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Abstract

Molecular property prediction is one of the fastest-growing applications of deep
learning with critical real-world impacts. Including 3D molecular structure as
input to learned models improves their predictions for many molecular properties.
However, this information is infeasible to compute at the scale required by most real-
world applications. We propose pre-training a model to understand the geometry
of molecules given only their 2D molecular graph. Using methods from self-
supervised learning, we maximize the mutual information between a 3D summary
vector and the representations of a Graph Neural Network (GNN) such that they
contain latent 3D information. During fine-tuning on molecules with unknown
geometry, the GNN still generates implicit 3D information and can use it to inform
downstream tasks. We show that 3D pre-training provides significant improvements
for a wide range of molecular properties, such as a 22% average MAE reduction
on eight quantum mechanical properties. Crucially, the learned representations can
be effectively transferred between datasets with vastly different molecules.

1 Introduction

The understanding of molecular and quantum chemistry is a rapidly growing area for deep learning
with models having direct real-world impacts in quantum chemistry (Dral 2020), protein structure
prediction (Jumper et al. 2021), materials science (Schmidt et al. 2019), and drug discovery (Stokes
et al. 2020). In particular, for the task of molecular property prediction, GNNs have had great success
(Yang et al. 2019).

GNNs operate on the molecular graph by updating each atom’s representation based on the atoms
connected to it via covalent bonds. However, these models mostly cannot reason about other important
interatomic forces that depend on the atoms’ relative positions in space. Previous works have shown
that using the atoms’ 3D coordinates in space improves the accuracy of molecular property prediction
(Schütt et al. 2017; Klicpera, Groß, et al. 2020; Liu et al. 2021; Klicpera, Becker, et al. 2021).

However, using classical methods to explicitly compute a molecule’s geometry before predicting
its properties is computationally infeasible for many real-world applications. Even recent machine
learning methods for conformation generation (Xu et al. 2021; Shi et al. 2021; Ganea et al. 2021) are
still too slow for large scale screening.

Our Solution: 3D Infomax We pre-train GNNs to capture implicit 3D information in their latent
vectors using publicly available molecular structures. The GNN is pre-trained by maximizing the
mutual information between its embedding of a molecular graph and a representation capturing the 3D
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Figure 1: The considered problem setting and the motivation for our pre-training approach.

information that is produced by a separate network. This forces the GNN to learn to generate latent
3D information using only the information given by the 2D molecular graphs. After pre-training, the
weights can be transferred and fine-tuned on molecular datasets where no 3D information is available.
For those molecules, the GNN is still able to generate implicit 3D information and the network can
use it to inform its property predictions.

We analyze our method’s performance by pre-training with multiple 3D datasets before evaluating on
10 quantum mechanical molecular properties. 3D Infomax improves property predictions by large
margins with a 22% average MAE reduction for the QM9 dataset’s properties. Furthermore, the
learned representations are highly generalizable. Indeed, significant improvements are obtained even
when the molecular space of the pre-training dataset is vastly different (e.g., in size) from the kinds
of molecules in the downstream tasks.

2 Method

Our method consists of two steps: (1) A model is pre-trained using molecules with known geometry.
(2) The pre-trained model is fine-tuned to predict properties from 2D molecular graphs. The goal
during pre-training is that the 2D network learns to generate latent information about 3D structure and
quantum mechanics, which can be used to improve molecular property predictions during fine-tuning.

The pre-training uses two different models, as visualized in the last row of Figure 1. Firstly, the model
that should be pre-trained which we call 2D network fa since it takes 2D molecular graphsG = (V, E)
with atoms V and bonds E to generate a latent representation of a molecule fa(G) = za ∈ Rdz .
Secondly, we define the 3D network f b as the model which encodes the atoms’ 3D coordinates
R = {rv}v∈V in a 3D representation f b(R) = zb ∈ Rdz .

Contrastive Learning To teach the 2D GNN fa to generate 3D information from the 2D graph
inputs, we maximize the mutual information between the latent 2D representations za and 3D
representations zb. Intuitively we wish to maximize the agreement between za and zb if they come
from the same molecule. For this purpose, we use contrastive learning (visualized in Figure 3) for
which we consider a batch of N molecules and the networks produce multiple representations zai and
zbi . The first objective of contrastive learning is to maximize the representation’s similarity if they are
a positive pair, meaning that they come from the same molecule with the same index i. The second
part is to enforces dissimilarity between negative pairs zai and zbk where i 6= k. In this work, we use
the cosine similarity sim(za, zb) = za · zb/(‖za‖‖zb‖) and optimize the models using the popular
normalized temperature-scaled cross entropy (NTXent) (Chen et al. 2020).
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Multiple Conformers For most molecules, there are multiple plausible 3D configurations called
conformers. Instead of only using the most probable conformer (with the lowest energy), we found
that leveraging structural information from multiple conformers provides significant benefits. To
achieve this, we now consider the c many highest probability conformers {Rji}j∈{1...c} of the i-th
molecule. For every molecule the 3D network now takes all conformers as input and produces their
latent 3D representations {zbi,j}j∈{1...c}. These conformers can be seen as additional positive samples.
Thus, the objective is to maximize the similarity between zai and all conformer representations zbi,j
that come from the same molecule. As such we modify the NTXent loss to sum over the similarities
of all conformers and obtain our final objective with the temperature parameter τ :

Lmulti3DNTXent = −
1

N

N∑
i=1

log ∑c
j=1 e

sim(zai , z
b
i,j)/τ∑N

k=1
k 6=i

∑c
j=1 e

sim(zai , z
b
k,j)/τ

 . (1)

3D Network The 3D coordinates of molecules have a certain set of symmetries that the 3D network
should capture. Under rotation or translation, a molecule’s properties do not change. Therefore, the
3D representation zb should not change either and be invariant to these transformations. Our 3D
network achieves this as a GNN operating on the fully connected graph of a molecule with the atom
distances as edge features. All node features in the first layer are the same learned vector which is
initialized from a standard normal distribution. The message passing layers iteratively encode the 3D
information into the node features which are pooled to produce the complete 3D representation zb.

3 Experiments

Setup We choose Principal Neighborhood Aggregation (PNA) (Corso et al. 2020) as the GNN
architecture to pre-train due to its simplicity and state-of-the-art performance for multiple molecular
tasks. For pre-training, we use three datasets of molecules with 3D information: QM9 (Ramakrishnan
et al. 2014), GEOM-Drugs (Axelrod and Gomez-Bombarelli 2020), and QMugs (Isert et al. 2021).
More precisely, we pre-train three different instances of PNA (1) on 50k molecules from QM9 using
a single conformer, (2) on 140k of GEOM-Drugs with 5 conformers and, (3) on 620k of QMugs
using 3 conformers. For comparison, we pre-train baselines by either predicting the properties of
GEOM-Drugs’ pre-training subset (labeled Prop Pred) or by using Graph Contrastive Learning
(GraphCL) (You et al. 2020), a strong conventional contrastive learning approach that uses the full
GEOM-Drugs dataset. All pre-training methods use a batch size of 500.

After pre-training, the models are fine-tuned on 50k molecules from QM9 (in Table 1) or 140k from
GEOM-Drugs (in Table 2) that have no overlap with the molecules from the pre-training data. On
the same molecules, we also train PNA with random weight initialization (labeled Rand Init) to
compare how much the downstream performance is improved by the different pre-training methods.
Furthermore, we train and test the 3D GNN Spherical Message Passing (SMP) (Liu et al. 2021)
on the same molecules with 3D coordinates generated by RDKit’s ETKDG algorithm (Landrum
2016) which can be done in a fast manner (labeled RDKit SMP). Lastly, we evaluate SMP using
the accurate ground truth 3D conformers of QM9 which were computed with time-consuming
simulations that would be infeasible for many real-world applications. All experimental settings
(including SMP and GraphCL) are detailed in Appendix C and we provide all code to reproduce the
results: https://github.com/HannesStark/3DInfomax.

Results Table 1 shows that 3D Infomax pre-training leads to large improvements over the randomly
initialized baseline and over GraphCL with all three pre-training datasets. After 3D pre-training on
one half of QM9, the average of the MAE decreases by 22%. Comparing 3D Infomax on GEOM-
Drugs with GraphCL shows that even though the latter is pre-trained on two times as many molecules
from the same dataset, 3D Infomax is always better by a large margin.

Pre-training with the disjoint half of QM9 performs best since it shares the molecular space of the
test set. Nevertheless, the learned representations also generalize well: pre-training on GEOM-Drugs
and QMugs leads to improvements of 19% and 18% respectively, even though QM9 contains much
smaller molecules with on average 18 atoms compared to the 44.4 atoms for the drug-like molecules
of GEOM-Drugs.
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Table 1: MAE for predicting the properties of one half of QM9’s molecules. 3D Infomax is tested
with three different pre-training datasets and GraphCL uses a two times larger subset of GEOM-
Drugs. True 3D SMP is a 3D GNN using explicit 3D coordinates (hidden from other methods).
Details on confidence intervals are in Appendix C. Colors indicate improvement (lower MAE) or
worse performance compared to the randomly initialized (Rand Init) model.

Pre-training baselines Our 3D Infomax RDKit True 3D
Target Rand Init GraphCL PropPred QM9 Drugs QMugs SMP SMP

µ 0.4133±0.003 0.3937 0.3975 0.3507 0.3512 0.3668 0.4344 0.0726
α 0.3972±0.014 0.3295 0.3732 0.3268 0.2959 0.2807 0.3020 0.1542
homo 82.10±0.33 79.57 93.11 68.96 70.78 70.77 82.51 56.19
lumo 85.72±1.62 80.81 99.84 69.51 71.38 78.10 80.36 43.58
gap 123.08±3.98 120.08 131.99 101.71 102.59 103.85 114.24 85.10
r2 22.14±0.21 21.84 29.21 17.39 18.96 18.00 22.63 1.51
ZPVE 15.08±2.83 12.39 11.17 7.966 9.677 12.06 5.18 2.69
cv 0.1670±0.004 0.1422 0.1795 0.1306 0.1409 0.1208 0.1419 0.0498

Table 2: The MAE for GEOM-Drugs’
properties. 3D Infomax compared with
GraphCL and no pre-training.

Method Gibbs 〈E〉
Rand Init .2035 .1026
GraphCL .1941 .0995
3D Infomax QM9 .1852 .0968
3D Infomax Drugs .1811 .0952
3D Infomax QMugs .1835 .0965

While 3D Infomax yields large improvements, the
MAE is still substantially higher than that of SMP
which uses the 3D information explicitly. One reason
for this is likely that QM9’s properties are conformer-
specific. There might be a maximum accuracy that
can be achieved if only the molecule is known and not
for which conformer the property should be predicted.
Nevertheless, this performance gap suggests that there
is still room for improvement.

Table 2 further confirms that 3D Infomax substantially
improves quantum property predictions and generalizes out-of-distribution. Our method outperforms
GraphCL, even though GraphCL also sees the fine-tuning molecules during pre-training. Moreover,
we observe strong generalization when pre-training with QM9 and fine-tuning on GEOM-Drugs. In
this case, the pre-training data only contains the elements C, H, N, O, and F while the target data
contains eleven additional elements that are unseen during pre-training.

Such consistent and out-of-distribution improvements can be explained by the type of information
captured with 3D Infomax. Learning to reason about molecular geometry and its impact does not
depend on the data’s molecular space and therefore it is not necessary to have a high similarity
between the molecules during pre-training and fine-tuning.

Another advantage of 3D Infomax is its comparably fast convergence. Pre-training on 620k molecules
of QMugs with 3 conformers takes 12 hours, compared to 71 hours for GraphCL on 280k molecules
of GEOM-Drugs.

4 Conclusion

Our 3D Infomax method enables a GNN to generate latent 3D and quantum information from
2D molecular graphs which can then be used during fine-tuning to improve molecular property
predictions. We found consistently large improvements for quantum properties, overshadowing the
gains possible with conventional self-supervised learning (SSL) methods. Furthermore, the learned
3D knowledge can be transferred across highly different types of molecules since the representations
capture a principled form of information that is known to be useful for molecular tasks.
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A Method Details

A.1 Multiple Conformers

For each molecule (Gi, {Rji}j∈{1...ci}) we choose the c highest energy conformers to have a fixed
number of them. If there are fewer than c conformers for a molecule (ci < c) then the lowest energy
conformer is repeated. For every molecule the 3D network takes all c conformers {Rji}j∈{1...c} as
input and produces their latent 3D representations {zbi,j}j∈{1...c} which we can see as additional
positive samples.

A.2 3D Network

Here we describe the 3D network in greater detail and call it Net3D. It encodes the 3D information
given by the pairwise Euclidean distances of atoms. Therefore, the method is E(3) invariant, and
the positions of all atoms are uniquely defined up to E(3) symmetry. Of course, using all pairwise
`2-distances also means that the method’s complexity is quadratic in the number of atoms in the
molecule.
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Net3D can be seen as a GNN operating on the complete graph of each molecular graph. Given a
molecule (G,R), all the pairwise distances {duv = ‖ru − rv‖2 | u, v ∈ V ∧ u 6= v} are first mapped
to a higher dimensional space using high-frequency functions and those encodings are used as input
to the network with learnable weights. This is motivated by (1) the fact that there are only small
variations in distances for atoms that are connected by bonds and (2) the findings of Rahaman et al.
2019 deep neural networks optimized with stochastic gradient descent having a bias towards learning
lower frequency functions. They show that using mappings as described leads to deep networks better
fitting data with high-frequency variation which is further supported by Tancik et al. 2020 who show
empirically and theoretically that multi-layer perceptrons (MLPs) fail to learn high frequencies. This
scenario is present in our case with small differences in bond lengths. Additionally, these distances
and their small variations might be the most important ones with the assumption that atom pairs that
have small distances have the most relevant interactions.

The mapping γ : R 7→ R2F+1 which we use before passing the 3D information to MLPs is defined as

γ(duv) = (duv, sin(duv/2
0), cos(duv/2

0), . . . , sin(duv/2
F−1), cos(duv/2

F−1)), (2)

where the number of frequencies F is a hyperparameter that is set to 4 in our experiments. This is
inspired by the positional encoding as it is used in Transformers Vaswani et al. 2017 with the different
purpose of providing an ordering in a set. With a similar purpose as in our application, this strategy
was successfully previously used by Mildenhall et al. 2020 in image synthesis and by Zhong et al.
2020 in a method for inferring the 3D structure of proteins from projections.

The l-th layer of Net3D takes two sets as input. First, n2 − n edge representations {dluv ∈ Rdd |
u, v ∈ V ∧ u 6= v} (the edges of a complete graph without self-loops). In the first layer they are
given by the encoded distances fed through an initial feed-forward network Uinit : R2F+1 7→ Rdd
which projects them to the hidden dimension of the edges d0uv = Uinit(γ(duv)). The second input
is a set of n atom representations {hl1, . . . hln} with dimensionality Rdh . In the first layer, the atom
representations are all set to the same learned vector that is initialized with a standard normal. With ‖
meaning concatenation, every layer updates the edge and atom representations and iteratively encodes
3D information into them as follows:

muv = Uedge([h
l
u ‖ hlv ‖ dluv]) (3)

dl+1
uv = dluv +muv (4)

hl+1
u = Uh([hu ‖

n∑
v=1
v 6=u

muv ∗ sigmoid(Usoftedge(muv)]). (5)

The layer is parameterized by three MLPs where the first one updates the edges Uedge : R2dh+dd 7→
Rdd . The second one updates the atom representations Uh : Rdh+dd 7→ Rdh . The third one
Usoftedge : Rdd 7→ R is followed by the logistic sigmoid function to create a value between 0 and 1
that can be seen as a soft edge weight telling us how probable an edge is for each message muv as it
is done by Satorras et al. 2021.

To produce the final 3D representation zb, all atom representations are aggregated by concatenating
their mean, their maximum, and their standard deviation and feeding this through a final feed-forward
network U : R3dh 7→ Rdz .

B Explanatory Illustrations

In Figure 2 and Figure 3 we provide additional illustrations for our proposed method.
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Figure 2: General overview of our latent space SSL methods. In step 1. we pre-train a 2D network by
forcing it to generate a 2D representation za that has high mutual information with a 3D representation
zb coming from an encoder that has only 3D information as its input. After the 2D model has learned
to generate latent 3D information through this pre-training, we transfer its weights and fine-tune it to
predict molecular properties for molecules where we do not have the 3D information available.

Figure 3: Explanatory illustration for contrastive learning with multiple conformers. This example
displays a batch of two molecules with their 2D graphs on the left and the corresponding 3D
conformers on the right where each molecule has two plausible conformers. To learn a joint
embedding space the contrastive loss enforces high similarity between latent representations that
come from the same molecule while encouraging dissimilarity if the latent representations belong
to different molecules in the batch. Here this is depicted for the first molecule but the same loss is
calculated for the second. The final loss is the average of those two.
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C Experimental Details

The standard deviation of energy of the highest occupied molecular orbital (homo) and the Gibbs free
energy is estimated with six seeds, the rest uses four.

C.1 Data Details

The pre-training datasets which we use are the following:

1. QM92 (Ramakrishnan et al. 2014) contains 134k stable small organic molecules of 5 atom
types (CHONF). Every molecule has the 3D coordinates of one low-energy conformer and
is annotated with 12 quantum mechanical properties as regression targets. The molecules
are considered very small, with at most 9 heavy atoms.

2. GEOM-Drugs3 (Axelrod and Gomez-Bombarelli 2020) consists of 304k realistically-sized
biologically and pharmacologically relevant molecules of 16 atom types, annotated with
multiple 3D conformers, the ensemble Gibbs free energy, and the ensemble energy as
regression targets. For the average molecule, 70% of the Boltzmann weight is captured by
just three conformers as can be seen in Figure 4 where we also provide a histogram for the
number of molecules that have a certain amount of conformers5.

3. QMugs4 (Isert et al. 2021) has 665k drug-like molecules with three diverse conformers each
and multiple conformer specific quantum mechanical properties as regression tasks.

Table 3: Statistics of the used datasets.

Dataset #Molecules Avg. #Atoms Avg. #Bonds split
QM9 130 831 18.0 18.6 random
GEOM-Drugs 304 293 44.4 46.4 random
QMugs 665 911 30.6 33.4 random

Figure 4: Average number of conformers nec-
essary to cover a certain amount of Boltzmann
weight in GEOM-Drugs. For a given amount of cu-
mulative Boltzmannweight on the horizontal axis,
the vertical axis shows the average number of con-
formers necessary to pass that threshold.

C.2 Units

For the GEOM-Drugs dataset, all reported numbers have the unit kcal/mol, Gibbs refers to the
ensemble Gibbs free energy, and 〈E〉 to the ensemble energy.

Table 4: Units of Quantum mechanical properties.

µ α homo lumo gap r2 ZPV E cv

D a30 meV meV meV a20 meV cal
molK

2https://github.com/klicperajo/dimenet/blob/master/data/qm9_eV.npz
3https://github.com/learningmatter-mit/geom
4https://www.research-collection.ethz.ch/handle/20.500.11850/482129
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Figure 5: Histogram of how many molecules there
are in GEOM-Drugs with a certain amount of
conformers. The histogram is created for 1000
molecules of GEOM-Drugs.

C.3 Conventional pre-training Baseline GraphCL

The conventional pre-training method that we compare against is GraphCL (You et al. 2020) since it
is the work with the strongest results in a consistent comparison for molecular tasks. GraphCL uses
the usual self-supervised objective where the model has to learn to produce representations that are
invariant with respect to augmentations. You et al. 2020 evaluated different such augmentations and
in our baseline, we use randomly dropping nodes since they found strong results on molecular tasks
with this augmentation. We use their node-drop ratio of 0.2 and the only difference of our setup is
that we use a batch size of 500 which we found to work better in our setting instead of their 256.

C.4 Parameter Details

The hyperparameters for SMP are taken from the official repository5 where Liu et al. 2021 provide
their code and we predict gap even though it could be calculated as |homo− lumo|. The parameter
search space and final parameters for the PNA architecture is specified in Table 5 and those of Net3D
in Table 6.

Pre-training: We use Adam with a start learning rate of 8 × 10−5 and a batch size of 500. The
learning rate schedule during pre-training starts with 700 optimization steps of linear warmup followed
by the schedule given by the ReduceLROnPlateau scheduler by PyTorch6 with reduction parameter
0.6, patience 25 and a cooldown of 20.

Fine-tuning quantum mechanical properties: We use Adam with a start learning rate of 7× 10−5,
weight decay 1 × 10−11 and a batch size of 128. For the learning rate schedule, we first perform
warmup as follows. We consider three different sets of learnable parameters: (1) the batch norm
parameters, (2) all newly initialized parameters that were not transferred, and (3) all parameters. For
these sets, we increase the learning rate in this order from 0 to the start learning rate with linear
interpolation. For parameter group one we warm-up for 700 steps, 700 steps for group 2, and 350
steps for group 3. After that we use the schedule given by the ReduceLROnPlateau with reduction
parameter 0.5, patience 25 and a cooldown of 20.

C.5 Implementation

All experiments were implemented in PyTorch (Paszke et al. 2017) using the deep learning libraries
for processing graphs Pytorch Geometric (Fey and Lenssen 2019) and Deep Graph Library (Wang
et al. 2019). The code we use for SMP (Liu et al. 2021) is under the GNU General Public License
v3.0 and we use their implementation after discussing it with the first author of the paper and under
the consideration that their project welcomed our contributions to their library.

The experiments were conducted on two different machines while the same system was always used
in direct comparisons. The first machine has an AMD Ryzen 1700 CPU @ 3.70Ghz, 16GB of RAM,
and an Nvidia GTX 1060 GPU with 6GB vRAM. The second system contains two Intel Xeon Gold

5https://github.com/divelab/DIG
6https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.

ReduceLROnPlateau.html
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Table 5: Search space for the 2D network PNA through which we searched to obtain a strong baseline
performance on the homo property of the QM9 dataset. The parameters were tuned in the order in
which they are listed in this table from top to bottom. After this was completed for all parameters we
performed a second round of tuning for a subset of them. The final parameters are marked in bold.

Parameter Search Space
propagation depth [4, 5, 6 ,7]
hidden dimension [40, 50, 75, 90, 100, 150, 200 ,300]
message MLP layers [1, 2, 3]
update MLP layers [1, 2, 3]

aggregators [mean, max, min, std, sum], [mean, max, min], [mean, max, sum],
[mean, max, min, std], [max, sum], [sum]

scalers [identity], [identity, amplification, attenuation]
readout aggregators [mean], [sum], [mean, max, sum], [mean, max, min, sum]
dropout [0, 0.05, 0.1, 0.2]
batchnorm after MLPs True/False
batchnorm in MLPs True/False
readout MLP layers [1, 2, 3]
batchnorm momentum [0.1, 0.9, 0.93]

Table 6: Search space for the 3D network Net3D through which we searched to obtain a strong
baseline performance on the homo property of the QM9 dataset and we considered the size of the
network where parameters leading to less memory use are preferred. The parameters were tuned in
the order in which they are listed in this table from top to bottom. After this was completed for all
parameters we performed a second round of tuning for a subset of them. The final parameters are
marked in bold.

Parameter Search Space
propagation depth [1, 3, 4, 5]
hidden dimension [10, 20, 40, 60, 80, 100]
F used in γ : R 7→ R2F+1 [0, 3, 4, 8, 10, 50]
message MLP layers [1, 2, 3]
update MLP layers [1, 2, 3]
readout aggregators [mean], [sum], [mean, max, min], [mean, max, min, sum]
dropout [0, 0.05, 0.1, 0.2, 0.5]
batchnorm after MLPs True/False
readout MLP layers [1, 2, 3]
batchnorm momentum [0.1, 0.9, 0.93]

6248 CPUs @ 2.50GHz each with 20/40 cores, 400GB of RAM, and four Quadro RTX 8000 GPUs
with 46GB vRAM of which only a single one was used for each experiment. All mentions and of
training time refer to the second system.
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