsets is presented.
The star symbol (⋆) denotes the highest accuracy attained for the corresponding pruning ratio.

Figure 4: FATB obtains the optimal data subset for the CIFAR-100 dataset via surrogate training of a
ResNet-18 model at different cutoff iteration rounds. A comparative analysis of the Top-1 accuracy
(Acc) achieved by training the ResNet-18 model on these respective optimal subsets is presented.
The star symbol (⋆) denotes the highest accuracy attained for the corresponding pruning ratio.

5 CONCLUSION

This paper proposes FATB, an efficient zeroth-order data pruning algorithm that identifies redundant
and noisy samples solely based on loss variation during surrogate model training. By avoiding
gradient and Hessian computations, it significantly reduces computational cost. FATB addresses the
limitations of existing methods at high pruning ratios through early training termination. However,
as it prioritizes training utility over sample content, its ability to detect corrupted or low-quality data
remains limited. Future work will integrate content-based analysis to improve core subset selection
and enhance model performance.

9
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A NOISY DATA EVALUATION

Noisy Data Evaluation Results: Label Noise: Table 6 records the results on CIFAR-10 and CIFAR-
100 datasets with partially corrupted labels. FATB consistently outperformed all other baselines and
significantly improved model performance, demonstrating that the selected subsets contained less
label-noisy data. Consequently, this algorithm exhibits a strong capability for identifying label noise
and could, to some extent, be specialized for label noise cleaning tasks. Sample Corruption Noise:
Table 7 records the results on CIFAR-10 and CIFAR-100 datasets modified by a series of sample
corruption methods. FATB consistently outperformed random pruning and surpassed TDDS in some
scenarios, with only minor performance gaps where it slightly trailed TDDS. This suggests the al-
gorithm can identify certain sample corruption noise to a degree but still has room for improvement.

B ALGORITHM IMPLEMENTATION AND HYPERPARAMETER DETAILS

B.1 ALGORITHM IMPLEMENTATION:

Algorithm 1 Transition From Above-Average To Below-Average (FATB)

Input: Training dataset S = {(xi, yi)}ni=1; Total iterations T ; Cutoff iteration DT ∈ [0, T ]; Prun-
ing ratio pr ∈ [0, 1]

Output: Pruned dataset Z ⊂ S with |Z| = n× (1− pr)
1: Initialize sample transition count array C[1..n]← 0
2: Initialize previous high-loss sample set P ← ∅
3: for t = 0 to T − 1 do
4: According to Equation 2, compute average loss Lt

5: According to Equation 3, identify current high-loss samples Ht

6: if t > 0 then
7: According to Equation 10, find transition samples Tt

8: for each sample i ∈ Tt do
9: C[i]← C[i] + 1 {Increment transition count}

10: end for
11: end if
12: Update previous set: P ← Ht

13: if t ≥ DT then
14: Sort samples by descending transition count C
15: Select top n× (1− pr) samples with highest counts
16: Z ← selected samples
17: return Z
18: end if
19: end for
20: return Z

B.2 HYPERPARAMETER DETAILS:

The specific hyperparameters used by FATB in the mentioned tables are listed in the format (pruning
ratio, cutoff iteration round) as follows: Table 1: CIFAR-10: (0.3, 189), (0.5, 159), (0.7, 119), (0.8,
59), and (0.9, 9); CIFAR-100: (0.3, 99), (0.5, 79), (0.7, 19), (0.8, 7), and (0.9, 3). Tables 2, 3,
and 7 are consistent with Table 1. Table 6: CIFAR-10: (0.3, 109), with the remaining parameters
consistent with Table 1. Table 4: ImageNet-1K: (0.7, 89), (0.8, 89), and (0.9, 49).
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Table 6: First, introduce label noise by randomly modifying 20 percent of the sample labels in the
CIFAR-10 and CIFAR-100 datasets, respectively, such that these labels are inconsistent with the
original ones. Subsequently, various data pruning algorithms are employed to obtain the optimal
data subsets from the modified datasets using a ResNet-18 model. The comparative results of Top-1
accuracy are then evaluated by training a ResNet-18 model on these subsets. The best results are
highlighted in bold.

Label Noise

Dataset CIFAR-10 CIFAR-100

Pruning ratio 0.3 0.5 0.7 0.8 0.9 0.3 0.5 0.7 0.8 0.9

FATB 91.3 90.48 89.59 79.79 71.79 71.9 71.0 62.75 53.79 35.7
Static Random 84.75 81.7 77.94 72.52 61.59 62.03 58.38 50.22 39.61 23.95

TDDS 86.05 85.43 81.94 77.43 62.89 65.92 63.19 54.48 44.9 28.4

Whole Dataset 88.28 64.77

Table 7: First, introduce image corruption by applying five distinct methods—Gaussian noise, ran-
dom occlusion, resolution degradation, fog simulation, and motion blur—to randomly and non-
overlappingly corrupt 4 percent of the samples each in the CIFAR-10 and CIFAR-100 datasets,
resulting in a total of 20 percent corrupted samples with perceptible alterations from their originals.
Subsequently, various data pruning algorithms are employed to identify the optimal data subsets
from the corrupted datasets using a ResNet-18 model. The comparative Top-1 accuracy results are
then obtained by training and evaluating a ResNet-18 model on these pruned subsets. The best re-
sults are highlighted in bold.

Image Corruption

Dataset CIFAR-10 CIFAR-100

Pruning ratio 0.3 0.5 0.7 0.8 0.9 0.3 0.5 0.7 0.8 0.9

FATB 94.01 93.86 90.48 86.15 79.77 74.93 71.3 62.87 55.82 37.38
Static Random 93.01 91.29 88.15 84.67 72.66 71.2 67.42 59.79 49.55 30.99

TDDS 93.69 93.27 91.25 87.96 79.1 75.02 72.78 65.86 57.88 39.61
Whole Dataset 94.05 75.06
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