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Abstract
In recent years, Large Language Models001
(LLMs) have made significant strides towards002
Artificial General Intelligence. However,003
training these models from scratch requires004
substantial computational resources and vast005
amounts of text data. In this paper, we ex-006
plore an alternative approach to constructing007
an LLM for a new language by continually008
pre-training (CPT) from existing pre-trained009
LLMs, instead of using randomly initialized010
parameters. Based on parallel experiments on011
40 model sizes ranging from 40M to 5B param-012
eters, we find that 1) CPT converges faster and013
saves significant resources in a scalable man-014
ner; 2) CPT adheres to an extended scaling015
law derived from Hoffmann et al. (2022) with016
a joint data-parameter scaling term; 3) The017
compute-optimal data-parameter allocation for018
CPT markedly differs based on our estimated019
scaling factors; 4) The effectiveness of trans-020
fer at scale is influenced by training duration021
and linguistic properties, while robust to data022
replaying, a method that effectively mitigates023
catastrophic forgetting in CPT. We hope our024
findings provide deeper insights into the trans-025
ferability of LLMs at scale for the research026
community.027

1 Introduction028

In recent years, Large Language Models (LLMs)029

pre-trained on web-scale corpora have achieved030

significant success in various language tasks (Rad-031

ford et al., 2019; Brown et al., 2020; Achiam032

et al., 2023). As the scale of pre-training increases,033

LLMs have exhibited remarkable abilities, partic-034

ularly in transferring knowledge across different035

domains (Wei et al., 2022; Tan et al., 2018).036

Training an LLM from scratch is prohibitively037

expensive. To address this, some practitioners038

leverage transfer learning to adapt LLMs to new039

domains or tasks. This usually involves fine-040

tuning the models on a small dataset within the041

target domain. Previous works have showcased042

multiple benefits of transfer learning in fine-tuning 043

when the transfer gap is small, including faster 044

convergence and better final performance (Zhang 045

et al., 2024; Hernandez et al., 2021). However, it 046

remains unclear if these benefits hold when fine- 047

tuning on massive data or across large distribution 048

shifts (e.g., different languages). This becomes 049

a crucial consideration if one aims to efficiently 050

build an LLM using transfer learning, especially 051

when there is a sufficient amount of data available 052

from different distributions. 053

To fill this gap, we investigate training LLMs 054

with transfer learning on large pre-training cor- 055

pora. To be specific, we create LLMs for a new 056

language by using pre-trained LLMs as initializa- 057

tion instead of starting from scratch. We refer to 058

this approach as continual pre-training (CPT). The 059

motivation for our work stems from the inherent 060

ability of meta-knowledge to transfer across vari- 061

ous languages (Pan and Yang, 2009; Zhuang et al., 062

2020; Tang et al., 2020; Eronen et al., 2023). By 063

leveraging this transferability, LLMs can use exist- 064

ing linguistic knowledge to enable more efficient 065

training. 066

In this paper, we conduct pre-training with pa- 067

rameter sizes ranging from 40M to 5B, spanning 068

40 different sizes, to systematically study the ef- 069

fect of CPT at different conditions and scales. 070

Specifically, we use English as the source lan- 071

guage for the source model and Chinese as the tar- 072

get language for CPT. We compare two different 073

training strategies: 074

1. Training from Scratch: The pre-training of 075

Chinese LLM begins with completely ran- 076

domly initialized parameters and is trained 077

using Chinese language corpora. 078

2. Continual Pre-Training (CPT): The param- 079

eters of a Chinese LLM are initialized with 080

those from an equivalent English LLM and 081

then trained using Chinese language corpora. 082
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Figure 1: Loss curves of pre-training and continual pre-training (CPT) across different model sizes. All models
are pre-trained on Chinese text while CPT models are initialized from pre-trained English checkpoints. Dashed
lines predict optimal loss at each computation level, as estimated in Section 4.2. (Left) Overlapped loss-compute
power-law visualization, with each line representing one model. (Right) CPT LLM (2B parameters) reaches the
same loss with approximately 50% fewer FLOPs.

Figure 1 summarizes our main training results. We083

find that, CPT models of different sizes exhibit a084

power-law relationship between loss and compute085

similar to models trained from scratch, but achieve086

lower loss at each computational level. For mod-087

els of a given parameter size, CPT consistently out-088

performs training from scratch, particularly during089

the initial stages. Throughout the whole training090

process, CPT saves 25% to 50% of tokens when091

achieving the same loss.092

Our main focus lies in the comparative analysis093

between the two strategies, including their scaling094

behaviors, the robustness of scaling, and their cor-095

responding impact factors. For this purpose, we fit096

a new extended scaling law for CPT, derived from097

Hoffmann et al. (2022). Our findings are outlined098

as follows:099

• CPT demonstrates persistent training advan-100

tages even at the pre-training scale. For ex-101

ample, after training on 70B tokens, the 5.5B102

model with CPT reaches the same loss as a103

model trained from scratch with 110B tokens.104

• Our extended scaling law more accurately105

captures the scaling behavior in CPT, reveal-106

ing a positive multiplicative joint scaling ef-107

fect between data and parameter size.108

• Based on the extended scaling law, we deter-109

mine the compute-optimal data-parameter al-110

location for CPT, which favor larger param- 111

eter sizes over larger datasets compared to 112

training from scratch. 113

• The transfer scaling effect in CPT is stronger 114

with fewer training tokens or when the target 115

language is more similar to the source lan- 116

guage, but robust to data replaying. 117

• CPT is susceptible to catastrophic forgetting; 118

however, replaying 10% to 30% of the source 119

language data effectively mitigates this issue. 120

2 Setup 121

2.1 Training Framework 122

To compare the transfer effects in CPT versus pre- 123

training from scratch, we train two sets of models 124

with the same parameter sizes. Additionally, an- 125

other set of model checkpoints is trained in the 126

source language to serve as the initialization for 127

the continually pre-trained models. The training 128

configurations for the three sets of models are 129

shown in Table 1. 130

To simplify the experiments, we use identical 131

training strategies for all three pre-training sets. 132

All models are pre-trained with a context length of 133

2048 and undergo training on tokens equivalent to 134

20 times the model size (e.g., a 5B model is trained 135

on 100B tokens). Although this is far from the ex- 136

tensive pre-training seen in recent practices (Tou- 137
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Table 1: Training configurations for pre-training. All three sets of models are trained with identical parameter
sizes, which cover 40 sizes spanning from 50M to 5.5B. Note that the batch size is based on token counts.

Model Set Initialization
Training

Language
Parameter Size &

Batch Size (Same for Each Set)

Source Checkpoints Random English 50M-1B(23 models) ,1M
Pre-trained from Scratch Random Chinese 1B-2.5B(12 models), 2M
Continually Pre-trained Source Checkpoints Chinese 2.7B-5.5B(5 models), 4M

vron et al., 2023), as outlined in Hoffmann et al.138

(2022), the 20x trained token count is sufficient139

to demonstrate the loss-data scaling relationship.140

Our learning rate (LR) schedule features a cosine141

LR decay from a maximum LR of 2×10−4 and an142

LR warm-up, which increases the LR to the maxi-143

mum in the first 5% of the training session. We use144

different batch sizes for different parameter sizes,145

as shown in Table 1.146

2.2 Model and Data147

Model Architecture We adopt the same148

decoder-only Transformer architecture as149

LLaMA2 (Touvron et al., 2023) for all pre-150

training. We choose LLaMA2 because it is widely151

studied and proven to scale well across different152

parameter sizes. Following Muennighoff et al.153

(2023), we derive architectural parameters for154

models of each parameter size, which are listed in155

Appendix C.156

Data Sources Our English training data is pri-157

marily sampled from the RedPajama dataset158

(Computer, 2023), while the Chinese training data159

was acquired from the public web, undergoing fil-160

tering and deduplication processes. To study lan-161

gauge robustness of the CPT strategy, we also con-162

duct experiments on other languages, including163

French and Russian. We take their correspond-164

ing subsets from mC4 (Raffel et al., 2019) as pre-165

training data. An total of 106 tokens are held out166

from each respective training set as validation sets,167

remaining consistent across different models.168

2.3 Evaluation Tasks169

Throughout experiments, we primarily use cross-170

entropy loss on held-out validation sets as an in-171

dicator of model performance. To further vali-172

date the generalizability of CPT, we also evalu-173

ate LLMs using widely adopted language mod-174

eling benchmarks. To assess models in differ-175

ent languages, we choose multilingual versions of176

existing benchmarks, including XNLI (Conneau 177

et al., 2018), Multilingual Winograde (Sakaguchi 178

et al., 2019), Multilingual Hellaswag (Dac Lai 179

et al., 2023), XStorycloze (Lin et al., 2021), 180

XCopa (Ponti et al., 2020), and PiQA (Bisk et al., 181

2019). Note that for French and Russian, we ex- 182

clude XCopa (Ponti et al., 2020) and PiQA (Bisk 183

et al., 2019) as they do not contain splits for these 184

two languages. All evaluations are performed un- 185

der zero-shot settings. We report normalized accu- 186

racy as the metric for each task. 187

3 Methodology 188

3.1 Scaling Law for Pre-Training from 189

Scratch 190

We follow the Chinchilla Scaling Law (Hoffmann 191

et al., 2022) to express cross-entropy loss (L) as 192

a function of parameters (N ) and training tokens 193

(D): 194

L(N,D) = E +
A

Nα
+

B

Dβ
(1) 195

where {E,A,B, α, β} are learned variables. The 196

Chinchilla law further determines the optimal allo- 197

cation of compute (C) to N and D as: 198

Nopt(C) = G

(
C

6

)a

Dopt(C) = G−1

(
C

6

)b (2) 199

where G =
(
αA
βB

) 1
α+β , with a = β

α+β , b = α
α+β . 200

The ratio of a to b represents the optimal data-to- 201

parameter size allocation. 202

Additionally, as shown in Kaplan et al. (2020), 203

the optimal loss, independent of parameters and 204

data, also scales with compute C following a 205

power-law relationship: 206

Lopt(C) = E′ +
A′

Cγ
(3) 207
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3.2 Scaling Law for Continual Pre-Training208

The Chinchilla law assumes that LLM pre-training209

is initialized with no prior knowledge, which does210

not apply to continual pre-training (CPT). To ex-211

tend the Chinchilla law for CPT, we incorporate212

insights from Hernandez et al. (2021), introducing213

an effectively transferred data term. According to214

Hernandez et al. (2021), effective data transfer is215

modeled as k(DF )
α(N)β , capturing the idea that216

larger models store more transferable knowledge.217

Thus, we extend the D term to include a multi-218

plicative joint effect of both D and N , resulting in219

our CPT loss function:220

L(N,D) = E +
A

Nα
+

B′

Dβ′Nγ
(4)221

Accordingly, we update Equation 2 for the ex-222

tended scaling law:223

G =

(
αA

(β′ − γ)B′

) 1
α+β′−γ

,

a =
β′

α+ β′ − γ
, b =

α− γ

α+ β′ − γ

(5)224

Note that we do not update A, E, and α during225

optimization for CPT. Preliminary experiments226

show minimal impact of CPT on the N term, so227

we keep these variables from Equation 1 to reduce228

variance. Empirical experiments demonstrate that229

the extended scaling law achieves a lower fitting230

error than the Chinchilla law for CPT. Addition-231

ally, the introduced data-parameter joint term cap-232

tures meaningful features in scaling behavior, as233

shown in Section 4.3. We provide fitting error234

comparison for both scaling laws in Appendix B,235

where we show that extended scaling law performs236

better for CPT. We also give more theoretical anal-237

ysis and interpretation of the extended scaling law238

in Appendix C.239

3.3 Parametric Fit240

To fit the learnable variables in Equation 4, we241

minimize the Huber loss (Huber, 1992) between242

predicted and observed log loss, with δ set to 10−3.243

For pre-training from scratch, we minimize Equa-244

tion 1:245

min
a,b,e,α,β

∑
Run I

Huberδ (LSE(a− α logNi,

b− β logDi, e)− logLi)

(6)246

where LSE is the log-sum-exp operator. We set247

A = exp(a), B = exp(B), B′ = exp(b′), and248

E = exp(e). For continual pre-training, using 249

the fixed values of a, α, and e from the previ- 250

ous optimization step, we subsequently optimize 251

B′, β′, and γ in Equation 4: 252

min
b′,β′,γ

∑
Run I

Huberδ (LSE(a− α logNi,

b′ − β′ logDi − γ logNi, e)− logLi

)
(7) 253

We use the Optuna library for hyperparameter 254

search and the L-BFGS algorithm (Nocedal, 1980) 255

for optimal local search, yielding the best hyperpa- 256

rameters. The final parameter values are presented 257

in Table 2a, and the optimized allocation coeffi- 258

cients are shown in Table 2b. 259

4 Results 260

4.1 CPT Reaches Lower Loss Throughout 261

Training 262

Figure 1 reports the validation loss over train- 263

ing for all trained models. It can be seen that 264

pre-training language models from existing check- 265

points generally yield lower loss given certain 266

compute constraints. This effect exists across both 267

various model sizes and training stages of the same 268

model. At the start of training, CPT converges 269

significantly faster, advancing pre-training from 270

scratch by orders of magnitudes. The absolute dif- 271

ference of loss becomes smaller as training contin- 272

ues, but a substantial gap in loss persists. Note that 273

Figure 1 is presented on a logarithmic scale. This 274

gap may require several orders of magnitude more 275

iterations before it disappears. 276

4.2 CPT Preserves Loss-Compute Scaling 277

Relationship 278

As indicated by Equation 3, optimal validation 279

loss scales with compute following a power-law re- 280

lationship. We conducted parametric fits for CPT 281

and pre-training from scratch on Equation 3, us- 282

ing the lowest loss at each compute level. The fit 283

results are depicted as dotted lines in Figure 1. For 284

pre-training from scratch, the relationship is rep- 285

resented by L = 33.69907 × C−0.0579. In com- 286

parison, the loss for CPT is lower, described by 287

L = 31.9594× C−0.0575. 288

The results of the parametric fit indicate that 289

the advantage of lower loss is consistent across 290

each unit of compute expended. This is supported 291

by the significantly reduced coefficient term (from 292
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Table 2: Comparison of parameter estimation and optimization coefficients for Equation 4 and Equation 5. For
Continual Pre-Training, parameters E, A, and α are fixed based on values from Training from Scratch.

(a) Estimations for Equation 4.

Model E A B α β γ

Training from Scratch 1.55 420.0 719.5 0.40 0.30 -
Continual Pre-training 1.55 420.0 433.3 0.40 0.20 0.08

(b) Approximated optimization coefficients for Equation 2.

Model Coeff. a where Nopt ∝ Ca Coeff. b where Dopt ∝ Cb

Training from Scratch 0.429 0.571
Continual Pre-training 0.385 0.615

33.69907 to 31.9594) and the nearly unchanged293

exponent (from -0.0579 to -0.0575). The nearly294

unchanged exponent suggests that CPT does not295

alter the underlying dynamics of the loss-compute296

relationship, but rather provides an advantageous297

initial condition.298
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Figure 2: Reduced computational resources (top) and
data consumption (bottom) with CPT. Only a subset
of models of typical sizes is displayed for simplic-
ity. (Top) Percentage reduction in FLOPs C rela-
tive to pre-training from scratch PT , as estimated by
(CPT − CCPT )/CPT at the same loss level for both
strategies. (Bottom) Effectively Transferred Data, cal-
culated by subtracting the tokens D used by CPT from
those used in pre-training from scratch at the same loss
level, i.e. DPT −DCPT .

4.3 Extended Scaling Law Measures 299

Effectively Transferred Data in CPT 300

We conducted a further analysis to study the im- 301

pact of individual factors, specifically data and 302

model size, on loss. Table 2a compares the esti- 303

mated parameters for CPT with those for training 304

from scratch. As discussed in Section 3.2, only the 305

parameters in the term B′

Dβ′Nγ are updated for CPT. 306

For CPT, the parameters are B = 433, γ = 0.08, 307

and β = 0.20. The lower β and positive γ sug- 308

gest that in CPT, the cross-lingual transfer effect 309

positively correlates with parameter size. 310

In Figure 2, we measure the transferred train- 311

ing FLOPs and data during CPT to visualize the 312

scaling transfer effect of parameter size, which cor- 313

roborates our theoretical results. We find that the 314

percentage of reduced training FLOPs steadily de- 315

creases during the individual training process, re- 316

sulting in 25% to 50% FLOPs saved during CPT. 317

On the other hand, effectively transferred data lin- 318

early increases with training tokens, with larger 319

models reducing more training FLOPs and data 320

during CPT, indicating a stronger transfer effect. 321

A plausible explanation could be that a larger op- 322

timization space contains more linguistic-agnostic 323

knowledge that can transfer more easily. 324

4.4 CPT Models Generalize to Downstream 325

Tasks 326

Besides validation losses, we also evaluate cross- 327

lingual CPT on several multi-lingual benchmarks. 328

Using 1.4B parameters, we continually trained 329

models in French (Fr.), Russian (Ru.), and Chinese 330

(Zh) from the same English checkpoint and com- 331

pared them to models trained from scratch and the 332

original English checkpoints. The results, shown 333

in Figure 3, reveal that CPT improves performance 334

across all languages. 335

5



xnli-fr xwinograd-fr hellaswag-fr xnli-ru xwinograd-ru hellaswag-ru xnli-zh xwinograd-zh xstorycloze-zh
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Ac

cu
ra

cy

Pre-Training from Scratch on English (PT) PT on French CPT on French PT on Russian CPT on Russian PT on Chinese CPT on Chinese

Figure 3: Zero-shot evaluation for pre-trained and continually pre-trained (CPT) models of different languages.
CPT models of various languages are initialized from the same checkpoint (light gray).

We assessed the models on their respective lan-336

guage splits of multi-lingual benchmarks to ensure337

fair comparison. The results indicate that all three338

languages show improved performance compared339

to the original pre-trained model, demonstrating340

that CPT enhances benchmark performance across341

different languages and scenarios.342

We find that French models benefit the most343

from CPT. This is likely due to the high similarity344

between French and English, which share many345

common words and grammatical structures, facil-346

itating more effective cross-lingual transfer com-347

pared to Russian and Chinese.348

Key Takeaways

• Continual pre-training converges to lower
loss faster throughout training, saving 25%
to 50% of training FLOPs.

• The transfer effect is most pronounced in the
early stages and positively correlated with
parameter size.

• The effect generalizes well to downstream
evaluations, with languages more similar to
English experiencing greater benefits.

349

5 Discussion350

5.1 What is the Compute-Optimal Allocation351

between Parameter Size and Data?352

When total computational resources are limited,353

there exists a trade-off between model parameter354

size and the amount of training data during pre-355

training.356

According to the framework established in Sec-357

tion 3, we can determine the optimal allocation358

between model parameters Nopt and training data359
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Figure 4: Predicted compute-optimal efficient frontiers
on IsoLoss contour for both strategies.

Dopt by minimizing the predicted loss L with re- 360

spect to data D and parameter size N . More 361

specifically, by optimizing Equation 2, we esti- 362

mate the optimal training data and model param- 363

eters for pre-training from scratch to be: 364

Nopt(C) = 0.324C0.429

Dopt(C) = 0.514C0.571
(8) 365

In comparison, for continual pre-training, the 366

optimal allocations are: 367

N̂opt(C) = 4.79C0.385

D̂opt(C) = 0.035C0.615
(9) 368

A visualization of the efficient frontier of model 369

parameter N with respect to compute over the 370

IsoLoss contour is shown in Figure 4. We find that 371

the optimal parameters for continual pre-training 372

differ from those for pre-training from scratch, 373

favoring less compute for the same model sizes. 374
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This aligns with the nature of cross-lingual trans-375

fer learning, where the model in continual pre-376

training is "pre-matured" due to prior knowledge377

acquired in the source language. This suggests378

that, in continual pre-training, using a larger lan-379

guage model is preferred over pre-training on a380

larger dataset.381

It is worth noting that under our settings, larger382

models not only imply higher model capacity but383

also involve training on more data in the source384

language. This may explain why the compute-385

optimal allocation favors larger base models to386

some extent. However, this preference may not387

hold when a larger initialization model checkpoint388

is under-trained.389

5.2 Does Replaying from Source Language390

Prevent Catastrophic Forgetting?391

By continually pre-training a model from the392

source language, its performance on the target393

language can be greatly improved. However,394

with straightforward pre-training strategies, the395

model’s performance on the source language de-396

grades significantly. For example, in a 1.4 billion397

parameter model, the validation loss on English in-398

creases from 2.40 to 3.68 during pre-training. This399

issue is even more severe in smaller models.400

To prevent catastrophic forgetting of the origi-401

nal distributions during continual pre-training, we402

investigate methods that replay data from the403

source language during pre-training. We use the404

term replaying to refer to the practice of mixing405

data from the source language during continual406

pre-training on the target language.407

For models with 1.4B parameters, we continu-408

ally train several models with mixed training cor-409

pora by replaying data at various ratios. We visual-410

ize the training curves of these English-replaying411

models in Figure 5. Note that in Figure 5, the com-412

pute is specific to each language rather than the413

total compute during training.414

Figure 5 demonstrates that replaying data from415

the source language significantly alters the scaling416

behavior in an intricate manner. As shown on the417

right side of Figure 5, different ratios of replay-418

ing only affect the early stage of training. Mod-419

els reach the same validation loss when the same420

amount of compute is used, regardless of the vary-421

ing ratios of original data, ranging from 1% to422

80%.423

The left side of Figure 5 compares the rela-424

tionship between compute and validation loss on 425

the original distribution throughout continual pre- 426

training, which can be viewed as the "scaling law 427

of forgetting". Interestingly, the scaling behavior 428

depicts a power-law relationship similar to that 429

during pre-training from scratch. Validation losses 430

of models at different English replaying ratios in- 431

crease at the early stage of training and then de- 432

cline, eventually returning to a lower value than at 433

the start. This suggests that a large amount of orig- 434

inal knowledge is preserved throughout continual 435

training, even with a very low English replaying 436

ratio (1% - 5%). Above discoveries suggest that 437

higher levels of replaying original data are benefi- 438

cial, as replaying does not hinder the scaling prop- 439

erties on the target language while preserving the 440

model’s performance on the original distribution. 441

Key Takeaways

• Under computational constraints, a larger pa-
rameter size is preferred over pretraining on
a larger dataset in CPT.

• Continual pre-training without replaying
data from source language causes severe
catastrophic forgetting, especially in smaller
models.

• 5% - 30% of source language replaying ef-
fectively prevents forgetting while not hin-
dering efficiency of continual pre-training.

442

6 Related Work 443

Scaling Law for Large Language Models Scal- 444

ing laws help us understand how model perfor- 445

mance changes with the size of the model and the 446

amount of data. Kaplan et al. (2020) first intro- 447

duced a detailed scaling law for large language 448

models, demonstrating a clear relationship be- 449

tween model size, training data, and performance. 450

Hoffmann et al. (2022) further explored this by 451

emphasizing the trade-off between model size and 452

data quantity, suggesting a compute-optimal allo- 453

cation of data and parameters. Recent studies have 454

examined scaling laws under specific conditions. 455

Hernandez et al. (2022) and Muennighoff et al. 456

(2023) focused on the diminishing returns from 457

repeated tokens and excessive parameters. Tay 458

et al. (2022) and Frantar et al. (2023) investigated 459

how different model architectures impact scaling. 460

Scaling laws are also relevant in the context of 461
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blue, respectively. FLOPs allocated to each language are calculated by multiplying the corresponding language
ratios by the total FLOPs.

newer pre-training methods, such as parameter-462

efficient fine-tuning (PEFT) (Kalajdzievski, 2024)463

and Mixture-of-Experts (MoE) (Krajewski et al.,464

2024).465

Cross-Lingual Transfer Learning Transfer466

learning aims to enhance performance on new467

tasks by adapting pre-trained models with out-468

of-domain data. This process is more efficient469

when the source and target domains are closely470

related (Pan and Yang, 2009; Zhuang et al.,471

2020). Cross-lingual pre-training leverages472

language-independent knowledge embedded in473

pre-trained LLMs to improve performance in474

the target language (Wu et al., 2019; Yosinski475

et al., 2014). Transfer learning is often studied476

within the context of limited-scale post-training,477

but it has been shown to be effective at a large478

pre-training scale with proper techniques (Gupta479

et al., 2023). A significant challenge in transfer480

learning is catastrophic forgetting (Winata et al.,481

2023), where the model’s ability in the original482

training domain degrades during transfer learning.483

Various strategies have been proposed to miti-484

gate catastrophic forgetting, including modified485

learning rate schedules (Ibrahim et al., 2024;486

Gupta et al., 2023; Winata et al., 2023), data487

replay (Ostapenko et al., 2022), and regulariza-488

tion (Farajtabar et al., 2020). Our work combines489

data replay and modified learning rate schedules490

to combat catastrophic forgetting. 491

Our research is closely related to Hernandez 492

et al. (2021), which focused on meta-knowledge 493

transfer between English and code under self- 494

supervised fine-tuning settings. In contrast, we 495

expand continual pre-training to larger-scale and 496

cross-lingual settings, addressing the gap in effec- 497

tive transfer at scale for continual pre-training with 498

significant distribution shifts. 499

7 Conclusion 500

In this paper, we explored continual pre-training 501

(CPT), analyzing its principles, influencing fac- 502

tors, and best practices. Through training mul- 503

tiple LLMs with varying sizes, language distri- 504

butions, and conditions, we derived an extended 505

scaling law for CPT. Our results quantitatively 506

demonstrate that CPT achieves lower loss more 507

quickly, saving 25% to 50% of training resources. 508

However, CPT is particularly sensitive to factors 509

such as language type, training duration, and catas- 510

trophic forgetting. Based on these insights, we 511

provide best practices for CPT, including opti- 512

mal data-to-parameter allocation and replay ratios. 513

These findings motivate future practitioners to ap- 514

ply CPT, offering deeper insights into factors like 515

dataset distribution and training budgets. 516
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Limitations517

Language Contamination In this study, we uti-518

lized publicly accessible datasets for pre-training.519

Although the Chinese dataset and mC4 dataset at-520

tempt to clean and create language-specific train-521

ing splits, they cannot entirely prevent the contam-522

ination of English at a more granular level. This is523

particularly challenging due to the inherent nature524

of many languages, such as French, which often in-525

corporate English words. To estimate the compu-526

tational effort for different languages, we counted527

the number of samples processed in each language528

training split. This approach may be imprecise if529

the dataset contains a large amount of text in other530

languages. This issue highlights the need for fu-531

ture research to conduct a more in-depth analysis532

of the impact of language contamination in multi-533

lingual pre-training.534

Hyper-Parameter Sensitivity In the training of535

models across various scales, we selected hyper-536

parameters based on experience and trial and er-537

ror. Our preliminary results showed that deviating538

from optimal hyper-parameters can significantly539

harm model optimization and disrupt the scaling540

laws. To maintain consistency, we selected a con-541

stant learning rate, optimizer, learning rate sched-542

uler, and batch size that matched the scale of the543

model for different experiments. This approach544

is in line with the conclusions of previous stud-545

ies. Future research should explore the finding of546

optimal hyper-parameters from the perspective of547

language-specific scaling laws, which could lead548

to more effective pre-training configurations.549

Scaling Constraints Due to computational lim-550

itations, we were unable to cover a wide range551

of experiments, particularly in cases where the552

training data was extensive or the model size was553

very large. This limitation may reduce the gen-554

eralizability of our findings to scenarios involv-555

ing larger-scale models or datasets. In this study,556

we focused exclusively on the LLaMA2 architec-557

ture, which is recognized as a practical and effec-558

tive transformer architecture for measuring scaling559

properties in pre-training. However, it is important560

to note that different architectures may have dis-561

tinct scaling behaviors. This variability is a crit-562

ical area for future investigation, as understand-563

ing these differences could provide deeper insights564

into optimizing and scaling various model archi-565

tectures.566
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Figure 6: Model performance on English and Chinese
benchmarks at different English data replaying ratios
with 1.4B parameters. Relative Performance refers
to accuracy relative to the highest accuracy achieved
across different training settings with 1.4B parameters.

To further analyze the impacts of mixing orig-755

inal data in continual pre-training, we evaluate756

model performance on English and Chinese bench-757

marks at different English data mix ratios in Fig-758

ure 6. The results show that pre-training solely on759

one language leads to sub-optimal performance on760

the other language. However, incorporating even a761

small amount of English data can effectively main-762

tain performance on both original distributions. In763

practice, around 30% of original data is sufficient764

to keep the validation loss lower than at the start765

of continual pre-training.766

Models pre-trained only on English excel on 767

English benchmarks but perform poorly on Chi- 768

nese benchmarks, and vice versa. Adding English 769

data to models initially pre-trained on Chinese im- 770

proves their English performance without signifi- 771

cantly harming their Chinese performance. This 772

improvement is observed across different propor- 773

tions of English data (20%, 50%, and 80%).An op- 774

timal ratio is around 30% English data, balancing 775

low validation loss and high relative performance 776

across both languages. Beyond 50% English data, 777

there are diminishing returns, with marginal gains 778

in English performance and a slight decline in Chi- 779

nese performance. 780

B Fitting Error for Extended Scaling 781

Law 782

Table 3: Comparison of fitting errors L for the Chin-
chilla Law (Hoffmann et al., 2022) and our extended
scaling law on empirical data. The fitt error in huber
loss is denoted as Lequation. Our extended scaling law
performs better for CPT, comparable to Chinchilla in
pre-training.

Fit Data Pre-Training CPT

LChinchilla 0.0090 0.0108
LOurs 0.0094 0.0093

γ in Eq. 4 -0.005 0.080

We applied the Chinchilla Law (Hoffmann et al., 783

2022) and our extended scaling law to empirical 784

data from both pre-training from scratch and con- 785

tinual pre-training (CPT) on Chinese text. The fit- 786

ting process minimized the average loss across all 787

trained models for both strategies using the same 788

procedures described in Section 3.3. The results, 789

shown in Table 3, indicate that for pre-training 790

from scratch, the extended scaling law performs 791

similarly to the Chinchilla Law, with the factor 792

γ close to zero. In contrast, for continual pre- 793

training, the joint data-parameter term in the ex- 794

tended scaling law significantly reduces the fitting 795

error, with γ = 0.080. 796

C Theoretical Analysis and 797

Interpretation of Extended Scaling 798

Law 799

First, we review the formulated scaling law pro- 800

posed by Hoffmann et al. (2022), where they de- 801

rived and fit a formula for the loss. They decom- 802
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pose the loss L(N,D) into three terms in the ab-803

stract functional space:804

L(N,D) ≜ L(f̄N,D)

= L(f∗) +
(
L(f̂N )− L(f∗)

)
+

(
L(f̄N,D)− L(f̂N )

) (10)805

Here, N represents the parameters, D repre-806

sents the training tokens, f∗ represents the optimal807

Bayesian classifier, f̂N denotes the optimal trans-808

former model under the constraint of parameters809

N , f̄N,D represents the outcome obtained through810

gradient descent under the constraints of parame-811

ters N and training tokens D in the experiments.812

This functional space decomposition includes813

three parts:the Bayes risk L(f∗), which is the814

smallest possible loss for predicting the next815

token based on the full distribution P , also816

known as the "entropy of natural text", a817

term
(
L(f̂N )− L(f∗)

)
related to how well the818

function approximates based on the hypothesis819

space size, and a stochastic approximation term820 (
L(f̄N,D)− L(f̂N )

)
.821

Functional space decomposition Our goal is822

to modify the Equation 1 to fit the scenario of823

continual pre-training. Consider Continual Pre-824

training as initialization from a specific model825

weight state, recalling the functional space decom-826

position – Equation 10. It serves as a loss decom-827

position under token and model size constraints,828

discuss in the abstract functional space. This de-829

composition method has no relation to the training830

process (including initialization, naturally), but is831

a theoretical analysis and summary, so we think832

that the structure of the entire decomposition is un-833

affected.834

Keeping the structure of Equation 10, let’s con-835

tinue to analyze the impact on the each three term.836

When considering continual pre-training as a form837

of random initialization, recall the meaning of the838

first two terms: the entropy of natural text and the839

restrictions on the scale of the parameter space,840

they are both independent of the specific training841

process and only depend on the model’s architec-842

ture, as well as the scale of N and D. Therefore,843

different initialization will only affect The process844

we implement gradient descent, which is the last845

term: L(f̄N,D)− L(f̂N ).846

Overall, in this scenario, we inherit Equation 10847

and then fine-tuned Equation 1.848

Inheriting learned variables Pay attention to 849

the detailed settings of our training scenario. the 850

dataset used for training and the details of the en- 851

tire training process are consistent. We will dis- 852

cuss the expected forms and explain the reasons 853

for inheriting learned variables 854

(1) For the first term, L(f∗), due to the consis- 855

tency of the dataset, the entropy of training data 856

naturally maintain consistency between continual 857

pre-training and training from scratch. Numeri- 858

cally, this is equivalent to the same constant E. 859

(2) For the second term, L(f̂N ) − L(f∗), de- 860

pends entirely on the number of parameters N 861

that defines the size of the functional approxima- 862

tion space. Siegel and Xu (2020)(Siegel and Xu, 863

2020) analyzed this term and found it is related 864

to the power of N. We inherit this perspective 865

and believe that its estimated form is A
Nα . From 866

the principle of decomposition, this second term 867

does not involve the training phase and only repre- 868

sents the abstract restriction of model’s parameter 869

scale. When comparing to training from scratch, 870

the models size N and architecture are completely 871

consistent, so we inherits the values of A and α. 872

12



D Model Structural Parameters 873

Table 4: Structural Parameters for Models of Different Sizes.

Parameter Size(M) Hidden Layer Size Intermediate Layer Attention Head Count Number of Layers

49 512 3072 8 8
66 576 3584 9 9
86 640 3584 10 10
105 640 3584 10 13
125 640 3584 10 16
137 768 4608 12 12
166 768 4608 12 15
194 768 4608 12 18
208 896 5120 14 14
234 896 5120 14 16
259 896 5120 14 18
301 1024 5632 16 16
334 1024 5632 16 18
368 1024 5632 16 20
512 1280 7168 10 18
591 1280 7168 10 21
616 1408 7680 11 18
670 1280 7168 10 24
711 1408 7680 11 21
766 1536 8704 12 19
806 1408 7680 11 24
879 1536 8704 12 22
992 1536 8704 12 25
1085 1792 9728 14 20
1239 1792 9728 14 23
1393 1792 9728 14 26
1542 2048 11264 16 22
1736 2176 11776 17 22
1743 2048 11264 16 25
1944 2048 11264 16 28
1963 2176 11776 17 25
2112 2304 12800 18 24
2191 2176 11776 17 28
2452 2304 12800 18 28
2791 2304 12800 18 32
2808 2560 13824 20 26
3227 2560 13824 20 30
3647 2560 13824 20 34
4016 2688 14848 22 34
4248 2688 14848 21 36
4657 2816 15360 22 36
5534 3072 16896 24 36
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