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ABSTRACT

Numerical simulations for engineering applications solve partial differential equa-
tions (PDE) to model various physical processes. Traditional PDE solvers are
very accurate but computationally costly. On the other hand, Machine Learn-
ing (ML) methods offer a significant computational speedup but face challenges
with accuracy and generalization to different PDE conditions, such as geometry,
boundary conditions, initial conditions and PDE source terms. In this work, we
propose a novel ML-based approach, CoAE-MLSim (Composable AutoEncoder
Machine Learning Simulation), which is an unsupervised, lower-dimensional, lo-
cal method, that is motivated from key ideas used in commercial PDE solvers.
This allows our approach to learn better with relatively fewer samples of PDE
solutions. The proposed ML-approach is compared against commercial solvers
for better benchmarks as well as latest ML-approaches for solving PDEs. It is
tested for a variety of complex engineering cases to demonstrate its computational
speed, accuracy, scalability, and generalization across different PDE conditions.
The results show that our approach captures physics accurately across all metrics
of comparison (including measures such as results on section cuts and lines).

1 INTRODUCTION

Numerical solutions to partial differential equations (PDEs) are dependent on PDE conditions such
as, geometry of the computational domain, boundary conditions, initial conditions and source terms.
Commercial PDE solvers have shown a tremendous success in accurately modeling PDEs for a
wide range of applications. These solvers generalize across different PDE conditions but can be
computationally slow. Moreover, their solutions are not reusable and need to be solved from scratch
every time the PDE conditions are changed.

The idea of using Machine Learning (ML) with PDEs has been explored for several decades (Crutch-
field & McNamara, 1987; Kevrekidis et al., 2003) but with recent developments in computing hard-
ware and ML techniques, these efforts have grown immensely. Although ML approaches are compu-
tationally fast, they fall short of traditional PDE solvers with respect to accuracy and generalization
to a wide range of PDE conditions. Most data-driven and physics-constrained approaches employ
static-inferencing strategies, where a mapping function is learnt between PDE solutions and corre-
sponding conditions. In many cases, PDE conditions are sparse and high-dimensional, and hence,
difficult to generalize. Additionally, current ML approaches do not make use of the key ideas from
traditional PDE solvers such as, domain decomposition, solver methods, numerical discretization,
constraint equations, symmetry evaluations and tighter non statistical evaluation metrics, which were
established over several decades of research and development. In this work, we propose a novel ML
approach that is motivated from such ideas and relies on dynamic inferencing strategies that afford
the possibility of seamless coupling with traditional PDE solvers, when necessary.

The proposed ML-approach, CoAE-MLSim (Composable AutoEncoder Machine Learning
Simulation), operates at the level of local subdomains, which consist of a group
of pixels in 2D or voxels in 3D (for example 8 or 16 in each spatial direction).

Figure 1: CoAE-MLSim components

As shown in Figure 1, the CoAE-MLSim has 3
main components: A) learn solutions on local
subdomains, B) learn the rules of how a group
of local subdomains connect together to yield
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locally consistent solutions & C) deploy an it-
erative algorithm to establish local consistency
across all groups of subdomains in the entire computational domain. The solutions on subdomains
are learnt into low-dimensional representations using solution autoencoders, while the rules between
groups of subdomains, corresponding to flux conservation between PDE solution is learnt using flux
conservation autoencoders. The autoencoders are trained a priori on local subdomains using very
few PDE solution samples. During inference, the pretrained autoencoders are combined with itera-
tive solution algorithms to determine PDE solutions for different PDEs over a wide range of sparse,
high-dimensional PDE conditions. The solution strategy in the CoAE-MLSim approach is very sim-
ilar to traditional PDE solvers, moreover the iterative inferencing strategy allows for coupling with
traditional PDE solvers to accelerate convergence and improve accuracy and generalizability.

Significant contributions of this work:

1. The CoAE-MLSim approach combines traditional PDE solver strategies with ML tech-
niques to accurately model numerical simulations.

2. Our approach operates on local subdomains and solves PDEs in a low-dimensional space.
This enables generalization to arbitrary PDE conditions within a high-dimensional distri-
bution.

3. The CoAE-MLSim approach training corresponds to training the various autoencoders on
local subdomains and hence, it contains very few parameters and requires less data.

4. The iterative inferencing algorithm is completely unsupervised and allows for coupling
with traditional PDE solvers.

5. Finally, we show generalization of our model for wide variations in sparse, high dimen-
sional PDE conditions using evaluation metrics in tune with commercial solvers.

2 RELATED WORKS

The use of ML for solving PDEs has gained tremendous traction in the past few years. Most of the
literature has revolved around improving neural network architectures and optimization techniques
to enable generalizable and accurate learning of PDE solutions. More recently, there has been a lot
of focus on learning mesh independent, infinite dimensional operators with neural networks (NNs)
Bhattacharya et al. (2020); Anandkumar et al. (2020); Li et al. (2020b); Patel et al. (2021); Lu et al.
(2021b); Li et al. (2020a). The neural operators are trained from high-fidelity solutions generated
by traditional PDE solvers on a mesh of specific resolution and do not require any knowledge of
the PDE. From the perspective of mesh independent learning, Battaglia et al. (2018) introduced a
graph network architecture, which has proven to be effective in solving dynamical systems directly
on unstructured computational meshes. Sanchez-Gonzalez et al. (2020) and Pfaff et al. (2020) use
the graph network for robustly solving transient dynamics on arbitrary meshes and to accurately
capture the transient solution trajectories. For dynamical systems, the neural operators and mesh
based learning strategies have shown reasonable prediction capabilities, however, the generalizabil-
ity of these methods to different PDE conditions remains to be seen. Another direction of research
falls under the category of training neural networks with physics constrained optimization. Research
in this space involves constraining neural networks with additional physics-based losses introduced
through loss re-engineering. PDE constrained optimization have shown to improve interpretability
and accuracy of results. Raissi et al. (2019) and Raissi & Karniadakis (2018) introduced the frame-
work of physics-informed neural network (PINN) to constrain neural networks with PDE derivatives
computed using Automatic Differentiation (AD) (Baydin et al., 2018). In the past couple of years,
the PINN framework has been extended to solve complicated PDEs representing complex physics
(Jin et al., 2021; Mao et al., 2020; Rao et al., 2020; Wu et al., 2018; Qian et al., 2020; Dwivedi et al.,
2021; Haghighat et al., 2021; Haghighat & Juanes, 2021; Nabian et al., 2021; Kharazmi et al., 2021;
Cai et al., 2021a;b; Bode et al., 2021; Taghizadeh et al., 2021; Lu et al., 2021c; Shukla et al., 2021;
Hennigh et al., 2020; Li et al., 2021). More recently, alternate approaches that use discretization
techniques using higher order derivatives and specialize numerical schemes to compute derivatives
have shown to provide better regularization for faster convergence (Ranade et al., 2021b; Gao et al.,
2021; Wandel et al., 2020; He & Pathak, 2020). However, the use of optimization techniques to solve
PDEs, although accurate, has proved to be extremely slow as compared to traditional solvers. There
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is a large body of work related to training neural networks in tandem with differentiable PDE solvers
in the loop to improve long range time predictions. The use of differentiable solvers to provide ac-
curate estimates of adjoints has shown to improve learning and to provide better control of PDE
solutions and transient system dynamics (Amos & Kolter, 2017; Um et al., 2020; de Avila Belbute-
Peres et al., 2018; Toussaint et al., 2018; Wang et al., 2020; Holl et al., 2020; Portwood et al., 2019).
These frameworks are useful in providing rapid feedback to neural networks to improve conver-
gence stability and enable efficient exploration of solution space. Bar-Sinai et al. (2019), Xue et al.
(2020) and Kochkov et al. (2021) train neural networks in conjunction with a differentiable solver to
learn high-fidelity PDE discretization on coarse grids. Singh et al. (2017) and Holland et al. (2019)
use differentiable solvers to tune model parameters in a live simulation. However, these methods
require a differentiable solver in the training loop and commercial solvers that solve industrial scale
problems may not be differentiable. All of the methods discussed above try to learn the learn the
dynamics of the PDE in the solution space on entire computational domain, which can be a chal-
lenging task as domains can be high-dimensional with complicated physics. For many problems,
local learning from smaller restricted domains have proved to accelerate learning of neural networks
and provide better accuracy and generalization. Lu et al. (2021a) and Wang et al. (2021) learn on lo-
calized domains but infer on larger computational domains using a stitching process. Bar-Sinai et al.
(2019) and Kochkov et al. (2021) learn coefficients of numerical discretization schemes from high
fidelity data, which is sub-sampled on coarse grids. Beatson et al. (2020) learns surrogate models
for smaller components to allow for cheaper simulations. Other methods compress PDE solutions
on to lower-dimensional manifolds. This has shown to improve accuracy and generalization capa-
bility of neural networks (Wiewel et al., 2020; Maulik et al., 2020; Kim et al., 2019; Murata et al.,
2020; Fukami et al., 2020; Ranade et al., 2021a). The ideas proposed in this work share the same
goal with the aforementioned literature to accelerate numerical simulations without compromising
on accuracy and generalizability. Our work draws inspiration from techniques such as local and
latent space learning to solve PDEs in both transient and steady-state settings. More importantly,
the approach proposed here relies heavily on unsupervised techniques such as autoencoders to solve
PDEs Ranade et al. (2021a;b); Maleki et al. (2021) and mainly focus on leveraging knowledge from
traditional solvers to develop a robust, stable, accurate and generalizable machine learning system.

3 COAE-MLSIM MODEL DETAILS

3.1 SIMILARITIES WITH TRADITIONAL PDE SOLVERS

Consider a set of coupled PDEs with n solution variables. For the sake of notation simplicity, we
take n = 2, such that u(x, y, z, t) and v(x, y, z, t) are defined on a computational domain Ω with
boundary conditions specified on the boundary of the computational domain, Ωb. It should be noted
that extension to more solution variables is trivial. The coupled PDEs are defined as follows:

L1(u, v)− F1 = 0;L2(u, v)− F2 = 0 (1)

where, L1, L2 denote PDE operators and F1, F2 represent PDE source terms. The PDE operators
can vary for different PDEs. For example, in a non-linear PDE such as the unsteady, incompressible
Navier-Stokes equation the operator, L = ∂

∂t + ~a.~∇− ~∇.~∇
Traditional PDE solvers solve PDEs given in Eq. 1 by representing solutions variables, u, v, and
their linear and non-linear spatio-temporal derivatives on a discretized computational domain. The
numerical approximations on discrete domains are computed on a finite number of computational el-
ements known as a mesh, using techniques such as Finite Difference Method (FDM), Finite Volume
Method (FVM) and Finite Element Method (FEM). These solvers use iterative solution algorithms
to conserve fluxes between neighboring computational elements and determine consistent PDE so-
lutions over the entire domain at convergence. The CoAE-MLSim approach is designed to perform
similar operations but at the level of subdomains with assistance from ML techniques.

3.2 COAE-MLSIM FOR STEADY-STATE PDES

Steady-state PDEs correspond to partial differential equations without time dependencies. The
PDE solutions in these equations are primarily governed by PDE conditions, which can have high-
dimensional and sparse representations. The solution algorithm of CoAE-MLSim approach for
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steady-state PDEs is shown in Fig. 2 and Alg. 1. Similar to traditional solvers, the CoAE-MLSim
approach discretizes the computational domain into several subdomains. Each subdomain has a
constant physical size and represents both PDE solutions and conditions. For example, a subdomain
cutting across the cylinder in Fig. 2 represents the geometry and boundary conditions of the part-
cylinder. In a steady-state problem, the computational domain is initialized with initial PDE solu-
tions that are either randomly sampled or generated by coarse-grid PDE solvers. The initial solution
is shown with randomly oriented flow vectors in Fig. 2 . Pre-trained encoders e are used to encode
the initial solutions as well as user-specified PDE conditions into lower-dimensional latent vectors,
ηu, ηv corresponding to PDE solutions and g, b, s corresponding to geometry, boundary conditions
and sourceterms, respectively. The flux conservation is iteratively established by passing batches of
neighboring subdomain latent vectors through a pre-trained flux conservation autoencoder (Θ). In
each iteration, the algorithm loops over all the subdomains, gathers neighbors for a given subdomain
and concatenates the neighboring latent vectors corresponding to PDE solutions and conditions. The
concatenated latent vectors are evaluated through the pre-trained flux conservation autoencoder to
obtain the new solution latent vector (η′~u, η′~v) state on each subdomain. Subdomains on the bound-
ary have fewer neighbors and latent vectors are zero padded in such cases. The flux conservation
autoencoder couples all the solution variables with PDE conditions to ensure that all the dependen-
cies are captured. The iteration stops when the L2 norm of change in solution latent vectors meets
a specified tolerance, otherwise the latent vectors are updated and the iteration continues. The en-
codings of the PDE conditions are not updated and help in steering the solution latent vectors to an
equilibrium state that is decoded to PDE solutions using pre-trained decoders (gu) on the computa-
tional domain. The converged solution in Fig. 2 is represented with flow vectors that are consistent
with neighboring subdomains. The iterative procedure used in the CoAE-MLSim approach can be
implemented using several linear or non-linear equation solvers, such as Fixed point iterations (Bai
et al., 2019), Gauss Siedel, Newton’s method etc., that are used in commercial PDE solvers. Physics
constrained optimization at inference time might be used to improve convergence robustness and
fidelity with physics. The use of autoencoders for compressed solution and condition representation
in tandem with iterative inferencing solution algorithm is inspired from Ranade et al. (2021a;b) but
the main difference in this work is that the solution procedure is carried out on local subdomains as
opposed to entire computational domains to align with principles used in traditional PDE solvers.

Figure 2: Steady state CoAE-MLSim algorithm

Algorithm 1: Steady state solution methodology of CoAE-MLSim approach
1 Domain Decomposition: Computational domain Ω→ Subdomains Ωs
2 Initialize solution on all Ωs: ~u(x) = 0.0 for all x ∈ Ωs
3 Encode PDE solution and conditions on all Ωs:
η~u = eu( ~u(Ωs)), ηg = eg(g(Ωs)), ηb = eb(b(Ωs)), ηs = es(s(Ωs))

4 εt = 1e−4

5 while ε > εt do
6 for Ωs ∈ Ω do
7 Gather neighbors of Ωs: Ωnb = [Ωs,Ωleft,Ωright, ...]

8 η′~u = Θ(ηnb~u , η
nb
b , η

nb
g , η

nb
s )

9 Compute L2 norm: ε = ||η~u − η′~u||2
10 Update: η~u ← η′~u for all Ωs ∈ Ω

11 Decode PDE solution on all Ωs: ~u = gu(η ~u(Ωs)
)
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3.3 COAE-MLSIM FOR TRANSIENT PDES

The algorithm for transient CoAE-MLSim differs slightly from steady-state. Our approach models
transient PDEs using two methods, fully coupled and loosely coupled. The fully coupled is analo-
gous to the steady-state algorithm where time is considered as an additional dimension in addition
to space and modeled using the algorithm described in Alg. 1. On the other hand, in the loosely
coupled approach the spatial and transient effects are decoupled. The decoupling allows for better
modeling of long range time dynamics and results in improved stability and generalizability. This
claim has been validated in Appendix A.2.7 . The solution methodology shown in Figure 3 corre-
sponds to the loosely coupled approach and differs from the steady-state methodology in Figure 2 in
that it uses an additional pre-trained time integration network , which integrates the solution latent
vectors in time. More details on the time integration network are provided in Section 3.6. Analogous
to traditional PDE solvers, a flux conservation is applied after every time integration step. This is
very important in establishing local consistency between neighborhood subdomains and minimizing
error accumulation resulting from the transient process. Since, flux conservation and time integra-
tion networks are trained using the compressed latent vectors of PDE solutions and conditions, the
PDE solution and condition autoencoders are required to be trained first.

3.4 PDE SOLUTION AND CONDITION AUTOENCODERS

Autoencoders are used to establish lower-dimensional latent vectors,
η, ηs, ηg , for PDE solutions and conditions represented on local subdomains.

Figure 4: Autoencoders PDE solutions and condition

Figure 4 shows a schematic of the autoen-
coder setup used in the CoAE-MLSim.
Although the representative subdomains
shown are 2-D, same concepts apply in
higher dimensions. The geometry autoen-
coders encode a representation of the ge-
ometry into latent vector, ηg . In this work,
we adopt a Signed Distance Field (SDF)
representation of the geometry because it
is smooth and differentiable (Maleki et al.,
2021). Similarly, the PDE source terms
are encoded to their respective latent vector, ηs. The solution autoencoders are conditioned upon
the compressed latent vectors of the PDE conditions by concatenating them with the latent vector
(η) of the PDE solutions (Ranade et al., 2021a). We recommend the training of each solution vari-
able using a different autoencoder to improve accuracy.The autoencoders are trained using sample
PDE solutions generated on entire computational domains and then divided into smaller subdomains
for training.

3.5 FLUX CONSERVATION AUTOENCODER

Flux conservation autoencoders are responsible for a bulk of the calculations in the solution
algorithm. Their main function is to disperse solution information throughout the computa-
tional domain by transferring information between neighborhood subdomains and from bound-
aries and geometries. Figure 5 shows the schematic of the flux conservation autoencoder,

Figure 3: Transient CoAE-MLSim algorithm

5



Under review as a conference paper at ICLR 2022

which operates on the latent vectors of PDE solutions and conditions on a group of neigh-
boring subdomains. The inputs and outputs to this network consist of concatenated latent
vectors of all solution variables and PDE conditions on a group of neighboring subdomains.

Figure 5: Flux conservation autoencoder

It uses a deep fully connected neural net-
work to learn these relationships. The
samples generated for autoencoders in
Section 3.4 are used for training the flux
conservation autoencoders as well.

3.6 TIME INTEGRATION NETWORK

Figure 6 shows the schematic of the time
integration network, which operates on the
latent vectors of PDE solutions and condi-
tions on a group of neighboring subdomains. The time integration network uses fully connected
networks to transform the solution latent vector of the center subdomain (corresponding to 0 in Fig.
6) in time. The input of the time integration network can stack latent vectors from multiple previous
time steps, t, t−1, t−2... , to predict the latent vectors for the next time step, t+ 1. We recommend
the training of each solution variable using a different network to improve accuracy.Similar to other
autoencoders, the time integration network also learns from randomly generate solution samples.
More details on all the autoencoders are in appendix A.1.

3.7 WHY AUTOENCODERS?

Figure 6: Time integration network

Solutions to classical PDEs such as the Laplace
equation can be represented by homogeneous solu-
tions, such as: φ(x, y) = a0 + a1x+ a2y+ a3(x2−
y2)+a4(2xy)+..., where, ~A = a0, a1, a2, ..., an are
constant coefficients that can be used to reconstruct
the PDE solution on any local subdomain. ~A can be
considered as a compressed encoding of the Laplace
solutions. Since, it is not possible to explicitly derive
such compressed encodings for other high dimensional and non-linear PDEs, the CoAE-MLSim ap-
proach relies on autoencoders to compute them. It is known that non-linear autoencoders with good
compression ratios can learn powerful non-linear generalizations (Goodfellow et al., 2016; Rumel-
hart et al., 1985; Bank et al., 2020). Thus, autoencoders enable efficient latent space computations.
Autoencoders also have great denoising abilities, which improve robustness and stability, when used
in iterative settings (Ranade et al., 2021a). Finally, they are data-efficient and result in a small num-
ber of learnable model parameters and much faster training. For these reasons, autoencoders form
the fundamental building block of the CoAE-MLSim approach.

3.8 ATTRIBUTES OF COAE-MLSIM SOLUTION METHODOLOGY

1. Unsupervised algorithm: Although, the autoencoders are trained on PDE solutions gen-
erated for random PDE conditions, the iterative solution procedure described in Section 3.2
is never explicitly taught the process of computing PDE solutions and discovers solutions
with a minimal knowledge about the rules of local consistency. This is remarkably similar
to how traditional PDE solvers would operate.

2. Local learning: Since the autoencoders are trained on local subdomains, they have fewer
trainable parameters and need very less data samples (100 − 1000) to learn the dynamics
between PDE solutions and high-dimensional PDE conditions.

3. Latent space representation: The iterative solution procedure is carried out in a com-
pressed latent space to achieve solution speed-ups. Furthermore, compressed representa-
tions of sparse, high-dimensional PDE conditions improves generalizability.

4. Coupling with traditional PDE solvers: The iterative inferencing strategy and the solu-
tion algorithm is designed similar to traditional solver and allows for smooth coupling.
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4 EXPERIMENTS AND RESULTS

This section demonstrates the CoAE-MLSim approach for two use cases, steady-state conjugate
heat transfer and transient vortex decay. Additional use cases corresponding to different PDEs and
applications are presented in the appendix sections, A.2.1, A.2.4 and A.2.6. All the experiments
have varying levels of complexity across geometries, boundary and initial conditions & source terms
imposed on the PDE. The source code and the datasets used in our experiments and analysis can be
made available upon acceptance.

Data generation and training mechanics The data required to train the several autoencoders in
the CoAE-MLSim approach is generated using Ansys Fluent (Fluent, 2015), except for a few cases
where publicly available data sets are used. As stated earlier, the data requirements are minimal
and each case requires about 100-1000 solutions, depending on the complexity of physics and di-
mensionality of PDE conditions. The network architectures and training mechanics are general and
described in appendix A.1.

4.1 STEADY-STATE: INDUSTRIAL USE CASE OF ELECTRONIC-CHIP THERMAL COOLING

This experiment demonstrates the steady-state CoAE-MLSim approach. It consists of an electronic
chip package surrounded by air and subjected to heat sources with random spatial distributions due
to uncertainty in electrical heating. The temperature distribution on the chip is governed by a natural
convection process, which is a balance between heating due to heat source and cooling because of
flow. The heat sources are sampled from a Gaussian mixture model (up to 25 Gaussians with random
mean and variances) and represent a high dimensional space (4096) with large variations, thereby
making it incredibly hard to generalize across. The training data for this case corresponds to only
300 solutions generated for random heat sources using Ansys Fluent.

Figure 7: Comparisons: Contour (left) & Line (right, red: CoAE-MLSim & blue: Fluent)

In Fig. 7, we show the temperature and velocity magnitude contour and line plot comparisons
between Ansys Fluent and CoAE-MLSim approach for an unseen heat source with very good agree-
ment. Additional details are provided in appendix section A.2.3.

4.2 TRANSIENT: VORTEX DECAY OVER TIME

Figure 8: Vortex decay over time with CoAE-MLSim approach

This experiment demonstrates the transient CoAE-MLSim approach. In this case, the transient dy-
namics of flow are modeled for different choices of initial vorticity. The training data (generated by
Li et al. (2020a)) used to train the CoAE-MLSim autoencoders comprises of 500 initial conditions
and first 25 timesteps. The testing is carried out on 50 unseen initial conditions and extrapolated
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up to 50 timesteps. It may be observed in Fig. 8 that the CoAE-MLSim predictions match well
with the ground truth and the error accumulation is acceptable and significantly smaller than base-
lines such as UNet (Ronneberger et al., 2015) and Fourier neural operator (FNO) (Li et al., 2020a),
especially in the extrapolation region for an unseen test sample. This is attributed to the flux conser-
vation autoencoder, which provides a better control over solution trajectory in each time integration.
Additional details are provided in appendix section A.2.5.

4.3 DISCUSSION

Analysis for different subdomain sizes:

Figure 9: Computation time
for different sub-domain sizes

We test the performance of our approach for varying subdomain
resolutions. The autoencoders in the CoAE-MLSim approach are
trained using the data corresponding to the case 4.1 with subdomain
resolutions of 83, 163 and 323. The trained models are used to solve
for PDE solutions for 50 different unseen heat sources and their
results, shown in the table below, are compared with Ansys Fluent
on 3 metrics, Error in maximum temperature (hot spots on chip),
L∞ error in temperature, Error in heat flux (temperature gradient)
on the chip surface. Table 1 shows results for 3 randomly chosen
cases and Fig. 9 plots the solve time averaged over all test cases.

Case ID L∞(|Ttrue − Tpred|) Err.(Tmax) Avg. Error(flux)
83 163 323 83 163 323 83 163 323

553 16.93 20.36 16.90 8.35 5.09 5.50 0.65 1.26 0.10
555 19.45 14.35 12.89 -4.32 -1.04 -1.99 0.64 0.59 0.09
574 20.1 17.80 10.20 12.20 8.90 5.00 1.97 1.86 0.13

Table 1: Analysis of different subdomain sizes

The accuracy is very similar for different subdomain sizes, but the computational time is drastically
different. Higher subdomain resolution corresponds to fewer subdomains in the entire domain and
hence reduction in computational cost. The reduction in solve time is not linear because the latent
vector compression is smaller for larger subdomains to represent a larger space of PDE solutions.

Stability:

Figure 10: Robustness of
CoAE-MLSim approach

A long standing challenge in the field of numerical simulation is to guar-
antee the stability and convergence of non-linear PDE solvers. How-
ever, we believe that the denoising capability of autoencoders (Vincent
et al., 2010; Goodfellow et al., 2016; Du et al., 2016; Bengio et al., 2013;
Ranzato et al., 2007) used in our iterative solution algorithm presents a
unique benefit, irrespective of the choice of initial conditions. In this
work, we empirically demonstrate the stability of our steady-state ap-
proach for case 4.1. In scenario A, we randomly sample 25 initial so-
lutions from a uniform distribution and in scenario B we sample from
10 different distributions, such as Gumbel, Beta, Logistic etc. The mean
convergence trajectory and the standard deviation bounds plotted in Fig.
10 show that the L2 norm of the convergence error falls is acceptable for
all cases and demonstrates the stability of our approach.

Computational speed: We observe that the CoAE-MLSim approach is
about 40-50x faster in the steady-state cases and about 100x faster in
transient cases as compared to commercial PDE solvers such as Ansys
Fluent for the same mesh resolution in all the experiments presented in this work. Both CoAE-
MLSim approach and Ansys Fluent are solved on a single Xeon CPU with single precision. We
expect our approach to scale to multiple CPUs as traditional PDE solvers but single CPU compar-
isons are provided here for benchmarking. Moreover, our algorithm is a python language interpreted
code, whereas Ansys Fluent is an optimized, C language pre-compiled code. We expect the C/C++
version of our algorithm to further provide independent speedups (not included in current estimates).
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Extent of generalization: Like other ML-based approaches, our approach also operates within
certain bounds of generalization with respect to the high dimensional space of PDE conditions.
In many cases, the PDE conditions also have sparse representations, which makes generalization
tougher. Here, we have demonstrated that our approach can generalize within the space of high-
dimensional and sparse PDE conditions without compromising on computational speed and solution
accuracy while using limited training data for autoencoders.

Coupling with commercial PDE solvers using solution initialization:

Figure 11: Error history

In experiment 4.1, we initialize solution variables in iterative al-
gorithm with solutions computed by commercial PDE solvers to
demonstrate that our approach can be used as an accelerator to these
solvers. In Fig. 11, we show that the coupling between our itera-
tive algorithm and PDE solvers can result in significant convergence
speedup for high fidelity solutions as compared to zero initializa-
tion. More details on this are in the appendix section A.2.3.

Comparison with other ML baselines: Although our method is
significantly different from traditional ML methods, we have pro-
vided comparisons of experiments from our paper and appendix with ML baselines such as UNet
(Ronneberger et al., 2015) and FNO (Li et al., 2020a), wherever available. The results are shown
in the table 2. All the errors are computed with respect to results computed by a traditional PDE
solver. The comparisons are carried over 50 unseen test cases. In the chip cooling experiment 4.1,
the L∞ error in temperature is compared as it is the most relevant metric in this experiment. For
the vortex decay case 4.2, the mean absolute error is averaged over 50 timesteps. In both cases, the
CoAE-MLSim performs better than the baselines and has small training parameter space. Since the
CoAE-MLSim approach is unsupervised, local and lower-dimensional, it requires lesser amount of
data. For consistency, we have used the same amount to train the ML baselines.

Table 2: Comparison with baselines
Experiment CoAE-

MLSim
UNet FNO

Chip cooling (Temperature) 20.36 117.07 x
Vortex decay 0.04 0.08 0.09
Laplace Eq. (in Sec. A.2.1) 0.007 0.195 0.165

# params
CoAE-MLSim 400 K
UNet 7.418 M
FNO 465 K

5 CONCLUSION

In this work, we introduced the CoAE-MLSim approach, which is an unsupervised, low-dimensional
and local machine learning approach for solving PDE and generalizing across a wide range of PDE
conditions randomly sampled from a high-dimensional distribution. Our approach is inspired from
strategies employed in traditional PDE solvers and adopts an iterative inferencing strategy to solve
PDE solutions. It consists of several autoencoders that can be easily trained with very few training
samples. The proposed approach is demonstrated to predict accurate solutions for a range of PDEs
and generalize across sparse and high dimensional PDE conditions.

Broader impact and future work: In this work we aim to combine the ideas developed by tradi-
tional PDE solvers with current advancements in machine learning and computational hardware and
achieve faster simulations for industrial use cases that can range from weather prediction to drug
discovery. Although the proposed ML-model can generalize across a wide range of PDE condi-
tions, but extrapolation to PDE conditions that are significantly different still remains a challenge.
However, this work takes a big step towards laying down the framework on how truly generalizable
ML-based solvers can be developed. In future, we would like to address these challenges of gener-
alizability and scalability by training autoencoders on random, application agnostic PDE solutions
and enforcing PDE-based constraints in the iterative inferencing procedure. In this work, we also
demonstrate the potential of a hybrid solver by coupling with traditional PDE solvers. This will be
investigated further along with extensions to inverse problems and scale invariance of PDE solu-
tions. Finally, one of the limitations of this work is that it cannot handle unstructured meshes and
this will be addressed in a follow-up paper.
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A APPENDIX

In the appendix, we provide additional details to support and validate the claims established in
the main body of the paper. The appendix section is divided into 3 sections. In Section A.1, we
provide details related to the network architectures, training mechanics and data generation for the
autoencoders used in the CoAE-MLSim approach. In Section A.2, we provide additional details
and results for the experiments described in the main paper. Additionally, we have demonstrated the
CoAE-MLSim on a different use case. In Section A.3, we present details for reproducibility and for
training the various autoencoders in the CoAE-MLSim approach.

A.1 NETWORK ARCHITECTURE, TRAINING MECHANICS AND DATA GENERATION

The training portion of the CoAE-MLSim approach proposed in this work corresponds to training
of several autoencoders to learn the representations of PDE solutions, conditions, such as geometry
and PDE source terms as well as flux conservation and time integration. The boundary conditions
are manually encoded using the strategy explained in Section A.1.3. We train all the autoencoders
with the NVIDIA Tesla V-100 GPU using TensorFlow. The autoencoder training is a one-time cost
and is reasonably fast. In this section, we describe details related to the network architectures for
the different autoencoders, as well as training mechanics and data generation.

A.1.1 GEOMETRY AUTOENCODER

The geometry autoencoder learns to compress signed distance field (SDF) representations of geom-
etry. Mathematically, the signed distance at any point within the geometry is defined as the normal
distance between that point and closest boundary of a object. More specifically, for x ∈ Rn and
object(s) Ω ⊂ Rn, the signed distance field φ(x) is defined by:

φ(x) =

{
+d(x, ∂Ω) x ∈ Ω

−d(x, ∂Ω) x /∈ Ω
.

where, φ(x) is the signed distance field for x ∈ Rn and objects Ω ⊂ Rn Gibou et al. (2018). Maleki
et al. (2021) use the same representation of geometry to successfully demonstrate the encoding of
geometries. In this work, we use a CNN-based geometry encoder to encode SDF representation

Figure 12: Network architecture for geometry autoencoder (Maleki et al. (2021))

of geometries for relevant use cases. The architecture of this network is shown in Figure 12. The
geometry autoencoder has a CNN-based encoder-decoder structure. The encoder compresses the
SDF representation to a latent vector, ηg and the decoder reconstructs the SDF representation. In the
context of CoAE-MLSim approach, a trained geometry encoder is used to represent SDFs on local
subdomains with latent vectors. In Section A.2.4, we present results to demonstrate the generaliz-
ability of the autoencoder to encode and decode unseen geometries on subdomains.
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Training data and mechanics: The training data pertaining to the geometry autoencoder is con-
structed from random geometries. Arbitrary geometries on entire computational domains are gener-
ated and their SDFs are computed. The computational domain is divided into subdomains and the
parts of geometry SDFs associated to every subdomains is used as part of the training samples. Since
the training is carried out on subdomains, representations of complicated and arbitrary geometries
can be learnt accurately. Moreover, we require only 200-400 geometries on entire computational
domains to train the autoencoder on subdomains. The autoencoder is trained until a Mean Squared
Error (MSE) of 1e−6 or Mean Absolute Error (MAE) of 1e−3 is achieved on a validation set. The
latent vector length is of the lowest possible size that can result in training errors below these spec-
ified thresholds and can be determined through experimentation. Geometry encoders used in all
experiments described in this work are trained as mentioned above.

A.1.2 PDE SOURCE TERM AUTOENCODER

The PDE source term autoencoder learns to compress the spatial distributions of source terms on
each subdomain of the computational domain into a latent vector, ηs. The source term autoencoder
uses the same architecture as in Figure 12, except that the inputs and outputs are the source term
distributions.

Training data and mechanics: The training data for source terms is generated on entire compu-
tational domains by sampling from a Gaussian mixture model, where the number of Gaussian’s,
mean and variance of Gaussian’s are arbitrary and span over orders of magnitude. The source terms
are divided into subdomains, which are used as training samples for the autoencoder. In this case,
we generate about 200-400 such source term distributions and train until the MSE or MAE of the
validation set drop below their respective thresholds, 1e−6 and 1e−3. The latent vector length is
chosen such that the training errors are below the specified thresholds. Source term encoders used
in relevant experiments described in this work are trained as mentioned above.

A.1.3 REPRESENTATION OF BOUNDARY CONDITIONS

The boundary condition encoders can be learnt using the same autoencoders described in Figure
12. However, in this work we design a manual encoding strategy to establish the latent vectors for
boundary conditions. This is because, the choice of boundary conditions in numerical simulations
considered in this paper is very limited. The boundary condition encoding strategy is described in
Figure 13. On each face of a subdomain, the boundary condition encoding, ηb, is a vector of size 2.

Figure 13: Strategy for BC encoding

The first element of this vector indicates the type of boundary condition, followed by the boundary
condition value. In this work, 3 types of boundary conditions are considered, namely Dirichlet,
Neumann and Open boundary condition and are indexed as 0, 1, 2, respectively. Open boundary
type refers to faces that do not have any boundary condition imposed on them and is suitable for
faces of interior subdomains. For example, a subdomain placed on the inlet boundary, such that the
left boundary of the subdomain aligns with the inlet boundary of the entire computational domain,
will have a left face encoding of 0, 0.5, where 0 refers to Dirichlet boundary and 0.5 is the BC value.
As we move to applications in structural mechanics in future, new methods for encoding boundaries
will be introduced.

A.1.4 PDE SOLUTION AUTOENCODER

Figure 14 shows the network architecture used for encoding the solutions, η, of all PDE solution vari-
ables on subdomains. It may be observed that the PDE solution autoencoders are also conditioned
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on the geometry, source term and boundary latent vectors, that are associated to the subdomains.
Since, the PDE solutions are dependent and unique to PDE conditions, establishing this explicit
dependency in the autoencoder improves robustness. We recommend the training of each solution
variable using a different autoencoder to determine a latent vector which is independent of the latent
vector of other solution variables. This strategy of decoupling has shown to increase the accuracy of
the solution autoencoders. The specific parameters used in the network architecture can vary based
on the size of each subdomain, complexity of physics and extent of compression achieved.

Figure 14: PDE solution autoencoder

Training data and mechanics: The PDE solution variables are very specific to the PDEs being
solved and the engineering application being modeled. As a result, a different PDE solution autoen-
coder needs to be trained, when the application and the corresponding PDE is changed. Similar to
the other autoencoders, the PDE solution autoencoder is trained on subdomains until an MSE of
1e−6 or an MAE of 1e−3 is achieved on a validation set. The compression ratio is selected such that
the solution latent vector has the smallest possible size and yet satisfies the accuracy up to these tol-
erances. Finally, the data for training these autoencoders is generated by running CFD simulations
on entire computational domains for arbitrary PDE conditions. The generated solutions are divided
into subdomains and used for training the PDE solution autoencoder. Since, the learning is local
the number of solutions required to be generated are about 100-1000 for different PDE conditions.
The solution autoencoders used in all the experiments have been trained with the strategy described
above.

A.1.5 FLUX CONSERVATION AUTOENCODERS

The flux conservation autoencoder learns the local consistency conditions for a group of neigh-
borhood subdomains in the latent space. Each subdomain is characterized by PDE solutions and
conditions and each of these affects the flux conservation autoencoder. As a result, the inputs and
outputs of this network are the latent vectors of solution (η), geometry (ηg), source term (ηs) and
boundary (ηb) on a group of neighborhood subdomains. All the solution variables of system of
PDEs are stacked together with PDE condition latent vectors and the learnt using the autoencoder
architecture shown in Figure 15. This autoencoder implicitly learns to represent consistency condi-
tions between neighboring subdomains. Since this autoencoder is only trained on locally consistent
subdomains with continuous solutions across intersecting faces, it tries to establish this consistency
in neighborhood subdomain solutions for arbitrary inputs. Subdomains at the boundaries may have
fewer neighbors and we propose 2 ways to handle this. Firstly, the information related to the missing
neighbors can be substituted with a vector of zeros. This would enable learning of all neighboring
subdomain combinations with the same flux conservation network. Conversely, different flux con-
servation networks can be trained for subdomains with different number of neighbors. For example,
a subdomain in the corner will have only 3 neighbors, while an interior subdomain has 6 neighbors.
In this case, the interior and corner subdomains can be trained separately with different networks.
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In our experience, both approaches work equally well but we have adopted the approach of zero
padding in this work. The specific parameters used in the network architecture can vary based on
the size of each subdomain, complexity of physics and extent of compression achieved.

Figure 15: Flux conservation autoencoder

Training data and mechanics: The training data generated for training the PDE solution autoen-
coders is used to train these networks as well. The data is pre-processed such that groups of neigh-
boring subdomains are collected together and the solutions and conditions associated with them are
encoded using pre-trained autoencoders described in previous sections. This processed data is used
for training the flux conservation autoencoder. This autoencoder is trained with an MSE loss and the
training stops when the validation loss goes below 1e−6. The flux conservation autoencoders used
in all the experiments have been trained with the strategy described above.

A.1.6 TIME INTEGRATION NETWORKS

The network architecture and training data generation and mechanics are very similar to the flux
conservation autoencoder. The only difference is in the network architecture, where the time in-
tegration networks use latent vectors of PDE solutions at time t and conditions of neighborhood
subdomains as the input but only predict the solution latent vectors of all solution variables on the
center subdomain of the group of neighborhood subdomains at time t+1. Each PDE solution vari-
able can be trained with a different time integration networks. The time integration networks used
transient PDE related experiments have been trained with the strategy described above.

A.2 EXPERIMENTS AND ADDITIONAL RESULTS

In this section, we provide more results and details of the experiments discussed in the main paper.
We have also demonstrated

A.2.1 STEADY STATE: LAPLACE EQUATIONS

The Laplace equation is defined as follows:

∇2φ(~x) = 0.0 (2)

subjected to a Dirichlet boundary condition, φ( ~xb) = fb or a Neumann boundary condition, ∂φ
∂ ~xb

=
fb.
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Figure 16: Laplace equation contour results

The Laplace equation is a second order, linear PDE that represents a canonical problem for bench-
marking linear solvers. It is solved on a square computational domain with a resolution of 64x64
computational elements for random boundary conditions sampled from Dirichlet and Neumann.
Here, we provide visual comparisons between the CoAE-MLSim approach and a second-order fi-
nite difference method (FDM) approach in Fig. 16. The PDE solutions are locally scaled with the
Dirichlet boundary condition. We compare the CoAE-MLSim with 3 different ML approaches, Unet
(Ronneberger et al., 2015), FNO (Li et al., 2020a) and FCNN. The training data for CoAE-MLSim
corresponds to 300 solutions generated for arbitrary boundary conditions using a second order finite
difference method, whereas all the baselines are trained with 6400 solutions. The baseline models
are described below:

UNet: The input to this model is a two-channel grid of size 64 x 64. The first channel captures the
boundary condition encoding on 2D dimensional grid. There are two boundary conditions chosen
for this experiment, Dirichlet and Neumann. On a grid of zeros everywhere, boundaries are coded by
replacing zeros with either a 1(Dirichlet) or a 2(Neumann) based on the boundary condition. Similar
to the first channel, second channel is also a grid of zeros, and the edges’ zeros are replaced with the
magnitude of the boundary condition. The model is trained to output the solution again on a grid of
64 x 64. The UNet has 6 convolutional blocks, 2 at each down-sampled size. The bottleneck size
is 8 x 8. The output of the bottleneck is again up-sampled in the usual fashion by concatenating the
corresponding down-sampled output. The total number of learnable parameters in UNet baseline is
equal to 1.946 million.

FNO: For the Fourier Neural Operator method as well, we have used the same input as in Unet. The
FNO model is same as the original implementation in Li et al. (2020a). The FNO model has 1.188
million parameters.

FCNN: In this model, we consider the boundary condition encoding as the input as opposed to
a representation of the boundary condition as grid. This network consists of a fully connected
network and a convolutional neural network. The boundary condition encoding is first transformed
into a vector of size 1024. This vector is then reshaped into 32 x 32 grid. The grid is then passed
to convolutional network and the solution is then transformed to 64 x 64 grid. The model has 14.8
million learnable parameters.

It may be observed from Fig. 16 that the CoAE-MLSim approach outperforms the baseline ML
models. The mean absolute errors for the CoAE-MLSim approach over 50 unseen testing samples
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is 7e−3. On the other hand, Unet, FNO and FCN have mean absolute errors of 1.65e−1, 1.9e−1 and
3e−2 respectively. All errors are with respect to the second order FDM solution. It may be observed
that the FCNN performs better than both UNet and FNO and this points to an important aspect
about representation of PDE conditions and its impact on accuracy. The representation of boundary
conditions on a 64x64 grid is very sparse and high-dimensional, making it very challenging for the
networks to learn. On the other hand, the FCNN uses a low-dimensional, dense encoding as an input
and hence is able to learn more effectively. Nonetheless, the CoAE-MLSim approach provides the
best performance.

For the CoAE-MLSim approach, the computational domain is divided into 64 subdomains such that
each subdomain has a resolution of 8x8 elements. The 64 dimensional PDE solution is represented
by a latent vector of size 7 using a CNN-based autoencoder. The total number of parameters in
the solution and flux autoencoders are 130, 000. The boundary conditions on each subdomain are
encoded using the representation provided in Section A.1.3. Since, this is a steady state problem,
the CoAE-MLSim iterative solution algorithm is initialized with a solution field equal to zero in all
test cases.

A.2.2 STEADY STATE: DARCY EQUATIONS

The Darcy equation is defined as follows:

−∇.(α∇φ(~x) = f (3)

It is subjected to different diffusivity conditions, α(~x) = f(~x) in a 2-D bounded computational
domain between (0, 1). The problem setup as well as the data to train the autoencoders is taken
from Li et al. (2020a). We use about 400 samples for training the flux conservation autoencoders,
and 50 randomly picked samples for testing from the remaining data. The computational domain in
this problem is 2D and has a resolution of 241x241. The domain is divided into 241 subdomains of
resolution 21x21 each. The solution on each subdomain is encoded into a latent vector of size 47
and the diffusivity is encoded into size 21. Since, this is a steady state problem, the CoAE-MLSim
iterative solution algorithm is initialized with a solution field equal to zero in all test cases. The
iterative algorithm convergence tolerance is stringent and set to L2 < 1e-7.

The main purpose of including this numerical experiment in the paper is to present an ablation study
that evaluates the effect of autoencoder bottleneck layer size on the accuracy and computational
speed of the solution algorithm used in the CoAE-MLSim approach. As our approach is based on
autoencoders we have a rough idea that there must exist an optimum latent vector size which would
provide the highest accuracy and a reasonable computational cost during inference time. However,
in this experiment we validate this hypothesis. Here, we present results from our experiments to
analyze the effect of flux-conservation autoencoder bottleneck layer size on the generalizability,
accuracy, and performance of our approach. We choose the flux-conservation autoencoder for this
analysis because it is the primary workhorse of our approach and is evaluated repeatedly during the
iterative inferencing. We perform 6 experiments with bottleneck layer sizes, 8, 16, 32, 64, 128, 256
for an input size of 340.

The results from these experiments are presented in the table below:

Bottleneck Size (Compres-
sion ratio)

Testing error Convergence
iterations

Solve time

8 (42.5) 0.0241 15 0.23
16 (21.25) 0.0107 37 0.57
32 (10.62) 0.0067 45 0.706
64 (5.32) 0.0081 55 0.85
128 (2.65) 0.133 140 2.18
256 (1.32) 0.198 168 2.73

Table 3: Ablation study for different layer sizes
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The testing error formulation is shown in Eq. 4.s

ε =
L2(Ypred − Ytrue)

L2(Ytrue)
(4)

It may be observed from Table 1 3, that as the compression ratio of the flux conservation autoencoder
decreases, it begins to overfit and the testing error as well as the number of convergence iterations
and computational time significantly increase. On the other hand, if the compression ratio is too
large the testing error increases. For all autoencoders used in this work, there exists an optimum
bottleneck size compression ratio where the best testing error is obtained and the computational
time is not too large.

A.2.3 STEADY STATE: ELECTRONIC CHIP THERMAL PROBLEM

This is an industrial use case where the domain consists of a chip, which is sandwiched in between
an insulated mold. The chip-mold assembly is held by a PCB and the entire geometry is placed
inside a fluid domain. The geometry and case setup of the electronic chip cooling case can be
observed in Fig. 17. The chip is subjected to electric heating and the uncertainty in this process
results in random spatial distribution of heat sources on the on the surface of the chip. Fig. 18 shows
an example of the various distributions of heat sources that the chip might be subjected to due to
electrical uncertainty.

Figure 17: Electronic chip cooling geometry

Figure 18: Different power map distributions

The physics in this problem is natural convection cooling where the power source is responsible for
generating heat on the chip, resulting in an increase in chip temperature. The rising temperatures
get diffused in to the fluid domain and increase the temperature of air. The air temperature induces
velocity which in turn tries to cool the chip. At equilibrium, there is a balance between the chip
temperature and velocity generated and both of these quantities reach a steady state. The objective
of this problem is to solve for this steady state condition for an arbitrary power source sampled
from a Gaussian mixture model distribution, which is extremely high dimensional with up to 25
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Gaussian’s, each with a different mean and variance, on a 4096 dimensional domain. The governing
PDEs that represent this problem are shown in Eqs. 5.

Continuity Equation: ∇.v = 0

Momentum Equation: (v.∇)v +∇p− 1

Re
∇2v +

1

β
~gT = 0

Heat Equation in Solid: ∇. (α∇T)− P = 0

Energy Equation in Fluid: (v.∇)T−∇. (α∇T) = 0


(5)

where, v = ux, uy, uz is the velocity field in x, y, z, p is pressure, T is temperature, Re and α are
flow and thermal properties, P is the heat source term, 1

β~gT is the buoyancy term. P is the spatially
varying power source applied on the chip center. The main challenges are in capturing the two-way
coupling of velocity and temperature and generalizing over arbitrary spatial distribution of power.

The coupled PDEs with 5 solution variables, v = ux, uy, uz, P, T are solved on a fluid and solid
domain with loose coupling at the boundaries. The fluid domain is discretized with 1283 elements
in the domain and the solid domain (chip) is modeled as a 2-D domain with 642 elements as it is
very thin in the third spatial dimension.

The data to train the autoencoders in the CoAE-MLSim approach is generated using Ansys Fluent
and corresponds to 300 PDE solutions. The computational domain is divided into 512 subdomains,
each with 163 computational elements. The solution autoencoders for the 5 solution variables are
trained independently on to establish lower dimensional latent vectors with size 29 on the subdomain
level. The geometry and boundary conditions do not vary and hence an autoencoder is not trained for
them in this experiment. The source term autoencoder is trained using randomly generated power
source fields. Figure 19 shows a few results of the reconstruction capability of the autoencoders.
The source term latent vector has a size of 39.

Figure 19: Power source autoencoder for CoAE-MLSim approach

In the main body of the paper, Section 4.3, as well as in this section we compare our approach with
other baseline ML models such as UNet (Ronneberger et al., 2015) for this experiment and here we
briefly explain the network architecture used.

UNet: The architecture of the UNet (Ronneberger et al., 2015) is as follows: Since the original
dimension of the power map is 642, to construct a 3D chip power map, zero padding is applied
on top and bottom of the 2D power map, so the input dimension of the Unet is 643. Each module
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of the contracting path consists of 2 convolution layers, 1 max pooling layer and 1 dropout layer.
The number of channels changes from 1 to 48 in the contracting path and the module is repeated 4
times. The module in the expansive path consists of 1 Upsampling layer, 1 concatenation layer and
2 convolution layers. Similar to that of the contracting path, the module is repeated 4 times and the
last layer is a convolution layer with 1 filter. The activation function used is ’Relu’, the convolution
kernel size is 3 and the pooling window size is 2.

Additional results:

Here, we present comparisons between CoAE-MLSim approach and Ansys Fluent for 2 additional
use cases. We compare velocity magnitude and temperature on plane contorus as well as line plots.
Also, we compare additional parameters obtained from the simulation such as temperature on PCB-
Fluid interface, pressure in the domain, total energy transfer between chip-fluid interface. It may
be observed that the results of our approach agree well with a commercial PDE solver and this
continues to work for other choices of power sources from the Gaussian mixture model distribution.
Since, this is a steady state problem, the CoAE-MLSim iterative solution algorithm is initialized
with a solution field equal to zero for all solution variables in all test cases.

Figure 20: Contour plot comparisons of CoAE-MLSim and Ansys Fluent for test case 1

Figure 21: Line plot comparisons of CoAE-MLSim and Ansys Fluent for test case 1 (red: CoAE-
MLSim & blue: Fluent)

Finally, we use this experiment to provide further analysis of the CoAE-MLSim approach. The
different sub-experiments are listed below:

1. Comparison against UNet for various test cases.

2. Analysis of solution convergence during different iterations of the CoAE-MLSim approach

3. Analysis of coupling with commercial PDE solvers using solution initialization
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Figure 22: Other parameter contour plot comparisons of CoAE-MLSim and Ansys Fluent for test
case 1

Figure 23: Contour plot comparisons of CoAE-MLSim and Ansys Fluent for test case 2

Figure 24: Line plot comparisons of CoAE-MLSim and Ansys Fluent for test case 2 (red: CoAE-
MLSim & blue: Fluent)

Comparison of CoAE-MLSim and Unet:

Since we use very few training samples to train the CoAE-MLSim approach, it is important to
demonstrate that our approach is not memorizing and that the physics represented by the experiments
is non-trivial. Hence, we investigate this by comparing our approach with Unet (Ronneberger et al.,
2015). We use both methods to solve for 5 unseen power sources and the results obtained are
compared with Ansys Fluent with respect to the metrics discussed below.

1. Error in maximum temperature in computational domain (hot spots on chip),
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Figure 25: Other parameter contour plot comparisons of CoAE-MLSim and Ansys Fluent for test
case 2

Case ID L∞(|Ttrue − Tpred|) Error(Tmax) Avg. Error(heat flux)
CoAE-MLSim Unet CoAE-MLSim Unet CoAE-MLSim Unet

553 20.36 117.07 5.09 -117.06 1.26 7.41
554 10.50 27.24 3.40 27.25 1.45 0.93
555 14.35 62.08 -1.04 -62.08 0.59 2.76
575 15.60 195.52 -0.75 -195.51 0.80 15.78
574 17.80 74.72 8.90 -74.72 1.86 3.41

Table 4: Comparison of UNet and CoAE-MLSim

2. L∞ error in temperature in the computational domain,

3. Error in heat flux (temperature gradient) on the chip surface

These metrics are more suited for engineering simulations and provide a much better measure for
evaluating accuracy and generalization than average based measures. The state-of-the-art Unet
(Ronneberger et al., 2015) is trained on the same number of training samples as used by the CoAE-
MLSim approach using the architecture described above. The results are compared in the table
below.

It may be observed that the our approach outperforms the UNet for all unseen power sources.

Evolution of PDE solution during iterative inferencing:

Figure 26 shows the evolution of the CoAE-MLSim solution on a plane cut through the center of
the chip and normal to the z direction, at different iterations until convergence. The results are
shown for the y component of velocity for test case 1 presented in Section 4.1 and compared with
a converged Ansys Fluent solution for the same case. The initial solution provided to the solver
is sampled from a uniform random distribution. At iteration 1, it may be observed that the flux
conservation autoencoder denoises the random signals. In the following iterations, the solution
begins to develop based on the source term encoding constraint and finally converges at iteration
35. The stable progression of the solution points to the robustness and convergence of the CoAE-
MLSim.

Convergence speedup after coupling with traditional PDE solvers:

As mentioned earlier, in all the steady-state experiments carried out in this work, all the solution
variables are initialized to zero in the CoAE-MLSim solution algorithm. In this experiment, we
argue that better initialization of the solution algorithm can result in faster convergence and the better
initialization can be obtained by coupling with commercial PDE solvers. To test this hypothesis,
we generate 5 different initial conditions listed below and compare their convergence trajectories
with the original case of zero initialization. In each case the solution corresponding to the specified
resolution is computed using Ansys Fluent and interpolated on to the 128x128x128x used by CoAE-
MLSim approach.

25



Under review as a conference paper at ICLR 2022

Figure 26: Convergence of CoAE-MLSim solution through the iterative procedure

(a) Initialization with zero solution
(b) Initialization with coarse resolution Ansys Fluent solution generated on 32x32x32 mesh
(c) Initialization with medium resolution Ansys Fluent solution generated on 64x64x64 mesh
(d) Initialization with fine resolution Ansys Fluent solution generated on 128x128x128 mesh
(e) Initialization with fine resolution Ansys Fluent solution generated on 128x128x128 mesh

with added random Gaussian noise

The convergence history comparison on an unseen test geometry is shown in Fig. 27. It may be
observed that with a zero solution initialization, the CoAE-MLSim iterative solution algorithm takes
about 41 iterations to converge. On the other hand, when initialized with the best possible initial
guess, which is the ground truth solution on fine grid resolution, it converges in 2 iterations. Next,
we add a Gaussian random noise of 25 % maximum relative to the solution on each computational
element. With the added noise, the solution converges in about 8 iterations. Finally, when initialized
with coarse grid solution generated by Ansys Fluent on 323 and 643 resolutions, CoAE-MLSim take
27 and 11 iterations respectively. The convergence is still faster than zero solution initialization by
1.5x and 4x, respectively. Nonetheless, this experiment demonstrates that the convergence of the
CoAE-MLSim approach can be improved with better initial guess and on the flip side our approach
can be used as an accelerator to commercial PDE solvers.

Analysis of train and test errors:

In this section, we have carried out an experiment to compare the accuracy of the inference algorithm
on both training and testing PDE conditions. In this problem, we use 300 solutions for training the
autoencoders and another 300 for testing. The PDE conditions with respect to both the training
and testing set are used in the iterative solution algorithm to generate a solution. In table 5, we
compare the average results over the training set and the testing set for the infinity norm and error
in maximum value of temperature in the computational domain. We also provide the best error that
we obtain from all the training samples.

It may be observed that, the CoAE-MLSim approach performs same on the training set as it would
perform on the testing set. The training portion of our model involves training several autoencoders.
At inference time, the pretrained encoders cannot directly provide the solution directly for a partic-
ular setting of PDE conditions. We have to use the iterative algorithm to compute an equilibrium
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Figure 27: Convergence of CoAE-MLSim solution after coupling with commercial PDE solvers.

Temperature
L∞

Error (Tmax)

Best training error 3.45 -0.3
Average training error 13.6 2.78
Average testing error 15.1 3.93

Table 5: Comparison of training vs testing errors

solution for a specified set of PDE conditions. The iterative algorithm must figure out the solution
and is never taught anything about the trajectory to get there. As a result, the algorithm can perform
the same on the training PDE conditions as it would on the testing conditions. This is different from
traditional ML methods, which work better in training than in testing.

A.2.4 STEADY STATE: FLOW OVER ARBITRARY OBJECTS

In this use case, the CoAE-MLSim is demonstrated for generalizing across a wide range of geometry
conditions. The geometry of objects are represented with a signed distance field representation
and is extremely high-dimensional (512-4096). The use case consists of a 3-D channel flow over
arbitrarily shaped objects as shown in Fig. 28. The domain has a velocity inlet specified at 1m/s
and a zero pressure outlet boundary conditions on 2 surfaces, while the rest of the surfaces are walls
with no-slip conditions. The shape of the object immersed in flow is arbitrary and the objective is to
demonstrate the generalization of the CoAE-MLSim for such geometric variations.

Figure 28: Computational domain
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The computational domain, in this case, is elongated in the x direction, such that it consists of 320
computational elements in that direction, while the y and z directions have 160 and 80 computational
elements each. The domain is decomposed into subdomains with 16 elements in each direction.
Boundary conditions, geometry and PDE solutions are encoded on each subdomain using pre-trained
encoders. The PDEs solved in this problem consist of 4 solution variables, include 3 components of
velocity and pressure. The governing equations corresponding to these variables are shown in Eq.
6. The subdomain solution of each solution variable is compressed to a latent vector of size 31. The
geometry is represented using signed distance fields, which are compressed to a latent vector of size
29. Boundary conditions are encoded using the boundary encoder described in Section A.1.3. There
is no source term in this case and hence, it is excluded from the flux conservation autoencoder. The
training data in this case corresponds to 300-400 solutions generated for arbitrary geometries using
Ansys Fluent. Since, this is a steady state problem, the CoAE-MLSim iterative solution algorithm
is initialized with a solution field equal to zero for all solution variables in all test cases.

Continuity Equation: ∇.v = 0

Momentum Equation: (v.∇)v +∇p− 1

Re
∇2v = 0

 (6)

where, v = ux, uy, uz is the velocity field in x, y, z, p is pressure, T is temperature, Re is Reynolds
number representing flow properties.

Figure 29 shows the velocity, pressure and wall flux contour plots comparisons between CoAE-
MLSim approach and Ansys Fluent for flow around an unseen arbitrary object. The results match
to an acceptable accuracy. In fact, the mean absolute error for pressure and velocity magnitude over
50 unseen test samples is 2.3e−2 and 9.4e−4.

Figure 29: Flow over external object contour plot comparisons

Additional examples Figure 30 shows comparisons of CoAE-MLSim with Ansys Fluent for 4 un-
seen objects in addition to the example shown in Figure 29. The solver generalizes well and the
errors fall within an acceptable range.

Geometry encoder performance

Figure 31 shows the comparison between the true signed distance field and the reconstructed field
from the geometry autoencoder. In this example, the geometry autoencoder is evaluated on each
subdomain, but all subdomains are reassembled using their connectivity information to obtain the
SDF on the entire computational domain. The contour plots in Figure 31 are on planes cut through
the center of the geometry along x direction. It may be observed that the autoencoder reconstructs
agree well with the ground truth for unseen cases. The mean absolute error in all the cases presented
here is less than 1e−3.

A.2.5 TRANSIENT: VORTEX DECAY FLOW

This is a similar use case from Li et al. (2020a) where a 2-d Navier-Stokes equation for a viscous,
incompressible fluid in vorticity form on the unit torus. The PDE and case details corresponding to
this may be found in Li et al. (2020a). In the main paper, we provided a single result for an unseen
initial condition when integrated in time. Here, we will provide visual comparisons of additional
results and additional details about the CoAE-MLSim approach used for this problem.

As described earlier, the mesh resolution considered in this experiment consists of 64x64 computa-
tional elements. The dataset considered in this experiment corresponds to a viscosity of 1e−3 and
contains transient evolution of 5000 initial solution fields over 50 timsesteps. The autoencoders of
the CoAE-MLSim approach are trained with data corresponding to only 500 initial conditions and
first 25 timesteps. The computational domain is divided into 64 subdomains of 82 resolution. The
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Figure 30: CoAE-MLSim vs Ansys Fluent comparisons for different objects

Figure 31: Geometry encoder generalization

solution autoencoder encodes vorticity on each subdomain into a latent vector of size 11. The flux
conservation and time integration network are trained using the same data. The autoencoder net-
works combine to have a total of 400, 000 parameters. The time integration network is designed
such that the input contains solution latent vectors on neighboring subdomains of 10 previous time
steps to predict the latent vectors of the next time step. As a result, all the test runs start from the
10th timestep. During each timestep integration during the solution inference, the flux conservation
autoencoder is evaluated until an iterative convergence is achieved, similar to the steady state version
of the CoAE-MLSim approach and this convergence is achieved to a specified tolerance of 1e−6 in
about 2-4 iterations. As a result, the total evaluation time might be slower than other ML-approaches
but is still faster than commercial PDE solvers by around 100x and moreover, it provides for a more
stable and accurate transient dynamics.
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In the main body of the paper, Section 4.3, as well as in this section we compare our approach with
other baseline ML models such as UNet (Ronneberger et al., 2015) and Fourier Opertor Net (FNO)
for this experiment and here we briefly explain the network architectures used.

UNet: Our UNet architecture includes 18 convolutional layers with channel sizes of 10 (input), 64,
64, 128, 128, 128, 128, 256, 256, 256, 512, 384, 384, 256, 256, 192, 192, 128, 64, 1 (output) with
9 before the bottleneck (encoder) and 9 after the bottleneck (decoder). Skip connections were used
to connect layers before and after the bottleneck. In the encoder, the spatial resolution was reduced
using four max-pooling layers with kernel size 2. In the decoder the original spatial resolution was
recovered using four bilinear upsampling layers with kernel size 2. The total number of learnable
parameters is 7.418M.

FNO: Our FNO architecture was that of the original implementation (Li et al., 2020a). The total
number of learnable parameters is 465k.

Next, we compare results for 3 unseen initial conditions. It may be observed that the CoAE-MLSim
predictions match well with the ground truth data and the error accumulation is acceptable, espe-
cially in the extrapolation range. It may be observed that our method outperforms FNO and UNet in
terms of error accumulation.

Figure 32: Contour comparisons of vortex decay at different time steps

Figure 33: Error accumulation at different time steps

Finally, we perform an additional study where we average the predictions over 50 unseen testing
samples from different initial conditions for each of the 50 timesteps. The results from this exper-
iment are shown in Figure 34. It may be observed from the figure that our approach performs as
good as FNO and UNet in the interpolation regime but outperforms both methods in the extrapola-
tion regime by a large margin.

Additionally, in the table 6 we provide the average errors for the 3 approaches in the interpolation
and extrapolation regions separately. For the interpolation regime the averages are computed over
50 testing samples and until 25 timesteps, while for extrapolation regime they are computed over 50
testing samples and for timesteps between 25 and 50.
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Figure 34: Error accumulation at different time steps averaged over 50 unseen test samples

Bottleneck Size (Compres-
sion ratio)

Testing error Convergence
iterations

Solve time

8 (42.5) 0.0241 15 0.23
16 (21.25) 0.0107 37 0.57
32 (10.62) 0.0067 45 0.706
64 (5.32) 0.0081 55 0.85
128 (2.65) 0.133 140 2.18
256 (1.32) 0.198 168 2.73

Table 6: Ablation study for different layer sizes

It may be observed that the CoAE-MLSim performs as well as FNO and UNet in the interpolation
region but outperforms both of them for long time flow dynamics.

A.2.6 TRANSIENT: FLOW OVER A CYLINDER

Finally, we present a demonstration of the CoAE-MLSim approach in solving the flow around a
cylinder problem in a transient setting. The case setup and geometry is similar to the case presented
in Section A.2.4 except that the flow Reynolds number is much higher, equal to 200, in order to
induce unsteady phenomenon in the flow, commonly known as vortex street. In this case, the CoAE-
MLSim approach is trained on Reynolds number of 50 and 1000 and tested on 200. The timestep
used for training is 20x larger than the one used by Ansys Fluent to generated the training and testing
data. The complexity of the problem is increased by adding a constant heat flux to the cylinder,
resulting in dissipation of temperature with the flow. The governing equations corresponding to this
case are presented in 7:

Continuity Equation: ∇.v = 0

Momentum Equation:
∂v

∂t
+ (v.∇)v +∇p− 1

Re
∇2v = 0

Energy Equation in Fluid:
∂T

∂t
+ (v.∇)T−∇. (α∇T) = 0

 (7)

where, v = ux, uy, uz is the velocity field in x, y, z, t, p is pressure, T is temperature, Re and α are
flow and thermal properties.

Figs. 35 and 36 compare the vector plots on cut center planes for velocity magnitude and temperature
with Ansys Fluent at 3 different time steps. The CoAE-MLSim approach captures the transient flow
dynamics with an acceptable error in comparison to the Ansys Fluent. Furthermore, in Figure 37, we
plot the total surface drag force of the cylinder as a function of time to evaluate the vortex shedding
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Figure 35: Transient flow comparisons of velocity magnitude

frequency of the flow. The CoAE-MLSim predictions are satisfactory and continues to predict well
as the solution progresses ahead in time.

A.2.7 TRANSIENT: BURGER’S EQUATIONS

The 1-d Burger’s equation is shown in Eq 8.

∂u

∂t
+∇.(u2/2) = ν∇2.(u) (8)

It is subjected to different initial conditions, u(~x) = uo(~x) in a 1-D bounded computational domain
between (0, 1). The problem setup as well as the data to train the autoencoders is taken from Li et al.
(2020a). The motivation of this experiment is to show the difference in performance between the
two transient approaches mentioned in the paper: fully coupled and decoupled and validate the claim
that the decoupled approach is better than the fully coupled approach in predicting long range time
dynamics. The fully coupled transient approach is the one where space and time are coupled and in
this example solved as a 2-D domain, where as the in the decoupled approach the time integration is
handled separately from flux conservation as explained in the paper.

The 1-D computational domain has a resolution of 512 computational elements. The computational
case in the case of fully coupled case is a 2d domain with 512 elements x 50 timesteps. We use
500 solutions and 50 timesteps per solution to train the autoencoders in both approaches. The 1-d
domain in the decoupled case is divided into 16 subdomains with a resolution of 32 computational
elements each. On the other hand, the fully coupled case is divided into 48 subdomains with a
resolution of 32 elements vs 32 timesteps. In both cases, the testing is carried out for 30 unseen
samples integrated all the way up to 200 timesteps, which is more than twice outside the training
regime. The relative errors, from Eq. 4, averaged over the testing samples for each timestep in
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Figure 36: Transient flow comparisons of temperature

Figure 37: Total drag force comparison

the extrapolation regime (after 50 timesteps) are shown in Figure 38. It may be observed that the
decoupled transient approach has a much smaller error accumulation than the fully coupled transient
approach, therby validating our claim made in the paper.

A.3 DETAILS FOR REPRODUCIBILITY

In this section, we provide the necessary details for training the CoAE-MLSim. As emphasized pre-
viously, the CoAE-MLSim training corresponds to training several autoencoders for PDE solutions,
conditions, such as geometry, boundary conditions and source terms and for flux conservation. In
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Figure 38: Comparison between fully coupled and decoupled transient approaches

Figure 39, we present a flow chart of the steps that can be followed to train each of these autoen-
coders. The specific training details and network architectures may be found in Section A.1.

For a given set of coupled PDEs, we start with 100-1000 sample solutions on a computational do-
main with n,m, p computational elements in spatial directions x, y, z, respectively. The solutions
are divided into smaller subdomains of resolution, n/16,m/16, p/16. Each subdomain can has
PDEs solutions and PDE conditions associated with it. The PDE solutions are used as training sam-
ples to the PDE solution autoencoder to learn a compressed encoding of all the variables on the
subdomain. On the other hand, the autoencoders for PDE conditions can be trained with completely
random samples, which may or may not be related to sample solutions. Once the PDE solution
and condition autoencoders are trained, neighboring subdomains are grouped together and the so-
lution and PDE condition latent vectors on groups of neighboring subdomains are stacked together.
These groups of stacked latent vectors are used for training the flux conservation autoencoder. The
trained PDE solution, condition and flux conservation autoencoders combine to form the primary
components of the CoAE-MLSim.

The solution algorithm of the CoAE-MLSim has been described in detail in the main body of the
paper and may be used for solving for unseen PDE conditions.

Figure 39: Flow chart for training the CoAE-MLSim approach

34


	Introduction
	Related works
	CoAE-MLSim model details
	Similarities with traditional PDE solvers
	CoAE-MLSim for steady-state PDEs
	CoAE-MLSim for transient PDEs
	PDE solution and condition autoencoders
	Flux conservation autoencoder
	Time integration network
	Why Autoencoders?
	Attributes of CoAE-MLSim solution methodology

	Experiments and Results
	Steady-state: Industrial use case of electronic-chip thermal cooling
	Transient: Vortex decay over time
	Discussion

	Conclusion
	Appendix
	Network Architecture, training mechanics and data generation
	Geometry autoencoder
	PDE source term autoencoder
	Representation of boundary conditions
	PDE solution autoencoder
	Flux conservation autoencoders
	Time integration networks

	Experiments and additional results
	Steady State: Laplace equations
	Steady State: Darcy equations
	Steady State: Electronic chip thermal problem
	Steady State: Flow over arbitrary objects
	Transient: Vortex decay flow
	Transient: Flow over a cylinder
	Transient: Burger's equations

	Details for reproducibility


