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Abstract

This paper analyzes the inverse relationship between the order of partial differential
equations (PDEs) and the convergence of gradient descent in physics-informed
neural networks (PINNs) with the power of ReLU activation. The integration of
the PDE into a loss function endows PINNs with a distinctive feature to require
computing derivatives of model up to the PDE order. Although it has been em-
pirically observed that PINNs encounter difficulties in convergence when dealing
with high-order or high-dimensional PDEs, a comprehensive theoretical under-
standing of this issue remains elusive. This paper offers theoretical support for this
pathological behavior by demonstrating that the gradient flow converges in a lower
probability when the PDE order is higher. In addition, we show that PINNs struggle
to address high-dimensional problems because the influence of dimensionality on
convergence is exacerbated with increasing PDE order. To address the pathology,
we use the insights garnered to consider variable splitting that decomposes the
high-order PDE into a system of lower-order PDEs. We prove that by reducing the
differential order, the gradient flow of variable splitting is more likely to converge
to the global optimum. Furthermore, we present numerical experiments in support
of our theoretical claims.

1 Introduction

Understanding of partial differential equations (PDEs) is fundamental in describing diverse phenom-
ena in science and engineering, including fluid dynamics [60, 17], weather prediction [51], disease
progression [3, 46], and quantum mechanics [20, 8]. This underscores the imperative necessity for
the effective acquisition of their solutions. Given that analytically solving PDEs is often infeasible or
even impossible for numerous practical scenarios due to their complexity, numerical methodologies
play a pivotal role in approximating solutions to PDEs, enabling researchers and engineers to address
real-world problems effectively.

The advent of deep learning has led to a surge in attempts to leverage it to solve PDEs [59, 42, 30].
Among these, physics-informed neural networks (PINNs) [39, 21, 38, 58] stand out as a prominent
methodology. Coupled with the automatic differentiation technique [7], they integrate the residuals
of PDEs and boundary conditions into the loss function, thereby enforcing the approximation of
solutions using artificial neural networks. This distinctive incorporation of PDEs into the loss
function introduces partial differential operators in calculating the loss, distinguishing PINNs from
conventional deep learning models. Renowned for their accessibility and versatility in being capable
of easily handling arbitrary PDEs and being mesh-free, PINNs have garnered significant attention
and demonstrated promising outcomes across various fields [13, 28, 2, 65].
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Despite their potential, PINNs frequently encounter difficulties in accurately approximating solutions,
particularly when the governing PDE contains high-order derivatives [48, 33]. They also exhibit
sensitivity to increasing dimensions [33]. These challenges impede the practicality of PINNs due to
the pervasiveness of high-order or high-dimensional PDEs in numerous physical and engineering
descriptions, such as control problems [22, 57], finance [5, 53], phase separation [12, 27], and
mechanical engineering [4, 32]. Several studies have indicated that neural network architectures
possess sufficient expressive power to approximate solutions [31, 41]. However, it has been purported
that the inferior performance may be attributed to the difficulty in optimizing PINNs, which arises
from including the PDE in the loss function [37, 61, 62]. Despite the widespread use of PINNs, a
rigorous mathematical understanding of these pathological behaviors of PINNs has been lacking.

In this paper, we endeavor to provide a mathematical understanding of the pathological behaviors of
PINNs by analyzing the convergence of their gradient flow (GF), which reveals a profound sensitivity
of the GF convergence with respect to the PDE order and the power of the activation. Building upon
the work of Gao et al. [25], we extend the analysis of the GF of PINNs, composed of two-layer
multilayer perceptrons (MLPs), to general kth-order PDEs and the p-th power of Rectified Linear
Unit (ReLU) activation function with general p. We achieve tighter bounds than those obtained by
Gao et al., shedding light on the underlying causes of the pathological behaviors of PINNs. Our
theoretical findings demonstrate that the width size of the network necessary for the convergence
of the GF increases exponentially with the power p of ReLUpactivation. Furthermore, our results
indicate that the optimal power p is determined by the order k of the governing PDE, specifically to
be k+1. We also find that the PDE order impedes the convergence of GF, where this negative impact
of the PDE order stems from incorporating the PDE into the PINN loss function, which necessitates
network differentiation up to the order of the PDE. Moreover, our theoretical investigation unveils
that the GF convergence of PINNs also deteriorates with increasing dimensions, and the differential
operators included in the PINN loss further exacerbate the sensitivity of PINNs to dimensionality.
This elucidates why PINNs are relatively sensitive to dimensionality compared to conventional deep
learning models that do not involve differentiation in the loss function.

To address these challenges, we mathematically demonstrate the efficacy of a variable splitting
strategy [54, 55, 6], which represents derivatives of the solution as additional auxiliary variables.
The key point of variable splitting is that learning a high-order PDE boils down to learning a system
of lower-order PDEs. Reducing the order of derivatives included in the loss function, the strategy
alleviates the difficulties associated with the PDE order. It further enables to utilize more general
ReLUpactivation with lower power p than PINNs. The lower differential orders that the network
computes, the more likely it is that the GF will converge, so the most suitable one among the various
constructions of the variable splitting method is the finest splitting, which separates all the derivatives
into auxiliary variables and reformulates the PDE into a system of first-order PDEs. This strategy
results in a loss function comprising only first-order derivatives, and the efficacy of this finest variable
splitting would be magnified as the order of the governing PDE or dimension increases. Therefore,
the finest splitting approach would exhibit a pronounced discrepancy from the vanilla PINNs for
high-order PDEs. Moreover, a reduction in the differential orders enhances the resilience of the model
with respect to dimensionality. Finally, we present numerical experiments to verify our theoretical
findings and validate the effectiveness of the variable splitting.

1.1 Related Work

Characterization of Gradient Descent for PINNs As significant issues have been identified
within physics-informed machine learning, numerous mathematical studies have been conducted
to elucidate the behavior of PINNs. While studies have been mainly dedicated to examining the
generalization capacity of PINNs [19, 49, 23], there has also been work on understanding the difficulty
of optimization, which is believed to be the primary source of failure for PINNs. Wang et al. [61]
found that PINNs exhibit stiff gradient flow dynamics, resulting in imbalanced gradients during
training. Ryck et al. [18] characterized the rate of convergence in terms of the conditioning of an
operator and suggested that the difficulty of training PINNs is closely related to the conditioning
of the differential operators in the governing PDEs. Another work [62] utilized the neural tangent
kernel (NTK) theory to indicate that spectral biases and discrepancies between convergence rates of
various loss components can lead to training instabilities. Global convergence properties of PINNs
for second-order linear PDEs have also been studied within the NTK regime [34] and using the
Rademacher complexity [47]. Most closely related to this paper, Gao et al. [25] demonstrated the
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convergence of the gradient descent for two-layer PINNs. However, their discussion is limited to
second-order linear PDEs. We extend the analysis to general kth-order linear PDEs and p-th power of
activation functions and provide tighter bounds than Gao et al.. These advances allow us to observe
further the effect of the order and dimensionality of the PDE on the convergence.

Variable Splitting The method of separation of variables, which simplifies differential equations
by reformulating them into a more manageable system, is a classical method for solving differential
equations [9]. In particular, it has been widely employed when dealing with high-order PDEs
as augmenting high-order derivatives as additional variables allows the governing equation to be
decoupled into a set of lower-order PDEs that are comparatively easy to solve [16, 26, 63]. Recent
endeavors have explored the integration of separable variables within the PINN approach. In this
paper, we refer to this approach as variable splitting according to [54, 55, 56]. Augmented variables
have been introduced to represent vorticity in the Stokes equation [6], the gradient of the solutions
for solving the p-Poisson equation [54], and the eikonal equation [55]. Additionally, second-order
derivatives have been separately parameterized to solve bi-harmonic equations effectively [45]. The
rationale for introducing auxiliary variables in previous works is to enhance the efficiency and
accuracy of PINNs, but they lack a comprehensive theoretical elucidation of its effect. A recent study
[56] has theoretically analyzed variable splitting, demonstrating that while PINNs do not guarantee
convergence to the PDE solution even when the loss converges to zero, variable splitting does ensure
convergence to the solution for second-order linear PDEs. In this study, we analyze the impact of
variable splitting for PINNs with ReLUpactivation in terms of the convergence of the GF.

1.2 Main Contributions

The contribution of the paper is summarized as follows.

• We analyze that the GF of PINNs with ReLUpactivation converges to the global minimum
for general kth-order linear PDEs. This extends the findings of Gao et al. [25] to encompass
a broader range of PDEs and activations and provides an even tighter bound.

• We demonstrate the inverse relation between PDE order and the GF convergence, unveiling
the adverse effect of the differentials included in the PINN loss on the GF convergence.

• We provide a theoretical understanding of the reasons why PINNs encounter difficulties in
addressing high-dimensional problems.

• We prove that the order reduction of variable splitting, which reformulates the PDEs into a
system of lower-order PDEs, results in the convergence enhancement of GF.

2 Mathematical Setup

Arbitrary Order Linear PDEs We consider a general form of kth-order linear partial differential
equations (PDEs) defined on a bounded domain Ω ⊂ Rd (in which the temporal dimension could be
a subcomponent) {

N [u] (x) = f (x) , x ∈ Ω,

B [u] (x) = g (x) , x ∈ ∂Ω,
(1)

where N [u] =
∑

|α|≤k aα
∂α

∂xαu is a kth-order linear differential operator with coefficient functions
aα : Ω → R for each multi-index α ∈ Nd

0, B [u] =
∑

|α|≤1 ãα
∂α

∂xαu represents the boundary
condition operator with coefficient functions ãα : ∂Ω → R, which could reflect Dirichlet, Neumann,
and Robin conditions 2, f : Ω → R is a given source function, and g : ∂Ω → R is a given boundary
function, and u : Ω̄ → R is the unknown solution of interest.

2The boundary condition for high-order PDEs is typically given by multiple conditions of a higher order than
one. Our approach also encompasses such general boundary conditions by incorporating the residuals of each
boundary condition into the loss. The sole distinction is the utilization of induction not only on the derivative
matching losses but also on boundary losses to prove Proposition 2. For the sake of brevity, we assume that the
boundary condition is the most prevalent (weighted combination of) Dirichlet and Neumann conditions.
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Physics-InformedNeural Networks Physics-informed neural networks (PINNs) [58] aim to ap-
proximate the solution u of the PDE by neural networks. Following the prior work [25], we
approximate the solution u by a two-layer multi-layer perceptron ϕ : Rd → R of width m, defined as

ϕ (x;w,v) =
1√
m

m∑
r=1

vr · σ
(
w⊤

r y
)
, (2)

where wr ∈ Rd+2, vr ∈ R, w =
[
w⊤

0 , · · ·w⊤
m

]⊤ ∈ Rm(d+2) v =
[
v⊤
0 , · · ·v⊤

m

]⊤ ∈ Rm, y =[
x⊤ 1

2

]⊤ ∈ Rd+1, and σ (·) is the activation function. For brief notations, we assume that Ω is
bounded so that ∥y∥2 ≤ 1 for x ∈ Ω. We consider the case where σ is the ReLUp activation function
for an integer p, which is also known as Rectified Power(RePU) activation [1, 10, 15]. As it will be
clear in the context, the power p necessitates surpassing the order k of the PDE (1) to ensure that
the loss function and gradient descent flow are well-defined. Therefore, our analysis is focused on
scenarios where p ≥ k+1. PINNs learn the parameters of ϕ by minimizing a composite loss function,
comprising the residual of the PDE and the boundary condition of (1), which enforces the network’s
compliance with the governing physics. For given the training data {xi, f (xi)}no

i=1 ⊂ Ω× R and
{x̃j , g (x̃j)}nb

j=1 ⊂ ∂Ω× R of respective sizes no ∈ N and nb ∈ N, PINN loss function is given by

LPINN (w,v) =
1

2

(
∥s (w,v)∥2 + ∥h (w,v)∥2

)
, (3)

where s (w,v) = [s1 (w,v) · · · sno
(w,v)]

⊤ and h (w,v) = [h1 (w,v) · · ·hnb
(w,v)]

⊤ with

si (w,v) =

√
1

no
(N [ϕ (·;w,v)] (xi)− f (xi)) , (4)

hj (w,v) =

√
ν

nb
(B [ϕ (·;w,v)] (x̃j)− g (x̃j)) , (5)

and ν > 0 is a regularization parameter that relatively balances the two components of the loss.

Gradient Flow As the limiting dynamics of the gradient descent (GD) with infinitesimal step-sizes
[40], gradient flow (GF) is continuous time dynamics that starts at w (0) and v (0) and evolves as{

dwr(t)
dt = −∂LPINN (w,v)

∂wr
= −

∑no

i=1 si (w,v) ·
∂si(w,v)

∂wr
−
∑nb

j=1 hj (w,v) ·
∂hj(w,v)

∂wr
,

dvr(t)
dt = −∂LPINN (w,v)

∂vr
= −

∑no

i=1 si (w,v) ·
∂si(w,v)

∂vr
−
∑nb

j=1 hj (w,v) ·
∂hj(w,v)

∂vr
.

(6)

Initial weights are supposed to follow the normal and uniform distributions, w (0) ∼ N (0, Im) and
v ∼ U ({−1, 1}), respectively3. GF can be regarded as a continuous-time analog of GD and is
frequently employed to comprehend the behavior of GD optimization algorithm in the limit. By the
chain rule in conjunction with (6), the following characterizes how the loss function evolves during
training by gradient descent:

d

dt

[
s (w (t) ,v (t))
h (w (t) ,v (t))

]
= − (Gw (w (t) ,v (t)) +Gv (w (t) ,v (t)))

[
s (w (t) ,v (t))
h (w (t) ,v (t))

]
, (7)

where G and G̃ are Gram matrices for the dynamics, defined by

Gw (w,v) = D⊤
wDw,Dw =

[
∂s1
∂w (w,v) · · · ∂sno

∂w (w,v) ∂h1

∂w (w,v) · · · ∂hnb

∂w (w,v)
]

(8)

Gv (w,v) = D⊤
v Dv,Dv =

[
∂s1
∂v (w,v) · · · ∂sno

∂v (w,v) ∂h1

∂v (w,v) · · · ∂hnb

∂v (w,v)
]
.

(9)

We are interested in analyzing the effect of the PDE order on the convergence of the PINN loss, which
evolved in accordance with the dynamics (7), to the global minimum zero.

3Indeed, our analysis covers more general initialize distributions than [25]. In our analysis, it is enough that a
probability density function of w (0) is in Schwartz space, and that of v (0) is bounded and has zero expectation.
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3 Impact of PDE Order on Convergence of PINNs

Despite the demonstrated promise and versatility of PINNs in addressing a wide range of problems
[29, 44, 36], they often encounter difficulties in constructing an accurate approximation to the desired
solution of PDEs, particularly with high-order PDEs. Moreover, in contrast to the confirmed efficacy
of neural networks in modeling high-dimensional data such as images and text, the exploration of
PINNs for high-dimensional PDEs has been apparently limited. While neural network architectures
possess sufficient expressive power to approximate solutions [11], inferior performance has been
attributed to the difficulty in optimization in practice [61, 62]. Additionally, it has been postulated
that the optimization difficulty may stem from the partial differential operators included in the loss
function [37, 48, 33]. Nevertheless, despite the significant challenge posed by these pathological
phenomena, there remains a paucity of theoretical understanding of them.

In this section, we theoretically elucidate these pathological phenomena by studying the convergence
condition of GF (7) of PINN loss (3). Specifically, we provide a width condition for (7) to converge
to global optimum in terms of order k, dimension d, and the power p of ReLU activation. Analyzing
how those factors are related to the convergence condition, we explain why optimizing PINNs is
harder when the order or degree is higher.

Following [24] and [25], we first prove the positive definiteness of the limiting Gram matrix of PINNs
for general kth-order linear PDE and p without any further strict assumption other than p > k.
Proposition 3.1 (Special Case). The limiting Gram matrix G∞

v = Ew,v [Gv (w,v)] is strictly
positive definite and independent of m.

This is a special case of the general state in Proposition C.3 with L = 0, and the proof for the general
case is provided in Appendix C. We denote the smallest eigenvalue of G∞

v by λ0 > 0. The following
presents our main theorem in this section, the requisite width size m for the GF of PINN loss to
converge to the global minimum with high probability. The result demonstrates that the required
width grows exponentially as the PDE order k and the dimension of the domain d increase.
Theorem 3.2 (Special Case). There exists a constant C, independent of d, k, and p, such that for any
δ << 1, if

m > C

(
d+ k

d

)14

p7k+426p
(
log

md

δ

)4p

(10)

then with probability of at least 1− δ over the initialization, we have

LPINN (w (t) ,v (t)) ≤ exp (−λ0t)LPINN (w (0) ,v (0)) , ∀t ≥ 0. (11)

It is a special case of Theorem 4.3 with L = 0, the proof of which can be found in Appendix C.1.
It extends, inspired by [25], the convergence of the GF of PINNs of second-order linear PDEs to
kth-order linear PDEs and the general p-th power of ReLU. It states that even in these general settings,
the GF of PINNs converges to the global minimum with a high probability when the width of the
network is sufficiently large. Moreover, we obtain a polylogarithmic bound

(
log 1

δ

)4p
, which is much

tighter than polynomial bound δ−3 in [25] for p = 3. These improvements permit the derivation of
the following valuable explanations for the deficiencies observed when optimizing PINNs.

Optimal Power of ReLU Function in Training Theorem 3.2 sheds light on the suitable choice of
activation function for PINNs. In the training process, the activation function plays an important role.
However, there are no clues as to which activation function is favorable to the given optimization
process. Especially in the case of PINNs, it depends heavily on the PDE at hand. Despite its pervasive
use in deep learning due to its numerous advantages and performance benefits, the ReLU activation
function is not admissible in the PINN framework, which necessitates the activation function to
provide high-order derivatives for optimizing PDE-based constraints. Instead, PINNs harness the
p-th power of ReLU as the activation function. It is apparent that p must satisfy p ≥ k + 1 for the
PINN loss and gradient descent to be computed. Theorem 3.2 indicates that the smaller p is, the more
likely the gradient descent will converge; that is, it is most optimal4 to adjust p to k + 1 regarding the
training process.

4In terms of approximating the solution of the PDE, a larger p makes the network smoother and has better
expressive power [11]. However, it means that the set of networks covers broader function spaces as p increases,
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Understanding Difficulty in High-order PDEs A significant observation of Theorem 3.2 is that
it provides a theoretical understanding of why PINNs struggle with high-order PDEs. From (10),
we can see that the bound increases exponentially with the order of the PDE. Moreover, for the
GF of PINNs to converge with high probability, that is, δ ≪ 1, a small increment of the power p
would contribute to non-negligible degradation in the convergence, which could ultimately prevent
the network from reaching a minimizer of the loss. Hence, given that k determines the admissible p
by p ≥ k + 1, the order k of PDE primarily influences the convergence of PINNs and increasing the
exponential term in (10).

Understanding Difficulty in High-dimensional Problems The above theorem, which shows that
the lower bound of m depends on the exponential of d, explains why PINNs cannot completely
combat the curse of dimensionality. As PINNs are regarded as a versatile method capable of being
mesh-free, they have been expected to be free from the curse of dimensionality [58]. However, the GF
of PINNs becomes harder to converge as d increases, requiring the network to be wider. Furthermore,
it can be observed that the magnitude of change in d is amplified with respect to the exponent of k.
This explains why PINNs are relatively sensitive to increasing dimensionality in comparison to other
deep learning models whose loss functions do not contain derivatives. In other words, the presence of
derivatives in the loss makes PINNs sensitive to changes in dimensionality, and the larger k is, the
more difficult PINNs are for high-dimensionality.

Combining all crucial observations from our main theorem, we believe that the impact of the PDE
order is one of the primary underlying reasons why PINNs often fail to minimize their loss. In light
of this theoretical evidence, the next section describes a variable splitting strategy that addresses these
pathologies by properly reducing the differential order in the PINN loss function.

4 Order Reduction through Variable Splitting

The previous section indicates that the PDE order k significantly affects the width requirement for
the GF to converge. Concurrently, for kth-order PDEs, it is necessary to increase the ReLU activation
to at least the k + 1 power in order to ensure a well-defined GF for the PINN loss. Consequently,
lowering k could potentially lead to better convergence of the GF. In this section, we introduce
variable splitting strategy to decrease the differential order by reformulating the given PDE into a
system of lower-order PDEs. We then extend Theorem 3.2 to a more general form in Theorem 4.3.

4.1 Variable Splitting

The concept of variable splitting [54, 55, 56] is to rewrite a higher-order PDE into a lower-order
system, after which the PINN approach is applied to the system. A crucial aspect of the success of
such methods is the reduction of the derivative order present in the training loss function.

Augment Variables For L ≥ 0 and increasing integers 0 = ξ0 < ξ1 < · · · < ξL+1 = k, variable
splitting augment the derivatives of the solution ∂ξ1

∂xξ1
u, . . . , ∂ξL

∂xξL
u as additional auxiliary variables

ϕ1, . . . , ϕL, respectively. For notational simplicity, we abbreviate the integer set {1, · · · ,m} for
a positive integer m by [m]. For ℓ ∈ [L], each term in ∂ξℓ

∂xξℓ
corresponds to ∂ξℓ

∂x
α1
1 ···∂xαd

d

u for a

multi-index α = (α1, . . . , αd) ∈ Nd
0 with the size |α| =

∑d
i=1 αi = n. Therefore, ϕℓ is a vector-

valued function of size |Iξℓ | for the index set I defined in (18). We denote the component of ϕℓ that
corresponds to ∂ξℓ

∂xα by (ϕℓ)α.

Reformulate PDE into Lower-order System By replacing each of the differential terms ∂ξℓ

∂xξℓ
u

with the corresponding auxiliary variables ϕℓ, the differential operator N in (1) can be rewritten as:

N [u] =
∑
|α|≤k

aα
∂|α|

∂xα
u =

L∑
ℓ=0

∑
|α|≤ξℓ

∑
|β|≤∆ξℓ+1

âℓ,α,β
∂∆ξℓ+1

∂xβ
(ϕℓ)α , (12)

not that a network can be easily trained. Indeed, our result leads us to the opposite conclusion that large p could
be detrimental to convergence from the optimization perspective. In this paper, we refer to ‘optimal’ as the sense
of being likely trained under the mildest condition rather than approximating the solution with the smallest error.
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for some coefficient functions âℓ,α,β : Ω → R and ∆ξℓ = ξℓ − ξℓ−1. Since ϕℓ represents a function
that differentiates the PDE solution ∆ξℓ-times more than ϕℓ−1, the components of two consecutive
variables ϕℓ−1 and ϕℓ are governed by

∂∆ξℓ

∂xβ
(ϕℓ−1)α (x) = (ϕℓ)α+β (x) , α ∈ Iξℓ−1

, β ∈ I∆ξℓ . (13)

From these, the PDE (1) can be identically reformulated by the system of lower-order PDEs:
N̂ [ϕ0, · · · , ϕL] (x) = f (x) , x ∈ Ω,
∂β

∂xβ (ϕℓ−1)α (x) = (ϕℓ)α+β (x) , x ∈ Ω, ℓ ∈ [L] , α ∈ Iξℓ−1
, β ∈ I∆ξℓ ,

B [ϕ0] (x) = g, x ∈ ∂Ω.

(14)

It is of paramount importance to note that the maximum differential order of this system of
PDEs is the highest difference of derivative order between consecutive auxiliary variables |ξ| =
max {∆ξℓ : ℓ ∈ [L+ 1]}, which is less than k. This aspect gives rise to notable ramifications in our
analysis of VS-PINNs, which will be discussed in the next subsection.

Variable Splitting for PINNs In this paper, we consider the parameterization of all variables ϕℓ
with two-layer MLPs with ReLUp activation function, in a manner analogous to that described in
Section 2 for PINNs. The weights in the first and second layers of ϕℓ are denoted by wℓ and vℓ,
respectively.We use w =

[
w⊤

1 · · ·w⊤
L

]⊤
and v =

[
v⊤
1 · · ·v⊤

L

]⊤
to refer to the respective collections

of all weights. Similar to PINNs, Variable Splitting for PINNs (VS-PINNs) employ the linear sum of
penalized residuals of each term of the induced system of PDEs (14) as the training loss:

LV S
PINN (w,v) =

1

2

(
1

no

no∑
i=1

(
N̂ [ϕ0, . . . , ϕL] (xi)− f (xi)

)2
+

νℓ
no

L∑
ℓ=1

∑
|α|≤ξℓ

∑
|β|≤∆ξℓ+1

(
∂β

∂xβ
(ϕℓ−1)α (xi)− (ϕℓ)α+β (xi)

)2

+
ν

nb
(B [ϕ0] (x̃j)− g (x̃j))

2

)
,

(15)

where ν, ν1, . . . , νL are regularization parameters. As the GF of LPINN is characterized by Gram
matrices Gw and Gv induced from the gradients of the residuals of each term in (1), the GF of
LV S
PINN is characterized by Gram matrices Ĝw and Ĝv , which is induced from the gradients of the

residuals of each term in (14). Appendix A gives more details for Ĝw and Ĝv .
Remark 4.1. In order for high-order PDEs with k > 2 to be well-posed, it is necessary to have more
boundary conditions than those defined by the boundary operator B in (1). Although our analysis
concentrated on B that reflect only up to first-order derivatives for the sake of simplicity, our theory
can also be applied to more general boundary conditions. Furthermore, the high-order boundary
conditions B can also be reformulated using the auxiliary variables used for N̂ . In that case, relations
(13) should hold on the boundary x ∈ ∂Ω. As the reduced system (14) with reformulated boundary
condition is equivalent to (1), instability issues were not observed in our numerical experiments
even in the absence of artificial boundary conditions on the auxiliary variables unlike to grid-based
conventional numerical schemes.

4.2 Analysis

A key advantage of VS-PINNs is that the derivative order of the induced system of PDEs (14) is
|ξ|, which is lower than that of the original PDE (1). We prove its effectiveness in this section. As
analogous to PINNs, we begin by proving the positive definiteness of the limiting Gram matrix,
providing its proof in Appendix C.

Proposition 4.2 (General Case). The limiting Gram matrix Ĝ
∞
v = Ew,v

[
Ĝv (w,v)

]
is strictly

positive definite and independent of m.

We denote the smallest eigenvalue of Ĝ
∞
v by λ0 > 0. We now present our main theorem, which

demonstrates the profound impact of order reduction in variable splitting. The proof of the following
theorem can be found in C.1.
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Theorem 4.3 (General Case). There exists a constant C, independent of d, k, |ξ|, and p, such that
for any δ << 1, if

m > C

(
d+ k

d

)6(
d+ |ξ|
d

)8

p7|ξ|+426p
(
log

md

δ

)4p

, (16)

then with probability of at least 1− δ over the initialization, we have

LV S
PINN (w (t) ,v (t)) ≤ exp (−λ0t)LV S

PINN (w (0) ,v (0)) , ∀t ≥ 0. (17)

The right-hand-side of (16) grows exponentially with respect to d, k, and p, thereby indicating the
substantial influence of these factors on the convergence of VS-PINNs, including PINNs as a specific
case (L = 0). This analysis reveals several significant advantages of VS-PINNs:

Improved Convergence: VS-PINNs are more likely to converge to the global optimum than PINNs
due to the reduction in the derivative order |ξ| < k. This also relaxes the condition on p from p ≥ k+1
to p ≥ |ξ| + 1. As previously discussed in Section 3, the optimal value of p is |ξ| + 1. Given that
6 (|ξ|+ 1) is an exponent of log (1/δ), the most dominant term, reducing the order from k to |ξ|
leads to an immense improvement. There is another noteworthy observation we can see here. Given a
kth-order PDE, there are numerous possible partitions ξ that could be employed to decompose it to
a system of lower-order PDEs. Consequently, there are a many of potential VS-PINNs that could
be constructed. The aforementioned result indicates which of these is the most effective. As the
convergence improves dramatically with a reduction in the derivative order, the optimal approach
for splitting variables among various ways is to separate the given PDE into a system of first-order
PDEs by parameterizing all derivatives of the solution as auxiliary variables. In other words, the
finest splitting with ξ0 = 0, ξ1 = 1, . . . , ξk−1 = k − 1 would be the most effective in terms of the
convergence of GF, as the differential order |ξ| is reduced the most to 1. Taken all together, the most
optimal VS-PINNs that reduce the PDE order k to 1 will markedly enhance the convergence of GF.

Reduced Dimensional Impact: The reduction of orders in VS-PINNs enhances the resilience of
the model to high-dimensionality. From Theorem 3.2, we observed the effect of d being exponentially
enlarged for the PDE order k due to the kth-order partial differential operators in the loss function. It
can be alleviated by VS-PINNs reducing the order, thereby easing the amplified scale to exponential
of |ξ|. This indicates that VS-PINNs are more effective in combating the curse of dimensionality.
Since the curse of dimensionality is a serious issue that is prevalent in various fields, including
Hamilton-Jacobi-Bellman equation in control problems, Schrodinger equation in quantum physics,
and Black-Scholes equation in finance, it is evident that enhancements to the robustness of VS-PINNs
with respect to their dimensionality would facilitate considerable advancements in various fields.

Memory Efficiency: VS-PINNs are memory-efficient despite the presence of multiple auxiliary
networks. As the order of the derivative increases, the complexity in automatic differentiation in
modern deep-learning frameworks like PyTorch increases and it becomes computationally expensive
[7]. Adopting the order-reduced representation in the proposed variable splitting can overcome the
difficulty in calculating the high-order derivative via automatic differentiation. The loss function
for the finest VS-PINNs involves only first-order derivatives, which reduces the memory usage and
computational requirements. Despite the increase in the number of networks, VS-PINNs exhibit
greater efficiency because memory usage and computation scale linearly with the number of networks
in contrast to the exponential scaling with the order of derivatives. Table 3 in appendix demonstrates
the memory reduction of VS-PINNs.
Remark 4.4. The current approach to parameterizing the ξℓ-th order differential operator on all axes
∇ξℓ as an auxiliary variable may be suboptimal in certain cases. In a given PDE, if the order of
the derivative varies significantly along the axes, that is, aα ̸= 0 for only a few α in (1), it may be
more efficient to approximate the partial derivatives using auxiliary variables separately for each
axis. To illustrate, for the PDE utt = uxxxx, it is more suitable to parameterize variables ϕ0 ≈ u,
ϕ1 ≈ (ut, ux), ϕ2 ≈ uxx, and ϕ3 ≈ uxxx, rather than approximating all tensors ∇1

(t,x), ∇
2
(t,x), and

∇3
(t,x). The theoretical framework presented in this paper is capable of addressing this scenario by

constructing each ϕℓ to replace ∂ξℓ

∂xα for only part of α with |α| = ξℓ. However, we exclude it due to
the intricate nature of the states and the lack of a meaningful impact on the PDE order.
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(a) Convergence behavior of PINNs on bi-harmonic equation

(b) Convergence behavior of PINNs on Poisson equation

Figure 1: Training losses of PINNs solving (a) bi-harmonic equation and (b) Poisson equation.

Remark 4.5. Although the shaprness of the bound in Theorem 4.3 is open, it is important to note that
the leading term of the bound is based on conditions necessary for the Gram matrix to be positive
definite, which is a crucial property of the Gram matrix for ensuring the convergence of the GF to a
global optimizer. Since the Gram matrix is defined by the PDE loss and the network structure, we
believe it can still provide valuable insight into how order and power affect convergence.

5 Experiments

This section presents experimental results that validate the theory. Throughout numerical experiments,
two-layer MLPs with ReLUpactivation function were utilized in order to align with our theoretical
framework. Throughout all experiments, the training collocation points consists of uniform grid
and regularization parameters are set to ν1, . . . , νL = 1 and ν = 10. We implement all numerical
experiments on a single NVIDIA RTX 3090 GPU. Experimental details are provided in Appendix D.

Convergence behavior of PINNs To investigate the influence of the activation order p and the
PDE order k on the width m required for convergence, we examined both the second-order Poisson
equation and the fourth-order bi-harmonic equation, both of which yield the same solution. We
trained networks with varying widths m, ranging from 102 to 106, for each combination of p and k
using GD optimization with a learning rate of 10−8. Figure 1 illustrates the training losses at the
initial stage on a logarithmic scale, supporting our theoretical findings that a larger width is needed
for higher values of p to ensure convergence. Moreover, we can observe that narrower networks tend
to converge more readily when solving lower-order PDEs (Poisson) compared to higher-order PDEs
(bi-harmonic). This observation aligns with Theorem 4.3 that higher-order PDEs necessitate larger
network widths for guaranteed convergence.

Validation on the effect of p To verify the influence of the power p of the ReLU activation function,
we test PINNs with varying p values between 3 and 10. Since the training process became highly
unstable as p increases, we consider second-order heat equation (509) [14] to gain a more precise
investigation of the effect of p. The results are summarized in Figure 2 (a). We can see that the
convergence of loss is enhanced as p decreases, which supports our theoretical finding.

Comparison between PINNs and VS-PINNs To validate the order reduction effect of VS-PINNs,
we conducted an experiment comparing PINNs with VS-PINNs on the second-order heat equation.
Each model was run five times with different random seeds, and Figure 2 depicts the training loss
for both PINNs and VS-PINNs along with their variance. The results show that the training loss for
VS-PINNs converges more effectively than that of PINNs. This indicates that VS-PINNs, which
optimize a loss function incorporating lower-order derivatives using networks with smaller p, facilitate
convergence of GD, consistent with the theoretical findings in Section 4. Furthermore, we performed
a similar experiment on the convection-diffusion equation (511) in the Appendix E and obtained
results that were consistent with those observed for the heat equation.

Effect of splitting level For higher-order PDEs, there are several ways to transform a given PDE into
a lower-order system through variable splitting. To investigate this effect, we conducted experiments
on the fourth-order elastic beam equation (510) [52] with two cases: (i) ϕ0 ≈ u, ϕ1 ≈ ut, ϕ2 ≈ uxx

9



(a) Effect of p (b) Effect of variable splitting

Figure 2: Loss curves of (a) effect of the power p of ReLUpand (b) comparison between PINNs with
VS-PINNs.

with |ξ| = 2 and p = 3 and (ii) the finest splitting of ϕ0 ≈ u, ϕ1 ≈ ∇u, ϕ2 ≈ uxx, ϕ3 ≈ uxxx with
|ξ| = 1 and p = 2. In order to train PINNs for a fourth-order PDE, p should be at least five, but
training such PINNs with GD does not proceed properly, as illustrated in Figure 1. Consequently, the
experiments were conducted using the Adam optimizer. In contrast to the underperforming PINNs,
VS-PINNs are effectively trained even with GD, as illustrated in Figure 6 of the Appendix E. We
run each model five times with different random seeds, and Figure 2 (b) depicts the training loss of
PINN and two VS-PINNs with variance. The results show that the model with a lower PDE order k
and a smaller power p of the activation exhibits a more pronounced reduction in the loss function, in
accordance with our theoretical findings. Furthermore, it can be observed that the variance of the
training loss is significantly smaller for the models with smaller values of k and p. This indicates that
the learning process is much more stable for a smaller k and p. We also conduct numerical studies
on the fourth-order bi-harmonic equation (508). However, the results exhibit a similar trend to that
observed in the beam equation and are therefore presented in Appendix E.

6 Conclusion

In this paper, we proved that the gradient flow of PINNs converges to a global minimum and provides
sufficient width for this convergence. It extends the results in [25] to general PDEs and activation
functions and provides even tighter conditions on the width size. The main theorem demonstrates
that the PDE order or dimension exponentially increases the width requirement, theoretically indi-
cating that PINNs are challenging to optimize for high-order or high-dimensional PDEs. We also
substantiate that the PDE order amplifies the adverse effects of dimensionality, which explains why
PINNs are more susceptible to dimensionality than other deep learning losses without differentiation.
Furthermore, We showed that the variable splitting strategy improves convergence by reducing the
differential order included in the training loss function.

It is acknowledged that we only provided sufficient conditions for convergence. To fully comprehend
the role of these factors in optimizing PINNs, it is also necessary to establish the necessary conditions
linking PDE order, dimension, and convergence. Given that the primary goal of PINNs is to
approximate the solution of PDEs, it could also be a limitation that all discussions were limited to
empirical losses with fixed collocation points. It would therefore be a worthwhile future direction
to analyze the conditions under which the expected loss converges when training collocation points
are randomly sampled per epoch. Extending our theoretical framework to analyze the impact of the
variable splitting strategy on the generalization error of PINNs, as suggested in [64], would also be
an interesting and important research direction. Moreover, as our analysis was confined to continuous
time flows, a comprehensive understanding of gradient descent would necessitate the analysis of
discretized flows, since GF and GD have different dynamics [50]. We expect that our theory could
be adapted to GD dynamics by using Theorem 3.3 of [50], which treats GD as GF with a counter
term, but we leave it for future work. In a practical context, the convergence of PINNs for adaptive
optimizers, such as Adam [35] or L-BFGS [43], and other activation functions, including hyperbolic
tangent, remains an open question.
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A Mathematical Notations

We introduce the symbols and mathematical notations that are frequently used in this paper.

Symbol Description
N0 The set of non-negative integers
d ∈ N dimension of domain
Ω ⊂ Rd d-dimensional domain
α, β ∈ Nd

0 multi-index of dimension d
k ∈ N order of the governing PDE
N differential operator
N̂ Splitted differential operator
B boundary condition operator
ξ integral partition of [0, k]
f : Ω → R source function
g : ∂Ω → R boundary function
x (y) (augmented)point in Ω
x̃ (ỹ) (augmented)point on ∂Ω
ϕ neural network
Gw, Gv Gram matrices
λ0 The minimal eigenvalue of Gv

m ∈ N the number of the width of the network
σ activation function
p ∈ N power of ReLU activation function
no, nb ∈ N the number of collocation points sampled from the domain Ω, ∂Ω
s residual of PDE loss
µ residual of gradient matching loss
h residual of boundary loss

For a positive integer m, the set {1, · · · ,m} is abbreviated as [m]. The set of multi-indexes whose
size is m or is at most m is referred by

Im =

{
α = (α1, . . . , αd) ∈ Nd

0 : |α| =
d∑

i=1

αi = m

}
,

Jm =

{
α = (α1, . . . , αd) ∈ Nd

0 : |α| =
d∑

i=1

αi ≤ m

}
.

(18)

In this paper, we use two-layer MLPs. For given k ∈ N and a partition 0 = ξ0 < ξ1 < · · · < ξL <

ξL+1 = k, we define ϕℓ : Rd → R|Iξℓ | of width m as

ϕℓ (x;wℓ,vℓ) =
1√
m

m∑
r=1

(vℓ)r σ

([
(wℓ)r,1 (wℓ)r,2 · · · (wℓ)r,d

]
x+

1

2
(wℓ)r,d+1

)

=
1√
m

m∑
r=1

(vℓ)r σ
(
(wℓ)

⊤
r y
)
,

(19)

where weights in the first and second layer are

(wℓ)r =
[
(wℓ)r,1 (wℓ)r,2 · · · (wℓ)r,d

1
2 (wℓ)r,d+1

]⊤ ∈ R(d+1), (20)

(vℓ)r =
[
(vℓ)r,1 (vℓ)r,2 · · · (vℓ)r,|Iξℓ |

]⊤
∈ R|Iξℓ |, (21)

and y =
[
x⊤ 1

2

]⊤ ∈ Rd+1. Note that the output dimension of ϕℓ is R|Iξℓ | because each component
of ϕℓ (x;wℓ,vℓ) represents partial derivative ∂ξℓ

∂xαu, for each α ∈ Iξℓ . Hence, even though (vℓ)r
is a flattened vector, it is more convenient to use α ∈ Iξℓ as an index of component of (vℓ)r. For
example, if d = 2, ξ1 = 1, and α = (0, 1) ∈ I1, (v1)r,α = (v1)r,(0,1) refers a weight between the
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r-th hidden node and output that represents ∂
∂yu (x, y). Similarly, we use multi-index itself as an

index that is related to Iξℓ , I∆ξℓ , or J∆ξℓ .

Moreover, as each (ϕℓ)α is differentiated by some ∂∆ξℓ

∂xβ for α ∈ Iξℓ−1
and β ∈ I∆ξℓ , index we

use pair of multi-index (α, β) to refer a component of ∂∆ξℓ

∂xβ (ϕℓ)r,α. Sometimes, this indexing by
multi-index is used in conjunction with normal indexes, like (µℓ)(α,β),i for some i ∈ [no].

We denote the collection of weights of all ϕℓ’s by w =
[
w⊤

0 , · · ·w⊤
L

]⊤
and v =

[
v⊤
0 , · · ·v⊤

L

]⊤
.

Similarly, µ is the collection of all µℓ’s, µ =
[
µ⊤

0 , · · · ,µ⊤
L

]
. With regularization parameters

ν, νℓ > 0, residuals si, (µℓ) i, and hj of variable splitting for each training sample

si (w,v) =

√
1

no

(
N̂ [ϕ0 (·;w0,v0) , · · · , ϕL (·;wL,vL)] (xi)− f (xi)

)
(22)

(µℓ)i (w,v) =
[
(µℓ)(α,β),i (w,v)

]
α∈Iξℓ−1

,β∈I∆ξℓ

(23)

=
[

∂β

∂xβ (ϕℓ−1)α (xi;wℓ−1,vℓ−1)− ϕℓ (xi;wℓ,vℓ)α+β

]
α∈Iξℓ−1

,β∈I∆ξℓ

, (24)

and

hj (w,v) =

√
ν

nb
(B [ϕ (·;w0,v0)] (x̃j)− g (x̃j)) (25)

define the loss LV S
PINN for the system,

LV S
PINN (w,v) (26)

=
1

2

 no∑
i=1

si (w,v)
2
+

no∑
i=1

L∑
ℓ=1

∑
α∈Iξℓ−1

∑
β∈J∆ξℓ

(µℓ)(α,β),i (w,v)
2
+

nb∑
j=1

hj (w,v)
2

 . (27)

we define

amax = max

({
|âℓ,α,β (xi)| :

0 ≤ ℓ ≤ L, i ∈ [no] ,
α ∈ Iξℓ , β ∈ J∆ξℓ

}
∪
{
|ãα (x̃j)| :

α ∈ J1,
j ∈ [nb]

})
, (28)

νmax = max ({1, ν} ∪ {νℓ : ℓ ∈ [L]}) . (29)

B Calculations

The proof of the main theorem includes intricate calculations. To keep the proof clear, we separate
some tedious computations that are used frequently. As this section is a reference for the proofs, we
use some notation or symbols without any mention if they are defined in the other part of the paper.

Sizes of index set Im and Jm. For any ℓ ∈ [L],

|Iξℓ | =
(
d+ ξℓ − 1

ξℓ

)
, |I∆ξℓ | =

(
d+∆ξℓ − 1

∆ξℓ

)
, |J∆ξℓ | =

(
d+∆ξℓ
∆ξℓ

)
. (30)

We bound |Iξℓ |, |∆ξℓ| and J∆ξℓ by

|I∆ξℓ | ≤ |J∆ξℓ | ≤
(
d+ |ξ|
d

)
, (31)

and
L∑

ℓ=0

|Iξℓ | ≤ |JξL | ≤ |Jk−1| =
(
d+ k

d

)
. (32)
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Partial derivative of ŝ, µ, and h. Note that ∂β

∂xβ

(
(wℓ)

⊤
r yi

)p
+

in (34), ∂β

∂xβ

(
(wℓ−1)

⊤
r yi

)p
+

in (35),
(
(wℓ)

⊤
r yi

)p
+

in (36), and ∂α

∂xα

(
(w0)

⊤
r ỹj

)p
+

in (37) are polynomial of (wℓ)r, (wℓ−1)r,

(wℓ)r, and (w0)r of degree p, respectively.

For i ∈ [no], ℓ = 0, 1, . . . , L, r ∈ [m], and α ∈ Iξℓ ,

∂

∂ (vℓ)r,α
si =

√
1

no

∑
β∈J∆ξℓ+1

âℓ,α,β
∂β

∂xβ

∂

∂ (vℓ)r,α
ϕℓ (xi) (33)

=

√
1

mno

∑
β∈J∆ξℓ+1

âℓ,α,β
∂β

∂xβ

(
(wℓ)

⊤
r yi

)p
+
. (34)

Similarly, for ℓ ∈ [L], r ∈ [m], α1 ∈ Iξℓ−1
, α2 ∈ Iξℓ−1

, β ∈ I∆ξℓ , and i ∈ [no], we have

∂

∂ (vℓ−1)r,α1

(µℓ)(α2,β),i
=


√

νℓ

mno

(
∂β

∂xβ

(
(wℓ−1)

⊤
r yi

)p
+

)
if α1 = α2

0 otherwise.
(35)

For ℓ ∈ [L], r ∈ [m], α1 ∈ Iξℓ , α2 ∈ Iξℓ−1
, β ∈ I∆ξℓ , and i ∈ [no],

∂

∂ (vℓ)r,α1

(µℓ)(α2,β),i
=

{
−
√

νℓ

mno

(
(wℓ)

⊤
r yi

)p
+

if α1 = α2 + β,

0 otherwise.
(36)

For r ∈ [m] and j ∈ [nb],

∂

∂ (v0)r,1
hj =

√
ν

mnb

∑
α∈J1

ãα
∂α

∂xα

(
(w0)

⊤
r ỹj

)p
+
. (37)

Norms of partial derivative of ŝ, µ, and h. Note that for i ∈ [no], ℓ = 0, 1, . . . , L, r ∈ [m],∥∥∥∥∂si (w,v)∂ (wℓ)r

∥∥∥∥
2

=

√
1

mno

∥∥∥∥∥∥ ∂

∂ (wℓ)r

 ∑
α∈Iξℓ

∑
β∈J∆ξℓ+1

âℓ,α,β
∂β

∂xβ

(
(vℓ)r

(
(wℓ)

⊤
r y
)p
+

)
α

∥∥∥∥∥∥
2
(38)

=

√
1

mno

∥∥∥∥∥∥ ∂

∂ (wℓ)r

 ∑
α∈Iξℓ

∑
β∈J∆ξℓ+1

âℓ,α,β
∂β

∂xβ

(
(vℓ)r,α

(
(wℓ)

⊤
r y
)p
+

)∥∥∥∥∥∥
2

(39)

=

√
1

mno

∥∥∥∥∥∥
 ∑

α∈Iξℓ

(vℓ)r,α

∑
β∈J∆ξℓ+1

âℓ,α,β
∂

∂ (wℓ)r

(
∂β

∂xβ

(
(wℓ)

⊤
r y
)p
+

)∥∥∥∥∥∥
2

(40)

≤
√

1

mno
amax

∑
α∈Iξℓ

∣∣∣(vℓ)r,α

∣∣∣ ∑
β∈J∆ξℓ+1

∥∥∥∥ ∂

∂ (wℓ)r

(
∂β

∂xβ

(
(wℓ)

⊤
r y
)p
+

)∥∥∥∥
2

(41)

≤
√

1

mno
amax

∑
α∈Iξℓ

∣∣∣(vℓ)r,α

∣∣∣ ∑
β∈J∆ξℓ+1

p∆ξℓ+1+1 ∥(wℓ)r∥
p−1
2

(42)

=

√
1

mno
amax

∑
α∈Iξℓ

∣∣∣(vℓ)r,α

∣∣∣ ∣∣J∆ξℓ+1

∣∣ p∆ξℓ+1+1 ∥(wℓ)r∥
p−1
2

(43)

≤
√

1

mno
amax

√
|Iξℓ | ∥(vℓ)r∥2

∣∣J∆ξℓ+1

∣∣ p∆ξℓ+1+1 ∥(wℓ)r∥
p−1
2

, (44)
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for ℓ ∈ [L], r ∈ [m], α ∈ Iξℓ−1
, β ∈ I∆ξℓ , and i ∈ [no],∥∥∥∥∥∂ (µℓ)(α,β),i (w,v)

∂ (wℓ−1)r

∥∥∥∥∥
2

=

∥∥∥∥ ∂

∂ (wℓ−1)r

(√
νℓ
mno

∂β

∂xβ

(
(vℓ−1)r,α

(
(wℓ−1)

⊤
r yi

)p
+

))∥∥∥∥
2

(45)

=

√
νℓ
mno

∣∣∣(vℓ−1)r,α

∣∣∣ ∥∥∥∥ ∂

∂ (wℓ−1)r

(
∂β

∂xβ

((
(wℓ−1)

⊤
r yi

)p
+

))∥∥∥∥
2
(46)

≤
√

νℓ
mno

∣∣∣(vℓ−1)r,α

∣∣∣ p∆ξℓ+1 ∥(wℓ−1)r∥
p−1
2

(47)

≤
√
νmax

mno
p|ξ|+1 ∥(vℓ−1)r∥2 ∥(wℓ−1)r∥

p−1
2

, (48)∥∥∥∥∥∂ (µℓ)(α,β),i (w,v)

∂ (wℓ)r

∥∥∥∥∥
2

=

∥∥∥∥ ∂

∂ (wℓ)r

(√
νℓ
mno

(
(vℓ)r,α

(
(wℓ)

⊤
r yi

)p
+

))∥∥∥∥
2

(49)

=

√
νℓ
mno

∥∥∥∥(vℓ)r,α
∂

∂ (wℓ)r

(
(wℓ)

⊤
r yi

)p
+

∥∥∥∥
2

(50)

≤
√

νℓ
mno

p
∣∣∣(vℓ)r,α

∣∣∣ ∥(wℓ)r∥
p−1
2

(51)

≤
√
νmax

mno
p ∥(vℓ)r∥2 ∥(wℓ)r∥

p−1
2

, (52)∥∥∥∥∂ (µℓ)i (w,v)

∂ (wℓ′)r

∥∥∥∥
2

= 0, if ℓ′ ̸= ℓ− 1, ℓ, (53)

and for r ∈ [m] and j ∈ [nb],∥∥∥∥∂hj (w,v)∂ (w0)r

∥∥∥∥
2

=

∥∥∥∥∥ ∂

∂ (w0)r

(√
ν

mnb

∑
α∈J1

ãα
∂α

∂xα

(
(v0)r,0 ·

(
(w0)

⊤
r ỹj

)p
+

))∥∥∥∥∥
2

(54)

≤
√
ν

√
mnb

amax

∑
α∈J1

∥∥∥∥ ∂

∂ (w0)r

∂α

∂xα

(
(v0)r,0 ·

(
(w0)

⊤
r ỹj

)p
+

)∥∥∥∥
2

(55)

≤
√
ν

√
mnb

amax

∑
α∈J1

p2
∣∣∣(v0)r,0

∣∣∣ ∥(w0)r∥
p−1
2

(56)

≤
√
νmax

mnb
amax (d+ 1) p2 ∥(v0)r∥2 ∥(w0)r∥

p−1
2

, (57)∥∥∥∥∥∂hj (w,v)∂ (wℓ′)r,1

∥∥∥∥∥
2

= 0 if ℓ′ ∈ [L] . (58)

Similarly, for ℓ ∈ [L], r ∈ [m], and i ∈ [no], we have the following inequalities:
for α ∈ Iξℓ , ∣∣∣∣∣∂si (w,v)∂ (vℓ)r,α

∣∣∣∣∣ ≤
√

1

mno

∑
β∈J∆ξℓ+1

∣∣∣∣âℓ,α,β ∂β

∂xβ

(
(wℓ)

⊤
r yi

)p
+

∣∣∣∣ (59)

≤
√

1

mno
amax

∣∣J∆ξℓ+1

∣∣ p∆ξℓ+1 ∥(wℓ)r∥
p
2
, (60)∥∥∥∥∂si (w,v)∂ (vℓ)r

∥∥∥∥
2

≤
√
νmax

mno
amax

√
|Iξℓ |

∣∣J∆ξℓ+1

∣∣ p|ξ| ∥(wℓ)r∥
p
2

(61)

for α1 ∈ Iξℓ−1
, α2 ∈ Iξℓ−1

, and β ∈ I∆ξℓ ,∣∣∣∣∣∂ (µℓ)(α2,β),i
(w (t) ,v (t))

∂ (vℓ−1)r,α1

∣∣∣∣∣ = 1{α1=α2} ·
√

νℓ
mno

∣∣∣∣ ∂β∂xβ

(
(wℓ−1)

⊤
r yi

)p
+

∣∣∣∣ (62)
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≤ 1{α1=α2} ·
√

νℓ
mno

p∆ξℓ ∥(wℓ−1)r∥
p
2

(63)∥∥∥∥∥∂ (µℓ)(α2,β),i
(w,v)

∂ (vℓ−1)r

∥∥∥∥∥
2

≤
√

νℓ
mno

p∆ξℓ

√∣∣Iξℓ−1

∣∣ |I∆ξℓ | ∥(wℓ−1)r∥
p
2
, (64)

for α1 ∈ Iξℓ , α2 ∈ Iξℓ−1
, and β ∈ I∆ξℓ ,∣∣∣∣∣∂ (µℓ)(α2,β),i

(w,v)

∂ (vℓ)r,α1

∣∣∣∣∣ ≤ 1{α1=α2+β} ·
√

νℓ
mno

(
(wℓ)

⊤
r yi

)p
+

(65)

≤ 1{α1=α2+β} ·
√

νℓ
mno

∥(wℓ)r∥
p
2

(66)∥∥∥∥∥∂ (µℓ)(α2,β),i
(w,v)

∂ (vℓ)r

∥∥∥∥∥
2

≤
√

νℓ
mno

√∣∣Iξℓ−1

∣∣ |I∆ξℓ | ∥(wℓ)r∥
p
2
, (67)

for ℓ′ ̸= ℓ− 1, ℓ, ∥∥∥∥∂ (µℓ)i (w,v)

∂ (vℓ′)r

∥∥∥∥
2

= 0, (68)

and ∣∣∣∣∣∂hj (w,v)∂ (v0)r,0

∣∣∣∣∣ ≤
√

ν

mnb

∑
α∈J1

∣∣∣∣ãα ∂α

∂xα

((
(w0)

⊤
r ỹj

)p
+

)∣∣∣∣ (69)

≤
√
νmax

mnb
(d+ 1) amaxp ∥(w0)r∥

p
2
, (70)∥∥∥∥∂hj (w,v)∂ (vℓ′)r

∥∥∥∥
2

= 0 if ℓ′ ∈ [L] . (71)

Hoeffding’s inequalities for si,r, (µℓ)r,(α,β),i, and hj,r. For each i ∈ [no] and r ∈ [m], let

si (w,v) =

√
1

no

 L∑
ℓ=0

∑
α∈Iξℓ

∑
β∈J∆ξℓ+1

âℓ,α,β
∂β

∂xβ
(ϕℓ)α − f (xi)

 (72)

=

m∑
r=1

si,r (w,v)−
1

√
no
f (xi) , (73)

where

si,r (w,v) =
1

√
mno

L∑
ℓ=0

∑
α∈Iξℓ

∑
β∈J∆ξℓ+1

âℓ,α,β
∂β

∂xβ

(
(vℓ)r,α

(
(wℓ)

⊤
r y
)p
+

)
. (74)

As si,r is a p-th degree polynomial of (wℓ)r, we have

|si,r (w,v)| ≤
amax√
mno

L∑
ℓ=0

∑
α∈Iξℓ

∑
β∈J∆ξℓ+1

∣∣∣∣ ∂β∂xβ

(
(vℓ)r,α

(
(wℓ)

⊤
r y
)p
+

)∣∣∣∣ (75)

≤ amax√
mno

L∑
ℓ=0

∑
α∈Iξℓ

∑
β∈J∆ξℓ+1

∣∣∣(vℓ)r,α

∣∣∣ p∆ξℓ+1 ∥(wℓ)r∥
p
2
, (76)

for all i ∈ [no] and r ∈ [m].

Since ∥(wℓ)r (0)∥2 < R and
∣∣∣(vℓ)r,α (0)

∣∣∣ ≤ 1 for all ℓ = 0, . . . , L, α ∈ Iξℓ , and r ∈ [m], we have

|si,r (w (0) ,v (0))| ≤
√

1

mno
amax

L∑
ℓ=0

∑
α∈Iξℓ

∑
β∈J∆ξℓ+1

p∆ξℓ+1Rp (77)
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≤
√
νmax

mno
amax

L∑
ℓ=0

|Iξℓ | ·
∣∣J∆ξℓ+1

∣∣ · p|ξ|Rp (78)

≤
√
νmax

mno
amax

(
d+ k

d

)(
d+ |ξ|
d

)
p|ξ|Rp, (79)

for all i ∈ [no] and r ∈ [m].

Using E
[
(vℓ)r,α

]
= 0, we attain E [si,r (w (0) ,v (0))] = 0, and Hoeffding’s inequality gives

P

[∣∣∣∣∣
m∑
r=1

si,r (w (0) ,v (0))

∣∣∣∣∣ > ε
√
no

]
≤ 2 exp

−
2
(

ε√
no

)2
m
(
2
√

νmax

mno
amax

(
d+k
d

)(
d+|ξ|

d

)
p|ξ|Rp

)2

(80)

≤ 2 exp

(
− ε2

2νmaxa2max

(
d+k
d

)2(d+|ξ|
d

)2
p2|ξ|R2p

)
, (81)

for all ε > 0.

Similarly, for each ℓ ∈ [L], α ∈ Iξℓ−1
, β ∈ I∆ξℓ , and i ∈ [no],

(µℓ)(α,β),i (w,v) =

√
νℓ
no

(
∂β

∂xβ
(ϕℓ−1)α (xi;wℓ−1,vℓ−1)− ϕℓ (xi;wℓ,vℓ)α+β

)
(82)

=

m∑
r=1

(µℓ)r,(α,β),i (w,v) , (83)

where

(µℓ)r,(α,β),i (w,v) =

√
νℓ
mno

(
∂β

∂xβ

(
(vℓ−1)r,α

(
(wℓ−1)

⊤
r yi

)p
+

)
− (vℓ)r,α+β

(
(wℓ)

⊤
r yi

)p
+

)
.

(84)

Then, we attain that∣∣∣(µℓ)r,(α,β),i (w,v)
∣∣∣ ≤√ νℓ

mno

(∣∣∣∣ ∂β∂xβ

(
(vℓ−1)r,α

(
(wℓ−1)

⊤
r yi

)p
+

)∣∣∣∣+ ∣∣∣∣(vℓ)r,α+β

(
(wℓ)

⊤
r yi

)p
+

∣∣∣∣)
(85)

≤
√

νℓ
mno

(
p∆ξℓ

∣∣∣(vℓ−1)r,α

∣∣∣ ∥(wℓ−1)r∥
p
2
+
∣∣∣(vℓ)r,α+β

∣∣∣ ∥(wℓ)r∥
p
2

)
, (86)

and ∣∣∣(µℓ)r,(α,β),i (w (0) ,v (0))
∣∣∣ ≤√νmax

mno

(
p|ξ| + 1

)
Rp. (87)

E
[
(vℓ)r,α

]
= 0 implies E

[
(µℓ)r,(α,β),i

]
= 0 and for each i ∈ [no], Hoeffding’s inequality with the

sum over r ∈ [m] of variables

Xr,i (w (0) ,v (0)) =
∑

α∈Iξℓ−1

∑
β∈I∆ξℓ

(µℓ)r,(α,β),i (w (0) ,v (0)) , (88)

with

|Xr,i (w (0) ,v (0))| ≤
∣∣Iξℓ−1

∣∣ · |I∆ξℓ |
√
νmax

mno

(
p|ξ| + 1

)
Rp (89)

<

√
νmax

mno

(
d+ k

d

)(
d+ |ξ|
d

)(
p|ξ| + 1

)
Rp (90)

20



gives

P

[∣∣∣∣∣
m∑
r=1

(µℓ)r,(α,β),i (w (0) ,v (0))

∣∣∣∣∣ > ε
√
no

]
(91)

≤2 exp

−
2
(

ε√
no

)2
m
(√

νmax

mno

(
d+k
d

)(
d+|ξ|

d

) (
p|ξ| + 1

)
Rp
)2
 (92)

≤2 exp

(
− ε2

νmax

(
d+k
d

)2(d+|ξ|
d

)2 (
p|ξ| + 1

)2
R2p

)
. (93)

For each j ∈ [nb], let us denote

hj (w,v) =

√
ν

nb

∑
α∈J1

ãαϕ0 (x̃j ;w0,v0)−
√

ν

nb
g (x̃j) (94)

=
m∑
r=1

hj,r ((w0)r , (v0)r)−
√

ν

nb
g (x̃j) , (95)

where

hj,r (w,v) =

√
ν

mnb

∑
α∈J1

ãα
∂α

∂xα

(
(v0)r,0 ·

(
(w0)

⊤
r ỹj

)p
+

)
. (96)

It is clear that hjr is expressed as a p-th order polynomial of (w0)r and we can deduce that

|hj,r (w (0) ,v (0))| ≤
√
νmax

mnb
amax (d+ 1) pRp, (97)

for all j ∈ [nb] and r ∈ [m].

Similar to the case of si,r and (µℓ)r,(α,β),i, Hoeffding’s inequality gives

P

[∣∣∣∣∣
m∑
r=1

hj,r (w (0) ,v (0))

∣∣∣∣∣ > ε
√
nb

]
≤ 2 exp

(
− ε2

2νmaxa2max (d+ 1)
2
p2R2p

)
. (98)

Components of Qℓ1,ℓ2 Each component of Qℓ1,ℓ2 is polynomial of order p as follows:(
Q0,0

)
i1,i2

(99)

=

L∑
ℓ=0

m∑
r=1

∑
α∈Iξℓ

(
∂

∂ (vℓ)r,α
si1

)(
∂

∂ (vℓ)r,α
si2

)
(100)

=
1

mno

L∑
ℓ=0

m∑
r=1

∑
α∈Iξℓ

 ∑
β∈J∆ξℓ+1

âℓ,α,β
∂β

∂xβ

(
(wℓ)

⊤
r yi1

)p
+

 ∑
β∈J∆ξℓ+1

âℓ,α,β
∂β

∂xβ

(
(wℓ)

⊤
r yi2

)p
+

 .

(101)

(
Q0,ℓ

)
i1,((α,β),i2)

(102)

=

L∑
ℓ′=0

m∑
r=1

∑
α′∈Iξ

ℓ′

(
∂

∂ (vℓ′)r,α′
si1

)(
∂

∂ (vℓ′)r,α′
(µℓ)(α,β),i2

)
(103)

=

m∑
r=1

∑
α′∈Iξℓ−1

(
∂

∂ (vℓ−1)r,α′
si1

)(
∂

∂ (vℓ−1)r,α′
(µℓ)(α,β),i2

)
(104)
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+

m∑
r=1

∑
α′∈Iξℓ

(
∂

∂ (vℓ)r,α′
si1

)(
∂

∂ (vℓ)r,α′
(µℓ)(α,β),i2

)
(105)

=

m∑
r=1

∑
α′∈Iξℓ−1

(
∂

∂ (vℓ−1)r,α′
si1

)(
∂

∂ (vℓ−1)r,α′
(µℓ)(α,β),i2

)
(106)

+

m∑
r=1

(
∂

∂ (vℓ)r,α+β

si1

)(
∂

∂ (vℓ)r,α+β

(µℓ)(α,β),i2

)
(107)

=

√
νℓ

mno

m∑
r=1

 ∑
β′∈J∆ξℓ

âℓ−1,α,β′
∂β

′

∂xβ′

(
(wℓ−1)

⊤
r yi1

)p
+

( ∂β

∂xβ

(
(wℓ−1)

⊤
r yi2

)p
+

)
(108)

−

 ∑
β′∈J∆ξℓ+1

âℓ,α,β′
∂β

′

∂xβ′

(
(wℓ)

⊤
r yi1

)p
+

((wℓ)
⊤
r yi2

)p
+

 . (109)

(
Q0,L+1

)
i,j

=

L∑
ℓ=0

m∑
r=1

∑
α∈Iξℓ

(
∂

∂ (vℓ)r,α
si

)(
∂

∂ (vℓ)r,α
hj

)
(110)

=

m∑
r=1

(
∂

∂ (v0)r,1
si

)(
∂

∂ (v0)r,1
hj

)
(111)

=
1

m

√
ν

nonb

m∑
r=1

 ∑
β∈J∆ξ1

â0,1,β
∂β

∂xβ

(
(w0)

⊤
r yi

)p
+

(∑
α∈J1

ãα
∂α

∂xα

(
(w0)

⊤
r ỹj

)p
+

)
.

(112)

(
Qℓ,ℓ

)
((α1,β1),i1),((α2,β2),i2)

(113)

=

L∑
ℓ′=0

m∑
r=1

∑
α∈Iξ

ℓ′

(
∂

∂ (vℓ′)r,α
(µℓ)(α1,β1),i1

)(
∂

∂ (vℓ′)r,α
(µℓ)(α2,β2),i2

)
(114)

=

m∑
r=1

∑
α∈Iξℓ−1

(
∂

∂ (vℓ−1)r,α
(µℓ)(α1,β1),i1

)(
∂

∂ (vℓ−1)r,α
(µℓ)(α2,β2),i2

)
(115)

+

m∑
r=1

∑
α∈Iξℓ

(
∂

∂ (vℓ)r,α
(µℓ)(α1,β1),i1

)(
∂

∂ (vℓ)r,α
(µℓ)(α2,β2),i2

)
(116)

=

m∑
r=1

(√
νℓ
mno

∂β1

∂xβ1

(
(wℓ−1)

⊤
r yi1

)p
+

)(√
νℓ
mno

∂β2

∂xβ2

(
(wℓ−1)

⊤
r yi2

)p
+

)
1{α1=α2} (117)

+

m∑
r=1

(
−
√

νℓ
mno

(
(wℓ)

⊤
r yi1

)p
+

)(
−
√

νℓ
mno

(
(wℓ)

⊤
r yi2

)p
+

)
1{α1+β1=α2+β2} (118)

=
νℓ
mno

m∑
r=1

((
∂β1

∂xβ1

(
(wℓ−1)

⊤
r yi1

)p
+

)(
∂β2

∂xβ2

(
(wℓ−1)

⊤
r yi2

)p
+

)
1{α1=α2} (119)

+
(
(wℓ)

⊤
r yi1

)p
+

(
(wℓ)

⊤
r yi2

)p
+
1{α1+β1=α2+β2}

)
. (120)

(
Qℓ,ℓ+1

)
((α1,β1),i1),((α2,β2),i2)

(121)
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=

L∑
ℓ′=0

m∑
r=1

∑
α∈Iξ

ℓ′

(
∂

∂ (vℓ′)r,α
(µℓ)(α1,β1),i1

)(
∂

∂ (vℓ′)r,α

(
µℓ+1

)
(α2,β2),i2

)
(122)

=

m∑
r=1

∑
α∈Iξℓ

(
∂

∂ (vℓ)r,α
(µℓ)(α1,β1),i1

)(
∂

∂ (vℓ)r,α

(
µℓ+1

)
(α2,β2),i2

)
(123)

=

m∑
r=1

∑
α∈Iξℓ

(
−
√

νℓ
mno

(
(wℓ)

⊤
r yi1

)p
+

)
1{α=α1+β1}

(√
νℓ+1

mno

∂β2

∂xβ2

(
(wℓ)

⊤
r yi2

)p
+

)
1{α=α2}

(124)

=

√
νℓνℓ+1

mno

m∑
r=1

(
−
(
(wℓ)

⊤
r yi1

)p
+

)(
∂β2

∂xβ2

(
(wℓ)

⊤
r yi2

)p
+

)
1{α2=α1+β1}. (125)

(
Qℓ,L+1

)
((α,β),i),j

(126)

=
L∑

ℓ′=0

m∑
r=1

∑
α′∈Iξ

ℓ′

(
∂

∂ (vℓ′)r,α′
(µℓ)(α,β),i

)(
∂

∂ (vℓ′)r,α′
hj

)
(127)

=

m∑
r=1

(
∂

∂ (v0)r,1
(µℓ)(α,β),i

)(
∂

∂ (v0)r,1
hj

)
(128)

=

m∑
r=1

(√
ν1
mno

∂β

∂xβ

(
(w0)

⊤
r yi

)p
+

)(√
ν

mnb

∑
α∈J1

ãα

(
(w0)

⊤
r ỹj

)p
+

)
1{ℓ=1} (129)

=
1

m

√
ν1ν

nonb

m∑
r=1

(
∂β

∂xβ

(
(w0)

⊤
r yi

)p
+

)(∑
α∈J1

ãα
∂α

∂xα

(
(w0)

⊤
r ỹj

)p
+

)
1{ℓ=1}. (130)

(
QL+1,L+1

)
j1,j2

(131)

=

L∑
ℓ=0

m∑
r=1

∑
α∈Iξℓ

(
∂

∂ (vℓ)r,α
hj1

)(
∂

∂ (vℓ)r,α
hj2

)
(132)

=

m∑
r=1

(
∂

∂ (v0)r,1
hj1

)(
∂

∂ (v0)r,1
hj2

)
(133)

=

m∑
r=1

(√
ν

mnb

∑
α∈J1

ãα
∂α

∂xα

(
(w0)

⊤
r ỹj1

)p
+

)(√
ν

mnb

∑
α∈J1

ãα
∂α

∂xα

(
(w0)

⊤
r ỹj2

)p
+

)
(134)

=
ν

mnb

m∑
r=1

(∑
α∈J1

ãα
∂α

∂xα

(
(w0)

⊤
r ỹj1

)p
+

)(∑
α∈J1

ãα
∂α

∂xα

(
(w0)

⊤
r ỹj2

)p
+

)
. (135)

The number of possible nonzero elements in Qℓ1,ℓ2 and Ĝv. There are possibly n2o,∣∣Iξℓ−1

∣∣ |I∆ξℓ |n2o, and nonb nonzero elements in Q0,0, Q0,ℓ, and Q0,L+1, respectively. For each
(α1, β1) ∈ Iξℓ−1

× I∆ξℓ , there are at most |I∆ξℓ | pairs of (α2, β2) ∈ Iξℓ−1
× I∆ξℓ such that

α1 + β1 = α2 + β2 and at most |I∆ξℓ | pairs of (α2, β2) ∈ Iξℓ−1
× I∆ξℓ such that α1 = α2.

Thus, there are at most 2 |I∆ξℓ | pairs of (α2, β2) ∈ Iξℓ−1
× I∆ξℓ with α1 + β1 = α2 + β2 or

α1 = α2, and Qℓ,ℓ has possibly
(∣∣Iξℓ−1

∣∣ |I∆ξℓ |no
)
(2 |I∆ξℓ |no) = 2

∣∣Iξℓ−1

∣∣ · |I∆ξℓ |
2
n2o nonzero

elements. Similarly, each (α1, β1) ∈ Iξℓ−1
× I∆ξℓ uniquely determines α2 = α1 + β1 ∈ Iξℓ ,

there are
∣∣I∆ξℓ+1

∣∣ pairs of (α2, β2) ∈ Iξℓ × I∆ξℓ+1
with α2 = α1 + β1. Hence, Qℓ,ℓ+1 has∣∣Iξℓ−1

∣∣ · |I∆ξℓ | ·
∣∣I∆ξℓ+1

∣∣n2o nonzero elements. Q1,L+1 has |I∆ξ1 |nonb nonzero elements. The
number of nonzero elements in QL+1,L+1 is n2b . After all, the number of nonzero elements in Ĝv is
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Matrix The number of nonzero elements

Q0,0 n2o
Q0,ℓ

∣∣Iξℓ−1

∣∣ |I∆ξℓ |n2o
Q0,L+1 nonb
Qℓ,ℓ 2

∣∣Iξℓ−1

∣∣ · |I∆ξℓ |
2
n2o

Qℓ,ℓ+1

∣∣Iξℓ−1

∣∣ · |I∆ξℓ | ·
∣∣I∆ξℓ+1

∣∣n2o
Q1,L+1 |I∆ξ1 |nonb

QL+1,L+1 n2b
Table 1: The number of nonzero elements in blocks in G.

at most N1 = 7
(
d+k
d

)(
d+|ξ|

d

)2
n2o + 4

(
d+|ξ|

d

)
nonb + n2b , because(

the number of nonzero elements of Ĝv

)
(136)

=

L+1∑
ℓ=0

(
the number of nonzero elements in Qℓ,ℓ

)
(137)

+ 2

L∑
ℓ=0

L+1∑
ℓ′=ℓ+1

(
the number of nonzero elements in Qℓ,ℓ′

)
(138)

≤n2o +
L∑

ℓ=1

(
2
∣∣Iξℓ−1

∣∣ |I∆ξℓ |
2
n2o

)
+ n2b (139)

+ 2

{
L∑

ℓ=1

(∣∣Iξℓ−1

∣∣ |I∆ξℓ |n2o
)
+ nonb +

L∑
ℓ=1

(∣∣Iξℓ−1

∣∣ |I∆ξℓ |
∣∣I∆ξℓ+1

∣∣n2o)+ |I∆ξ1 |nonb

}
(140)

≤n2o + 2

(
d+ |ξ|
d

)2 L∑
ℓ=1

∣∣Iξℓ−1

∣∣n2o + n2b (141)

+ 2

{(
d+ |ξ|
d

) L∑
ℓ=1

∣∣Iξℓ−1

∣∣n2o + nonb +

(
d+ |ξ|
d

)2 L∑
ℓ=1

∣∣Iξℓ−1

∣∣n2o + (d+ |ξ|
d

)
nonb

}
(142)

≤

(
1 + 2

(
d+ |ξ|
d

)(
d+ k

d

)
+ 4

(
d+ |ξ|
d

)2(
d+ k

d

))
n2o + 2

(
1 +

(
d+ |ξ|
d

))
nonb + n2b

(143)

≤7

(
d+ k

d

)(
d+ |ξ|
d

)2

n2o + 4

(
d+ |ξ|
d

)
nonb + n2b (144)

=N1. (145)

Norms of partial derivative of Qℓ1,ℓ2 . For each i1, i2 ∈ [no], r ∈ [m], and ℓ ∈ {0}∪ [L], we have(
Q0,0

)
i1,i2

(146)

=
1

mno

L∑
ℓ=0

m∑
r=1

∑
α∈Iξℓ

 ∑
β∈J∆ξℓ+1

âℓ,α,β
∂β

∂xβ

(
(wℓ)

⊤
r yi1

)p
+

 ∑
β∈J∆ξℓ+1

âℓ,α,β
∂β

∂xβ

(
(wℓ)

⊤
r yi2

)p
+

 ,

(147)∥∥∥∥ ∂

∂ (wℓ)r

(
Q0,0

)
i1,i2

∥∥∥∥
2

(148)
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=

∥∥∥∥∥∥ 1

mno

∂

∂ (wℓ)r

 ∑
α∈Iξℓ

 ∑
β∈J∆ξℓ+1

âℓ,α,β
∂β

∂xβ

(
(wℓ)

⊤
r yi1

)p
+

 ∑
β∈J∆ξℓ+1

âℓ,α,β
∂β

∂xβ

(
(wℓ)

⊤
r yi2

)p
+


∥∥∥∥∥∥
2

(149)

≤ 1

mno
|Iξℓ | a2max

∥∥∥∥∥∥ ∂

∂ (wℓ)r


 ∑

β∈J∆ξℓ+1

∂β

∂xβ

(
(wℓ)

⊤
r yi1

)p
+

 ∑
β∈J∆ξℓ+1

∂β

∂xβ

(
(wℓ)

⊤
r yi2

)p
+


∥∥∥∥∥∥
2

(150)

≤ 1

mno
a2max |Iξℓ |

∣∣J∆ξℓ+1

∣∣2 p2|ξ|+1 ∥(wℓ)r∥
2p−1
2

, (151)

∂

∂ (vℓ)r

(
Q0,0

)
i1,i2

= 0. (152)

For each ℓ ∈ [L], α ∈ Iξℓ−1
, β ∈ I∆ξℓ , and i1, i2 ∈ [no],

(
Q0,ℓ

)
i1,((α,β),i2)

(153)

=

√
νℓ

mno

m∑
r=1

 ∑
β′∈J∆ξℓ

âℓ−1,α,β′
∂β

′

∂xβ′

(
(wℓ−1)

⊤
r yi1

)p
+

( ∂β

∂xβ

(
(wℓ−1)

⊤
r yi2

)p
+

)
(154)

−

 ∑
β′∈J∆ξℓ+1

âℓ,α,β′
∂β

′

∂xβ′

(
(wℓ)

⊤
r yi1

)p
+

((wℓ)
⊤
r yi2

)p
+

 , (155)

∥∥∥∥ ∂

∂ (wℓ−1)r

(
Q0,ℓ

)
i1,((α,β),i2)

∥∥∥∥
2

(156)

=

∥∥∥∥∥∥
√
νℓ

mno

∂

∂ (wℓ−1)r


 ∑

β′∈J∆ξℓ

âℓ−1,α,β′
∂β

′

∂xβ′

(
(wℓ−1)

⊤
r yi1

)p
+

( ∂β

∂xβ

(
(wℓ−1)

⊤
r yi2

)p
+

)
∥∥∥∥∥∥
2

(157)

≤
√
νℓ

mno
amax |J∆ξℓ | p2∆ξℓ+1 ∥(wℓ−1)r∥

2p−1
2

(158)

≤
√
νmax

mno
amax

(
d+ |ξ|
d

)
p2|ξ|+1 ∥(wℓ−1)r∥

2p−1
2

, (159)

and∥∥∥∥ ∂

∂ (wℓ)r

(
Q0,ℓ

)
i1,((α,β),i2)

∥∥∥∥
2

(160)

=

∥∥∥∥∥∥−
√
νℓ

mno

∂

∂ (wℓ)r

 ∑
β′∈J∆ξℓ+1

âℓ,α,β′
∂β

′

∂xβ′

(
(wℓ)

⊤
r yi1

)p
+

((wℓ)
⊤
r yi2

)p
+

∥∥∥∥∥∥
2

(161)

≤
√
νℓ

mno
amax

∣∣J∆ξℓ+1

∣∣ p∆ξℓ+1+1 ∥(wℓ)r∥
2p−1
2

(162)

≤
√
νmax

mno
amax

(
d+ |ξ|
d

)
p2|ξ|+1 ∥(wℓ)r∥

2p−1
2

, (163)

∂

∂ (wℓ′)r

(
Q0,ℓ

)
i1,((α,β),i2)

= 0, if ℓ′ ̸= ℓ− 1, ℓ, (164)

∂

∂ (vℓ′)r

(
Q0,ℓ

)
i1,((α,β),i2)

= 0, ∀ℓ′ ∈ [L] . (165)

For each i ∈ [no] and j ∈ [nb],(
Q0,L+1

)
i,j

(166)
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=
1

m

√
ν

nonb

m∑
r=1

 ∑
β∈J∆ξ1

â0,1,β
∂β

∂xβ

(
(w0)

⊤
r yi

)p
+

(∑
α∈J1

ãα
∂α

∂xα

(
(w0)

⊤
r ỹj

)p
+

)
, (167)

∥∥∥∥ ∂

∂ (w0)r

(
Q0,L+1

)
i,j

∥∥∥∥
2

(168)

=

∥∥∥∥∥∥ 1

m

√
ν

nonb

∂

∂ (w0)r


 ∑

β∈J∆ξ1

â0,1,β
∂β

∂xβ

(
(w0)

⊤
r yi

)p
+

(∑
α∈J1

ãα
∂α

∂xα

(
(w0)

⊤
r ỹj

)p
+

)
∥∥∥∥∥∥
2

(169)

≤ 1

m

√
ν

nonb

(
d+∆ξ1

d

)
(d+ 1) a2maxp

∆ξ1+2 ∥(w0)r∥
2p−1
2

(170)

≤ 1

m

√
νmax

nonb

(
d+ |ξ|
d

)
(d+ 1) a2maxp

|ξ|+2 ∥(w0)r∥
2p−1

, (171)

∂

∂ (wℓ)r

(
Q0,L+1

)
i,j

= 0, ∀ℓ ̸= 0, (172)

∂

∂ (vℓ)r
Qi,j = 0, ∀ℓ. (173)

For each ℓ ∈ [L], α1, α2 ∈ Iξℓ−1
, β1, β2 ∈ I∆ξℓ , and i1, i2 ∈ [no],(

Qℓ,ℓ

)
((α1,β1),i1),((α2,β2),i2)

(174)

=
νℓ
mno

m∑
r=1

((
∂β1

∂xβ1

(
(wℓ−1)

⊤
r yi1

)p
+

)(
∂β2

∂xβ2

(
(wℓ−1)

⊤
r yi2

)p
+

)
1{α1=α2} (175)

+
(
(wℓ)

⊤
r yi1

)p
+

(
(wℓ)

⊤
r yi2

)p
+
1{α1+β1=α2+β2}

)
, (176)∥∥∥∥ ∂

∂ (wℓ−1)r

(
Qℓ,ℓ

)
((α1,β1),i1),((α2,β2),i2)

∥∥∥∥
2

(177)

=1{α1=α2}

∥∥∥∥ νℓ
mno

∂

∂ (wℓ−1)r

{(
∂β1

∂xβ1

(
(wℓ−1)

⊤
r yi1

)p
+

)(
∂β2

∂xβ2

(
(wℓ−1)

⊤
r yi2

)p
+

)}∥∥∥∥
2
(178)

≤1{α1=α2}
νℓ
mno

p2∆ξℓ+1 ∥(wℓ−1)r∥
2p−1
2

(179)

≤1{α1=α2}
νmax

mno
p2|ξ|+1 ∥(wℓ−1)r∥

2p−1
2

, (180)

and ∥∥∥∥ ∂

∂ (wℓ)r

(
Qℓ,ℓ

)
((α1,β1),i1),((α2,β2),i2)

∥∥∥∥
2

(181)

=1{α1+β1=α2+β2}

∥∥∥∥ νℓ
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∂

∂ (wℓ)r

{(
(wℓ)

⊤
r yi1

)p
+

(
(wℓ)

⊤
r yi2

)p
+

}∥∥∥∥
2

(182)

≤1{α1+β1=α2+β2}
νℓ
mno

p ∥(wℓ)r∥
2p−1
2

(183)

≤1{α1+β1=α2+β2}
νmax

mno
p ∥(wℓ)r∥

2p−1
2

, (184)

∂

∂ (wℓ′)r

(
Qℓ,ℓ

)
i1,i2

= 0, ∀ℓ′ ̸= ℓ− 1, ℓ, (185)

∂

∂ (vℓ′)r

(
Qℓ,ℓ

)
i1,i2

= 0, ∀ℓ′. (186)

26



Similarly, for each ℓ ∈ {1, · · · , L− 1}, α1 ∈ Iξℓ−1
, α2 ∈ Iξℓ , β1 ∈ I∆ξℓ ,β2 ∈ I∆ξℓ+1

and
i1, i2 ∈ [no], (

Qℓ,ℓ+1

)
((α1,β1),i1),((α2,β2),i2)

(187)

=

√
νℓνℓ+1

mno

m∑
r=1

(
−
(
(wℓ)

⊤
r yi1

)p
+

)(
∂β2

∂xβ2

(
(wℓ)

⊤
r yi2

)p
+

)
1{α2=α1+β1}, (188)

(189)∥∥∥∥ ∂

∂ (wℓ)r

(
Qℓ,ℓ+1

)
((α1,β1),i1),((α2,β2),i2)

∥∥∥∥
2

(190)

≤1{α2=α1+β1}

√
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p∆ξℓ+1+1 ∥(wℓ)r∥
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2

(191)

≤1{α2=α1+β1}
νmax

mno
p|ξ|+1 ∥(wℓ)r∥

2p−1
2

, (192)

∂

∂ (wℓ′)r

(
Qℓ,ℓ+1

)
((α1,β1),i1),((α2,β2),i2)

= 0, ∀ℓ′ ̸= ℓ, (193)

(194)
∂

∂ (vℓ′)r

(
Qℓ,ℓ+1

)
((α1,β1),i1),((α2,β2),i2)

= 0, ∀ℓ′. (195)

For each ℓ ∈ [L], α = 1, β ∈ I∆ξ1 , i ∈ [no] and j ∈ [nb],(
Qℓ,L+1

)
((α,β),i),j

(196)

=
1

m

√
ν1ν

nonb

m∑
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(
∂β

∂xβ

(
(w0)

⊤
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)p
+

)(∑
α∈J1

ãα
∂α

∂xα

(
(w0)

⊤
r ỹj

)p
+

)
1{ℓ=1}, (197)∥∥∥∥ ∂

∂ (w0)r

(
Q1,L+1

)
((α,β),i),j

∥∥∥∥
2

(198)

=

∥∥∥∥∥
√
ν1ν

m
√
nonb

∂

∂ (w0)r

{
m∑
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(
∂β

∂xβ

(
(w0)

⊤
r yi

)p
+

)(∑
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ãα
∂α

∂xα

(
(w0)

⊤
r ỹj

)p
+

)}∥∥∥∥∥
2

(199)

≤
√
ν1ν

m
√
nonb

amax (d+ 1) p∆ξ1+2 ∥(w0)r∥
2p−1
2

(200)

≤ νmax

m
√
nonb

amax (d+ 1) p|ξ|+2 ∥(w0)r∥
2p−1
2

, (201)

∂

∂ (wℓ)r

(
Q1,L+1

)
((α,β),i),j

= 0, ∀ℓ ̸= 0, (202)

∂

∂ (vℓ)r

(
Q1,L+1

)
((α,β),i),j

= 0, ∀ℓ. (203)

For each j1, j2 ∈ [nb], the direct calculations lead to

(
QL+1,L+1

)
j1,j2

=
ν

mnb

m∑
r=1

(∑
α∈J1

ãα
∂α

∂xα

(
(w0)

⊤
r ỹj1

)p
+

)(∑
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ãα
∂α

∂xα

(
(w0)

⊤
r ỹj2

)p
+

)
,

(204)∥∥∥∥ ∂

∂ (w0)r

(
QL+1,L+1

)
j1,j2

∥∥∥∥
2

≤ ν

mnb
a2max (d+ 1)

2
p3 ∥(w0)r∥

2p−1
2 , (205)

∂

∂ (wℓ)r

(
QL+1,L+1

)
j1,j2

= 0, ∀ℓ ̸= 0, (206)

∂

∂ (vℓ)r

(
QL+1,L+1

)
j1,j2

= 0, ∀ℓ. (207)
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Hoeffding’s inequalities for Qℓ1,ℓ2 . For each i ∈ [no] and j ∈ [nb], we have∣∣∣∣ ∂β∂xβ

(
(wℓ)

⊤
r yi

)p
+

∣∣∣∣ ≤ p|β| ∥(wℓ)r∥
p
2
, (208)∣∣∣∣ ∂β∂xβ

(
(wℓ−1)

⊤
r yi

)p
+

∣∣∣∣ ≤ p|β| ∥(wℓ−1)r∥
p
2
, (209)∣∣∣∣((wℓ)

⊤
r yi

)p
+

∣∣∣∣ ≤ ∥(wℓ)r∥
p
2
, (210)∣∣∣∣ ∂α∂xα

(
(w0)

⊤
r ỹj

)p
+

∣∣∣∣ ≤ p|α| ∥(w0)r∥
p
2
. (211)

Then, for each i1, i2 ∈ [no],∣∣∣∣∣∣
L∑

ℓ=0

∑
α∈Iξℓ

 ∑
β∈J∆ξℓ+1

âℓ,α,β
∂β

∂xβ

(
(wℓ)

⊤
r yi1

)p
+

 ∑
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âℓ,α,β
∂β

∂xβ

(
(wℓ)

⊤
r yi2

)p
+

∣∣∣∣∣∣
(212)

≤
L∑

ℓ=0

∑
α∈Iξℓ

 ∑
β∈J∆ξℓ+1

amaxp
|β| ∥(wℓ)r∥

p
2

 ∑
β∈J∆ξℓ+1

amaxp
|β| ∥(wℓ)r∥

p
2

 (213)

≤
L∑

ℓ=0

∑
α∈Iξℓ

∣∣J∆ξℓ+1

∣∣2 a2maxp
2|∆ξℓ+1|R2p (214)

≤
L∑

ℓ=0

|Iξℓ |
(
d+ |ξ|
d

)2

a2maxp
2|ξ|R2p (215)

=

(
d+ k

d

)(
d+ |ξ|
d

)2

a2maxp
2|ξ|R2p. (216)

By Hoeffding’s inequality with(
Q0,0

)
i1,i2

(217)

=

m∑
r=1

L∑
ℓ=0

∑
α∈Iξℓ

(
∂

∂ (vℓ)r,α
si1

)(
∂

∂ (vℓ)r,α
si2

)
(218)

=
1

mno

L∑
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m∑
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∂xβ
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+
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∂xβ

(
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⊤
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+

 ,

(219)

we have

P
[∣∣∣(Q0,0

)
i1,i2

− E
[(
Q0,0

)
i1,i2

]∣∣∣ > ε
]
< 2 exp

(
− mn2oε

2

2
(
d+k
d

)2(d+|ξ|
d

)4
a4maxp

4|ξ|R4p

)
, (220)

for any ε > 0.

Similarly, for each ℓ ∈ [L], α ∈ Iξℓ−1
, β ∈ ∆ξℓ, and i1, i2 ∈ [no],∣∣∣∣∣∣

 ∑
β′∈J∆ξℓ

âℓ−1,α,β′
∂β

′

∂xβ′

(
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⊤
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)p
+
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∂xβ

(
(wℓ−1)

⊤
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+

)
(221)

−

 ∑
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âℓ,α,β′
∂β

′

∂xβ′

(
(wℓ)

⊤
r yi1

)p
+

((wℓ)
⊤
r yi2

)p
+

∣∣∣∣∣∣ (222)
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≤
(
d+∆ξℓ
∆ξℓ

)
amaxp

∆ξℓ ∥(wℓ−1)r∥
p
2
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p
2
+
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p
2

(223)

≤
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d

)(
p|ξ| + 1

)
amaxp

|ξ|R2p. (224)

By Hoeffding’s inequality with(
Q0,ℓ

)
i1,((α,β),i2)

(225)

=

√
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mno
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⊤
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+

 , (227)

we have

P
[∣∣∣(Q0,ℓ

)
i1,((α,β),i2)

− E
[(
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)
i1,((α,β),i2)

]∣∣∣ > ε
]
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(
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2
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d

)2 (
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)
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(228)
for any ε > 0.

For each i ∈ [no] and j ∈ [nb],∣∣∣∣∣∣
 ∑
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≤
(
d+∆ξ1
∆ξ1

)
amaxp
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(230)

≤ (d+ 1)

(
d+ |ξ|
d

)
a2maxp
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By Hoeffding’s inequality with

(
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)
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=
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m

√
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ãα
∂α

∂xα

(
(w0)

⊤
r ỹj
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(232)
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)
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(233)
for any ε > 0.

For each ℓ ∈ [L], α1, α2 ∈ Iξℓ−1
, β1, β2 ∈ J∆ξℓ , and i1, i2 ∈ [no],∣∣∣∣( ∂β1
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(
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⊤
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+

)(
∂β2

∂xβ2

(
(wℓ−1)

⊤
r yi2

)p
+

)
1{α1=α2} (234)
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⊤
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≤
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p2|ξ| + 1
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R2p. (237)

By Hoeffding’s inequality with(
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)
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we have

P
[∣∣∣(Qℓ,ℓ

)
((α1,β1),i1),((α2,β2),i2)

− E
[(
Qℓ,ℓ

)
((α1,β1),i1),((α2,β2),i2)

]∣∣∣ > ε
]
< 2 exp

(
− mn2oε

2

2ν2ℓ
(
p2|ξ| + 1

)2
R4p

)
,
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for any ε > 0.

For each ℓ ∈ [L], α1 ∈ Iξℓ−1
, α2 ∈ Iξℓ , β1 ∈ I∆ξℓ , β2 ∈ I∆ξℓ+1
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By Hoeffding’s inequality with(
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for any ε > 0.

For each α ∈ Iξℓ−1
, β ∈ J∆ξℓ , i ∈ [no], and j ∈ [nb],∣∣∣∣∣ ∂β∂xβ
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|ξ|+1R2p. (248)

By Hoeffding’s inequality with(
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r ỹj

)p
+

)
, (250)
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for any ε > 0.

For j1, j2 ∈ [nb],(∑
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By Hoeffding’s inequality with(
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ãα
∂α

∂xα

(
(w0)

⊤
r ỹj1
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for any ε > 0.

C Proofs

This section proves the main theorem with some lemmas and propositions. Similar to the [25], we
first prove that the Gram matrix Ĝ

∞
v is independent of m and strictly positive definite, in Proposition

C.3. Second, as Ĝv (w (0) ,v (0)) is the sample mean, Proposition C.4 shows that Ĝv (w (0) ,v (0))

is close to its expected value Ĝ
∞
v with a high probability, if m is large enough. This implies that

Ĝv (w (0) ,v (0)) is strictly positive definite with high probability. Then, we show that the initial
loss is bounded with a high probability if m is large. This is because v (0) has zero mean, which
hinders the output of m variables to diverge as m increases. Finally, we prove that the Gram matrix
Ĝv (w (t) ,v (t)) remains within a small neighborhood of the initial point, where it maintains its
strict positive definiteness. The gradient flow converges within the neighborhood, as the smallest
eigenvalue of Ĝv is distinct from zero, resulting in a rapid reduction of the loss.
Lemma C.1. Let d, n ∈ N and y1, . . . ,yn ∈ Rd be vectors such that yi//yj if and only if i = j.
Then, for each i ∈ [n], there exists wi such that w⊤

i yj = 0 if and only if i = j.

Proof. Let y⊥
i =

{
w ∈ Rd : w⊤yi = 0

}
. Since yi//yj for i ̸= j, yi ∩ yj is nowhere dense in y⊥

i .
Hence, finite union of ∪j ̸=iy

⊥
j is nowhere dense in y⊥

i , and in particular, there exists wi ∈ y⊥
i such

that wi ̸∈ ∪j ̸=iy
⊥
j .

Lemma C.2. Let n, d ∈ N, and ψ : Rd → R be a homogeneous polynomial of degree n. For any
i ∈ N and nonzero y = (y1, . . . , yd) ∈ Rd, if a function ψ (w)

(
w⊤y

)i
+

of w = (w1, . . . , wd) ∈ Rd

is (n+ i)-times continuously differentiable at some w∗ ∈ Rd with (w∗)
⊤
y = 0, then ψ ≡ 0.

Proof. Without loss of the generality, we may assume the y1 ̸= 0. Write ψ (w) =
∑

α∈In
aαw

α

for coefficients aα ∈ R and define φ (w) = ψ (w)
(
w⊤y

)i
+

. For any α ∈ In, the assumption on

differentiability implies that ∂i

∂wi
1

∂n

∂wαφ is continuous. Indeed, we have φ (w) = 0 for w⊤y ≤ 0, and

∂i
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1

∂n

∂wα
φ (w) = α!aαy

i
1, (255)

for w⊤y > 0. The continuity induces aα = 0 and thus ψ ≡ 0 for all w ∈ Rd.

Proposition C.3. Ĝ
∞
v = Ew,v

[
Ĝv (w,v)

]
is strictly positive definite and independent of m.
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and m random variables
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for r ∈ [m], are independent and identically distributed. Therefore, the expected value of each
component of Q0,0 is independent of m, as the expected value of the sample mean of independent
and identically distributed random variables is independent of the number of samples. Similarly, each
component of Ĝv (w,v) is the sample mean of m independent and identically distributed random
variables, and its expected value Ĝ

∞
v is independent of m. To show that Ĝ

∞
v is strictly positive

definite, assume that there exists z0 =
[
(z0)1 · · · (z0)no

]
∈ Rno , z̃ = [z̃1 · · · z̃nb ]

⊤ ∈ Rnb ,
and

zℓ =
[
(zℓ)(α,β),i

]
(α∈Iξℓ ,β∈I∆ξℓ

,i∈[no])
∈ R|Iξℓ−1 |·|I∆ξℓ |no (259)

for ℓ ∈ [L], such that z =
[
z⊤
0 z⊤

1 · · · z⊤
L z̃⊤]⊤ ∈ Rno+

∑L
ℓ=1(|Iξℓ−1 |·|I∆ξℓ |no)+nb satisfies

Ĝ
∞
v z = 0. Since Ĝ

∞
v z = Ew,v

[
D̂

⊤
v D̂v

]
z = 0 if and only if Ew,v

[∥∥∥D̂vz
∥∥∥2
2

]
= 0, we show

that Ew,v

[∥∥∥D̂vz
∥∥∥2
2

]
= 0 implies z = 0 and thereby 0 is not an eigenvalue of Ĝ

∞
v .

Now assume that there exists z ∈ Rd such that D̂vz = 0 for almost all w and v. Since D̂v is
continuous with respect to w and v, we have D̂vz = 0 for all w and v. Hence, the function D̂vz of
w and v, which is identically zero, is smooth with respect to w and v.

In this proof, we denote an index for a component of D̂vz by ℓ ∈ [L], r ∈ [m] and α ∈ Iξℓ , because
each row of D̂v corresponds to the partial derivatives with respect to (vℓ)r,α for ℓ ∈ [L], r ∈ [m]

and α ∈ Iξℓ . For instance,
(
D̂vz

)
0,1,0

is the first component of
(
D̂vz

)
. First, for ℓ = L and any

r ∈ [m] and α ∈ IξL , we have(
D̂vz

)
L,r,α

(260)

=

no∑
i=1

(
∂

∂ (vL)r,α
si

)
(z0)i +

no∑
i=1

∑
α′∈IξL−1

∑
β∈I∆ξL

(
∂

∂ (vL)r,α
(µL)(α′,β),i

)
(zL)(α′,β),i

(261)

=

√
1

mno

no∑
i=1

 ∑
β∈J∆ξL+1

âL,α,β
∂β

∂xβ

(
(wL)

⊤
r yi

)p
+

 (z0)i (262)

−
√

νL
mno

no∑
i=1

∑
α′∈IξL−1

∑
β∈I∆ξL

(
(wL)

⊤
r yi

)p
+
(zL)(α′,β),i 1{α=α′+β}. (263)

Fix i ∈ [no], and by Lemma C.1, there exists (w∗
L)r ∈ Rd such that (w∗

L)
⊤
r yi = 0, (w∗

L)
⊤
r yi′ ̸= 0

for i ̸= i′ ∈ [no] and (w∗
L)

⊤
r ỹj ̸= 0 for j ∈ [nb]. As a function of (wL)r, D̂vz = 0 implies that ∑

β∈J∆ξL+1

âL,α,β
∂β

∂xβ

(
(wL)

⊤
r yi

)p
+

 (z0)i (264)

−
√
νL

∑
α′∈IξL−1

∑
β∈I∆ξL

(
(wL)

⊤
r yi

)p
+
(zL)(α′,β),i 1{α=α′+β} (265)

=−
∑
i′ ̸=i

 ∑
β∈J∆ξL+1

âL,α,β
∂β

∂xβ

(
(wL)

⊤
r yi

)p
+

 (z0)i (266)

+
√
νL
∑
i′ ̸=i

∑
α′∈IξL−1

∑
β∈I∆ξL

(
(wL)

⊤
r yi

)p
+
(zL)(α′,β),i 1{α=α′+β}. (267)

32



is smooth at (wL)r = (w∗
L)r. Note that the coefficient of

(
(wL)

⊤
r yi

)p−∆ξL+1

+
in (266) is given by∑

β∈I∆ξL+1

âL,α,β (xi) (wL)
β1

r,1 · · · (wL)
βd

r,d (z0)i , (268)

which is a homogeneous polynomial of wL. Together with the fact that at least one of âL,α,β (xi) is
nonzero, Lemma C.2 implies (z0)i = 0. Similarly, for any r ∈ [m],(

D̂vz
)
0,r,0

=

nb∑
j=1

(
∂

∂ (v0)r,0
hj

)
z̃j (269)

=

√
ν

mnb

nb∑
j=1

∑
α∈J1

ãα (x̃j)
∂α

∂xα

(
(w0)

⊤
r ỹj

)p
+
z̃j (270)

=

√
ν

mnb

nb∑
j=1

∑
α∈J1

ãα (x̃j) z̃j (w0)
α1

r,1 · · · (w0)
αd

r,d

(
(w0)

⊤
r ỹj

)p−|α|

+
(271)

deduces z̃j = 0 with w∗
0, instead of w∗

L, such that (w∗
0)

⊤
ỹj = 0, (w∗

0)
⊤
ỹj′ ̸== 0 for j′ ̸= j, and

(w∗
0)

⊤
yi ̸= 0 for i ∈ [no]. Now suppose that we have z̃ = 0 and zℓ′ = 0 for ℓ′ = 0, 1, . . . , ℓ − 1

for some ℓ ≥ 1. Then, for any r ∈ [m] and α ∈ Iξℓ−1
,(

D̂vz
)
ℓ−1,r,α

(272)

=

no∑
i=1

(
∂

∂ (vℓ−1)r,α
si

)
(z0)i +

no∑
i=1

∑
α′∈Iξℓ−1

∑
β∈I∆ξℓ

(
∂

∂ (vℓ−1)r,α
(µℓ)(α′,β),i

)
(zℓ)(α′,β),i

(273)

+

no∑
i=1

∑
α′∈Iξℓ−2

∑
β∈I∆ξℓ−1

(
∂

∂ (vℓ−1)r,α

(
µℓ−1

)
(α′,β),i

)
(zℓ−1)(α′,β),i (274)

=

no∑
i=1

∑
α′∈Iξℓ−1

∑
β∈I∆ξℓ

(
∂

∂ (vℓ−1)r,α
(µℓ)(α′,β),i

)
(zℓ)(α′,β),i (275)

=

√
νℓ
no

no∑
i=1

∑
β∈I∆ξℓ

(
(wℓ)

β1

r,1 · · · (wℓ)
βd

r,d

(
(wℓ)

⊤
r yi

)p−∆ξℓ

+

)
(zℓ)(α,β),i . (276)

Then the coefficient of
(
(wℓ)

⊤
r yi

)p−∆ξℓ
is a homogeneous polynomial√

νℓ
no

∑
β∈I∆ξℓ

(zℓ)(α,β),i (wℓ)
βd

r,d . (277)

Lemma C.2 shows (zℓ)(α,β),i = 0 for all α, β. The induction concludes z = 0.

In the sequel, λ0 = λmin(Ĝv) > 0 is the minimal eigenvalue of Ĝv. Furthermore, we assume
the occurrence of the following event: there exists R > 1 such that ∥(wℓ)r (0)∥2 < R and
∥(vℓ)r (0)∥2 < R for all ℓ = 0, 1, . . . , L and r ∈ [m]. This assumption is employed solely for the
purpose of simplifying propositions and their respective proofs. In the main theorem and its proof, we
use the following arguments with regard to the conditional probability of the aforementioned event.
Proposition C.4. Let δ > 0 and

C1 =

(
d+ k

k

)(
d+ |ξ|
|ξ|

)2

ν2max

(
1

no
+

1

nb

)√
1 + a4max

(
p2|ξ| + 1

)
, (278)

N1 = 7

(
d+ k

d

)(
d+ |ξ|
d

)2

n2o + 4

(
d+ |ξ|
d

)
nonb + n2b , (279)
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be constants. If m is large enough so that

m ≥ 32N1C
2
1R

4p

λ20
log

(
2N1

δ

)
, (280)

then with the probability of at least 1− δ over the initialization, we have∥∥∥Ĝv (w (0) ,v (0))− Ĝ
∞
v

∥∥∥
2
<
λ0
4
. (281)

Proof. We use Hoeffding’s inequality to measure the error between Ĝv (w,v) and Ĝ
∞
v , as Gram

matrix Ĝ
∞
v is the expectation of the sample mean. In the Hoeffding’s inequalities (220), (228), (233),

(241), (245), (251), and (254), we have

1

n2o

(
d+ k

d

)2(
d+ |ξ|
d

)4

a4maxp
4|ξ| ≤ C2

1 , (282)

νℓ
n2o

(
d+ |ξ|
d

)2 (
p|ξ| + 1

)2
a2maxp

2|ξ| ≤ C2
1 , (283)

ν

nonb
(d+ 1)

2

(
d+ |ξ|
d

)2

a4maxp
2|ξ|+2 ≤ C2

1 , (284)

ν2ℓ
n2o

(
p2|ξ| + 1

)2
≤ C2

1 (285)

νℓνℓ+1

n2o
p2|ξ| ≤ C2

1 , (286)

ν1ν

nonb
(d+ 1)

2
a2maxp

2|ξ|+2 ≤ C2
1 , (287)

ν2

n2b
(d+ 1)

4
a4maxp

4 ≤ C2
1 . (288)

Consequently, all inequalities induce that each component of
∣∣∣Ĝv − Ĝ

∞
v

∣∣∣ is greater than ε, with

a probability of at most 2 exp
(
− mε2

2C2
1R

4p

)
. Since there exists at most N1 nonzero elements in∣∣∣Ĝv − Ĝ

∞
v

∣∣∣ by (145), ∣∣∣Ĝv (w,v)− Ĝ
∞
v

∣∣∣ ≤ ε (289)

holds componentwise, with the probability of at least(
1− 2 exp

(
− mε2

2C2
1R

4p

))N1

≥ 1− 2N1 exp

(
− mε2

2C2
1R

4p

)
. (290)

Then, we have ∥∥∥Ĝv (w,v)− Ĝ
∞
v

∥∥∥
2
≤
∥∥∥Ĝv (w,v)− Ĝ

∞
v

∥∥∥
F
≤ ε
√
N1. (291)

Set ε and m to satisfy ε = 1
4
√
N1
λ0 and 2N exp

(
− mε2

2C2
1R

4p

)
< δ. In other words, if

m ≥ 2C2
1R

4p

ε2
log

(
2N1

δ

)
(292)

=
32N1C

2
1R

4p

λ20
log

(
2N1

δ

)
, (293)

then
∥∥∥Ĝv (w,v)− Ĝ

∞
v

∥∥∥
2
≤ 1

4λ0 with probability of at least 1-δ.

By the above proposition, the initial Gram matrix Ĝv (w (0) ,v (0)) is likely to be strictly positive
definite, and its smallest eigenvalue remains greater than λ0

2 , at the beginning of the flow. The
following lemma implies that at the early stage of the flow, for which w and v are not far from the
initial values, the positive definiteness is preserved, and its smallest eigenvalue remains distinct from
zero.
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Lemma C.5. Suppose ∥w̃ℓ −wℓ (0)∥2 ≤ Rw < R, for

Rw =
λ0

8
√
2

(
νmax

√
1 + a4max

(
d+ k

d

)(
d+ |ξ|
d

)2

p2|ξ|+1 (2R)
2p−1

)−1

. (294)

Then ∥∥∥Ĝv (w̃, ṽ)− Ĝv (w (0) ,v (0))
∥∥∥
2
≤ 1

4
λ0. (295)

Proof. 1. Case of Q0,0: By the mean value theorem with (151), we can induce that(
Q0,0 (w̃, ṽ)−Q0,0 (w (0) ,v (0))

)
i1,i2

(296)

≤
∣∣∣Q0,0 (w̃, ṽ)i1,i2 −Q0,0 (w (0) , ṽ)i1,i2

∣∣∣+ ∣∣∣Q0,0 (w̃, ṽ)i1,i2 −Q0,0 (w̃,v (0))i1,i2

∣∣∣ (297)

=

∣∣∣∣ ∂∂wQ0,0 (w
∗,v (0))i1,i2 · (w̃ −w (0))

∣∣∣∣+ ∣∣∣∣ ∂∂vQ0,0 (w (0) ,v∗)i1,i2 (ṽ − v (0))

∣∣∣∣ (298)

≤
L∑

ℓ=0

m∑
r=1

(∥∥∥∥ ∂

∂ (wℓ)r

(
Q0,0

)
(w∗,v (0))i1,i2

∥∥∥∥
2

· ∥(w̃ℓ)r − (wℓ)r (0)∥2

)
(299)

≤ 1

mno
a2maxp

2|ξ|+1
L∑

ℓ=0

m∑
r=1

|Iξℓ |
∣∣J∆ξℓ+1

∣∣2 (∥(w∗
ℓ )r∥

2p−1
2 · ∥(w̃ℓ)r − (wℓ)r (0)∥2

)
, (300)

for some w∗ =
[
(w∗

0)
⊤
1 · · · (w∗

0)
⊤
m · · · (w∗

L)
⊤
0 · · · (w∗

L)
⊤
m

]⊤
lies on a line between

w̃ and w (0) and for some v∗ lies on a line connecting ṽ and v (0). Since
∥∥(w∗

ℓ )r
∥∥
2

≤
∥(w̃ℓ)r − (wℓ)r (0)∥2 + ∥(wℓ)r (0)∥2 ≤ Rw +R ≤ 2R for each ℓ ∈ {0} ∪ [L] and r ∈ [m],(

Q0,0 (w̃, ṽ)−Q0,0 (w (0) ,v (0))
)
i1,i2

≤a
2
max

mno
p2|ξ|+1

L∑
ℓ=0

m∑
r=1

|Iξℓ |
∣∣J∆ξℓ+1

∣∣2 ((2R)2p−1 ∥(w̃ℓ)r − (wℓ)r (0)∥2
)

≤a
2
max

no
p2|ξ|+1

(
d+ |ξ|
d

)2 L∑
ℓ=0

|Iξℓ | (2R)
2p−1

Rw

≤a
2
max

no
p2|ξ|+1

(
d+ k

d

)(
d+ |ξ|
d

)2

(2R)
2p−1

Rw

(301)

Therefore, we can attain that
no∑

i1=1

no∑
i2=1

(
Q0,0 (w̃, ṽ)−Q0,0 (w (0) ,v (0))

)2
i1,i2

≤a4max

(
d+ k

d

)2(
d+ |ξ|
d

)4

2p2(2|ξ|+1) (2R)
2(2p−1)

R2
w.

(302)

2. Case of Q0,ℓ: Similar to Q0,0, the mean value theorem with (159) and (163) gives(
Q0,ℓ (w̃, ṽ)−Q0,ℓ (w (0) ,v (0))

)
i1,((α,β),i2)

(303)

≤
√
νmax

mno
amax

(
d+ |ξ|
d

)
p2|ξ|+1

m∑
r=1

{
∥(w̃ℓ−1)r∥

2p−1 ∥(w̃ℓ−1)r − (wℓ−1)r (0)∥2 (304)

+ ∥(w̃ℓ)r∥
2p−1 ∥(w̃ℓ)r − (wℓ)r (0)∥2

}
(305)

≤
√
νmax

mno
amax

(
d+ |ξ|
d

)
p2|ξ|+1

m∑
r=1

2
(
(2R)

2p−1
Rw

)
(306)
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=

√
νmax

no
amax

(
d+ |ξ|
d

)
p2|ξ|+12 (2R)

2p−1
Rw. (307)

Consequently, we have
no∑

i1,i2=1

L∑
ℓ=1

∑
α∈Iξℓ−1

∑
β∈I∆ξℓ

(
Q0,ℓ (w̃, ṽ)−Q0,ℓ (w (0) ,v (0))

)2
i1,((α,β),i2)

(308)

≤ν
2
max

n2o
a2max

(
d+ |ξ|
d

)2

p2(2|ξ|+1)
no∑

i1,i2=1

L∑
ℓ=1

∑
α∈Iξℓ−1

∑
β∈I∆ξℓ

4 (2R)
2(2p−1)

R2
w (309)

≤ν2maxa
2
max

(
d+ |ξ|
d

)2

p2(2|ξ|+1)
L∑

ℓ=1

∣∣Iξℓ−1

∣∣ |I∆ξℓ | 4 (2R)
2(2p−1)

R2
w (310)

≤ν2maxa
2
max

(
d+ k

d

)(
d+ |ξ|
d

)4

4 (2R)
2(2p−1)

R2
w. (311)

3. Case of Q0,L+1: The mean value theorem with (171) induces((
Q0,L+1

)
(w̃, ṽ)−

(
Q0,L+1

)
(w (0) ,v (0))

)
i,j

≤
√
νmax

m
√
nonb

a2max (d+ 1)

(
d+ |ξ|
d

)
p|ξ|+2

m∑
r=1

(
∥(w̃0)r∥

2p−1
2

∥(w̃0)r − (w0)r (0)∥2
)

≤
√
νmax√
nonb

a2max (d+ 1)

(
d+ |ξ|
d

)
p|ξ|+2 (2R)

2p−1
Rw,

(312)

and hence
no∑
i=1

nb∑
j=1

((
Q0,L+1

)
(w̃, ṽ)−

(
Q0,L+1

)
(w (0) ,v (0))

)2
i,j

≤νmaxa
4
max (d+ 1)

2

(
d+ |ξ|
d

)2

p2(|ξ|+2) (2R)
2(2p−1)

R2
w

(313)

4. Case of Qℓ1,ℓ2 : From the mean value theorem with (180) and (184), we attain((
Qℓ,ℓ

)
(w̃, ṽ)−

(
Qℓ,ℓ

)
(w (0) ,v (0))

)
((α1,β1),i1),((α2,β2),i2)

(314)

≤νmax

mno
p2|ξ|+1

m∑
r=1

{
1{α1=α2} ∥(w̃ℓ−1)r∥

2p−1
2

∥(w̃ℓ−1)r − (wℓ−1)r (0)∥2 (315)

+1{α1+β1=α2+β2} ∥(w̃ℓ)r∥
2p−1
2

∥(w̃ℓ)r − (wℓ)r (0)∥2
}

(316)

≤νmax

no
p2|ξ|+1

{
1{α1=α2} (2R)

2p−1
+ 1{α1+β1=α2+β2} (2R)

2p−1
}
Rw, (317)

and further induces
no∑

i1,i2=1

L∑
ℓ=1

∑
α1,α2∈Iξℓ−1

∑
β1,β2∈I∆ξℓ

((
Qℓ,ℓ

)
(w̃, ṽ)−

(
Qℓ,ℓ

)
(w (0) ,v (0))

)2
((α1,β1),i1),((α2,β2),i2)

(318)

≤ν2maxp
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∑
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∑
β1∈I∆ξℓ

∑
α2∈Iξℓ−1

∑
β2∈I∆ξℓ

{
1{α1=α2} (2R)

2p−1 (319)

+1{α1+β1=α2+β2} (2R)
2(2p−1)

}2

R2
w (320)

≤ν2maxp
2(2|ξ|+1)

L∑
ℓ=1

∑
α1∈Iξℓ−1

∑
β1∈I∆ξℓ

(
(|I∆ξℓ | − 1) (2R)

2(2p−1)
+ (|I∆ξℓ | − 1) (2R)

2p−1 (321)
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+4 (2R)
2(2p−1)

)
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w (322)

≤ν2maxp
2(2|ξ|+1)

L∑
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α1∈Iξℓ−1

∑
β1∈I∆ξℓ

4 |I∆ξℓ | (2R)
2(2p−1)

R2
w (323)

≤4ν2maxp
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L∑
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∣∣ |I∆ξℓ |
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(2R)

2p−1
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w (324)

≤4ν2maxp
2(2|ξ|+1)

(
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d

)(
d+ |ξ|
d

)2

(2R)
2p−1

R2
w. (325)

(192) follows that((
Qℓ,ℓ+1

)
(w̃, ṽ)−

(
Qℓ,ℓ+1

)
(w (0) ,v (0))

)
((α1,β1),i1),((α2,β2),i2)

(326)

≤1{α2=α1+β1}
νmax

mno
p|ξ|+1
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∥(w̃ℓ)r∥

2p−1
2

∥(w̃ℓ)r − (wℓ)r (0)∥2
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(327)

≤1{α2=α1+β1}
νmax
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p|ξ|+1 (2R)

2p−1
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It deduces that
no∑

i1,i2=1

L−1∑
ℓ=1

∑
α1∈Iξℓ−1

α2∈Iξℓ

∑
β1∈I∆ξℓ

β2∈I∆ξℓ+1

((
Qℓ,ℓ+1
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)
(w (0) ,v (0))

)2
((α1,β1),i1),((α2,β2),i2)

(329)

≤ν2maxp
2|ξ|+2

L−1∑
ℓ=1

∑
α1∈Iξℓ−1

∑
β1∈I∆ξℓ

∑
α2∈Iξℓ

∑
β2∈I∆ξℓ+1

1{α2=α1+β1} (2R)
2(2p−1)

R2
w (330)

≤ν2maxp
2|ξ|+2

L−1∑
ℓ=1

∑
α1∈Iξℓ−1

∑
β1∈I∆ξℓ

∣∣I∆ξℓ+1

∣∣ (2R)2(2p−1)
R2

w (331)

=ν2maxp
2|ξ|+2

L−1∑
ℓ=1

∣∣Iξℓ−1

∣∣ |I∆ξℓ |
∣∣I∆ξℓ+1

∣∣ (2R)2(2p−1)
R2

w (332)

≤ν2maxp
2|ξ|+2

(
d+ k

d

)(
d+ |ξ|
d

)2

(2R)
2(2p−1)

R2
w. (333)

In accordance with the definition of the loss µℓ, it is clear that Qℓ1,ℓ2 is identical to the zero matrix if
the difference between ℓ1 and ℓ2 is greater than 1. Consequently, together with (325) and (333) we
have

L∑
ℓ1,ℓ2=1

∑
α1,α2∈Iξℓ−1

∑
β1,β2∈I∆ξℓ

no∑
i1,i2=1

((
Qℓ1,ℓ2

)
(w (0) ,v (0))

)2
((α1,β1),i1),((α2,β2),i2)

(334)

=

no∑
i1,i2=1

L∑
ℓ=1

∑
α1,α2∈Iξℓ−1

∑
β1,β2∈I∆ξℓ

((
Qℓ,ℓ

)
(w̃, ṽ)−

(
Qℓ,ℓ

)
(w (0) ,v (0))

)2
((α1,β1),i1),((α2,β2),i2)

(335)

+ 2

no∑
i1,i2=1

L−1∑
ℓ=1

∑
α1∈Iξℓ−1

α2∈Iξℓ

∑
β1∈I∆ξℓ

β2∈I∆ξℓ+1

((
Qℓ,ℓ+1

)
(w̃, ṽ)−

(
Qℓ,ℓ+1

)
(w (0) ,v (0))

)2
((α1,β1),i1),((α2,β2),i2)

(336)

≤4ν2maxp
2(2|ξ|+1)

(
d+ k

d

)(
d+ |ξ|
d

)2

(2R)
2p−1

R2
w (337)
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+ 2ν2maxp
2|ξ|+2

(
d+ k

d

)(
d+ |ξ|
d

)2

(2R)
2(2p−1)

R2
w (338)

≤6ν2max

(
d+ k

d

)(
d+ |ξ|
d

)2

p2(2|ξ|+1) (2R)
2p−1

R2
w. (339)

5. Case of Qℓ,L+1: From (201), we have((
Q1,L+1

)
(w̃, ṽ)−

(
Q1,L+1

)
(w (0) ,v (0))

)
((α,β),i),j

(340)

≤ νmax

m
√
nonb

amax (d+ 1) p|ξ|+2
m∑
r=1

(
∥(w̃0)r∥

2p−1
2

∥(w̃0)r − (w0)r (0)∥2
)

(341)

≤ νmax√
nonb

amax (d+ 1) p|ξ|+2 (2R)
2p−1

Rw. (342)

By the definition of the loss µℓ, we have Qℓ,L+1 is identical to the zero matrix for every ℓ > 1.
Therefore, we have

no∑
i=1

nb∑
j=1

L∑
ℓ=1

∑
β∈I∆ξ1

((
Qℓ,L+1

)
(w̃, ṽ)−

(
Q1,L+1

)
(w (0) ,v (0))

)2
((1,β),i),j

(343)

=

no∑
i=1

nb∑
j=1

∑
β∈I∆ξ1

((
Q1,L+1

)
(w̃, ṽ)−

(
Q1,L+1

)
(w (0) ,v (0))

)2
((1,β),i),j

(344)

≤ |I∆ξ1 | ν2maxa
2
max (d+ 1)

2
p2(|ξ|+2) (2R)

2(2p−1)
R2

w (345)

≤ν2maxa
2
max

(
d+ |ξ| − 1

|ξ|

)
(d+ 1)

2
p2(|ξ|+2) (2R)

2(2p−1)
R2

w (346)

≤ν2maxa
2
max (d+ 1)

2

(
d+ |ξ|
d

)
p2(|ξ|+2) (2R)

2(2p−1)
R2

w. (347)

6. Case of QL+1,L+1:

From (205), we have((
QL+1,L+1

)
(w̃, ṽ)−

(
QL+1,L+1

)
(w (0) ,v (0))

)
j1,j2

(348)

≤ ν

mnb
a2max (d+ 1)

2
p3

m∑
r=1

(
∥(w̃0)r∥

2p−1
2

∥(w̃0)r − (w0)r (0)∥2
)

(349)

≤νmax

nb
a2max (d+ 1)

2
p3 (2R)

2p−1
Rw. (350)

It further follows that
nb∑

j1=1

nb∑
j2=1

((
QL+1,L+1

)
(w̃, ṽ)−

(
QL+1,L+1

)
(w (0) ,v (0))

)2
j1,j2

≤ν2maxa
4
max (d+ 1)

4
p6 (2R)

2(2p−1)
R2

w.

(351)

Therefore, combining (302), (311), (313), (339), (347), and (351) concludes that∥∥∥Ĝv (w̃, ṽ)− Ĝv (w (0) ,v (0))
∥∥∥2
2

(352)

≤
∥∥∥Ĝv (w̃, ṽ)− Ĝv (w (0) ,v (0))

∥∥∥2
F

(353)

≤a4max

(
d+ k

d

)2(
d+ |ξ|
d

)4

p2(2|ξ|+1) (2R)
2(2p−1)

R2
w (354)

+ 4ν2maxa
2
max

(
d+ k

d

)(
d+ |ξ|
d

)4

p2(2|ξ|+1) (2R)
2(2p−1)

R2
w (355)
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+ νmaxa
4
max (d+ 1)

2

(
d+ |ξ|
d

)2

p2(|ξ|+2) (2R)
2(2p−1)

R2
w (356)

+ 6ν2maxp
2(2|ξ|+1)

(
d+ k

d

)(
d+ |ξ|
d

)2

(2R)
2p−1

R2
w (357)

+ ν2maxa
2
max (d+ 1)

2

(
d+ |ξ|
d

)
p2(|ξ|+2) (2R)

2(2p−1)
R2

w (358)

+ ν2maxa
4
max (d+ 1)

4
p6 (2R)

2(2p−1)
R2

w (359)

≤8ν2max

(
1 + a4max

)(d+ k

d

)2(
d+ |ξ|
d

)4

p2(2|ξ|+1) (2R)
2(2p−1)

R2
w (360)

=
λ20
16
. (361)

The preceding lemma indicates that the loss will decrease rapidly in cases where w is not significantly
distant from w (0). Indeed, the subsequent lemma and proposition demonstrate that w (t) remains
within the designated region for any given value of t > 0, provided sufficiently large m.
Proposition C.6. Set constants C2 and C3 as

C2 =
√
νmax

√
(1 + a2max)

(
d+ k

d

)(
d+ |ξ|
d

)(
p|ξ| + 1

)
, (362)

C3 =
1

no

no∑
i=1

f (xi)
2
+

1

nb

nb∑
j=1

g (x̃j)
2
, (363)

N2 =

(
d+ k

d

)(
d+ |ξ|
d

)
no + nb. (364)

For any C > 0 and δ < 2N2 exp
(
− C2

3

2C2
2R

2p

)
, if m is large enough so that

m ≥ 2C2

λ20

(
C2

(
4 +

(
d+ k

d

)(
d+ |ξ|
d

))
R4p log

(
2N2

δ

)
+ C3R

2p

)
, (365)

then, with the probability of at least 1− δ over the initialization, we have

1√
m

∥∥∥∥∥∥∥∥∥∥


s (w (0) ,v (0))
µ1 (w (0) ,v (0))

...
µL (w (0) ,v (0))
h (w (0) ,v (0))


∥∥∥∥∥∥∥∥∥∥
2

<
λ0
C
R−p. (366)

Proof. Since

νmaxa
2
max

(
d+ k

d

)2(
d+ |ξ|
d

)2

p2|ξ| ≤ C2
2 , (367)

νmax

(
d+ k

d

)2(
d+ |ξ|
d

)2 (
p|ξ| + 1

)2
≤ C2

2 , (368)

νmaxa
2
max (d+ 1)

2
p2 ≤ C2

2 , (369)

we have

P

[∣∣∣∣∣
m∑
r=1

si,r (w (0) ,v (0))

∣∣∣∣∣ > ε
√
no

]
≤ 2 exp

(
− ε2

2C2
2R

2p

)
, (370)

P

[∣∣∣∣∣
m∑
r=1

(µℓ)r,(α,β),i (w (0) ,v (0))

∣∣∣∣∣ > ε
√
no

]
≤ 2 exp

(
− ε2

2C2
2R

2p

)
, (371)
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P

[∣∣∣∣∣
m∑
r=1

hj,r (w (0) ,v (0))

∣∣∣∣∣ > ε
√
nb

]
≤ 2 exp

(
− ε2

2C2
2R

2p

)
. (372)

Hence, from

no +

L∑
ℓ=1

∣∣Iξℓ−1

∣∣ · |I∆ξℓ | · no + nb ≤
(
d+ k

d

)(
d+ |ξ|
d

)
no + nb ≤ N2, (373)

with the probability of at least(
1− 2 exp

(
− ε2

2C2
2R

2p

))N2

≥ 1− 2N exp

(
− ε2

2C2
2R

2p

)
, (374)

all the conditions ∣∣∣∣∣
m∑
r=1

si,r (w (0) ,v (0))

∣∣∣∣∣ ≤ ε
√
no
, (375)∣∣∣∣∣

m∑
r=1

(µℓ)r,(α,β),i (w (0) ,v (0))

∣∣∣∣∣ ≤ ε
√
no
, (376)∣∣∣∣∣

m∑
r=1

hj,r (w (0) ,v (0))

∣∣∣∣∣ ≤ ε
√
nb

(377)

are satisfied. Then, the square of the initial loss is bounded as

∥s (w (0) ,v (0))∥22 + ∥h (w (0) ,v (0))∥22 +
L∑

ℓ=1

∥µℓ (w (0) ,v (0))∥22 (378)

=

no∑
i=1

si (w (0) ,v (0))
2
+

nb∑
j=1

hj (w (0) ,v (0))
2 (379)

+

no∑
i=1

L∑
ℓ=1

∑
α∈Iξℓ−1

∑
β∈I∆ξℓ

(µℓ)(α,β),i (w (0) ,v (0))
2 (380)

≤ 1

no

no∑
i=1

(ε+ |f (xi)|)2 +
1

nb

nb∑
j=1

(ε+ |g (x̃j)|)2 +
L∑

ℓ=1

∣∣Iξℓ−1

∣∣ · |I∆ξℓ | ε2 (381)

≤ 1

no

no∑
i=1

(ε+ |f (xi)|)2 +
1

nb

nb∑
j=1

(ε+ |g (x̃j)|)2 +
(
d+ k

d

)(
d+ |ξ|
d

)
ε2 (382)

≤
(
4 +

(
d+ k

d

)(
d+ |ξ|
d

))
ε2 + 2

 1

no

no∑
i=1

f (xi)
2
+

1

nb

nb∑
j=1

g (x̃j)
2

 (383)

=

(
4 +

(
d+ k

d

)(
d+ |ξ|
d

))
ε2 + 2C3. (384)

For δ > 0 and C > 0, if ε and m satisfy the following inequalities,

δ ≥ 2N2 exp

(
− ε2

2C2
2R

2p

)
, (385)

ε > C3, (386)

m ≥ C2

λ20
R2p

((
4 +

(
d+ k

d

)(
d+ |ξ|
d

))
ε2 + 2C3

)
, (387)

then for enough small δ such that

δ < 2N2 exp

(
− C2

3

2C2
2R

2p

)
, (388)
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we have that with the probability of at least 1− δ,

1

m

(
∥s (w (0) ,v (0))∥22 + ∥h (w (0) ,v (0))∥22 +

L∑
ℓ=1

∥µℓ (w (0) ,v (0))∥22

)
(389)

≤ 1

m

((
4 +

(
d+ k

d

)(
d+ |ξ|
d

))
ε2 + 2C3

)
(390)

≤ λ20
C2

R2p. (391)

In other words, if

m ≥ 2C2

λ20

(
C2

(
4 +

(
d+ k

d

)(
d+ |ξ|
d

))
R4p log

(
2N2

δ

)
+ C3R

2p

)
, (392)

with the probability of at least 1− δ, we have

1√
m

∥∥∥∥∥∥∥∥∥∥


s (w (0) ,v (0))
µ1 (w (0) ,v (0))

...
µL (w (0) ,v (0))
h (w (0) ,v (0))


∥∥∥∥∥∥∥∥∥∥
2

<
λ0
2C

R−p. (393)

Proposition C.7. Suppose the conditions (281) holds and Rw are given as in Lemma C.5. For

C4 = 6
√
1 + a2max

√
νmax

(
d+ k

d

)(
d+ |ξ|
d

)
p|ξ|+12p

1

Rw
, (394)

if m is large enough so that

1√
m

∥∥∥∥∥∥∥∥∥∥


s (w (0) ,v (0))
µ1 (w (0) ,v (0))

...
µL (w (0) ,v (0))
h (w (0) ,v (0))


∥∥∥∥∥∥∥∥∥∥
2

<
λ0
C4
R−p, (395)

then

∥(wℓ)r (t)− (wℓ)r (0)∥2 < Rw, (396)

∥(vℓ)r (t)− (vℓ)r (0)∥2 < Rw, (397)

for all t > 0, r ∈ [m] and ℓ = 0, · · · , L.

Proof. We begin the proof by defining

T = sup
{
t ≥ 0 : ∥(wℓ)r (t)− (wℓ)r (0)∥2 < Rw and ∥(vℓ)r (t)− (vℓ)r (0)∥2 < Rw,∀ℓ = 0, · · · , L

}
.

(398)
Since (wℓ)r and (vℓ) are continuous, the above set in supremum is nonempty. For t ∈ (0, T ),

d

dt

∥∥∥∥∥∥∥∥∥∥


s (w (t) ,v (t))
µ1 (w (t) ,v (t))

...
µL (w (t) ,v (t))
h (w (t) ,v (t))


∥∥∥∥∥∥∥∥∥∥

2

2

(399)

=− 2


s (w (t) ,v (t))
µ1 (w (t) ,v (t))

...
µL (w (t) ,v (t))
h (w (t) ,v (t))


⊤

(
Ĝw + Ĝv

)


s (w (t) ,v (t))
µ1 (w (t) ,v (t))

...
µL (w (t) ,v (t))
h (w (t) ,v (t))

 (400)
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≤− 2 · 1
2
λ0

∥∥∥∥∥∥∥∥∥∥


s (w (t) ,v (t))
µ1 (w (t) ,v (t))

...
µL (w (t) ,v (t))
h (w (t) ,v (t))


∥∥∥∥∥∥∥∥∥∥

2

2

, (401)

where the last inequality comes from Lemma C.5 and the positive semi-definiteness of Ĝw. This
implies that ∥∥∥∥∥∥∥∥∥∥


s (w (t) ,v (t))
µ1 (w (t) ,v (t))

...
µL (w (t) ,v (t))
h (w (t) ,v (t))


∥∥∥∥∥∥∥∥∥∥
2

≤ exp

(
−λ0

2
t

)∥∥∥∥∥∥∥∥∥∥


s (w (0) ,v (0))
µ1 (w (0) ,v (0))

...
µL (w (0) ,v (0))
h (w (0) ,v (0))


∥∥∥∥∥∥∥∥∥∥
2

. (402)

For t ∈ (0, T ) and ℓ ∈ {0, · · · , L}, from ∥(wℓ)r (0)∥2 ≤ R and ∥(vℓ)r (0)∥2 ≤ |Iξℓ | and (398), we
have

∥(wℓ)r (t)∥2 ≤ ∥(wℓ)r (t)− (wℓ)r (0)∥2 + ∥(wℓ)r (0)∥2 (403)

< Rw +R (404)
≤ 2R, (405)

∥(vℓ)r (t)∥2 ≤ ∥(vℓ)r (t)− (vℓ)r (0)∥2 + ∥(vℓ)r (0)∥2 (406)

< Rw + |Iξℓ | (407)
≤ R. (408)

From (44), (57), (52), and (48), we can attain∥∥∥∥∂si (w (t) ,v (t))

∂ (wℓ)r

∥∥∥∥
2

≤
√

1

mno
amax

√
|Iξℓ |

∣∣J∆ξℓ+1

∣∣ p∆ξℓ+1+12p−1Rp, (409)∥∥∥∥∂hj (w (t) ,v (t))

∂ (w0)r

∥∥∥∥
2

≤
√
νmax

mnb
amax (d+ 1) p22p−1Rp, (410)∥∥∥∥∥∂ (µℓ)(α,β),i (w,v)

∂ (wℓ)r

∥∥∥∥∥
2

≤
√
νmax

mno
p2p−1Rp, (411)∥∥∥∥∥∂ (µℓ)(α,β),i (w,v)

∂ (wℓ−1)r

∥∥∥∥∥
2

≤
√
νmax

mno
p|ξ|+12p−1Rp, (412)

for all t ∈ (0, T ).

Therefore, we can induce that∥∥∥∥ ddt (wℓ)r (t)

∥∥∥∥
2

(413)

=

∥∥∥∥∥∥
no∑
i=1

si (w (t) ,v (t)) · ∂si (w (t) ,v (t))

∂ (wℓ)r
+

nb∑
j=1

hj (w (t) ,v (t)) · ∂hj (w (t) ,v (t))

∂ (wℓ)r
(414)

+

no∑
i=1

L∑
ℓ′=1

∑
α∈Iξ

ℓ′−1

∑
β∈I∆ξ

ℓ′

∂ (µℓ′)(α,β),i (w (t) ,v (t))

∂ (wℓ)r
· (µℓ′)(α,β),i (w (t) ,v (t))

∥∥∥∥∥∥
2

(415)

≤
no∑
i=1

∥∥∥∥∂si (w (t) ,v (t))

∂ (wℓ)r

∥∥∥∥
2

· |si (w (t) ,v (t))| (416)

+ 1{ℓ=0} ·
nb∑
j=1

∥∥∥∥∂hj (w (t) ,v (t))

∂ (wℓ)r

∥∥∥∥
2

· |hj (w (t) ,v (t))| (417)
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+

1{ℓ ̸=0} ·
no∑
i=1

∑
α∈Iξℓ−1

∑
β∈I∆ξℓ

∥∥∥∥∥∂ (µℓ)(α,β),i (w (t) ,v (t))

∂ (wℓ)r

∥∥∥∥∥
2

·
∣∣∣(µℓ)(α,β),i (w (t) ,v (t))

∣∣∣
(418)

+1{ℓ̸=L} ·
no∑
i=1

∑
α∈Iξℓ

∑
β∈I∆ξℓ+1

∥∥∥∥∥∂
(
µℓ+1

)
(α,β),i

(w (t) ,v (t))

∂ (wℓ)r

∥∥∥∥∥
2

·
∣∣∣(µℓ+1

)
(α,β),i

(w (t) ,v (t))
∣∣∣
 .

(419)

The first term and second term are bounded by
no∑
i=1

∥∥∥∥∂si (w (t) ,v (t))

∂ (wℓ)r

∥∥∥∥
2

· |si (w (t) ,v (t))| (420)

≤
no∑
i=1

√
νmax

mno
amax

√
|Iξℓ |

∣∣J∆ξℓ+1

∣∣ p|ξ|+12p−1Rp · |si (w (t) ,v (t))| (421)

=

√
νmax

m
amax

√
|Iξℓ |

∣∣J∆ξℓ+1

∣∣ p|ξ|+12p−1Rp · 1
√
no

no∑
i=1

|si (w (t) ,v (t))| (422)

≤
√
νmax

m
amax

√
|Iξℓ |

∣∣J∆ξℓ+1

∣∣ p|ξ|+12p−1Rp · ∥s (w (t) ,v (t))∥2 , (423)

and
nb∑
j=1

∥∥∥∥∂hj (w (t) ,v (t))

∂ (wℓ)r

∥∥∥∥
2

· |hj (w (t) ,v (t))| (424)

≤
√
νmax

m
amax (d+ 1) p22p−1Rp · 1

√
nb

nb∑
j=1

|hj (w (t) ,v (t))| (425)

≤
√
νmax

m
amax (d+ 1) p22p−1Rp ∥h (w (t) ,v (t))∥2 . (426)

The third term is bounded by
no∑
i=1

∑
α∈Iξℓ−1

∑
β∈I∆ξℓ

∥∥∥∥∥∂ (µℓ)(α,β),i (w (t) ,v (t))

∂ (wℓ)r

∥∥∥∥∥
2

·
∣∣∣(µℓ)(α,β),i (w (t) ,v (t))

∣∣∣ (427)

≤
√
νmax

mno
p2p−1Rp ·

no∑
i=1

∑
α∈Iξℓ−1

∑
β∈I∆ξℓ

∣∣∣(µℓ)(α,β),i (w (t) ,v (t))
∣∣∣ (428)

≤
√
νmax

m
p2p−1Rp

√∣∣Iξℓ−1

∣∣ · |I∆ξℓ | · ∥µℓ∥2 , (429)

and the fourth term is
no∑
i=1

∑
α∈Iξℓ

∑
β∈I∆ξℓ+1

∥∥∥∥∥∂
(
µℓ+1

)
(α,β),i

(w (t) ,v (t))

∂ (wℓ)r

∥∥∥∥∥
2

·
∣∣∣(µℓ+1

)
(α,β),i

(w (t) ,v (t))
∣∣∣ (430)

≤
√
νmax

mno
p|ξ|+12p−1Rp ·

no∑
i=1

∑
α∈Iξℓ

∑
β∈I∆ξℓ+1

∣∣∣(µℓ+1

)
(α,β),i

(w (t) ,v (t))
∣∣∣ (431)

≤
√
νmax

m
p|ξ|+12p−1Rp

√
|Iξℓ | ·

∣∣I∆ξℓ+1

∣∣ · ∥∥µℓ+1

∥∥
2
. (432)

Therefore, for t ∈ (0, T ) and ℓ = {0, . . . , L},∥∥∥∥ ddt (wℓ)r (t)

∥∥∥∥
2

(433)
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≤
√
νmax

m
amax

√(
d+ k

d

)(
d+ |ξ|
d

)
p|ξ|+12p−1Rp ∥s (w (t) ,v (t))∥2 (434)

+ 1{ℓ=0} ·
√
νmax√
m

amax (d+ 1) p22p−1Rp ∥h (w (t) ,v (t))∥2 (435)

+ 1{ℓ̸=0} ·
√
νmax

m

√(
d+ k

d

)(
d+ |ξ|
d

)
p2p−1Rp ∥µℓ (w (t) ,v (t))∥2 (436)

+ 1{ℓ̸=L} ·
√
νmax

m

√(
d+ k

d

)(
d+ |ξ|
d

)
p|ξ|+12p−1Rp

∥∥µℓ+1 (w (t) ,v (t))
∥∥
2

(437)

≤3

√
νmax

m

√
1 + a2max

√(
d+ k

d

)(
d+ |ξ|
d

)
p|ξ|+12p−1Rp

∥∥∥∥∥∥∥∥∥∥


s (w (t) ,v (t))
µ1 (w (t) ,v (t))

...
µL (w (t) ,v (t))
h (w (t) ,v (t))


∥∥∥∥∥∥∥∥∥∥
2

(438)

≤3
√

1 + a2max

√
νmax

m

√(
d+ k

d

)(
d+ |ξ|
d

)
p|ξ|+12p−1Rp exp

(
−λ0

2
t

)∥∥∥∥∥∥∥∥∥∥


s (w (0) ,v (0))
µ1 (w (0) ,v (0))

...
µL (w (0) ,v (0))
h (w (0) ,v (0))


∥∥∥∥∥∥∥∥∥∥
2

.

(439)

On the other hand,

∥∥∥∥∥
∫ T

0

d

ds
(wℓ)r (s) ds

∥∥∥∥∥
2

2

=

d∑
q=1

(∫ T

0

d

ds
(wℓ)r,q (s) ds

)2

(440)

=

∫ T

0

d∑
q=1

(∫ T

0

d

ds
(wℓ)r,q (s) ds

)
· d
ds

(wℓ)r,q (s) ds (441)

≤
∫ T

0

∥∥∥∥∥
∫ T

0

d

ds
(wℓ)r (s) ds

∥∥∥∥∥
2

·
∥∥∥∥ dds (wℓ) (s)

∥∥∥∥
2

ds (442)

=

∥∥∥∥∥
∫ T

0

d

ds
(wℓ)r (s) ds

∥∥∥∥∥
2

·
∫ T

0

∥∥∥∥ dds (wℓ) (s)

∥∥∥∥
2

ds, (443)

and hence

∥(wℓ)r (T )− (wℓ)r (0)∥2 (444)

=

∥∥∥∥∥
∫ T

0

d

ds
(wℓ)r (s) ds

∥∥∥∥∥
2

(445)

≤
∫ T

0

∥∥∥∥ dds (wℓ)r (s)

∥∥∥∥
2

ds (446)

≤3
√
1 + a2max

√
νmax

m

√(
d+ k

d

)(
d+ |ξ|
d

)
p|ξ|+12p−1Rp

∫ T

0

exp

(
−λ0

2
s

)
ds

∥∥∥∥∥∥∥∥∥∥


s (w (0) ,v (0))
µ1 (w (0) ,v (0))

...
µL (w (0) ,v (0))
h (w (0) ,v (0))


∥∥∥∥∥∥∥∥∥∥
2

(447)
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≤ 6

λ0

√
1 + a2max

√
νmax

m

√(
d+ k

d

)(
d+ |ξ|
d

)
p|ξ|+12p−1Rp

∥∥∥∥∥∥∥∥∥∥


s (w (0) ,v (0))
µ1 (w (0) ,v (0))

...
µL (w (0) ,v (0))
h (w (0) ,v (0))


∥∥∥∥∥∥∥∥∥∥
2

(448)

If m is large enough to satisfy (395), we have

∥(wℓ)r (T )− (wℓ)r (0)∥2 ≤
6
√
1 + a2max

√
νmax

√(
d+k
d

)(
d+|ξ|

d

)
p|ξ|+12p−1

λ0
· λ0
C4

<
1

2
Rw < Rw.

(449)
Similarly, we obtain∥∥∥∥ ddt (vℓ)r (t)

∥∥∥∥
2

(450)

=

∥∥∥∥∥∥
no∑
i=1

si (w (t) ,v (t)) · ∂si (w (t) ,v (t))

∂ (vℓ)r
+

nb∑
j=1

hj (w (t) ,v (t)) · ∂hj (w (t) ,v (t))

∂ (vℓ)r
(451)

+

no∑
i=1

L∑
ℓ′=1

∑
α∈Iξ

ℓ′−1

∑
β∈I∆ξ′

ℓ

∂ (µℓ′)(α,β),i (w (t) ,v (t))

∂ (vℓ)r
· (µℓ′)(α,β),i (w (t) ,v (t))

∥∥∥∥∥∥∥
2

(452)

≤
no∑
i=1

|si (w (t) ,v (t))| ·
∥∥∥∥∂si (w (t) ,v (t))

∂ (vℓ)r

∥∥∥∥
2

(453)

+ 1{ℓ=0} ·
nb∑
j=1

|hj (w (t) ,v (t))| ·
∥∥∥∥∂hj (w (t) ,v (t))

∂ (vℓ)r

∥∥∥∥
2

(454)

+ 1{ℓ̸=0} ·
no∑
i=1

∑
α∈Iξℓ−1

∑
β∈I∆ξℓ

∥∥∥∥∥∂ (µℓ)(α,β),i (w (t) ,v (t))

∂ (vℓ)r

∥∥∥∥∥
2

·
∣∣∣(µℓ)(α,β),i (w (t) ,v (t))

∣∣∣
(455)

+ 1{ℓ̸=L} ·
no∑
i=1

∑
α∈Iξℓ

∑
β∈I∆ξℓ+1

∥∥∥∥∥∂
(
µℓ+1

)
(α,β),i

(w (t) ,v (t))

∂ (vℓ)r

∥∥∥∥∥
2

·
∣∣∣(µℓ+1

)
(α,β),i

(w (t) ,v (t))
∣∣∣ .

(456)

The first term and second term are bounded by
no∑
i=1

|si (w (t) ,v (t))| ·
∥∥∥∥∂si (w (t) ,v (t))

∂ (vℓ)r

∥∥∥∥
2

(457)

≤
√
νmax

m
amax

√(
d+ k

d

)(
d+ |ξ|
d

)
p|ξ| (2R)

p 1
√
no

no∑
i=1

|si (w (t) ,v (t))| (458)

≤
√
νmax

m
amax

√(
d+ k

d

)(
d+ |ξ|
d

)
p|ξ| (2R)

p ∥ŝ∥2 , (459)

and
nb∑
j=1

|hj (w (t) ,v (t))| ·
∥∥∥∥∂hj (w (t) ,v (t))

∂ (vℓ)r

∥∥∥∥
2

(460)

≤
√
νmax

m
(d+ 1) amaxp (2R)

p 1
√
nb

nb∑
j=1

|hj (w (t) ,v (t))| (461)

45



≤
√
νmax

m
(d+ 1) amaxp (2R)

p ∥h∥2 . (462)

The third term is bounded by
no∑
i=1

∑
α∈Iξℓ−1

∑
β∈I∆ξℓ

∥∥∥∥∥∂ (µℓ)(α,β),i (w (t) ,v (t))

∂ (vℓ)r

∥∥∥∥∥
2

·
∣∣∣(µℓ)(α,β),i (w (t) ,v (t))

∣∣∣ (463)

≤
√
νmax

mno

√(
d+ k

d

)(
d+ |ξ|
d

)
(2R)

p ·
no∑
i=1

∑
α∈Iξℓ−1

∑
β∈I∆ξℓ

∣∣∣(µℓ)(α,β),i (w (t) ,v (t))
∣∣∣ (464)

≤
√
νmax

m

√(
d+ k

d

)(
d+ |ξ|
d

)
(2R)

p
√∣∣Iξℓ−1

∣∣ · |I∆ξℓ | · ∥µℓ∥2 (465)

≤
√
νmax

m

(
d+ k

d

)(
d+ |ξ|
d

)
(2R)

p ∥µℓ∥2 , (466)

and the fourth term is
no∑
i=1

∑
α∈Iξℓ

∑
β∈I∆ξℓ+1

∥∥∥∥∥∂
(
µℓ+1

)
(α,β),i

(w (t) ,v (t))

∂ (vℓ)r

∥∥∥∥∥
2

·
∣∣∣(µℓ+1

)
(α,β),i

(w (t) ,v (t))
∣∣∣ (467)

≤
√
νmax

mno
p|ξ|

√(
d+ k

d

)(
d+ |ξ|
d

)
(2R)

p ·
∑

α∈Iξℓ

∑
β∈I∆ξℓ+1

∣∣∣(µℓ+1

)
(α,β),i

(w (t) ,v (t))
∣∣∣ (468)

≤
√
νmax

m

(
d+ k

d

)(
d+ |ξ|
d

)
p|ξ| (2R)

p ∥∥µℓ+1

∥∥
2
. (469)

Therefore, for t ∈ (0, T ) and ℓ = {0, . . . , L},∥∥∥∥ ddt (vℓ)r (t)

∥∥∥∥
2

(470)

≤
√
νmax

m
amax

√(
d+ k

d

)(
d+ |ξ|
d

)
p|ξ| (2R)

p ∥s∥2 (471)

+ 1{ℓ=0} ·
√
νmax

m
(d+ 1) amaxp (2R)

p ∥h∥2 (472)

+ 1{ℓ ̸=0} ·
√
νmax

m

(
d+ k

d

)(
d+ |ξ|
d

)
(2R)

p ∥µℓ∥2 (473)

+ 1{ℓ ̸=L} ·
√
νmax

m

(
d+ k

d

)(
d+ |ξ|
d

)
p|ξ| (2R)

p ∥∥µℓ+1

∥∥
2

(474)

≤3

√
νmax

m

√
1 + a2max

(
d+ k

d

)(
d+ |ξ|
d

)
p|ξ| (2R)

p

∥∥∥∥∥∥∥∥∥∥


s (w (t) ,v (t))
µ1 (w (t) ,v (t))

...
µL (w (t) ,v (t))
h (w (t) ,v (t))


∥∥∥∥∥∥∥∥∥∥
2

(475)

≤3

√
νmax

m

√
1 + a2max

(
d+ k

d

)(
d+ |ξ|
d

)
p|ξ| (2R)

p
exp

(
−λ0

2
t

)∥∥∥∥∥∥∥∥∥∥


s (w (0) ,v (0))
µ1 (w (0) ,v (0))

...
µL (w (0) ,v (0))
h (w (0) ,v (0))


∥∥∥∥∥∥∥∥∥∥
2

(476)

As a consequence, we attain
∥(vℓ)r (T )− (vℓ)r (0)∥2 (477)
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≤
∫ T

0

∥∥∥∥ dds (vℓ)r (s)

∥∥∥∥
2

ds (478)

≤3

√
νmax

m

√
1 + a2max

(
d+ k

d

)(
d+ |ξ|
d

)
p|ξ| (2R)

p
∫ T

0

exp

(
−λ0

2
s

)
ds

∥∥∥∥∥∥∥∥∥∥


s (w (0) ,v (0))
µ1 (w (0) ,v (0))

...
µL (w (0) ,v (0))
h (w (0) ,v (0))


∥∥∥∥∥∥∥∥∥∥
2

(479)

≤ 6

λ0

√
1 + a2max

√
νmax

m

(
d+ k

d

)(
d+ |ξ|
d

)
p|ξ| (2R)

p

∥∥∥∥∥∥∥∥∥∥


s (w (0) ,v (0))
µ1 (w (0) ,v (0))

...
µL (w (0) ,v (0))
h (w (0) ,v (0))


∥∥∥∥∥∥∥∥∥∥
2

. (480)

Since m is large enough to satisfy (395), we have

∥(vℓ)r (T )− (vℓ)r (0)∥2 ≤
6
√

1 + a2max

√
νmax

(
d+k
d

)(
d+|ξ|

d

)
p|ξ|2p

λ0
· λ0
C4

=
1

p
Rw < Rw. (481)

C.1 Proof of Theorem 4.3

Proof. For R ∈ R, r ∈ [m], and q ∈ [d], each (wℓ)r,q satisfies

P
[∣∣∣(wℓ)r,q

∣∣∣ > R
]
< exp

(
−1

2
R2

)
. (482)

If we set δ1 = (L+ 1)md exp
(
− 1

2R
2
)
, then δ1 satisfies(

1− exp

(
−1

2
R2

))(L+1)md

≥ 1− (L+ 1)md exp

(
−1

2
R2

)
= 1− δ1. (483)

Hence, with probability of at least 1 − δ1, we have
∣∣∣(wℓ)r,q

∣∣∣ ≤ R for all ℓ = {0, 1, . . . , L+ 1},
r ∈ [m], and q ∈ [d].

Provided
∣∣∣(wℓ)r,q

∣∣∣ ≤ R for all ℓ = {0, 1, . . . , L+ 1}, if

m ≥ 32N1C
2
1R

4p

λ20
log

(
2N1

δ2

)
, (484)

where

C1 =

(
d+ k

k

)(
d+ |ξ|
|ξ|

)2

ν2max

(
1

no
+

1

nb

)√
1 + a4max

(
p2|ξ| + 1

)
, (485)

N1 = 7

(
d+ k

d

)(
d+ |ξ|
d

)2

n2o + 4

(
d+ |ξ|
d

)
nonb + n2b , (486)

then by Proposition C.4, with probability of at least 1− δ2, we have∥∥∥Ĝv (w (0) ,v (0))− Ĝ
∞
v

∥∥∥
2
<
λ0
4
. (487)

On the other hand, with the condition
∣∣∣(wℓ)r,q

∣∣∣ ≤ R for all ℓ = {0, 1, . . . , L+ 1}, r ∈ [m], and
q ∈ [d], Proposition C.6 shows that if

m ≥ 2C2
4

λ20

(
C2

(
4 +

(
d+ k

d

)(
d+ |ξ|
d

))
R4p log

(
2N2

δ

)
+ C3R

2p

)
, (488)
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δ3 ≤ 2N2 exp

(
− C2

3

2C2
2R

2p

)
, (489)

Rw ≤ R, (490)

where

Rw =
λ0

8
√
2

(
νmax

√
1 + a4max

(
d+ k

d

)(
d+ |ξ|
d

)2

p2|ξ|+1 (2R)
2p−1

)−1

, (491)

C2 =
√
νmax

√
(1 + a2max)

(
d+ k

d

)(
d+ |ξ|
d

)(
p|ξ| + 1

)
, (492)

C3 =
1

no

no∑
i=1

f (xi)
2
+

1

nb

nb∑
j=1

g (x̃j)
2
, (493)

C4 =
√
νmax

√
1 + a2max

(
d+ k

d

)(
d+ |ξ|
d

)
p|ξ|+12p

1

Rw
, (494)

N2 =

(
d+ k

d

)(
d+ |ξ|
d

)
no + nb, (495)

then, with the probability of at least 1− δ3, we have

1√
m

∥∥∥∥∥∥∥∥∥∥


s (w (0) ,v (0))
µ1 (w (0) ,v (0))

...
µL (w (0) ,v (0))
h (w (0) ,v (0))


∥∥∥∥∥∥∥∥∥∥
2

<
λ0
C4
R−p. (496)

Consequently, Proposition C.7 implies

∥(wℓ)r (t)− (wℓ)r (0)∥2 < Rw, (497)

∥(vℓ)r (t)− (vℓ)r (0)∥2 < Rw, (498)

for all t ≥ 0. Then, we have∥∥∥∥∥∥∥∥∥∥


s (w (t) ,v (t))
µ1 (w (t) ,v (t))

...
µL (w (t) ,v (t))
h (w (t) ,v (t))


∥∥∥∥∥∥∥∥∥∥
2

≤ exp

(
−λ0

2
t

)∥∥∥∥∥∥∥∥∥∥


s (w (0) ,v (0))
µ1 (w (0) ,v (0))

...
µL (w (0) ,v (0))
h (w (0) ,v (0))


∥∥∥∥∥∥∥∥∥∥
2

(499)

from Lemam C.5.

Set δ1 = δ2 = δ3 = 1
3δ and consider all inequality conditions. First, for δ1 = 1

3δ,

R =

√
log

6 (L+ 1)md

δ
(500)

satisfies the condition (483). Then, (484) is satisfied if

m ≥ 32N1C
2
1

λ20

(
log

6 (L+ 1)md

δ

)2p

log

(
6N1

δ

)
. (501)

Similarly, if m is large enough so that

m ≥2C2C
2
4

λ20

(
4 +

(
d+ k

d

)(
d+ |ξ|
d

))(
log

6 (L+ 1)md

δ

)2p

log

(
2N2

δ

)
(502)

+
2C3C

2
4

λ20

(
log

6 (L+ 1)md

δ

)p

, (503)

then (488) holds.
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Therefore, there exsits C5 = C5 (amax, νmax, no, nb, λ0) such that if

m ≥ C

(
d+ k

d

)6(
d+ |ξ|
d

)8

p7|ξ|+426p
(
log

md

δ

)4p

(504)

then with the probability of at least (1− δ1) (1− δ2) (1− δ3) ≥ 1 − (δ1 + δ2 + δ3) = 1 − δ, we
have ∥∥∥∥∥∥∥∥∥∥


s (w (t) ,v (t))
µ1 (w (t) ,v (t))

...
µL (w (t) ,v (t))
h (w (t) ,v (t))


∥∥∥∥∥∥∥∥∥∥
2

≤ exp

(
−λ0

2
t

)∥∥∥∥∥∥∥∥∥∥


s (w (0) ,v (0))
µ1 (w (0) ,v (0))

...
µL (w (0) ,v (0))
h (w (0) ,v (0))


∥∥∥∥∥∥∥∥∥∥
2

. (505)

D Experimental Details

D.1 Problem Formulations

Poisson equation{
uxx + uyy = f1 x, y ∈ (0, π)

u (x, 0) = u (x, π) = u (0, y) = u (π, y) = 0 x, y ∈ [0, π] ,
(506)

where f1 : (0, π)
2 → R is defined so that the exact solution is given by

u (x, y) =
1

5
sin2 (x) y2 (π − y)

2
. (507)

Bi-harmonic equation
uxxxx + 2uxxyy + uyyyy = f2 x, y ∈ (0, π)

u (x, 0) = u (x, π) = u (0, y) = u (π, y) = 0 x, y ∈ [0, π]
∂
∂nu (x, 0) =

∂
∂nu (x, π) =

∂
∂nu (0, y) =

∂
∂nu (π, y) = 0 x, y ∈ (0, π) ,

(508)

where the flux function f2 : (0, π)
2 → R is set to ensure that it has a solution that is identical to that

of Poisson equation (507).

Heat equation 
ut = uxx x ∈ (−1, 1) , t ∈ (0, 1)

u (t,−1) = u (t, 1) = 0 t ∈ [0, 1]

u (0, x) = sin (πx) x ∈ (−1, 1) ,

(509)

Elastic beam equation
ut + uxxxx = 0 x ∈ (0, π) , t ∈ (0, 1)

u (t, 0) = u (t, π) = uxx (t, 0) = uxx (t, π) = 0 t ∈ [0, 1]

u (0, x) = 2 sin (x) x ∈ (0, π) .

(510)

The exact solution is given by u (t, x) = 2e−t sin (x).

Convection-diffusion equation
ut + ux − 1

4uxx = 0 (t, x) ∈ Ω = (0, 1)× (0, π) ,

u (0, x) = sin (x) x ∈ [0, π] ,

u (t, 0) = −e− 1
4 t sin (t) t ∈ [0, 1] ,

u (t, π) = e−
1
4 t sin (π − t) t ∈ [0, 1] ,

(511)

whose exact solution is u (t, x) = e−
1
4 t sin (x− t).

49



Table 2: Experimental settings for each PDE
PDE width m power p optimizer(lr) no nb

Harmonic 102 ∼ 106 5 ∼ 8 GD(10−8) 400 400
Bi-harmonic 102 ∼ 106 5 ∼ 8 GD(10−8) 400 400

Heat 103 3 ∼ 10 Adam(10−3) 300 300
Heat(PINNs) 103 3 GD(10−1) 300 300
Heat(VS-PINNs) 103 2 GD(10−1) 300 300
Beam (PINNs) 103 5 Adam(10−3) 10,000 300
Beam (VS-PINNs |ξ| = 2) 103 3 Adam(10−3) 10,000 300
Beam (VS-PINNs |ξ| = 1) 103 2 Adam(10−3) 10,000 300

Convection-diffusion (PINNs) 103 3 Adam(10−3) / GD(10−2) 300 300
Convection-diffusion (VS-PINNs) 103 2 Adam(10−3) / GD(10−1) 300 300
Bi-harmonic (PINNs) 103 5 Adam(10−3) 10,000 400
Bi-harmonic (VS-PINNs |ξ| = 2) 103 3 Adam(10−3) 10,000 400
Bi-harmonic (VS-PINNs |ξ| = 1) 103 2 Adam(10−3) 10,000 400

Figure 3: Loss of convection-diffusion equation trained by Adam.

D.2 Parameter settings for experiments

Convection-diffusion equation We conducted experiments on a convection-diffusion equation:

We train 100,000 epochs of PINNs with p = 3 and VS-PINNs with p = 2, using the same settings as
represented for the heat equation (509). Figures 4 and 3 show that VS-PINNs reach lower loss and
achieve more stable convergence for both GD and Adam.

Bi-harmonic equation Consider the bi-harmonic equation
∆2u (x, y) = f (x, y) x, y ∈ [0, π]

u (x, 0) = u (x, π) = u (0, y) = u (π, y) = 0 x, y ∈ [0, π]
∂
∂nu (x, 0) =

∂
∂nu (x, π) =

∂
∂nu (0, y) =

∂
∂nu (π, y) = 0 x, y ∈ [0, π] ,

(512)

where f (x, y) are defined so that the exact solution is given by u (x, y) = 1
5 sin

2 (x) y2 (π − y)
2.

We set m = 1,000, no = 10,000, nb = 400, and the training collocation points are fixed once they
are randomly selected. We experiment VS-PINNs with two cases: (i) ϕ0 ≈ u, ϕ1 ≈ (uxx, uyy)
with |ξ| = 2 and p = 3 and (ii) the finest splitting of ϕ0 ≈ u, ϕ1 ≈ ∇u, ϕ2 ≈ (uxx, uyy),
ϕ3 ≈ (uxxx, uxxy, uyyy) with |ξ| = 1 and p = 2. Regularization parameters are ν1 = ν2 = ν3 = 1
for derivative matching loss µ and ν = 10 for boundary loss h. Figure 5 depicts the training loss of
PINN and two VS-PINNs.

E Additional Experimental Results

Computational efficiency of VS-PINNs Table 3 measures the GPU memory, running time, and
the number of model parameters corresponding to experiments on elastic beam and bi-harmonic
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Figure 4: Loss of solving convection-diffusion equation trained by GD.

Figure 5: Loss comparison between PINNs with two VS-PINNs with |ξ| = 1 and 2.

equations. Because VS-PINNs need as many networks as auxiliary variables, finer VS-PINN requires
more parameters to be trained. However, reducing the differentiation order in the Loss significantly
reduces memory consumption, despite the additional loss terms.

Error with true solution As the ultimate objective of PINNs is to approximate the solution to the
PDE, we also quantified the discrepancy between the exact solution of the predicted solutions of the
three models we tested. We tested five times for each PDE and splitting setup from different random
seeds, and the averages of the Mean Squared Error (MSE) with the exact solution are reported in
Table 4. We can observe that the results do not exhibit the same tendency as depicted in Figure 2.
Since there is a discrepancy between optimization ability and the generalization error, it is not within
the scope of this paper, and we believe that this is an important area for future research.

GD results for fourth-order PDEs In order to address fourth-order PDEs (elastic beam and
bi-harmonic equations), PINNs should employ p = 5 of the power of the ReLUp activation. When
optimized with GD, this configuration results in a loss value of NaN, indicating that PINNs fail to
train. Consequently, we present the results of our experiments with the Adam optimizer in Section 5.
However, in contrast to PINNs, which exhibit difficulty in training, variable splitting demonstrates
superior performance in terms of loss reduction for GD, as illustrated in Figure 6. This is attributed
to the fact that variable splitting employs a lower derivative order and lower power p.

F Broader Impacts

We analyzed the behavior of PINNs when applied to general kth-order PDEs and provided theoretical
understanding of the reasons why PINNs encounter difficulties in optimizing when dealing with
high-order or high-dimensional problems. This paper has societal impact as it bridges artificial
intelligence and physics, and hence has a wide range of potential applications. It could contribute to
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Table 3: Computation costs with width=1000 for experiments on the paper.
PDE Method GPU memory running time parameters

PINN 801.052 Mb 0.053 s/epoch 4000
Bi-harmonic VS-PINN |ξ| = 2 481.094 Mb 0.049 s/epoch 9000

VS-PINN |ξ| = 1 81,466 Mb 0.053 s/epoch 20000

PINN 323.772 Mb 0.037 s/epoch 4000
Beam VS-PINN |ξ| = 2 240.689 Mb 0.038 s/epoch 9000

VS-PINN |ξ| = 1 80.836 Mb 0.040 s/epoch 17000

Table 4: The average of Mean Square Error (MSE) with exact solution.
PDE PINNs VS-PINNs |ξ| = 2 VS-PINNs |ξ| = 1

Elastic Beam 3.0598E-08 2.2868E-08 4.3826E-07
Bi-harmonic 3.9319E-05 5.3055E-05 5.4418E-03

the advancement in scientific understanding, and foster scientific progress and innovation, benefiting
researchers in physics, mathematics, and artificial intelligence fields. By providing variable splitting
which can address the convergence pathologies of PINNs, the paper suggests potential applications in
industrial and technological fields, such as engineering, medicine, materials science, and environ-
mental modeling, for complex system modeling, prediction, and optimization. Furthermore, as many
problems have arisen in sciences and engineering tied with complex PDE systems, we expect that our
work has the potential to be applicable in the enormous area such as climate forecasting, epidemics,
molecular simulations, micro-mechanics, and modeling turbulent flows. Additionally, PDEs can be
utilized in the development of military equipment. As with all numerical algorithms, however, it is
not a work of developing a technique to go to warfare; rather, it is a tool for scientific inquiry. We
encourage users of our model to focus on the positive impact of this work.
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Figure 6: Loss of VS-PINNs trained by gradient descent with variant learning rates.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: [Yes]

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: [Yes]

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: [Yes]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: [Yes]
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: [Yes]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: [Yes]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: [Yes]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: [Yes]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: [Yes]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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approvals (or an equivalent approval/review based on the requirements of your country or
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Justification: [NA]
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may be required for any human subjects research. If you obtained IRB approval, you
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
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