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ABSTRACT

We investigate the theoretical foundations of classifier-free guidance (CFG). CFG
is the dominant method of conditional sampling for text-to-image diffusion mod-
els, yet unlike other aspects of diffusion, it remains on shaky theoretical foot-
ing. In this paper, we first disprove common misconceptions, by showing that
CFG interacts differently with DDPM (Ho et al., 2020) and DDIM (Song et al.,
2021), and neither sampler with CFG generates the gamma-powered distribution
p(x|c)p(x)* 7. Then, we clarify the behavior of CFG by showing that it is a kind
of predictor-corrector method (Song et al., 2020) that alternates between denoising
and sharpening, which we call predictor-corrector guidance (PCG). We prove that
in the SDE limit, CFG is actually equivalent to combining a DDIM predictor for
the conditional distribution together with a Langevin dynamics corrector for a
gamma-powered distribution (with a carefully chosen gamma). Our work thus
provides a lens to theoretically understand CFG by embedding it in a broader
design space of principled sampling methods.

1 INTRODUCTION

Classifier-free-guidance (CFG) has become an essential part of modern diffusion models, especially
in text-to-image applications (Dieleman, 2022; Rombach et al., 2022; Nichol et al., 2021; Podell
et al., 2023). CFG is intended to improve conditional sampling, e.g. generating images conditioned
on a given class label or text prompt (Ho & Salimans, 2022). The traditional (non-CFG) way to do
conditional sampling is to simply train a model for the conditional distribution p(x | ¢), including
the conditioning c as auxiliary input to the model. In the context of diffusion, this means training a
model to approximate the conditional score s(z,t,c) := V, logp:(x | ¢) at every noise level ¢, and
sampling from this model via a standard diffusion sampler (e.g. DDPM). Interestingly, this standard
way of conditioning usually does not perform well for diffusion models, for reasons that are unclear.
In the text-to-image case for example, the generated samples tend to be visually incoherent and not
faithful to the prompt, even for large-scale models (Ho & Salimans, 2022; Rombach et al., 2022).

Guidance methods, such as CFG and its predecessor classifier guidance (Sohl-Dickstein et al., 2015;
Song et al., 2020; Dhariwal & Nichol, 2021), are methods introduced to improve the quality of
conditional samples. During training, CFG requires learning a model for both the unconditional and
conditional scores (V log p;(z) and V, log p;(x|c)). Then, during sampling, CFG runs any standard
diffusion sampler (like DDPM or DDIM), but replaces the true conditional scores with the “CFG
scores”

(@, t,¢) :=Vglogpi(x | ¢) + (1 —7)Viog pi(z), ¢))

for some v > 0. This turns out to produce much more coherent samples in practice, and so CFG is
used in almost all modern text-to-image diffusion models (Dieleman, 2022). A common intuition for
why CFG works starts by observing that Equation (1) is the score of a gamma-powered distribution:

Pi(@le) o< pr(x) ' pe(ale), by
which is also proportional to p,(z)p:(c|x)?. Raising p;(c|z) to a power v > 1 sharpens the classifier
around its modes, thereby emphasizing the “best” exemplars of the given class or other conditioner at
each noise level. Applying CFG — that is, running a standard sampler with the usual score replaced

by the CFG score at each denoising step — is supposed to increase the influence of the conditioner
on the final samples.
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Figure 1: CFG vs. PCG. We prove that the DDPM variant of classifier-free guidance (top) is
equivalent to a kind of predictor-corrector method (bottom), in the continuous limit. We call this
latter method “predictor-corrector guidance” (PCG), defined in Section 4.1. The equivalence holds
for all CFG guidance strengths +, with corresponding PCG parameter 7/ = (2y — 1), as given in
Theorem 3. Samples from SDXL with prompt: “photograph of a cat eating sushi using chopsticks”.

However, CFG does not inherit the theoretical correctness guarantees of standard diffusion, because
the CFG scores do not necessarily correspond to a valid diffusion forward process. The fundamental
issue (which is known, but still worth emphasizing) is that p; - (x|c) is not the same as the distribution
obtained by applying a forward diffusion process to the gamma-powered data distribution pg - (x|c).
That is, letting IV, [p] denote the distribution produced by starting from a distribution p and running
the diffusion forward process up to time ¢, we have

Pro(zle) = Ne[po(wle)]” - Ne[po(a)]' = # Ny [po(le)po(x)' 7] .

Since the distributions {p; ,(x|c) }+ do not correspond to any known forward diffusion process, we
cannot properly interpret the CFG score (1) as a denoising direction; and using the CFG score in
a sampling loop like DDPM or DDIM is no longer theoretically guaranteed to produce a sample
from py_ (z|c) or any other known distribution. Although this flaw is known in theory (e.g. Du et al.
(2023); Karras et al. (2024a)), it is largely ignored in practice and in much of the literature. The
theoretical foundations of CFG are thus unclear, and important questions remain open. Is there a
principled way to think about why CFG works? And what does it even mean for CFG to “work” —
what problem is CFG solving? We make progress towards understanding the foundations of CFG,
and in the process we uncover several new aspects and connections to other methods.

1. First, we disprove common misconceptions about CFG by counterexample. We show that
the DDPM and DDIM variants of CFG can generate different distributions, neither of which
is the gamma-powered data distribution po(x)*~7pg(x|c)?.

2. We define a family of methods called predictor-corrector guidance (PCG), as a natural
way to approximately sample from gamma-powered distributions. PCG alternates between
denoising steps and Langevin dynamics steps. In contrast to (Song et al., 2020), where
the predictor and corrector both target the conditional distribution, in PCG the predictor
anneals using conditional diffusion paths, while the corrector mixes towards the (sharpened)
gamma-powered distribution.
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3. We prove that in the continuous-time limit, CFG is equivalent to PCG with a careful choice
of parameters. This gives a principled way to interpret CFG: it is implicitly an annealed
Langevin dynamics.

4. For demonstration purposes, we implement the PCG sampler for Stable Diffusion XL and
observe that it produces samples qualitatively similar to CFG, with guidance scales deter-
mined by our theory. Further, we explore the design axes exposed by the PCG framework,
namely guidance strength and Langevin iterations, to clarify their respective effects.

2 PRELIMINARIES

We adopt the continuous-time stochastic differential equation (SDE) formalism of diffusion from
Song et al. (2020). These continuous-time results can be translated to discrete-time algorithms; we
give explicit algorithm descriptions for our experiments.

2.1 DIFFUSION SAMPLERS

Forward diffusion processes start with a conditional data distribution po(z|c) and gradually corrupt it
with Gaussian noise, with p;(x|c) denoting the noisy distribution at time ¢. The forward diffusion runs
up to a time 7" large enough that pr is approximately pure noise. To sample from the data distribution,
we first sample from the Gaussian distribution pr and then run the diffusion process in reverse (which
requires an estimate of the score, usually learned by a neural network). A variety of samplers have
been developed to perform this reversal. DDPM (Ho et al., 2020) and DDIM (Song et al., 2021) are
standard samplers that correspond to discretizations of a reverse-SDE and reverse-ODE, respectively.
Due to this correspondence, we refer to the reverse-SDE as DDPM and the reverse-ODE as DDIM
for short. The forward process, reverse-SDE, and equivalent reverse-ODE (Song et al., 2020) for the
variance-preserving (VP) (Ho et al., 2020) conditional diffusion are

Forward SDE : dx = —%Bt:cdt + \/Edw. 3)
1 _

DDPM SDE :  du = — By dt — 3,V log py (x]c)dt + V/ Bedw 4)
1 1

DDIMODE: dz = _iﬁtx dt — 5@% log pt(x|c)dt. 5)

The unconditional version of each sampler simply replaces p;(z|c) with p;(z). Note that the score
V. log pi(z|c) appears in both (4) and (5). Intuitively, the score points in a direction toward higher
probability, and so it helps to reverse the forward diffusion process. The score is unknown in general,
but can be learned via standard diffusion training methods.

2.2  CLASSIFIER-FREE GUIDANCE

CFG replaces the usual conditional score V,, log p:(z|c) in (4) or (5) at each timestep ¢ with the
alternative score V log p; ,(x|c). In SDE form, the CFG updates are

1

CFGpppm :  dzxz = fiﬂtm dt — 8V, log pr o (x|c)dt + +/ Brdw 6)
1 1

CFGppv : dxz = _iﬁtm dt — iﬁtVIngw(:dc)dt, @)

where V. log p;  (z]c) = (1 — 7))V, log pi(x) + vV, log pe(x]c).

2.3 LANGEVIN DYNAMICS

Langevin dynamics (Rossky et al., 1978; Parisi, 1981) is another sampling method, which starts from
an arbitrary initial distribution and iteratively transforms it into a desired one. Langevin dynamics
(LD) is given by the following SDE (Robert et al., 1999)

dx = gV log p(z)dt + \/edw. 8)
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Figure 2: Counterexamples: CFGppm # CFGpppm # gamma-powered. CFGpp)y and
CFGpppm do not generate the same output distribution, even when using the same score func-
tion. Moreover, neither generated distribution is the gamma-powered distribution pg - (z|c). (Left)
Counterexample 1 (section 3.1): CFGppy yields a sharper distribution than CFGpppp, and both are
sharper than p - (z|c). (Right) Counterexample 2 (section 3.2): Neither CFGppim nor CFGpppwm
yield even a scaled version of the gamma-powered distribution pg (z|c) = N(—3,1). The
CFGpppw distribution is mean-shifted relative to pg (z|c). The CFGppm distribution is mean-
shifted and not even Gaussian (note the asymmetrical shape).

LD converges (under some assumptions) to the steady-state p(z) (Roberts & Tweedie, 1996). That
is, letting ps(x) denote the solution of LD at time s, we have lim,_, o, ps(z) = p(z). Similar to
diffusion sampling, LD requires the score of the desired distribution p (or a learned estimate of it).

3  MISCONCEPTIONS ABOUT CFG

We first observe that the exact definition of CFG matters: specifically, the sampler with which it used.
Without CFG, DDPM and DDIM generate equivalent distributions. However, we will prove that
with CFG, DDPM and DDIM can generate different distributions. We provide informal statements
of our claims below, to convey the main intuitions. The formal statement and proof is provided in
Appendix A.1, as Theorem 4.

Theorem 1 (CFGppm # CFGpppw; informal). Consider generating a sample via CFG using either
DDPM or DDIM as the sampler. There exists a particular data distribution for which the generations
of CFG differ depending on the choice of sampler. In particular, for large guidance scale v > 1,
CFGpppm and CFGpppy approximately generate the following distributions, respectively:

ﬁddpm ~ N(Oa 771)5 ﬁddim ~ N(Ov 2*’7)'

Next, we disprove the misconception that CFG generates the gamma-powered distribution data:

Theorem 2 (CFG # gamma-sharpening, informal). There exists a data distribution pg such that for
any v > 0, neither CFGpp nor CFGpppm produces the gamma-powered distribution pg ~(z|c) o

po(x)'Tpo(xfc).

Both claims are proven using a simple Gaussian construction, as outlined in the next section.

3.1 COUNTEREXAMPLE 1

We first present a setting that allows us to exactly solve the ODE and SDE dynamics of CFG in closed-
form, and hence to find the exact distribution sampled by running CFG. This would be intractable in
general, but it is possible for a specific problem, as follows.

Consider a setting where po(x) and pg(z|c = 0) are both zero-mean Gaussians, but with different
variances. Specifically, (xo, ¢) are jointly Gaussian, with p(c) = N (0, 1), po(z|c) = ¢ + N(0,1).
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Therefore

po(z) =
po(zle = 0) =

Po~(z]le=0) =N(0

==

2

) ﬁ) 9)

For this problem, we can solve CFGppm (7) and CFGppppu (6) analytically; that is, we solve initial-
value problems for the reversed dynamics to find the sampled distribution of Z; in terms of the
initial-value x7. Applying these results to ¢ = 0 and averaging over the known Gaussian distribution
of xr gives the exact distribution of 7 that CFG samples. The full derivation is in Appendix A.1.
The final CFG-sampled distributions are:

R 2 — 22727
CFGpppm : 7o ~ N (0, > (10)
2v -1

CFGppm : Zg ~ N (O, 2177) . (11D

This shows that for any « > 1, the CFGppy distribution is sharper than the CFGpppy distribution,
and both are sharper than the gamma-powered distribution pg - (x|c = 0). (Even though the distribu-
tions all have the same mean, their different variances make them distinct.) In fact, for v > 1, the
variance of DDPM-CFG is approximately -2, which is about twice the variance of po - (z|c = 0).
In Figure 2, we compare the CFGppym and CFGpppy distributions — sampled using an exact denoiser
(see Appendix A.6) within DDIM/DDPM sampling loops — to the unconditional, conditional, and
gamma-powered distributions.

3.2 COUNTEREXAMPLE 2

In the above counterexample, the CFGppy, CFGpppm, and gamma-powered distributions had
different variances but the same Gaussian form, so one might wonder whether the distributions differ
only by a scale factor in general. This is not the case, as we can see in a different counterexample
that reveals greater qualitative differences, in particular a symmetry-breaking behavior of CFG.

In Counterexample 2, the unconditional distribution is a Gaussian mixture with two clusters with
equal weights and variances, and means at £ .

ce{0,1}, plc=0)= 5
po(zole =0) = N(—p,1), po(xolc=1)=N(u1)

po(zo) = %po($o|0 =0)+ %po(x(ﬂc =1) (12)
If the means are sufficiently separated (¢ > 1), then the gamma-powered distribution for v > 1 is
approximately equal to the conditional distribution, i.e. po ,(x|c) = po(x|c), due to the near-zero-
probability valley between the conditional densities (see Appendix A.2). However, for sufficiently
high noise the clusters begin to merge, and p; ~(z|c) # p¢(z|c). In particular, po - (x|c) is approxi-
mately Gaussian with mean 4, but p; ,(x|c) # p.(z|c) is not. Although we cannot solve the CFG
ODE and SDE in this case, we can empirically sample the CFGpp and CFGpppy distributions
using an exact denoiser and compare them to the gamma-powered distribution. In particular, we see
that neither CFGppy nor CFGpppy is Gaussian with mean 44, hence neither is a scaled version
of the gamma-powered distribution. The results are shown in Figure 2. Concurrent work by Chi-
dambaram et al. (2024) offers a theoretical analysis confirming our qualitative observations in the
two-cluster case, while Wu et al. (2024) conduct an analysis of similar GMM settings.

4 CFG AS A PREDICTOR-CORRECTOR

The previous sections illustrated the subtlety in understanding CFG. We can now state our main
structural characterization, that CFG is equivalent to a special kind of predictor-corrector method
(Song et al., 2020).
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4.1 PREDICTOR-CORRECTOR GUIDANCE

As a warm-up, suppose we actually wanted to sample from the gamma-powered distribution:

poy(zlc) o< p(z)' " p(z|e). (13)

A natural strategy is to run Langevin dynamics w.r.t. p,. This is possible in theory because we can
compute the score of p, from the known scores of p(x) and p(z | ¢):

Vazlogpy(z | ¢) = (1 —7)Vglogp(x) +~vValogp(x | ¢). (14)

However this won’t work in practice, due to the well-known issue that vanilla Langevin dynamics
has impractically slow mixing times for many distributions of interest (Song & Ermon, 2019). The
usual remedy for this is to use some kind of annealing, and the success of diffusion teaches us that
the diffusion process defines a good annealing path (Song et al., 2020; Du et al., 2023). Combining
these ideas yields an algorithm remarkably similar to the predictor-corrector methods introduced
in Song et al. (2020). For example, consider the following diffusion-like iteration, starting from
xp ~ N(0,0r) att = T. At timestep t,

1. Predictor: Take one diffusion denoising step (e.g. DDIM or DDPM) w.r.t. p;(x | ¢), using
score V, log pi(z | ¢), to move to time ¢’ = ¢ — At.

2. Corrector: Take K > 1 Langevin dynamics steps w.r.t. distribution py: -, using score
Valogpy (x| ¢) = (1 —~)Vyilogpy(z) + vV logpy (z ] c).

It is reasonable to expect that running this iter-

ation down to ¢ = 0 will produce a sample from

approximately p- (z|c), since the iteration can Vg’;‘(ﬁgfli‘;{j&)
be thought of as a type of annealed Langevin '
dynamics, with time ¢ playing the role of tem-
perature (c.f. Remark 1 below). We name this
algorithm predictor-corrector guidance (PCG). ﬂ Langevin dynamics on
Remarkably, it turns out that for specific choices Pioalx | €Y P_a®)'™
of the denoising predictor and Langevin step DM it ccore
size, PCG is equivalent (in the SDE limit) to Viogpx|c)
CFG, but with a different v. We will formalize X, — BN
and prove this in the subsequent section.

XAt

denoise

Remark 1 (Langevin Dynamics). The standard

annealed Langevin dynamics corresponds to a Figure 3: CFG is equivalent to PCG for particular
predictor-corrector where the predictor is an parameter choices.

identity function: it only reduces the “tempera-

ture” t — t — At without changing the current

sample xy. The iteration above uses an intuitively better predictor that moves xy along the diffusion
path, which is the “correct” way to reduce temperature (at least in the conditional diffusion setting).

Remark 2 (Mixing). Why do we expect PCG to sample from approximately p.(x|c)? For the
same reason we expect annealed Langevin dynamics to work: in the limit of many Langevin steps
(K — o0), the corrector will fully mix to the distribution py -, at each time t'. In reality we may take
only K =1 Langevin step at each iteration, which will at least move the sample distribution towards
the target distribution py ~(x|c), even if it does not fully mix.

Remark 3 (Predictor-Corrector). PCG technically differs from the predictor-corrector algorithms in
Song et al. (2020), because our predictor and corrector operate w.r.t. different distributions (p; vs.
Dt ). However, conceptually all of these methods can be thought of as variants of annealed Langevin
dynamics (as described in Remark 1), with different annealing choices.

4.2 SDE LIMIT OF PCG

Consider the version of PCG defined in Algorithm 1, which uses DDIM as predictor and a particular
LD on the gamma-powered distribution as corrector. We take K = 1, i.e. a single LD step per
iteration. Crucially, we set the LD step size such that the Langevin noise scale exactly matches the
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Algorithm 1: PCGppu, theory. (see Algorithm 2 for practical implementation.)

Input: Conditioning c, guidance weight v > 0
Constants: (3, := [(t) from Song et al. (2020). K € N, the number of Langevin iterations.
Tl ~ N(O, I)
for (t=1—At; t >0; t <t — At) do
St+At 1= VlngH-At(fUHAt\C)
Ty < Ti4At + %6t(xt+At + St_;,_At)At > DDIM step for pL+AL(ZL'|C) — pt(f£|0)
€ := B At > Langevin step size, matching DDPM noise scale 5;
fork=1,... K do

n~ N(07 Id)

St = (1 =)V logpi(zt) + vV log pi(wfc)

Ty = Ty + 5814+ V/EN > Langevin dynamics on py - (z|c)
end

end
return x

noise scale of a (hypothetical) DDPM step at the current time (similar to Du et al. (2023)). In the
limit as At — 0, Algorithm 1 becomes the following SDE (see Appendix B):

dx = ADDIM(z, t) + ALDg(z, t,v) =: APCGppm(z, t,7), (15)

Predictor Corrector

where ADDIM(z,t) = féﬂt(x + Vlog pi(z|c))dt

ALDg(z,t,7) = *%&((1 — )V logpi(z) + 7V logpt(IIC))dt + /Bidw.

Above, ADDIM(z, t) is the differential of the DDIM ODE (5), i.e. the ODE can be written as
dx = ADDIM(z,t). And ALDg(z,t,~), where G stands for “guidance”, is the limit as At — 0 of
the Langevin dynamics step in PCG, which behaves like a differential of LD (see Appendix B).

We can now show that the PCG SDE (15) matches CFG with DDPM, but with a different ~. In
the statement, ACFGpppm (2, t,7) denotes the differential of the CFGpppm SDE (6), similar to the
notation above. This result is trivial to prove using our definitions, but the statement itself appears to
be novel. !

Theorem 3 (CFG is predictor-corrector). In the SDE limit, CFG with DDPM is equivalent to a
predictor-corrector. That is, the following differentials are equal:

ACFGpppm(z,t,v) = ADDIM(z,t) + ALDg(x,t,2y — 1) =: APCGppm(z,t,2y — 1) (16)

Notably, the guidance scales of CFG and the above Langevin dynamics are not identical.

Proof.
APCGpp(z,t,y) = ADDIM(z,t) + ALDg(z, t,v)

= 3 Bila+ (1= 7)Vlogpi(a) + (1+7)V log pi(ale))dt + /Fudw

1 1
= *§5t$At — BtV log py v (z]c) At + VBdw, = A

2 2
= ACFGpppm (x, t, ’y’)
O

"Notice that taking v = 1 in Theorem 3 recovers the standard fact that DDPM is equivalent, in the limit, to
DDIM interleaved with LD (e.g. Karras et al. (2022)). This is because for v = 1, CFGpppp is just DDPM, so
Theorem 3 reduces to: ADDPM(z,t) = ADDIM(z,t) + ALDg(z,t,1).
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5 DISCUSSION AND RELATED WORKS

There have been many recent works toward understanding CFG. To better situate our work, it helps
to first discuss the overall research agenda.

5.1 UNDERSTANDING CFG: THE BIG PICTURE

We want to study the question of why CFG helps in practice: specifically, why it improves both image
quality and prompt adherence, compared to conditional sampling. We can approach this question
by applying a standard generalization decomposition. Let p(x|c) be the “ground truth” population
distribution; let p (z|c) be the distribution generated by the ideal CFG sampler, which exactly solves
the CFG reverse SDE for the ground-truth scores (note that at v = 1, p(x|c) = p(x|c)); and let
D~ (x|c) denote the distribution of the real CFG sampler, with learnt scores and finite discretization.
Now, for any image distribution ¢, let PerceivedQuality[¢g] € R denote a measure of perceived
sample quality of this distribution to humans. We cannot mathematically specify this notion of quality,
but we will assume it exists for analysis. Notably, PerceivedQuality is not a measurement of how
close a distribution is to the ground-truth p(z|c) — it is possible for a generated distribution to appear
even “higher quality” than the ground-truth, for example. We can now decompose:

PerceivedQuality[p,] = PerceivedQuality[p’] — (PerceivedQuality[p?] — PerceivedQuality[p]) .

Real CFG Ideal CFG Generalization Gap
a7)

Therefore, if the LHS increases with ~, it must be because at least one of the two occurs:

1. The ideal CFG sampler improves in quality with increasing . That is, CFG distorts the
population distribution in a favorable way (e.g. by sharpening it, or otherwise).

2. The generalization gap decreases with increasing . That is, CFG has a type of regularization
effect, bringing population and empirical processes closer.

In fact, it is likely that both occur. The original motivation for CG and CFG involved the first effect:
CFG was intended to produce “lower-temperature” samples from a sharpened population distribution
(Dhariwal & Nichol, 2021; Ho & Salimans, 2022). This is particularly relevant if the model is
trained on poor-quality datasets (e.g. cluttered images from the web), so we want to use guidance
to sample from a higher-quality distribution (e.g. images of an isolated subject). On the other hand,
recent studies have given evidence for the second effect. For example, Karras et al. (2024a) argues
that unguided diffusion sampling produces “outliers,” which are avoided when using guidance —
this can be thought of as guidance reducing the generalization gap, rather than improving the ideal
sampling distribution. Another interpretation of the second effect is that guidance could enforce a
good inductive bias: it “simplifies” the family of possible output distributions in some sense, and thus
simplifies the learning problem, reducing the generalization gap. Figure 6 shows a example where
this occurs. Finally, this generalization decomposition applies to any intervention to the SDE, not just
increasing guidance strength. For example, increasing the Langevin steps in PCG (parameter K) also
shrinks the generalization gap, since it reduces the discretization error.

In this framework, our work makes progress towards understanding both terms on the RHS of
Equation 17, in different ways. For the first term, we identify structural properties of ideal CFG,
by showing that p’, can be equivalently generated by a standard technique (an annealed Langevin
dynamics). For the second term, the PCG framework highlights the ways in which errors in the
learned score can contribute to a generalization gap, during both the denoising step and the LD step
(the latter would move toward an inaccurate steady-state distribution).

5.2 OPEN QUESTIONS AND LIMITATIONS

In addition to the above, there are a number of other questions left open by our work. First, we study
only the stochastic variant of CFG (i.e. CFGpppwm), and it is not clear how to adapt our analysis
to the more commonly used deterministic variant (CFGppy). This is subtle because the two CFG
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Figure 4: Effect of Guidance and Correction. Each grid shows SDXL samples using PCGppjm, as
the guidance strength v and Langevin iterations K are varied. Left: “photograph of a dog drinking
coffee with his friends”. Right: “a tree reflected in the hood of a blue car”. (Zoom in to view).

variants can behave very differently in theory, but appear to behave similarly in practice. It is thus
open to identify plausible theoretical conditions which explain this similarity?; we give a suggestive
experiment in Figure 5. More broadly, it is open to find more explicit characterizations of CFG’s
output distribution, in terms of the original p(z) and p(z|c).

Finally, we presented PCG primarily as a tool to understand CFG, not as a practical algorithm in
itself. Nevertheless, the PCG framework outlines a broad family of guided samplers, which may be
promising to explore in practice. For example, the predictor can be any diffusion denoiser, including
CFG itself. The corrector can operate on any distribution with a known score, including compositional
distributions as in Du et al. (2023), or any other distribution that might help sharpen or otherwise
improve on the conditional distribution. Finally, the number of Langevin steps could be adapted to
the timestep, similar to Kynkéddnniemi et al. (2024), or alternative samplers could be considered (Du
et al., 2023; Neal, 2012; Ma et al., 2015).

5.3 STABLE DIFFUSION EXAMPLES

We include several examples running predictor-corrector guidance on Stable Diffusion XL (Podell
et al., 2023). These serve primarily to sanity-check our theory, not as a suggestion for practice. For
all experiments, we use PCGppim as implemented explicitly in Algorithm 2. Note that PCG offers
a more flexible design space than standard CFG; e.g. we can run multiple corrector steps for each
denoising step to improve the quality of samples (controlled by parameter K in Algorithm 2).

CFG vs. PCG. Figure 1 illustrates the equivalence of Theorem 3: we compare CFGpppy with
guidance y to PCGppjy with exponent v/ := (2y — 1). We run CFGpppym with 200 denoising steps,
and PCGppyv with 100 denoising steps and K = 1 Langevin step per denoising step. Corresponding
samples appear to have qualitatively similar guidance strengths, consistent with our theory.

Effects of Guidance and Corrector. In Figure 4 we show samples from PCGppu, varying the
guidance strength and Langevin iterations (i.e. parameters v and K respectively in Algorithm 2). We
also include standard CFGppy samples for comparison. All samples used 1000 denoising steps for
the base predictor. Overall, we observed that increasing Langevin steps tends to improve the overall
image quality, while increasing guidance strength tends to improve prompt adherence. In particular,
sufficiently many Langevin steps can sometimes yield high-quality conditional samples, even without

2Curiously, CFGppyy is the correct probability-flow ODE for CFGpppy if and only if the true intermediate
distribution at time ¢ is p;, . However we know this is not the true distribution in general, from Section 3.
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Method y=1 =11 =13 ~y=15
CFGpppm 5.99 3.90 2.71 3.33
CFGppim 7.11 4.61 2.55 2.47

PCGppm (LD steps=1) 7.77 5.54 3.37 3.16
PCGppm (LD steps=3) 7.42 4.11 3.71 6.10
PCGppim (LD steps=5) 7.23 3.80 4.87 8.86

Table 1: FID Scores on ImageNet (lower is better), using DDPM, DDIM, and PCG samplers. We
vary ~ and the number of LD steps. FD-DINOv2 and Inception Scores provided in Appendix C.

any guidance (y = 1); see Figure 7 in the Appendix for another such example. This is consistent
with the observations of Song et al. (2020) on unguided predictor-corrector methods. It is also related
to the findings of Du et al. (2023) on MCMC methods: Du et al. (2023) similarly use an annealed
Langevin dynamics with reverse-diffusion annealing, although they focus on general compositions of
distributions rather than the specific gamma-powered distribution of CFG.

bl

Notice that in Figure 4, increasing the number of Langevin steps appears to also increase the “effective’
guidance strength. This is because the dynamics does not fully mix: one Langevin step (X = 1) does
not suffice to fully converge the intermediate distributions to p; ..

5.4 IMAGENET EXPERIMENTS

For completeness, we also include experiments comparing variants of PCG and CFG on ImageNet
(Russakovsky et al., 2015). Table 1 shows FID scores (Heusel et al., 2017) on ImageNet, using EDM2
pretrained diffusion models (Karras et al., 2024b). Metrics are calculated using 50,000 samples and
200 sampling steps, generated using EDM2 checkpoints edm2-img512-s-2147483-0.025
(conditional) and edm2-img512-xs—-uncond-2147483-0.025 (unconditional).

* For all samplers, there is a “sweet spot” of guidance scale ~y; quality starts to degrade when
« is too low or too high. This is a well-known behavior of CFG, and also occurs for PCG.

* For PCG methods, increasing the number of LD steps does not always improve FID — it
depends on the guidance scale. More LD steps helps at v = 1.1 for example, but starts to
hurt at higher «. This may seem surprising, but is explained by the same mechanism we
saw in Figure 4: increasing the LD steps corresponds to increasing the “effective” guidance
strength, because a single step does not fully mix the Langevin dynamics.

» CFGpppm and PCGppym (LD=1) have different optimal guidance scales 7. The FID of
CFGpppwm is minimized at v & 1.3, while PCGppy is minimized at > 1.5. This is roughly
in line with Theorem 3, where the equivalence between PCG and CFG requires rescaling +.

* Finally, for v = 1, both PCGppy and CFGpppym are equivalent to standard DDPM in the
SDE limit. However, PCGppy has significantly worse FID in the above finite-stepsize
experiment. This discrepancy can thus be attributed to different discretization strategies
of the same SDE — similar to how DDPM is a more sophisticated discretization than
Euler—Maruyama for the reverse-diffusion SDE (e.g. Lu et al. (2022b)).

6 CONCLUSION

We have shown that while CFG is not a diffusion sampler on the gamma-powered data distribution
po(z)~po(x|c)?, it can be understood as a particular kind of predictor-corrector, where the predictor
is a DDIM denoiser, and the corrector at each step ¢ is one step of Langevin dynamics on the gamma-
powered noisy distribution p; ()~ p;(x|c)?’, with 4/ = (2y — 1). Although Song et al. (2020)’s
Predictor-Corrector algorithm has not been widely adopted in practice, perhaps due to its computation
expense relative to samplers like DPM++ (Lu et al., 2022b), it turns out to provide a lens to understand
the unreasonable practical success of CFG. On a practical note, PCG encompasses a rich design
space of possible predictors and correctors for future exploration, that may help improve the prompt-
alignment, diversity, and quality of diffusion generation.

10
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A 1D GAUSSIAN COUNTEREXAMPLES

In this section, we formalize and prove Theorems 1 and 2. We will work with a variance-exploding
(VE) process, so we begin by defining CFG for the VE process (analogous to the SDE (6) and ODE
(7) for the VP process).

Definition 1 (CFG, variance-exploding). Given a data distribution py(x, ¢), define the noisy distri-
bution py(x) for any t € Ry as the result of running the VE forward diffusion SDE dx = dw, up to
time t, with initial distribution po(x) at t = 0. Explicitly, this is the convolution p; := po * N(0, ).
Similarly define p;(x|c) := po(x|c) * N(0,t).

Forall v € R and c € R, define the CFG SDEs for DDPM and DDIM, respectively, as

CFGpppm:  dx = —V logp, ~(z|c)dt + dw, (18)
dx 1
CFGppiu : i —iv,,. log pi.~(z|c), (19)

where p; (x|c) := pi(z|c)'pe(x)' =7 /Z, and Z € R is the appropriate normalization constant.

The SDE and ODE above specify the dynamics of the CFG sampler in the VE setting. Specifically,
in order to sample via CFG, we start with a Gaussian sample 7 ~ N (0, T) for some T > 0, and
then run the SDE or ODE from time ¢ = T down to time ¢ = 0, to generate a sample xy. We call the
resulting distribution of samples x( the generated distribution, and adopt the following notation:
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Figure 5: (Left) For Counterexample 1 (section 3.1), we plot the empirical and theoretical variance
of the gamma-powered, CFGppu, and CFGpppy distributions, over a range of values of . The
theoretical predictions are given by equations (11) and (10), and the empirical distributions are
sampled using an exact denoiser. This verifies the theoretical predictions and illustrates the decreasing
variance from pg ~ to CFGpppm to CFGppim. (Right) For counterexample 3 (section A.3 with
different choices of variance (¢ = 1 and o = 2), we compare CFGppy and CFGpppp. Increasing
the variance makes the two CFG samplers more similar. Also note that the CFGppy distribution
is symmetric around the center cluster, but asymmetric around the side clusters. This experiment
suggests that multiple clusters and greater overlap between classes can help symmetrize and reduce
the difference between CFGpp and CFGpppm

Definition 2 (CFG generated distributions). Denote by p(ngPM(;L'|c), p(D?,M(ﬂc) the probability

densities of the distributions generated by the CFGpppy SDE (18), CFGppy ODE (19), respectively;
that is, the solutions to the SDE, ODE, respectively, at time t = 0 with initial conditions rr ~
N(0,T), for any terminal times T € R and conditioning ¢ € R.

We will mainly be interested in the limits of the generated distributions as we let the terminal time
T — o0, which corresponds to allowing the diffusion process to fully mix. We can now formalize
Theorems 1 and 2 as follows:

Theorem 4 (Counterexample for which CFGppy # CFGpppw # gamma-sharpening). In the
setting of Definitions 1 and 2, there exists a data distribution such that the distributions generated
by CFGppp and CFGppy are different, and neither is equal to the gamma-powered distribution.
Specifically, define a data distribution po(z, ), over inputs x € R and conditioning c € R, as:

po(c) =N(¢;0,1), po(z|c) = N(z;e,1).
In particular, (x,c) € R? is jointly Gaussian and po(z|c = 0) = N(x;0, 1).

Then, for all z,~v € R, the limiting generated distributions for ¢ = 0 are:

. T S 2-22

Jm ppppy(le = 0) =N (a: 0 (20)
1 (T) = = N 1_’)/

Thm Pppm(zle =0) N(m,O,Q ) 21

Furthermore, the gamma-powered distribution for ¢ = 0 is given by po ~(z|c = 0) = N (x;0, %)
Therefore,

: (T) _ : (T) _ _
qlgnmpDDPM(x\c =0) # lim pppypy(zle = 0) # po(zle = 0).
Note that variance of the generated distributions depends on the guidance weight v (Equations 20
and 20), and is exponentially different between DDIM and DDPM when v > 1. The proof follows
directly from the calculations in the next section (A.1), which characterize the density evolution of
CFQG in this setting.

13
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A.1 COUNTEREXAMPLE 1

Counterexample 1 (equation 9) has

p(e) =N(0,1)
po(zle) = N(c,1)
- po(x) ~ ./\/-(O7 2)
polale = 0) ~ N (0, 1).

The y-powered distribution is

Po(@le = 0) = po([c) "pe=o(a)' ™

We consider a simple variance-exploding (VE) diffusion defined by the SDE
dr = dw.
The DDIM sampler is a discretization of the reverse ODE

dx 1

i —ivx log p(z),

and the DDPM sampler is a discretization of the reverse SDE
dxr = =V log p(z)dt 4 dw.

For CFGppim or CFGpppwm, we replace the score with CFG score V, log py ~ ().

(22)

At inference time we choose an initial sample z7 ~ N (0,T) and run CFGppjy from ¢ =T — 0 to
obtain a final sample x(. Note that the true distribution generated by the forward process in our setting
is pr = N(0,T + 1), which becomes close to our inference-time terminal distribution A/ (0, T") for
large T'. Taking the limit of 7' — oo in our setting thus corresponds to allowing the forward diffusion

process to fully mix.

CFGppm For Counterexample 1, the CFGppm ODE has a closed-form solution (derivation in

section A.5):

dx 1
CFGppom: — = _§Vx log py ()

dt
_ gl (1-7)
- (2(1+t) + 2(2+t)>

. :xT\/((t—&-l)“/(t—&-Q)l—v

T+ )T +2)-

That is, for a particular initial sample x7, CFGppm produces the sample z; at time ¢. Evaluating at
t = 0 and taking the limit as 7' — oo yields the ideal denoised xo sampled by CFGppim given an

initial sample x7:

21—
~CFG
foer) = IT\/(T YT +2)

21—
— X7 T as T — oo.

To get the denoised distribution obtained by reverse-sampling with CFGppjm, we need to average

over the distribution of z7:

~CFGppm
E T T =N(0,T——
ITNN(()’T)[ 0 (z7)] ( T

which is equation 11 in the main text.

14
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CFGpppm CFGpppwm also has a closed-form solution (derived in section A.5)
r = -V logp: ,(x)dt + dw
gl (1—1)
— dt + dw
$<(1+t) + (2+t)> aw

— i) =z (L+0)7(2+0)7

1—2y 1—2~
t 1 T+1
T — (L2 * (it £
(1+T)y2+T)1— 27—1 t+2

T+2
Similar to the CFGppy argument, we can obtain the final denoised distribution as follows

A 217
ngGDDPM (:L‘ >_

T—|—1 1—2v
TAY T+ 1) \/27—1 T+2) ¢

21— 2 —22-2v
— T + 13

T 1 as’ ' — oo
21—7 2 92 _ 22—2’y
~CFGpppm
= E z )] =N10,T +
zT~N(o,T)[ 0 (er)] ( < T ) 2y -1 >

2_22727
—>/\/<0727_1 ),

which is equation 10 in the main text, and for v > 1 becomes approximately

2
~CFGpppm

E z )] =N (0, —— .
xT~N<o,T>[ 0 (o) < 27—1>

In Figure 5, we confirm results (10, 11) empirically.
A.2 COUNTEREXAMPLE 2

Counterexample 2 (9) is a Gaussian mixture with equal weights and variances

ce{0,1}, p(c

po(wole) ~ N (1), p@ =—p, u®=p

1 1
po(xo) ~ §p0($0|0 =0)+ 5p0($0|8 =1).

We noted in the main text that if u is sufficiently large enough that the clusters are approximately
disjoint, and v > 1, then pg - (x|c) =~ po(z|c). To see this note that

1 1
Po(x0) = §po($o|0)1z>0 + §p0($0\1)1x>0
Poy () o po(z|c) po(x) 7
<P0 z|c >
(@) (Lign(@)=nt) "

(z|c) for~y > 1.
However, p; ~(z|c) # p:(x|c) since the noisy distributions do overlap/interact

We don’t have complete closed-form solutions for this problem like we did for Counterexample 1.
We have the solution for conditional DDIM for the basic VE process dz = dw (using the results from
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the previous section):

d 1
DDIM on p;(x|c): d—f = ivx log pt(x|c)
1
- _ (e) _
A T

oy 1+t
= a(t) = p + (@r = 1N T

but otherwise have to rely on empirical results. We do however have access to the ideal conditional
and unconditional denoisers via the scores (Appendix A.6):

1
Ve logpi(ele) = =375 (1) — zy)
1
I g
Vi logpi(z) = Vapi(®) _ 5 2o Pt(wIC)_
Pi() pi()

A.3 COUNTEREXAMPLE 3

We consider a 3-cluster problem to investigate why CFGppm and CFGppppm often appear similar in
practice despite being different in theory. Counterexample 3 (9) is a Gaussian mixture with equal
weights and variances. We vary the variance to investigate its effect on CFG.

1
ce {07172}7 p(C) = g Ve
po(wole) ~ N (9, 0), p®=-3 uM =0 p?=3
1
3
We run CFGppjw and CFGpppw with v = 3, for ¢ = 1 and o = 2. Results are shown in Figure 5.

1 1
po(xo) ~ gpo($o|6 =0)+ gpo(x0|c = 1)+ =po(xolc = 2).
A.4 GENERALIZATION EXAMPLE 4

We consider a multi-cluster problem to explore the impact of guidance on generalization:

po(z) ~ N(0,10)

po(z|c =0) Zwl (i, o (23)
- (73, ~92.5,-2,-1.5,-1,-0.5,0,0.5,1,1.5,2,2.5)
w; = 0.0476 Vi #£6; wg = 0.476
c=0.1

Note that the unconditional distribution is wide enough to be essentially uniform within the numerical
support of the conditional distribution. The conditional distribution is a GMM with evenly spaced
clusters of equal variance, and all equal weights, except for a “dominant” cluster in the middle with
higher weight. The results are shown in Figure 6.

A.5 CLOSED-FORM ODE/SDE SOLUTIONS

First, we want to solve equations of the general form %2 = —a(t)z + b(t), which will encompass the
ODEs and SDE:s of interest to us. All we need for the ODE:s is the special b(t) = a(t)c, which is
easier.

The main results are

dx
i a(t)(c —x)

= a(t) = c+ (xr — )N ~40 (24)
where A() = / a(t)dt
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Figure 6: An example where guidance benefits generalization. (Top left) Conditional po(z|c = 0)
(purple) and unconditional pg () (green) distributions for Example 4 (equation 23). The unconditional
distribution is approximately uniform, while the conditional distribution for ¢ = 0 is a GMM with
several clusters with equal variances, and equal weights except for a single “dominant” cluster with
a higher weight. (Top right) We train small MLPs to predict the conditional and unconditional
scores, with early-stopping so that the fit is imperfect. We plot the exact (orange) vs. learned (blue)
conditional and unconditional scores: the unconditional scores are learned accurately, while the
conditional scores are learned accurately near the dominant cluster but poorly elsewhere. (Bottom left)
We sample with DDPM on the conditional distribution (no guidance) using learned scores (blue) vs.
exact scores (orange). We expect DDPM to generate the conditional distribution pg(z|c = 0) (purple).
However, DDPM-with-learned-scores samples less accurately than DDPM-with-exact-scores away
from the dominant cluster (where the learned scores are inaccurate) (compare the increased blue vs.
orange sampling in low-probability regions). (Bottom right) With guidance v = 3, po - (z|c) (red)
and both samplers concentrate around the dominant cluster (where the learned scores are accurate),
reducing the generalization gap between the learned and exact models.
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and
dx
= = —a(t) +b(t)
= a(t) = e *O(B(t) - B(T)) + wpe A0 (25)

where A(f) = / a(t)dt, B(t) = / AWt dt.

First let’s consider the special case b(t) = a(t)c, which is easier. We can solve it (formally) by
separable equations:

dx
& ate—m)
- /Cixdx = /a(t)dt = A(t)
= —log(c—xz)=At)+C

— c—z=eAWC

= z(t) = c+ Ce AWM, (26)
Next we need to apply initial conditions to get the right constants. Remembering that we are actually

sampling backward in time from initialization x7, we can solve for the constant C' as follows, to
obtain result (24):
T =c+ Ce=AT)
— C=e"D(zp —¢)
— z(t) = c + (xp — )M =AWD),

We will apply this result to CFGppjy shortly, but for now we note that for a VE diffusion daz = v/tdw
on a Gaussian data distribution py(x) ~ N (u, o) the above result implies the exact DDIM dynamics:

() ~ N(p,0® +1)

dx 1
DDIM on p;(x): i _ivx log pt ()
1
EECET
1
A(t) = ~3 log(o? + 1)
— z; = p+ (wp — p)et A0

o2+t
—M+($T—M)\/m-

. . 2 ~ ~
(which makes sense since r;—7 = x7 and \/U;T ~0 = x40 =~ ).

Now let’s return to the general problem with arbitrary b(t) (we need this for the SDEs). We can use
an integrating factor to get a formal solution:

d
dit” = —a(t)z + b(t)
Integrating factor: e*®  A(t) = /a(t)dt

L (w()e0) = (1) + alD)a(r)) A
= b(t)et®

O /eA(t)b(t)dt—i— C

— z(t) = e A0 /eA(t)b(t)dt + Ce A0, (27)
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Note that if b(t) = a(t)c this reduces to (26):

/efA(t)eA(t)b(t)dt =ce 40 /a(t)eA(t)dt =c

— z(t) = c+ Ce 40,

Again, we need to apply boundary conditions to get the constant, and remember that we are actually
sampling backward in time from initialization z to obtain result (25):

dx
i —a(t)z + b(t)

zp = e A B(T) + Ce D) B(t) := /eA(t)b(t)dt
— C=e"Dgr — B(T)
— z(t) = e A OB(t) + (e Dap — B(T))e AW
= e A(B(t) — B(T)) + xpet =AW,

Note that for b(t) = a(t)c this reduces (24):

b(t) = a(t)e = B(t) = ce*®
— .’L‘(t) = _ce_A(t)(eA(t) — eA(T)) + :L-TeA(T)_A(t)

= c+ (zp — ¢)eMTD=AWD),

Counterexample 1 solutions To solve the CFGpp ODE for Counterexample 1 (Equation 9) we
apply result (24):

% =a(t)(c—2z) = x(t) = c+ (xp — )eAT=AD
o) = —— -7 . _,

201+1¢) 2(2+1t)’
_ 1 gt (1-9)
A(t)__i/(lﬂ) + (2+t)dt

— —%('ylog(t +1) + (y— 1) log(t +2))

- (t+ 1)(t+2)1—
— = xT\/(T+ DT +2)7

To solve the CFGpppn SDE for Counterexample 1 (Equation 9), we first apply (25) to the SDE with
b(t) = —¢£(1):

%:_a@)x_g@, (€(t) =0, (£(1),€(")) =d(t— ')

s 2(t) = 2peAD AW 4 AW (B — B(T)), A(t) = / a(t)dt, B(t) = — / AW () dt

T
— 2peAD =AW | AW, | / C2AM) dte
t
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Now, plugging in the DDPM drift term we find that
S S )

(I+t) (2+1¢)

A(t) = —vlog(1+1t) — (1 — ) log(2 +¢)

AW =1 +0)77@2 41

/e“(”dt = /(1 +1) Q2+ t) e
1 (41 7?
o2y —1\t+2

T
a:(t) _ xTeA(T)fA(t) + efA(t) / €2A(t)dt§
t

a(t) = —

(1+t)7(2+t) _ t+1
= L+ 872417
Ty AT \/2771 t+2

A.6 EXACT DENOISER FOR GMM

T

T+1

T+2

For the experiments in Figure 2, we used an exact denoiser, for which we require exact conditional
and unconditional scores. Exact scores are available for any GMM as follows. This is well-known

(e.g. Karras et al. (2024a)) but repeated here for convenience.

1 z—p)°
SL’) = Zde)(‘Ta,uuo-l)v where ¢(1’;H702) = \/%0_6_( 202)
Vp(z)
= Vlogp(z) = (@)

_ > wiVo(ps, o)

> wid(pi, 0;)

> wi (‘"’”;4‘) o(x; i, 07)
> wid (i, ;) ’

B PCG SDE

We want to show that the SDE limit of Algorithm 1 with K = 1is
dx = ADDIM(z, t) + ALDg(z, t,~).
To see this, note that a single iteration of Algorithm 1 with K =1 expands to

1 /3t

1—-2v
)

Tt = Ti4At —§ﬁt($t+m — Vlog piat(@iyatlc)) At + VIngt ~(xi|e) + /B AN (0, 14)
DDIM step on pi4a¢(z+At|c) Langevin dynamics on p; - (z|c)

. 1 1 _
= dx = Aliglo Ty — TppAr = —56,5(35,5 — Viog pi(x¢|c))dt + iﬂtVIngt,ﬂ,(xﬂc)dt + +/Brdw .

ADDIM(a, £) ALDg(,t,7)

This concludes the proof.

A subtle point in the argument above is that ALDg(z, ¢, ) represents the result of the Langevin
step in the PCG corrector update, rather than the differential of an SDE. In Algorithm 1, ¢ remains

constant during the LD iteration, and so the SDE corresponding to the LD iteration is

1
T = iﬁtVIngm(xt\c)ds + / Brdw,

20
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Increasing # Langevin Steps (PCGpppm)

Figure 7: Effect of Langevin Dynamics. PCG generations with v = 1 (no guidance) fixed and
number of Langevin steps K varied. The prompt is “photograph of a panda eating pizza”. Increasing
the number of Langevin steps can qualitatively improve image quality, even without guidance.

where s is an LD time-axis that is distinct from the denoising time ¢, which is fixed during the LD
iteration. Thus ALDg(x,t, ) is not the differential of (28) (the difference is dt vs ds). However,
when we take an LD step of length dt as required for the PCG corrector, the result is

dt
/ —%Vlogpmds +\/Bedw = —%Vlogpmdt +v/Bidw = ALDg(x,t,7),
0

so ALDg(z, t, v) represents the result of the PCG corrector update in the limit as At — 0.

C ADDITIONAL SAMPLES AND METRICS

Table 2: FD-DINOV2 scores for PCG, DDIM, and PCG over ~y and number of LD steps. Setup as
described in Table 1.

Method y=1 =11 =13 =15
DDPM-CFG 161.72  125.71 84.65 65.44
DDIM-CFG 189.76  152.04  104.17 79.07

PCGLDsteps=1 188.83  155.19  109.11 83.50
PCGLDsteps=3 17497 119.87 73.38 70.80
PCGLDsteps=5 166.38  110.27 71.08 93.21

Table 3: Inception Scores for PCG, DDIM, and PCG over « and number of LD steps. Setup as
described in Table 1.

Method y=1 ~=11 =13 ~=15
DDPM-CFG 108.2628 126.8507 157.0371 178.0676
DDIM-CFG 100.0823 1163814 144.7761  164.6486

PCGLDsteps=1 101.2306 113.6755 133.1969 147.5756
PCGLDsteps=3 1052118 1269752 152.2398 160.9198
PCGLDsteps=5 107.1457 139.8954 155.7239 149.6180

D AN ALTERNATIVE DISCRETIZATION

In this section we empirically study an alternative discretization of PCG. The equivalence between
PCG and CFG holds in the SDE limit as At — 0, so PCG should be thought of as an SDE for which
Algorithm 1 is one choice of discretization. However, other discretizations are possible. In this
section we explore one of these. In particular, we make a single change to Algorithm 1: we modify

21



B N N

10
11

Under review as a conference paper at ICLR 2025

the LD loop by changing the order of operations: we first add noise, and then compute and step in the
direction of the score; specifically, the inner loop LD becomes:

x4 xp + e, n~N(0, 1)
8ty := (1 =)V1ogpi(x:) + 7V log ps(x¢]c)

3
Ty < Ty + §St77 (29)

This is similar to the “churn” operation in Karras et al. (2022)’s stochastic sampler, and conceptually
similar to a noise-then-denoise step in Lugmayr et al. (2022). We generally find that this change
improves the PCG metrics (more closely matching the DDPM metrics) for smaller ~’s, while
worsening the metrics for larger ~’s, as shown in Table 4. We are not sure why this is, but it is
well-known that diffusion models are sensitive to discretization choices in practice.

Table 4: Metrics for DDPM, DDIM, and PCG over v and number of LD steps. Alternative LD
discretization (Equation 29).
FID vy=1 vy=11 v=1.3 vy=15

PCGLDsteps=1  5.87115  4.72043  4.15484  4.74044
PCGLDsteps=3 479793  3.49296  4.82135  7.69348
PCGLDsteps=5  4.51476  3.35029  6.04134 10.6716

FD-DINOv2 y=1 =11 ~=13 ~=15

PCG LD steps = 1 156.854 132.605 102.107  88.2433
PCG LD steps =3 137.502 100912  76.9214  86.1473
PCG LD steps =5 129.782  89.3722  79.0756 112.229

Inception Score y=1 vy=11 vy=13 ~=15

PCGLDsteps=1 107.7871 117.3694 132.3872 141.6556
PCGLDsteps=3 1154412 131.1285 148.9654 152.2574
PCGLDsteps=5 117.5658 136.5819 150.1884 138.9601

E ALGORITHMS

Algorithm 2 provides an explicit, practical implementation of PCG. Note that Algorithm 1 and 2
have slightly different DDIM steps, but this just corresponds to two different discretizations of the
same process. Algorithm 1 uses the first-order Euler—Maruyama discretization known as “reverse
SDE” (Song et al., 2020), which is convenient for our mathematical analysis. Algorithm 2 uses the
original DDIM discretization (Song et al., 2021), equivalent to a more sophisticated integrator (Lu
et al., 2022a), which is more common in practice.

Algorithm 2: PCGppv, explicit

Input: Conditioning ¢, guidance weight v > 0
Constants: {a;}, {a:}, {5:} from Ho et al. (2020)
€Ty ~ )
for(t=1—At; t>0; t + ¢t — At)do
g,e. := NoisePredictionModel(z:4 a¢, ¢)
Zo := (Tear — VI — Qe ntee) [Vt
Tt = oy + V1 — e > DDIM step pryat(z|c) — pi(x|c)
fork=1,... K do
¢,e. := NoisePredictionModel(z, ¢)

Ty 4 Ty — 2\/% (1 —7v)e +vee) + VB > Langevin dynamics on p; - (z|c)

end

end
return x
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