Under review as a conference paper at ICLR 2026

SPARTA: SCALABLE AND PRINCIPLED BENCHMARK OF
TREE-STRUCTURED MULTI-HOP QA OVER TEXT AND TA-
BLES

Anonymous authors
Paper under double-blind review

ABSTRACT

Real-world Table-Text question answering (QA) tasks require models that can reason across
long text and source tables, traversing multiple hops and executing complex operations
such as aggregation. Yet existing benchmarks are small, manually curated—and therefore
error-prone—and contain shallow questions that seldom demand more than two hops or
invoke aggregations, grouping, or other advanced analytical operations expressible in
natural-language queries. We present SPARTA, an end-to-end construction framework that
automatically generates large-scale Table—Text QA benchmarks with lightweight human
validation, requiring only one quarter of the annotation time of HybridQA. The framework
first constructs a reference fact database by enriching each source table with grounding
tables whose tuples are atomic facts automatically extracted from the accompanying
unstructured passages, then synthesizes nested queries whose number of nested predicates
matches the desired hop count. To ensure that every SQL statement is executable and
that its verbalization yields a fluent, human-sounding question, we propose two novel
techniques: provenance-based refinement, which rewrites any syntactically valid query that
returns a non-empty result, and realistic-structure enforcement, which confines generation
to post-order traversals of the query graph. The resulting pipeline produces thousands of
high-fidelity question—answer pairs covering aggregations, grouping, and deep multi-hop
reasoning across text and tables. On SPARTA, state-of-the-art models that reach over 70
F1 on HybridQA or over 50 F1 on OTT-QA drop by more than 30 F1 points, exposing
fundamental weaknesses in current cross-modal reasoning. We will release the benchmark,
construction code, and baseline results to spur progress toward robust, realistic Table—Text
QA models.

1 INTRODUCTION

Table-Text QA has emerged as a fundamental challenge in building robust question answering (QA) systems
capable of operating across heterogeneous data modalities (i.e., text and tables) |Chen et al.[(2020azb}; |2021));
Zhao et al.|(2022); Zhu et al.|(2021)). Such a task is particularly evident in scenarios where textual descriptions
and table entries originate from one or more sources (e.g., textual information and tables in multiple Wikipedia
pages) and must be jointly analyzed to arrive at the correct answer. While a single Wikipedia page often
contains both text and tables, it is not unusual for relevant information to span multiple pages or documents,
necessitating cross-document retrieval and the effective integration of disparate information.

A significant limitation of existing Table-Text QA benchmarks is that human annotators manually construct
them |Chen et al.|(2020a;b}, [2021)); Zhao et al.|(2022); Zhu et al.|(2021), resulting in fundamentally flawed
benchmark designs that hinder comprehensive system evaluation.

Under review as a conference paper at ICLR 2026

-

[Question] What is the maximum height among players who played for the Trail Blazers with a salary over 2,800,000 and who have scored more than 20 points in at least one game?
[Answer] inches

NBA Player Affiliation
Player Name salary Team Name NBA Player Information
3,075,380 | Trail Blazers .. Meyers Leonard posted a season - high of 24 points (9-17 FG , 5-9 3Pt 1-1 FT), . Player Name height
Meyers Leonard

Meyers Leonard

Robin Lopez 5,904,261 ra s ... Robin Lopez finished Tuesday 's contest with 21 points on 10 - of - 15 shooting ... j
Ed Davis 6,352,531 rail Blazers l

Robin Lopez 84

... Aaron Brooks played 33 minutes and had 23 points ...
Aaron Brooks 3,250,000 Kings

... Ed Davis went a perfect 5 - for - 5 from the field to score 11 points...

(a) Star-Structured Reasoning

[Question] Which NBA players, who are center and taller than the average height of point guards drafted after 1990, have more than & rebounds in a game? |

[Answer]|Alex Len, Al Horford, Andre Drummond, ...
NBA Player Information NBA Player Information
Plaver Name Position Draft year Height Height Position Player Name
Roul Lopez | point guarcs | 2001 > e % | Conter Alox Len [Alexten) recorded . totaling 12 points, 11 rebounds and four blocks ..]
Roko Ukic | point guards | 2005 77 =739 | 84 Center Al Horford ..while[Al Horford] finished with a double - double of 17 points and 14 rebounds j
oint guards | 2018 v
IssacBonga | pointeu 2018 80 J 80 Center _{Andre Drummond .[Andre brummond) recorded .. 20 points and grabbing 17 rebounds ... j

(b) Chain-Structured Reasoning

[Question] What countries have movies with an average duration of more than 100 minutes and have at least one movie with a median rating of 7 and average rating greater than 6.5?
[Answer]| Portugal, India, ...

Rating Movie
Median rating Average rating Movie Title Country Title Duration
7.3 A Fabrica de Nada Portugal A Fabrica de Nada 177
P AV 1
7 6.6 Ruth Portugal Ruth 120 G>100
#Row A
~7872 .. . India Anando Brahma 123 AVG> 100
7 6.8 Anando Brahma India The House Next Door 137
7 6.8 The House Next Door Group By Country

(c) Analytical Operation & Large-Scale Tables

Figure 1: Representative examples of our SPARTA benchmark. (see Appendix [M|for more examples).

| TableSize | Question | | Query Shape Supported | Multi-hop Reasoning |
Benchmark - G . Grouping/Having . Annotation Error Rate

‘ #Col #Row ‘ Seneration ‘ Chain Star ‘ Cross-modal Uni-modal

(> 3-Hop)

TAT-QA|Zhu et al. (2021} 4.0 9.4 Manual X X X v X 30%
FinQA |Chen et al. (2021} - 6.4 Manual X X X v X 27%
MULTIHIERITT]|Zhao et al. (2022} 5.0 10.8 Manual X X X v v 26%
HybridQA|Chen et al. (2020b] 4.4 15.7 Manual X X X v X 21%
OTT-QA [Chen et al. (2020a] 44 15.7 Manual X X X v X 21%
SPARTA (NBA) 122 3,280.5
SPARTA (Movie) 4.7 10,054.0 Auto (LLM) v v v v v 0%
SPARTA (Medical) 6.7 200.0 w/ Lightweight Human Validation

Table 1: Comparison of Table-Text QA benchmarks.

(1) Limited question types and shallow reasoning. Existing Table-Text QA benchmarks, constrained by
manual annotation complexities, feature a restricted range of shallow questions. These typically require
only direct information extraction (such as pinpointing a fact within a single textual passage or locating
a specific entry in a table). Even for questions that go beyond this simple extraction, the reasoning depth
remains shallow, seldom demanding more than two hops or involving advanced analytical operations like
aggregation or grouping. This is despite such operations being common in real-world natural language
queries yet underrepresented in benchmarks. This deficiency hinders the thorough evaluation of a system’s
deep, multi-step inference capabilities. Furthermore, current multi-hop questions usually follow simplistic
linear chains, rather than the expressive, tree-structured reasoning (e.g., multi-branch paths, longer chains, or
uni-modality hops) crucial for assessing systems on complex inference tasks, as exemplified in Figure [T}

(2) Annotation noise. Our quality audit uncovers numerous annotation errors that undermine the reliability
of the benchmark. Re-inspecting 100 randomly sampled dev examples from HYBRIDQA, we find that 21%
contain at least one error, which we classify into three categories: (1) Redundant modality (52.4%): table
and passage encode the same fact, yet the instance is tagged as a cross-modal question even though a single
modality suffices; (2) Incomplete answer set (23.8%): several answers are correct but only one is recorded,
distorting recall; (3) Incorrect or unanswerable (23.8%): the labelled answer is wrong or cannot be derived
from the provided data, revealing a lapse in quality control. Our audits on other benchmarks reveal similar
error patterns (see Appendix [A).

Under review as a conference paper at ICLR 2026

(3) Reliance on single, small-scale web tables. Current benchmarks almost exclusively draw on compact web
tables—typically scraped from Wikipedia or corporate reports—thereby providing only toy-scale scenarios.
As Table E] shows, tasks either involve a single table or, when multiple tables are present, the mean table
cardinality hovers around 15 rows, far short of the thousands of rows found in real-world databases. This
simplification is largely pragmatic: reasoning over larger tables dramatically increases annotator effort and
error rates (Chen et al.| (2020b). Consequently, existing benchmarks cannot meaningfully evaluate QA systems
in realistic, high-complexity settings that demand reasoning over large, heterogeneous relational data.

SPARTA unifies all evidence—structured and unstructured—inside a single relational store called the ref-
erence fact database. Each original relation (e.g., a web table or a financial ledger) remains intact as a
source table. Grounding tables, which store atomic propositions as tuples for SQL-addressable access, are
populated using two complementary methods (detailed in Section[3.2): (1) utilizing validated corpora such as
ROTOWIRE [Wu et al.|(2022); and (2) employing a table-to-text strategy that generates atomic facts directly
from structured data. With textual facts now addressable via SQL, queries over this combined store freely
mix modalities; no pointer to the original span is needed as answers are returned directly by query execution.

Stage 1 — Reference fact database construction. Source and grounding tables are merged into the reference
fact database, making all facts uniformly queryable.

Stage 2 — Query generation. A large language model (LLM) receives the schema and sample rows and emits
SQL whose number of nested predicates matches a target hop count. Note that SPARTA synthesizes queries
that instantiate the four representative nesting patterns—Types N, A, J, and JA—outlined in Appendix|B| Two
safeguards ensure that only realistic, executable statements survive: (1) Provenance-based refinement 1oops
provenance feedback—unmatched joins or overly selective predicates—back to the LLM until the query
returns a non-empty result. (2) Realistic-structure enforcement confines generation to post-order traversals of
query graph, yielding human-like join orders and enabling early pruning of infeasible subqueries.

Stage 3 — Question verbalisation. Each validated query is paired with its execution result, then a second
LLM rewrites the SQL into a fluent natural-language question, producing high-fidelity pair (question, answer)
that span aggregation, grouping, and deep multi-hop joins across large tables. Here, the final correctness—i.e.,
the validity of the question—answer pair—is checked via lightweight human verification; unlike HybridQA,
our pipeline does not require re-performing full multi-hop reasoning, thereby keeping audit costs low (see

Section[3.4).

This SQL-centric pipeline yields a large, diverse, and rigorously validated benchmark that corrects the size,
noise, and logical shallowness of previous Table-Text QA resources. On SPARTA, state-of-the-art models
that exceed 70 F1 on HybridQA or exceed 50 F1 on OTT-QA drop by more than 30 F1 points, revealing
fundamental weaknesses in current cross-modal reasoning and highlighting directions for future research.

2 RELATED WORK

Table-Text QA Benchmark. Table-Text QA benchmarks evaluate a model’s ability to jointly reason
over structured tables and unstructured passages. HybridQA |Chen et al.| (2020b) introduced the task, and
OTT-QA |Chen et al.|(2020a) extended it to open-domain settings, but both suffer from annotation noise,
shallow reasoning depth, and a lack of support for advanced analytical operations. Specifically, they do not
support GROUP BY or HAVING clauses, and only 1.1% of questions involve aggregation. Their multi-hop
reasoning is confined to short, linear chains and fails to capture tree-structured or uni-modal reasoning
paths. Other benchmarks—TAT-QA [Zhu et al.| (2021)), FinQA |Chen et al.| (2021)), and MultiHiertt [Zhao
et al.| (2022)—focus narrowly on numerical reasoning in financial contexts rather than multi-hop reasoning,
further limiting coverage [Zhang et al.|(2023)). Additionally, all existing Table-Text QA datasets rely on small,
manually annotated web tables, which hinders scalability and realism. SPARTA addresses these gaps with an
SQL-centric pipeline that constructs a large-scale benchmark of executable, compositional questions over
hybrid corpora, offering a principled testbed for multi-hop QA across text and tables.

Under review as a conference paper at ICLR 2026

Post-order

. . N .
" . 4 Realistic ST’ ‘I
i ||] : Query [SQL2NL |
i 1 Generator Translator :
1 es] |
| { l
| d l
| L 1
i]

1

Texts Grounding Tabl SQL Query Graph
-
X NL Question
— qz Provenance i |- ’
B Fi
. Reference Fact | | ewet ke If Empty Result ,I saL [E

N Source Tables Database// N 7/ Execution

-

Figure 2: Overview of SPARTA: (1) Reference Fact Database Construction, (2) Query Generation, (3)
Question Verbalisation. ST and GT denote a source table and a grounding table, respectively.

Synthetic Benchmark Generation. Recent synthetic benchmark generation scales QA pairs from pre-
existing sources, but most are single-modal: relying on knowledge graphs [Sun et al.| (2024); Omar et al.
(2025)); |Orogat & El-Roby| (2023} [2022)) or text corpora |Bonifacio et al.| (2022)); Jeronymo et al.| (2023),
ignoring cross-modal reasoning. ERBench |Oh et al.| (2024)) uses relational databases, yet its questions
are binary or multiple-choice, based on shallow templates excluding analytical operators like GROUP BY,
HAVING, and aggregations; it also lacks table-text interplay. In contrast, SPARTA generates multi-hop
questions bridging tables and passages, mirroring complex nested SQL patterns to provide a rigorous cross-
modal benchmark for Table-Text QA. Beyond QA, benchmarks in other domains impose domain-specific
constraints: database performance benchmarks Nambiar & Poess| (2006)); Erling et al.| (2015) use fixed
schemas and templates for reproducible profiling; unlearning benchmarks [Maini et al.| (2024); Zhong et al.
(2024) create forget/retain partitions for selective forgetting. SPARTA’s constraint is fundamentally different:
every synthetic example must encode tree-structured multi-hop reasoning grounding executable SQL and
natural-language questions, requiring analytical operations and table-text alignment. Our provenance-based
refinement and realistic-structure enforcement address this, producing semantically rich, executable queries.

3 SPARTA

3.1 TABLE-TEXT QA TASK AND BENCHMARK GENERATION

Given a natural-language question ¢y, a set of source tables Sp={T"),... T(™}, and a set of passages
Cp={PW ... P}, aQA system fy must return the answer a = fp (g1, S7,Cp). Each passage in Cp is
decomposed into atomic facts and stored as tuples in grounding tables Gr. Merging these with the original
source tables yields a unified reference fact database D. An LLM then: (i) generates executable SQL queries
on D that vary in depth (selection, aggregation, nesting, etc.), and (ii) verbalises each query into a fluent
natural-language question gny,. The resulting pairs (¢n1,, a) constitute a scalable benchmark for Table-Text
QA. An overview of the entire pipeline is provided in Figure 2]

3.2 REFERENCE FACT DATABASE CONSTRUCTION

We use the ROTOWIRE dataset as part of our reference fact database, whose structured tables are widely used
as gold supervision for text-to-table and have been verified by the authors of [Wu et al.|(2022) for consistency
with the accompanying game reports. Each NBA game report in this corpus is decomposed into atomic facts,
which are stored as tuples in G, guaranteeing perfect alignment between text and relational data. To construct
Sr, we integrate six public NBA datasets—covering salaries, awards, draft data, and team histories—sourced
from Kaggle and data.world kag|(fjajgibse); [dat. Shared entity attributes such as PLAYER_NAME and
TEAM_NAME are enforced as primary—foreign key pairs, yielding a connected schema in which every tuple
from G can be joined to at least one table in Sp. The resulting database contains three grounding tables and
six source tables (see Appendix [C).

While our construction uses NBA data for illustration, SPARTA is inherently domain-agnostic. From any
relational database, one designates a subset of relations as St and treats the remaining relations as Gr.
Applying table-to-text generation to G yields a companion set of textual passages Cp, forming the reference-

Under review as a conference paper at ICLR 2026

fact database D = St U G with no information overlap between the two sets. The query-generation pipeline
then applies unchanged, yielding a portable recipe for building large-scale Table-Text QA benchmarks in any
domain with relational data. To demonstrate this, we extended our pipeline to two new domains—movies and
medical—using Kaggle datasets kag| (cid), with configurations identical to the NBA domain (see Appendix [E).
For these datasets, we start from existing structured tables and convert a subset into grounding tables using
rule-based templates. This table-to-text transformation is deterministic and template-driven, with templates
manually designed and verified to prevent spurious facts or errors.

3.3 QUERY GENERATION

For non-nested queries, SPARTA builds the statement clause-by-clause: the LLM emits each clause in
canonical SQL order, conditioned on the schema and previously written clauses, and immediately executes
the partial query. If the result is empty, the execution outcome is fed back so the LLM can revise the offending
clause, ensuring the query remains executable and semantically meaningful at every step.

The next step is to synthesise nested SQL queries that act as faithful logical forms for multi-hop reasoning. A
generated query must satisfy two criteria: (i) it should resemble a query that a human analyst would plausibly
write, avoiding degenerate template artifacts, and (ii) it must execute over D without error and return a
non-empty result. These guarantees ensure that every (gnr,, a) pair is both natural and answerable.

Template-based generation fills fixed slots with ad-hoc limits or auxiliary predicates to guarantee
execution, yet the resulting SQL is often semantically unsound. For instance, SELECT birthplace
FROM nba_player_information WHERE birthplace <> ‘Chicago, Illinois’ OR
birthplace <> ‘Dallas, Texas’ runs without error but expresses a vacuous intent (... not born
in Chicago or not born in Dallas,” matching everyone). Conversely, one-shot LLM prompting produces
natural queries, but these frequently yield empty results and show limited diversity (see Table[3). We therefore
introduce a dual-stage framework: (i) realistic-structure enforcement and (ii) provenance-based refinement.
3.3.1 REALISTIC-STRUCTURE ENFORCEMENT

A nested SQL query can be modeled as a query graph G = (V, E) where each node v; € V corresponds to a
distinct query block—namely every SELECT ... FROM ... WHERE ... subquery including the
outermost statement—while each (directed) edge e;; € E denotes a nested predicate that correlates blocks
(); and @); through a shared attribute reference, thus capturing the dependency structure of the original nested
query in graph form (see Appendix |B|for representative nested query patterns). Based on this representation,
we measure query complexity by the number of edges in the query tree, each representing a reasoning hop.

For nested-query generation, SPARTA adopts Post-Order+Prov as the default. That is, to preserve realistic
structure, we force the LLLM to build the query tree in post-order: compose each leaf subquery first, then
wrap it with successively higher-level blocks—exactly how analysts craft nested SQL. We choose post-order
traversal over alternatives like breadth-first or top-down, because the latter require validating incomplete
queries before inner subqueries are constructed. In contrast, post-order ensures that each intermediate block
is executable by validating subqueries first and then composing higher-level predicates. In Post-Order+Prov,
leaf nodes are generated clause-by-clause. For the target question type we pick the relevant clauses (WHERE,
GROUP BY, ORDER BY,...) in canonical order, and let the LLM fill each one using (i) the schema, (ii)
earlier clauses, and (iii) partial results. If a clause yields an empty result, we roll back to the last valid
subquery, sparing redundant LLM calls. Internal nodes arise by recursively enclosing validated subqueries.
At every step the LLM selects a child query, picks a joinable table, and emits a connecting predicate (AND/OR,
etc.). Empty outputs trigger provenance-guided repair (§3.3.2); otherwise the predicate is kept. The loop
iterates until the query graph grows to the specified target size.

3.3.2 PROVENANCE-BASED REFINEMENT
The LLM builds the query graph in post-order—validated leaves first, then one outer predicate at a time. If an

evolving query returns no rows, a provenance-based refinement process is initiated to repair the query. The
refinement process leverages "why-not provenance," a database technique used to identify which predicates in

Under review as a conference paper at ICLR 2026

/[Step1. Find Subquery with non-empty result). Step2. Get Why-not Pr)
riginal T B : N iati \
AoriginalQueryQl _ ___________ . nba_player_information nba_player_affiliation nba_player_affiliation SELECT player_name
ISELECT player_name i | birth_year | player_name | player_name | .. player name | salary | .| coon o nC formation
'"FROM nba_player_information 1 _player_|
| _player_| . 1980 John John (John | 700,000] WHERE player_name IN
1 WHERE | player_name IN \ 1981 o Sam 600,000 (SELECT player_name
1 (SELECT player_name 1 1980 = E 650,000 FROM nba_player_information
: FROM nba_player_information ! Jordan 500,000 WHERE birth_year >= 1980)
! WHERE_birth_year >=1980) | 1985 Ben) Jordan . AND player_name IN
I AND [player_name IN " 1990 Mark (SELECT player_name
1 (SELECT player_name 1 ()= Why-not Provenance FROM nba_player_affiliation
! - N 1 f E: ted Result of WHERE salary > 800,000)
Lo FROM _nba_player affiliation ;[):Result of O’ (= Expected Result of Q) ‘_’F“’:zre: deout‘:“ ,sgla? + 800,000’
) L» Sub Query @’ with non-empty Result Y piha /
Step3. LLM pting _J [Revised Query Q']
[Original Query Q] [Problematic Predicates] SELECT player_name) [Result of Q"]
SELECT player_name WHERE salary > 800,000 FROM nba_player_information
FROM nba_player_information h WHERE player_name IN name
WHERE player_name IN [Why-not Provenance] (SELECT player_name John
(SELECT player_name nba_player_afiliation FROM nba_player_information
FROM nba_player_information S GETD ot —) == WHERE birth. year >= 1980) sam
WHERE birth_year >= 1980) . . " Tom
AND player rame IN John 700,000 (Filtered out by ‘salary > 800,000') m AND player_name IN

(SELECT play e Sam 600,000 (Filtered out by ‘salary > 800,000') (SELECT player_name
FROM nba_player_affiliation
\ WHERE _ salary > 800,000)

Tom 650,000 (Filtered out by ‘salary > 800,000') FROM nba_player_affiliation /

WHERE salary >= 600,000)

Figure 3: Overview of provenance-based refinement.

a query are responsible for filtering out expected tuples |Bidoit et al.|(2014); (Chapman & Jagadish|(2009); Lee
et al.[(2017). While traditional why-not provenance often relies on user-provided examples of the missing
tuples, our approach dynamically derives the expected tuples from intermediate query results.

The process unfolds in three steps. First, when a query yields an empty result, we peel off predicates in
reverse order until the query yields a result. Second, we sample a tuple from this non-empty result set. Finally,
we run a why-not provenance tool |Dietrich et al.[(2022)) to identify the blocking predicate and provide this
provenance report to the LLM, instructing it to rewrite only the problematic clause.

Ablations are (i) One-Shot—k, which inserts all k predicates in a single pass with no checks, and (ii) Post-Order
(no provenance), which follows the same construction but skips the repair loop. Figure [3]illustrates the
overall process of provenance-based refinement. Provenance feedback relaxes the predicate from salary >
800000 to salary > 600000.

3.4 QUESTION VERBALISATION

For each executable SQL query gsqr,, we generate a corresponding natural-language question gy, using
AST-ICL |Al Lawati et al.| (2025), a SOTA LLM-based SQL-to-text model. We adopted the LLM-based
model over template-based methods, which are limited by rigidity and reliance on handcrafted templates, as
documented in prior work [Iyer et al.[(2016); Xu et al.|(2018)). In AST-ICL, the SQL abstract syntax tree is
supplied as an in-context exemplar, and the model emits a fluent question gny, whose semantics align with the
query. Executing gsqr, on D yields the answer a, completing the benchmark pair (gny,, a). Every instance is
thus interpretable, executable, and suitable for probing multi-hop reasoning over hybrid (table + text) data.

The verbalized questions were validated and corrected by three CS graduate students with SQL/schema
literacy to ensure factuality and meaningfulness. This process is lightweight, requiring substantially less effort
than full manual annotation. Specifically, validating 3,300 queries takes about 1,493 minutes of total worker
time, whereas HybridQA required roughly 6,600 minutes to create the same number of queries from scratch.

4 EXPERIMENTS

4.1 EVALUATION SETUP

Hardware and Software Settings. We conducted our experiments on a machine with Intel(R) Xeon(R) Gold
6230 CPU @ 2.10GHz and 1.5 TB of RAM running Ubuntu 22.04.4 and 4 RTX A6000 GPUs, with LLM
inference managed via the SGLang|Zheng et al.|(2024) inference engine. We used Llama-3.1-70B-Instruct
Dubey et al.|(2024) as the LLM.

Query Generation Methods. For non-nested query generation, SPARTA’s default is Execution-Guided
generation: the LLM writes each clause in canonical order, executes the partial query, and immediately edits
any clause that empties the result. As an ablation we also evaluate (i) One-Shot, which emits the whole query
from schema only, and (ii) Clause, which builds the query sequentially without execution feedback.

Under review as a conference paper at ICLR 2026

For nested-query generation, SPARTA’s default is Post-Order+Prov: validated leaves are wrapped one
predicate at a time (post-order); each new predicate is executed immediately and, when empty, repaired with
provenance feedback. Ablations include (i) One-Shot—k, which inserts all k predicates in a single pass with
no intermediate checks, and (ii) Post-Order (no provenance), which follows the same post-order construction
without provenance-based repair. We generate 500 non-nested and 600 nested SQL queries per method on the
NBA domain (configuration as in Table[I0), so that quality and cost can be compared on equal footing.

Table-Text QA Methods. To gauge how current state-of-the-art systems break down under SPARTA’s
deeper hops, larger tables, and advanced analytical operations, we evaluate SOTA Table-Text QA methods,
including methods based on prompting LLMs such as ODYSSEY |Agarwal et al.|(2025) and HProPro|Shi et al.
(2024)). These models have shown strong results on HybridQA, where models reason over provided tables and
linked documents. ODYSSEY constructs a graph from the table and linked documents, enabling the LLM
to traverse the graph for query answers. HProPro generates and executes program via the LLM to produce
query responses. Since existing Table—Text QA methods are not originally designed to support uni-modal
hops, we apply minimal extensions to enable such behavior during evaluation on SPARTA. Specifically, for
ODYSSEY, we augment the hybrid graph by adding edges between matching cells of columns that share a
join relationship. For HProPro, we adapt the prompt format by replacing the input table with a list of relevant
tables. For a fully end-to-end scenario in which no oracle is provided, we pair the Table-Text QA methods
with HELIOS |Park et al.| (2025)—the top retriever on OTT-QA—so the model must both retrieve evidence and
reason over it. We also run every method with GPT-5 and GPT-3.5-turbo backbones to test LLM sensitivity.

4.2 BENCHMARK GENERATION COST AND QUERY NATURALNESS

A scalable benchmark must maximise useful queries while minimising LLM calls and wall time. We therefore
track seven complementary metrics in Table 2]

Table 2: Cost metrics used for benchmark generation.

Metric Definition

Success-Q # of non-nested queries that execute without error and return at least one row.

Exec-Err # of statements that fail at parse or runtime, revealing schema or logic errors.

Empty-Q # of syntactically valid queries that return zero rows because predicates are too restrictive.

Duplicate-Q # of queries whose result duplicates a previously generated query, reducing diversity.

Ideal Calls # of LLM invocations required if every step succeeds on the first attempt (baseline cost).

Total Calls # of actual LLM invocations, i.e., Ideal Calls plus extra calls for provenance-guided fixes or other retries.
Wall Time Total wall-clock time to obtain all successful queries.

Table [3] summarizes generation overheads for both non-nested and nested SQL. For non-nested queries,
Execution-Guided is most economical, needing only 1,134 total LLM calls—just 7.2% above the ideal
1,058—and finishing in 2,466s. In contrast, One-Shot begins with the lowest ideal budget (500 calls) but
produces 60 empty and 1,265 duplicate outputs, inflating usage to 1,830 real calls (266% of ideal) and
incurring the highest latency; Clause mitigates these failures yet still exceeds its ideal by 24.9%. For nested
queries, Post-Order+ Prov is most cost-effective, completing with 4,722 calls in 26,278s—cutting call volume
by 42.8% versus vanilla post-order and by 66.2% versus One-Shot—k. These results show that disciplined
post-order construction combined with provenance-driven repair minimizes redundant generations while
ensuring executable, semantically plausible SQL; detailed analysis of generation overheads across varying
query graph shapes and sizes is provided in Appendix [F

To assess the realism of the generated SQL queries, we employ a scoring-based evaluation framework
combining automatic and human assessments. Each query is rated from 1 (least natural) to 5 (most natural)
across three dimensions: Relevance, which measures alignment with the genuine curiosity of a typical
person; Specificity & Clarity, which assesses whether the query expresses a clear and well-scoped
information need; and Overall Naturalness, which combines the above criteria to decide whether
the query is likely to be asked by a real person. For a comprehensive assessment, we conduct an automatic
evaluation (auto-eval) using ChatGPT-40 |OpenAl|and an independent human evaluation (human-eval) by
three external CS graduate students with SQL/schema literacy. As a baseline for comparison, we also evaluate

Under review as a conference paper at ICLR 2026

Table 3: Generation Cost Comparison of Query Generation Methods.

Method ‘ Success-Q Empty-Q Duplicate-Q Exec-Err ‘ Ideal Calls Total Calls Wall Time (s)
Non-nested Query Generation
One-Shot | 500 60 1265 5 | 500 1830 4256.96
Clause | 500 51 78 0 | 1053 1316 3218.83
Execution-Guided | 500 0 27 0 | 1058 1134 2466.47
Nested Query Generation

One-Shot-k ‘ 600 0 0 0 ‘ 2664 13962 115316.67
Post-Order (no provenance) | 600 0 0 0 | 3104 8253 38867.40
Post-Order+Prov | 600 0 0 0 | 3074 4722 26277.87

Non-nested (auto-eval) Nested (auto-eval)

il ol ol

Relevance Specificity & Clarity Overall Naturalness Relevance Specificity & Clarity Overall Naturalness

Non-nested (human-eval) Nested (human-eval)

‘il M A e

Relevance Specificity & Clarity Overall Naturalness Relevance Specificity & Clarity Overall Naturalness

Figure 4: Comparison of Query Naturalness for Different Generation Methods.

queries generated by template filling with randomly sampled column—value pairs. This dual approach,
integrating LLM-based auto-evaluation with human judgment, yields a robust, multi-perspective measure of
how convincingly the generated queries mirror real user intent.

Figure [reports the naturalness scores of queries generated by different methods, evaluated across three
criteria. Among the non-nested query generation methods, Execution-Guided Generation achieved the highest
scores consistently across both automatic and human evaluations. Specifically, in terms of overall naturalness,
it outperformed Clause-by-Clause, One-shot, and Template-based generation by 1.3%, 11.4%, and 37.5%,
respectively, in auto-eval; and by 6.0% and 36.7% over One-shot and Template-based methods in human-eval.
For nested query generation, Post-order Generation with Execution Guidance achieved the top scores across
all three metrics. Compared to Post-order, One-shot Nested, and Template-based generation, it yielded
auto-eval improvements of 1.7%, 8.1%, and 123.2%, and human-eval gains of 2.1%, 12.5%, and 117.8%,
respectively. These results confirm that LLM-based generation strategies—especially those leveraging clause-
wise generation and post-order traversal—are significantly more effective at producing realistic and fluent
SQL queries than template-based approaches.

4.3 TABLE-TEXT QA EVALUATION RESULTS

Table[dand Table[3]report the Table-Text QA performance of representative methods across eight benchmarks,
revealing the increased difficulty posed by SPARTA. We evaluate SPARTA under two configurations: (1)
SPARTA (Oracle), where models are given ground-truth tables and linked passages; and (2) SPARTA
(Retrieval), where models must retrieve relevant content from the entire corpus. On SPARTA (Oracle),
ODYSSEY with GPT-5 achieves an average F1 score of 35.6% across all domains, representing a sharp
33.9-point drop compared to its performance on HybridQA (69.5%). Similarly, HProPro with GPT-5 achieves
an average F1 score of 40.4%, a 30.1-point drop from its HybridQA performance (70.5%). These results
reveal the limitations of existing methods when scaled to larger, more complex queries. Interestingly, HProPro
with GPT-5 outperforms ODYSSEY on the NBA and Movie domains, which feature tables with thousands of
rows (as shown in Table[I)), owing to its ability to generate executable programs that directly operate over
tables. This result highlights the limitations of ODYSSEY when applied to large-scale tables and aligns
with the broader observation that larger table sizes increase the difficulty of table-QA for LLMs [Patnaik

Under review as a conference paper at ICLR 2026

Table 4: Table-Text QA Accuracy on the SPARTA (Oracle) across multiple domains.

| SPARTA | HybridQA
Method \ NBA Movie Medical Avg. \

|[EM F1I P R EM FI_P R EM FI P R EM Fl_P R |EM Fl_P R
90 151 268 148 202 239 336 247 67 229 332 213 120 206 312 203|327 422 426 442

ODYSSEY w/ GPT-3.5-turbo

HProPro w/ GPT-3.5-turbo 11.0 13.6 164 138 222 278 29.1 292 155 195 202 197 162 203 219 209|214 253 257 26.1
ODYSSEY w/ GPT-5 212 284 384 281 204 242 329 243 475 542 603 542 297 356 439 355|553 695 693 735
HProPro w/ GPT-5 23.6 331 362 340 36.6 47.1 49.2 488 281 410 432 416 295 404 429 415|597 705 711 731

Table 5: Table-Text QA Accuracy on the SPARTA (Retrieval) across multiple domains.

| SPARTA | OTT-QA
| NBA Movie Medical Avg. |
‘ EM F1 P R EM F1 P R EM F1 P R EM F1 P R ‘ EM F1 P R

Method

HELIOS+FIE Reader
HELIOS+HProPro w/ GPT-5

46 69 176 64 86 119 230 116 6.6 160 330 129 66 11.6 245 103|586 652 66.7 652
145 19.0 242 186 174 216 286 217 137 273 313 27.1 152 226 280 225|477 560 574 565

et al.. The performance gap between GPT-5 and GPT-3.5-turbo (35.6 vs. 20.6 F1 for ODYSSEY and 40.4
vs. 20.3 F1 for HProPro) underscores the importance of advanced LLM reasoning capabilities in handling
such challenges. In the retrieval setting, where no gold tables are provided, performance degrades further:
the best method (HELIOS + HProPro with GPT-5) attains only 22.6 F1. This sharp decline illustrates the
compounded challenge of retrieval and reasoning over heterogeneous corpora. We additionally evaluate the
FiE Reader Ma et al.|(2023), the state-of-the-art fine-tuned reader model on OTT-QA. While FiE Reader
surpasses HELIOS + HProPro w/ GPT-5 by 9.2 points on OTT-QA, it lags behind on SPARTA by 11.0 points,
showing fine-tuned models fail to generalize to SPARTA’s more complex, out-of-domain settings.

4.4 ANALYSIS

We conducted a comprehensive analysis of the models’ execution results on the SPARTA benchmark. This
investigation uncovers several fundamental vulnerabilities in current table-text QA models, pointing to critical
directions for future work.

Models struggle to handle complex multi-hop query structures. We evaluate Table—Text QA models
under various tree-structured query configurations, fixing the number of edges to four: (Depth 1, Breadth 3),
(Depth 2, Breadth 2), and (Depth 3, Breadth 1). We also included intermediate shapes with three edges, such
as (Depth 1, Breadth 2) and (Depth 2, Breadth 1), to further validate the trend.

As shown in Figure [Sa] model performance degrades sharply as either depth or breadth increases. At fixed
depth, expanding breadth from (Depth 1, Breadth 1) to (Depth 1, Breadth 3) reduces HProPro and ODYSSEY
by 25.2% and 27.5%, respectively. At fixed breadth, increasing depth from (Depth 1, Breadth 1) to (Depth
3, Breadth 1) yields 47.2% and 49.9% declines. Additional comparisons—(Depth 2, Breadth 1) to (Depth
2, Breadth 2), and (Depth 1, Breadth 2) to (Depth 2, Breadth 2)—show consistent degradation, further
confirming that both deeper and broader queries cause substantial F1 drops. These findings suggest that
existing methods are fundamentally limited in performing tree-structured reasoning over multiple relational
paths, regardless of whether complexity arises from depth or breadth.

Models struggle with analytical operations such as grouping and ordering. As shown in Figure [5b]
both ODYSSEY and HProPro exhibit consistent performance degradation when advanced analytical clauses
are present. For queries that include GROUP BY and HAVING clauses, ODYSSEY attains an F1 score of
35.4, whereas HProPro attains 27.1. When ORDER BY and LIMIT are present, the scores are 31.2 for
ODYSSEY and 21.4 for HProPro. Aggregation queries show a similar pattern, yielding 28.4 for ODYSSEY
and 37.2 for HProPro. Compared with each model’s average F1, these analytical scores are markedly lower,
indicating weak numerical reasoning, filtering, and ranking capabilities and exposing fundamental limitations
in addressing real-world table—text questions. Notably, ODYSSEY performs worst on aggregation queries,
whereas HProPro struggles most with ORDER BY and LIMIT.

Under review as a conference paper at ICLR 2026

ODYSSEY w/ GPT-5

HProPro w/ GPT-5

w &2 u o
s & 3

F1 Score
8

w s
8

F1 Score

L
&
K
&

(a) F1 scores across tree configurations (D: Depth, B: Breadth)

20
10
T T T T T T T o
QQ ‘Z;L\ %’5\ Q)Q ‘Z;L\ %Q
RSO

ODYSSEY w/ GPT-5

HProPro w/ GPT-5

F1 Score
N w s
S s 5

-
S

Aggregation

GroupBy
&

Having

OrderBy

Limit

F1 Score
N
S

s
5

w
s

-
S

Aggregation

Figure 5: Comparison of F1 scores across different configurations.

GroupBy
&

Having

(b) F1 scores across analytical operations

Table 6: Performance Comparison With and Without Text Data in Table-Text QA.

Method Setting EM F1 P R
Table-Text Cross Reasoning 23.9 28.6 363 284
DYSSEY PT- ©
ODYSSEY w/ GPT-5 Table-only Reasoning 320 392 495 388
Table-Text Cross Reasoning 11.9 163 172 16.7
HProProw/ GPT:S b le-only Reasoning 202 452 469 464

OrderBy

Limit

Performance drops sharply when unstructured text is required. As shown in Table [f] the inclusion
of table-text cross reasoning leads to a significant decline in performance. HProPro’s F1 score drops by
63.9% (from 45.2 to 16.3), while ODYSSEY experiences an even steeper drop of 23.0% (from 39.2 to
28.6). This sharp contrast highlights the difficulty of reasoning over unstructured passages in conjunction
with structured tables. Although both models perform moderately well when queries rely only on tabular
data, they consistently fail to retrieve and integrate relevant textual spans when external context is present.
These failures indicate that current Table—Text QA models lack robust cross-modal alignment and semantic
grounding, limiting their effectiveness in real-world scenarios that demand joint reasoning over heterogeneous
data sources.

To further support our findings, we include supplementary analyses in the appendix: an ablation study on
nesting types (Appendix[G) and an error case analysis (Appendix [I)).

5 CONCLUSION

In summary, we present SPARTA, a benchmark generation framework that rectifies the three critical short-
comings of existing Table-Text QA resources—shallow question design, annotation noise, and toy-scale
tables—by (i) unifying heterogeneous evidence inside a reference fact database, (ii) generating logically deep,
human-like SQL nested queries whose hop count and analytical operations are explicitly controlled through
a provenance-guided LLM pipeline, and (iii) verbalising them into natural-language questions using an
LLM-based SQL-to-text model, with lightweight human validation for fluency and correctness. On SPARTA,
state-of-the-art models that reach over 70 F1 on HybridQA or over 50 F1 on OTT-QA drop by more than 30
F1 points, exposing fundamental weaknesses in current cross-modal reasoning.

6 LIMITATIONS AND FUTURE WORK

SPARTA currently focuses on the Table-Text setting. Future work will extend it to multimodal inputs like
images and videos by using vision—language models to summarize visuals into atomic statements, normalizing
them into grounding tables, and merging with the existing fact database. Since these tuples follow the same
schema as D, the query-generation pipeline (§3.3) applies unchanged. A complete multimodal extension,
including dataset collection, schema design, and evaluation, is planned for future research.

10

Under review as a conference paper at ICLR 2026

Reproducibility Statement We include prompt examples for provenance-based refinement, realistic-
structure enforcement, and automatic naturalness evaluation in Appendix [N| Details of the experimental
setup are provided in Section@ All source code, datasets, and related artifacts for SPARTA are available at
anonymous.4open.science.

REFERENCES
Nba salaries. https://data.world/datadavis/nba—-salaries. Accessed: 2025-05-15.

Nba games. https://www.kaggle.com/datasets/nathanlauga/nba-games) a. Accessed:
2025-05-15.

Historical nba finals and mvp results. https://www.kaggle.com/datasets/thedevastator/
historical-nba-finals—-and-mvp-results,b. Accessed: 2025-05-15.

Imdb movies analysis - sql. https://www.kaggle.com/datasets/gauravbr/
imdb-movies—-data-erd,c.

Hospital management dataset. https://www.kaggle.com/datasets/kanakbaghel/
hospital-management-dataset) d.

Nba dataset project. https://www.kaggle.com/datasets/kareemignacio/
nba-dataset—-project)e. Accessed: 2025-05-15.

1991-2021 nba stats. https://www.kaggle.com/datasets/vivovinco/
19912021 -nba-stats) f. Accessed: 2025-05-15.

Nba/aba/baa team stats per game. https://www.kaggle.com/datasets/sumitrodatta/
nba-aba-baa-stats?select=Team+Stats+Per+Game.csv} g. Accessed: 2025-05-15.

Ankush Agarwal, Chaitanya Devaguptapu, and Ganesh S. Hybrid graphs for table-and-text based question
answering using LLMs. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), Proceedings of the 2025
Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pp. 858-875, Albuquerque, New Mexico,
April 2025. Association for Computational Linguistics. ISBN 979-8-89176-189-6. URL https://
aclanthology.org/2025.naacl-1long.39/.

Ali Al Lawati, Jason Lucas, and Prasenjit Mitra. Semantic captioning: Benchmark dataset and graph-
aware few-shot in-context learning for sql2text. In Proceedings of the 31st International Conference on
Computational Linguistics, pp. 8026-8042, 2025.

Nicole Bidoit, Melanie Herschel, and Katerina Tzompanaki. Query-based why-not provenance with nedex-
plain. In Extending database technology (EDBT), 2014.

Luiz Bonifacio, Hugo Abonizio, Marzieh Fadaee, and Rodrigo Nogueira. Inpars: Unsupervised dataset
generation for information retrieval. In Proceedings of the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 2387-2392, 2022.

Adriane Chapman and HV Jagadish. Why not? In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data, pp. 523-534, 2009.

Wenhu Chen, Ming-Wei Chang, Eva Schlinger, William Wang, and William W Cohen. Open question
answering over tables and text. arXiv preprint arXiv:2010.10439, 2020a.

11

https://anonymous.4open.science/r/SPARTA-7407
https://data.world/datadavis/nba-salaries
https://www.kaggle.com/datasets/nathanlauga/nba-games
https://www.kaggle.com/datasets/thedevastator/historical-nba-finals-and-mvp-results
https://www.kaggle.com/datasets/thedevastator/historical-nba-finals-and-mvp-results
https://www.kaggle.com/datasets/gauravbr/imdb-movies-data-erd
https://www.kaggle.com/datasets/gauravbr/imdb-movies-data-erd
https://www.kaggle.com/datasets/kanakbaghel/hospital-management-dataset
https://www.kaggle.com/datasets/kanakbaghel/hospital-management-dataset
https://www.kaggle.com/datasets/kareemignacio/nba-dataset-project
https://www.kaggle.com/datasets/kareemignacio/nba-dataset-project
https://www.kaggle.com/datasets/vivovinco/19912021-nba-stats
https://www.kaggle.com/datasets/vivovinco/19912021-nba-stats
https://www.kaggle.com/datasets/sumitrodatta/nba-aba-baa-stats?select=Team+Stats+Per+Game.csv
https://www.kaggle.com/datasets/sumitrodatta/nba-aba-baa-stats?select=Team+Stats+Per+Game.csv
https://aclanthology.org/2025.naacl-long.39/
https://aclanthology.org/2025.naacl-long.39/

Under review as a conference paper at ICLR 2026

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong, Hong Wang, and William Wang. Hybridqa: A
dataset of multi-hop question answering over tabular and textual data. arXiv preprint arXiv:2004.07347,
2020b.

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena Shah, Iana Borova, Dylan Langdon, Reema Moussa,
Matt Beane, Ting-Hao Huang, Bryan R Routledge, et al. Finga: A dataset of numerical reasoning over
financial data. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 3697-3711, 2021.

Benjamin Dietrich, Tobias Miiller, and Torsten Grust. Data provenance for recursive sql queries. In
Proceedings of the 14th International Workshop on the Theory and Practice of Provenance, pp. 1-8, 2022.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey Gubichev, Arnau Prat, Minh-Duc
Pham, and Peter Boncz. The ldbc social network benchmark: Interactive workload. In Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data, SIGMOD ’15, pp. 619-630,
New York, NY, USA, 2015. Association for Computing Machinery. ISBN 9781450327589. doi: 10.1145/
2723372.2742786. URL https://doi.org/10.1145/2723372.2742786!

Srinivasan Iyer, loannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Summarizing source code using a
neural attention model. In 54th Annual Meeting of the Association for Computational Linguistics 2016, pp.
2073-2083. Association for Computational Linguistics, 2016.

Vitor Jeronymo, Luiz Bonifacio, Hugo Abonizio, Marzieh Fadaee, Roberto Lotufo, Jakub Zavrel, and Rodrigo
Nogueira. Inpars-v2: Large language models as efficient dataset generators for information retrieval. arXiv
preprint arXiv:2301.01820, 2023.

Won Kim. On optimizing an sql-like nested query. ACM Transactions on Database Systems (TODS), 7(3):
443-469, 1982.

Seokki Lee, Sven Kohler, Bertram Ludéscher, and Boris Glavic. A sql-middleware unifying why and why-not
provenance for first-order queries. In 2017 IEEE 33rd International Conference on Data Engineering
(ICDE), pp. 485-496. IEEE, 2017.

Kaixin Ma, Hao Cheng, Yu Zhang, Xiaodong Liu, Eric Nyberg, and Jianfeng Gao. Chain-of-skills: A
configurable model for open-domain question answering. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 1599-1618, 2023.

Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary C. Lipton, and J. Zico Kolter. Tofu: A task of
fictitious unlearning for llms, 2024. URL https://arxiv.org/abs/2401.06121,

Raghunath Othayoth Nambiar and Meikel Poess. The making of tpc-ds. In Proceedings of the 32nd
International Conference on Very Large Data Bases, VLDB ’06, pp. 1049-1058. VLDB Endowment, 2006.

Jio Oh, Soyeon Kim, Junseok Seo, Jindong Wang, Ruochen Xu, Xing Xie, and Steven Whang. Erbench:
An entity-relationship based automatically verifiable hallucination benchmark for large language models.
Advances in Neural Information Processing Systems, 37:53064-53101, 2024.

Reham Omar, Omij Mangukiya, and Essam Mansour. Dialogue benchmark generation from knowledge
graphs with cost-effective retrieval-augmented 1lms. Proceedings of the ACM on Management of Data, 3
(1):1-26, 2025.

12

https://doi.org/10.1145/2723372.2742786
https://arxiv.org/abs/2401.06121

Under review as a conference paper at ICLR 2026

OpenAl. Chatgpt via chat completions api. URL https://platform.openai.com/docs/models/
chatgpt—-4o-latest.

Abdelghny Orogat and Ahmed El-Roby. Smartbench: demonstrating automatic generation of comprehensive
benchmarks for question answering over knowledge graphs. Proceedings of the VLDB Endowment, 15(12):
3662-3665, 2022.

Abdelghny Orogat and Ahmed EI-Roby. Maestro: Automatic generation of comprehensive benchmarks for
question answering over knowledge graphs. Proceedings of the ACM on Management of Data, 1(2):1-24,
2023.

Sungho Park, Joohyung Yun, Jongwuk Lee, and Wook-Shin Han. HELIOS: Harmonizing early fusion, late
fusion, and LLM reasoning for multi-granular table-text retrieval. In Wanxiang Che, Joyce Nabende,
Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 32424-32444, Vienna, Austria,
July 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.
acl-long.1559. URL https://aclanthology.org/2025.acl-long.1559/,

Sohan Patnaik, Heril Changwal, Milan Aggarwal, Sumit Bhatia, Yaman Kumar, and Balaji Krishnamurthy.
Cabinet: Content relevance-based noise reduction for table question answering. In The Twelfth International
Conference on Learning Representations.

Qi Shi, Han Cui, Haofeng Wang, Qingfu Zhu, Wanxiang Che, and Ting Liu. Exploring hybrid question
answering via program-based prompting. In Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 11035-11046, 2024.

Kai Sun, Yifan Xu, Hanwen Zha, Yue Liu, and Xin Luna Dong. Head-to-tail: How knowledgeable are
large language models (1lms)? aka will llms replace knowledge graphs? In Proceedings of the 2024
Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), pp. 311-325, 2024.

Xueqing Wu, Jiacheng Zhang, and Hang Li. Text-to-table: A new way of information extraction. In
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 2518-2533, 2022.

Kun Xu, Lingfei Wu, Zhiguo Wang, Yansong Feng, and Vadim Sheinin. Sql-to-text generation with graph-
to-sequence model. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pp. 931-936, 2018.

Lingxi Zhang, Jing Zhang, Xirui Ke, Haoyang Li, Xinmei Huang, Zhonghui Shao, Shulin Cao, and Xin Lv.
A survey on complex factual question answering. Al Open, 4:1-12, 2023.

Yilun Zhao, Yunxiang Li, Chenying Li, and Rui Zhang. Multihiertt: Numerical reasoning over multi
hierarchical tabular and textual data. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 6588—6600, 2022.

Lianmin Zheng, Liangsheng Yin, Zhigiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of structured language
model programs. Advances in Neural Information Processing Systems, 37:62557-62583, 2024.

Zexuan Zhong, Zhengxuan Wu, Christopher D. Manning, Christopher Potts, and Danqi Chen. Mquake:
Assessing knowledge editing in language models via multi-hop questions, 2024. URL https://arxivl
org/abs/2305.14795.

13

https://platform.openai.com/docs/models/chatgpt-4o-latest
https://platform.openai.com/docs/models/chatgpt-4o-latest
https://aclanthology.org/2025.acl-long.1559/
https://arxiv.org/abs/2305.14795
https://arxiv.org/abs/2305.14795

Under review as a conference paper at ICLR 2026

Fengbin Zhu, Wenqgiang Lei, Youcheng Huang, Chao Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng, and
Tat-Seng Chua. Tat-ga: A question answering benchmark on a hybrid of tabular and textual content in
finance. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp.
3277-3287, 2021.

14

Under review as a conference paper at ICLR 2026

A CROSS-DATASET ANNOTATION AUDIT

Dataset Any error Error breakdown (within erroneous samples)

% of all samples Redundant modality —Incomplete answer set Incorrect / unanswerable
HYBRIDQA 21% 52.4% 23.8% 23.8%
MULTIHIERITT 26% 15.4% 30.8% 53.8%
TAT-QA 30% 96.7% 0.0% 3.3%
FINQA 17% 41.2% 0.0% 58.8%
SPARTA 0% 0.0% 0.0% 0.0%

Table 7: Audit of 100 randomly sampled dev examples from each dataset. “Any error” shows the fraction
of all samples containing at least one error. The breakdown columns report the relative distribution among
erroneous samples.

B SUPPORTED NESTED QUERY PATTERNS

SPARTA synthesizes queries for each of the four primary nesting patterns |Kim|(1982) commonly observed in
real-world SQL, as illustrated in Fig[6]

Table 8: Nested—query patterns.

Type Inner aggreg. Correlation Typical intent / example

Type-N Pure set membership. Outer block tests whether
a value belongs to the set returned by a
non-correlated subquery (e.g., WHERE x IN
(SELECT ...)).

Type-A v Aggregate comparison. Inner block computes an
aggregate such as AVG or MAX and the result is
compared with each outer tuple (e.g., salary >
(SELECT AVG (salary) FROM ...)).

Type-J v Correlated filtering. Inner query references at-
tributes of the outer block without aggregation
(e.g., EXISTS (SELECT 1 FROM Items i
WHERE i.order_id = o.1id)).

Type-JA v v Correlated aggregate comparison. Inner
query both correlates with the outer block
and aggregates its own rows before the com-
parison (e.g., EXISTS (SELECT 1 FROM
Items i WHERE i.order_id = o.id
GROUP BY ... HAVING SUM(i.qgty) >
o.limit)).

Type-N Type-A Type-J Type-JA
—{) () 3
Ti. C=T;. Gy Ti. C=T;. C,

Figure 6: Four primary nesting patterns—type (N, A, J, JA) queries of depth 1. Each consists of an outer
block (7;) and an inner block (7). Arcs labeled ‘A’ indicate aggregation in the inner SELECT; straight arcs
‘N’ denote set-inclusion predicates; curved arcs denote join predicates.

15

Under review as a conference paper at ICLR 2026

705
o C SCHEMA OF REFERENCE-FACT DATABASE
707
708 nba_draft_combine_stats. W,:,‘_,.,,.,_._,..,.._..,‘, e
709 —
710 d..n._r..mg....._nm
711
712
713
714
715
716 nba_player_award nba_game_information
717 -
718
719
720
721 (a) NBA
722 —— e
role_mapping
724 Seis aichar pitle bigint name char i names
year category jint J—
725 _— date_published bigint name._id gint ! height
ratings duration bigint date_of_birth
726 £ move_title bigint Country blgint d.f@g:mr _mapping known_for_movies
P bitit worlwide_gross_income bigint -
728 pi—— B production_company bigint ::::m]‘{: :
729
b) Movie
730 (b)
731
732 billing patients
2 bill_id bigint £ patient_id bigint
733 patient_name bigint >—/_(_ name bigint
734 treatment_id bigint gender bigint
735 RS bill_date bigint date_of_birth bigint
amount bigint address bigint
736 £ treatment_id bigint payment_method bigint registration_date bigint
737 appointment_id bigint payment_status bigint insurance_provider bigint
treatment_type bigint
738 description bigint
739 cost bigint appointments
740 treatment_date bigint £ appointment_id bigint doctors
g g patient_name bigint >— £ doctor_id bigint
741 doctor_name bigint &————— name bigint
742 appointment_date bigint specialization bigint
appointment_time bigint years_experience bigint
743 reason_for_visit bigint hopital_branch bigint
744 status bigint
745
746 (c) Medical
747
748 Figure 7: Schemas of the reference-fact databases used in SPARTA across three domains. Each database
749 consists of two complementary types of tables: source tables S (orange) from public datasets (e.g., NBA
750 player salaries, movie metadata, medical records) and grounding tables G'r (green) encoding atomic facts
. extracted from textual passages.

16

Under review as a conference paper at ICLR 2026

D TABLE-LEVEL STATISTICS OF THE REFERENCE-FACT DATABASE

Table 9: Row/Column Statistics of All Tables in the Sparta Benchmark

Domain Table Name # Columns # Rows
nba_draft_combine_stats 35 772
nba_player_information 14 4596
nba_player_award 3 236
nba_champion_history 8 69

nba nba_player_affiliation 4 13980
nba_team_information 9 30
nba_player_game_stats 21 45640
nba_team_game_stats 12 12750
nanba_game_informtaion 7 6665
genre 2 14418
ratings 4 7872

imdb movie 8 7872
role_mapping 4 15336
director_mapping 3 3800
names 5 25617
treatments 6 200
billing 7 200

medical appointments 7 200
patients 7 50
doctors 5 10

Table 9] provides an overview of the structural statistics for all tables in the SPARTA benchmark, including
the number of columns and rows per table, grouped by domain (NBA, IMDB, and Medical). These metrics
highlight the scale and diversity of the reference-fact database used for evaluation.

E BENCHMARK CONFIGURATION

Table 10: Benchmark Configuration: SQL Operator Coverage, Query-Shape/Size Distribution.

Query Shape and Size Distribution (%)

Non-nested (Depth 1, Breadth 1) (Depth 1, Breadth 2) (Depth 1, Breadth 3) (Depth 2, Breadth 1) (Depth 2, Breadth 2) (Depth 3, Breadth 1) Total

455 9.1 9.1 9.1 9.1 9.1 9.1 100.0
SQL Operator Presence (%)

WHERE GROUP BY HAVING ORDER BY LIMIT AGGREGATION

100.0 15.3 34 7.7 4.5 50.0

Nested Predicate Type Presence in Nested Query (%)

Type-N Type-A Type-J Type-JA

57.8 64.3 324 152

F GENERATION COST ANALYSIS

F.1 CoSsT ANALYSIS ACROSS LLM SCALES

17

Under review as a conference paper at ICLR 2026

To demonstrate that our provenance-based refinement is effective regardless of the LLM’s size, we conducted
additional experiments comparing generation costs across LLMs of varying sizes. Specifically, in addition
to the Llama-3.1-70B-Instruct model evaluated in the manuscript, we measured generation costs using a
smaller-parameter LLM (gpt-o0ss-20B) and a larger-parameter LLM (gpt-oss-120B).

Table[IT|shows that Post-Order + Prov is the most cost-effective approach across all LLM variants, completing
with 4854, 4,722, and 3831 calls for the respective models, while cutting call volume by 18.8%, 42.8%,
and 54.5% versus vanilla Post-Order, and by 64.7%, 66.2%, and 65.7% versus One-Shot-k. These results
indicate that disciplined post-order construction combined with provenance-driven repair minimizes redundant
generations independent of the LLM’s scale.

Note that the "Ideal Calls" metric represents the number of LLM calls required if every step succeeds. It
varies slightly due to probabilistic clause inclusion in SQL query generation (based on predefined per-clause
probabilities). As shown in the table, the variance is very small when we repeat experiments three times per
method.

LLM Method Ideal Calls Total Calls
One-Shot-k 2661 13736
gpt-oss-20B Post-Order (no provenance) 3073 5977
Post-Order + Prov 3146 4854
One-Shot-k 2664 13962
Llama-3.1-70B-Instruct ~ Post-Order (no provenance) 3104 8253
Post-Order + Prov 3074 4722
One-Shot-k 2621 11225
gpt-o0ss-120B Post-Order (no provenance) 3152 8425
Post-Order + Prov 3145 3831

Table 11: Generation cost comparison across LLM sizes for three refinement strategies.

F.2 COST ANALYSIS ON QUERY SHAPE AND SIZE

Figure [§] contrasts LLM usage for star and chain query trees as their size grows from one to three nested
predicates. Here, star queries fix depth to 1 while increasing breadth (number of branches), whereas chain
queries fix breadth to 1 while increasing depth (number of nested levels). The size thus reflects how many
nested predicates are added along either the breadth or depth dimension. For star shapes, one-shot generation
quickly becomes prohibitive, ballooning to 17 the ideal call count when the hub size reaches three. Building
the same queries in post-order slashes that overhead to 3.2X; provenance repair trims it further to 1.6x.
Chains tell a different story: because their natural construction order already matches post-order, one-shot
and post-order costs are similar, yet provenance still removes 30—40 % of redundant calls at every depth.
Branching structures profit most from post-order generation, while provenance-guided repair is a universally
cheap “insurance policy” that cuts waste regardless of query shape.

Beyond structural complexity, we also measured the average number of LLM calls required to generate a
single query as the number of accessed tables increases. Table [I2]shows increases of +2.6 calls (from 1 to 2
tables), +3.9 (from 2 to 3), and +2.2 (from 3 to 4), indicating near-linear growth.

G ABLATION STUDY ON NESTING TYPES

For a deeper analysis, we examined the best-performing system on the SPARTA Benchmark—HProPro
with GPT-5—by breaking down its performance across query-nesting types: plain nesting (N), nesting with
aggregates (A), nesting with correlated joins (J), and nesting that combines correlated joins + aggregates (JA).
Results are shown below.

18

Under review as a conference paper at ICLR 2026

F1641%

0{ =3 One-shot 7000{ EZZ3 One-shot
EEE Post-order (no provenance) EEm Post-order (no provenance)

| HEE Post-order+Prov 6000 HEE Post-order+Prov
_ so00 000
g g
< E
3 3
S 000 S 000
8 8
= = 3
= =

2170
L3015 4 386% +389%
L 503% £307%
179 s v
+42% +41% L 20% FZEV3 +42% +41% 4200,
Star Query Size Chain Query Size
(a) LLM Call Count as Star-Query Size Increases. (b) LLM Call Count as Chain-Query Size Increases.

Figure 8: Generation cost for varying (a) star-query size and (b) chain-query size. Sky-blue bars mark ideal
LLM calls, and the labels above each bar represent the actual excess percentage.

Table 12: Average LLM calls per query as the number of accessed tables increases.

of Accessed Tables | Average LLM Calls per Query

1 23

2 49 (+2.6)
3 8.8 (+3.9)
4 11.0 (+2.2)

As shown in Table[I3] F1 falls steadily as structural (correlated joins) and analytical (aggregates) complexity
increases, with the largest drop when both factors are present (Type JA). This ablation study underscores that
correlated joins and aggregates are the model’s primary pain points.

H ANALYSIS ON NEGATION AND RANGE REASONING

To better understand which logical operators and conditions most challenge SPARTA models, we conduct
an ablation study focusing on two key query categories: negation and numeric range conditions. These
categories capture a large portion of structural breadth in SPARTA and represent frequent sources of model
errors.

We evaluate HProPro with GPT-5 on queries containing explicit negation operators (NOT LIKE, NOT
EXISTS,NOT IN, <>)as well as numeric range operators (>, <, >=, <=). TablelElpresents the results.

Both categories show notable degradation compared to the overall SPARTA score, with negation queries
dropping by 28.3% and range queries by 18.6%. These findings indicate that logical negation and numeric
range reasoning remain significant bottlenecks.

In addition to this quantitative breakdown, we selected representative samples from both query types and
conducted a qualitative error analysis, shown in Figure[9] As illustrated in Figure[9|a), negation reasoning
presents a recurring challenge. The example query requires identifying players for whom there is no record
indicating that they (i) are a Center with height > 90, (ii) were born after 1970, and (iii) were drafted “Oth
overall.” All three criteria fall under the scope of a single negated condition. However, the model applies
negation only to the first clause (“Center with height > 90”) while incorrectly treating the remaining clauses
(“born after 1970,” “drafted 9th overall”) as independent positive filters. This partial scoping of negation
leads the model to misinterpret the logical structure and include players who should have been excluded.

19

Under review as a conference paper at ICLR 2026

Table 13: F1 scores of HProPro (w/ GPT-5) across different nesting types. Percentage values indicate relative
change from the overall average (34.5).

Nesting Type \ F1 (HProPro w/ GPT-5)

Type-N 40.0 (+15.9%)
Type-A 33.7 (—2.3%)
Type-J 30.8 (—10.7%)
Type-JA 25.6 (—25.8%)
Total | 34.5

Table 14: F1 scores of HProPro (w/ GPT-5) on negation and range queries.

Query Category | F1 (HProPro w/ GPT-5)
Negation (NOT LIKE,NOT EXISTS,NOT IN, <>) 28.7 (—28.3%)
Range (>, <, >=, <=) 32.9 (—18.6%)
SPARTA (Oracle) \ 40.4

A similar pattern is observed for range reasoning, as shown in Figure[0[b). The gold query requires identifying
teams whose arena capacity exceeds the maximum capacity among teams that (i) were founded before
1970 and (ii) have capacities between 20,000 and 21,711. Although the model correctly computes the
maximum capacity among pre-1970 teams, it fails to apply the upper bound constraint (arena_capacity
< 21,711) during the final filtering stage. As a result, the predicted code returns teams that satisfy the
lower-bound conditions and the dynamic threshold but violate the required upper-bound range condition,
producing an incorrect answer.

I ABLATION STUDY ON ROBUSTNESS TO LINGUISTIC VARIABILITY

We further study the robustness of table-text qa models to linguistic variability by evaluating performance
under human-verified rephrased questions. Specifically, we sampled 100 queries from our benchmark and had
them manually rephrased by human annotators, ensuring the core semantic meaning and the correct answer
were preserved. We then evaluated the HProPro model with GPT-5 on both the original and the rephrased sets
of queries.

Table 15: F1 scores of HProPro (w/ GPT-5) on original and human-verified rephrased queries.

Query Set | F1 (HProPro w/ GPT-5)
Original Questions 45.22
Rephrased Questions 45.02 (—0.44%)

As shown in Table[T3] the F1 score dropped from 45.22 on the original queries to 45.02 on the rephrased
versions, amounting to a negligible decrease of 0.44%. This finding indicates that the model is highly robust
to surface-level linguistic variations. We have incorporated the details of this new experiment and its results
into the Appendix I of our revised manuscript to strengthen our robustness analysis.

20

Under review as a conference paper at ICLR 2026

Question: What is the maximum number of points scored in a single game by player who,

in that game, recorded more than 5 rebounds and more than 5 steals, and weight is less
than 180Ib and for whom there is no record indicating that they are a Center with height

Question: What is the highest team points in a game for any team
whose arena capacity is above the maximum arena capacity of any team founded before
1970, with an arena capacity above 20000, and owned by someone other than Paul Allen,

greater than 90, born after 1970, and drafted ‘9" overall’? and with an arena capacity below 21711,

Answer: 19 and which scored more than 100 points and rebounded more than 40 times in a game?
Answer: 127
Gold Code: Gold Code:

def solve(table) -> str:
max_before_1970 = None
for row in table:
if (row['founded_year'][0] < 1970) and (row['owner'][0] != 'Paul Allen’) and
(row['arena_capacity'][0] > 20000 and row['arena_capacity'][0] < 21711):
if row['arena_capacity'][0] > max_before_1970:
max_before_1970 = row['arena_capacity'][0]
for row in table:
if arena_capacity > max_before_1970:
passage_link = row['team_name'][1]
... extract the points with >100 points and >40 rebounds ..
return max_points max_before_1970

Predicted Code: Predicted Code:
def solve(table) -> str: def solve(table) -> str:
max_points = [] max_before_1970 = None
for row in table: for row in table:
if not (row[weight][0] < 180): if (row['founded_year'][0] < 1970) and (row['owner'][0] !='Paul Allen’) and

21713):

def solve(table) -> str:
for row in table:
if not (row[weight][0] < 180):
continue
if (row[position][0] include ‘Center’ AND row[height][0] > 90 and
row[birthyear][0] > 1970 and row[draft_pick][0] == ‘9" overall’):
continue
passage_links = row[player_name][1]
... extract the points with >5 rebounds and >5 steals ...
return max_points

continue (row['arena_capacity'][0] > 20000 an<- £ —eapacity Ho!

if (row[position][0] include ‘Center’ AND row[height][0] > 90): if row['arena_capacity'][0] > max_before_1970: missing!
continue max_before_1970 = row['arena_capacity'][0]

if not (row[birthyear][0] > 1970 AND row/[draft_pick][0] == ‘9" overall’): for row in table:
continue if arena_capacity > max_before_1970:

passage_link = row['team_name'][1]
... extract the points with >100 points and >40 rebounds ..
return max_points

(a) (b)

passage_links = row[player_name][1]
... extract the points with >5 rebounds and >5 steals ...
return max_points

Figure 9: Illustration of representative error cases where the model fails to correctly answer. (a) Negation
reasoning error. (b) Range reasoning error.

J ERROR CASE ANALYSIS

We conduct an analysis of the errors encountered by Table-Text QA models on randomly sampled sets of 100
examples each for SPARTA (Oracle) and SPARTA (Retrieval), as illustrated in Fig[I0] Representative error
types, along with their frequencies and causal interpretations, are summarized below.

Relevant data missing. This was the most frequent category of failure, where the model failed to identify all
the necessary information to correctly answer the question. SPARTA poses increased demands for multi-hop
reasoning across table and text sources, which existing methods often struggle with:

« Partial retrieval of relevant data: The model identifies only a subset of the necessary sources,
resulting in incomplete answers. As illustrated in Figure[TT] the model was expected to return both
62 and 53 as the field goal percentages for the Dallas Mavericks and New York Knicks,
respectively, but failed to do so.

¢ Failure to identify relevant data: The model does not identify crucial supporting data, leading
to either no answer or an incorrect one. For example, in questions requiring information from
both nba_player_information and nba_player_award, the model may access only the
former, overlooking the award records, and consequently returning an incorrect answer.

Erroneous data analysis. Compared to prior benchmarks, SPARTA introduces more complex analytical
requirements that reveal limitations in model capabilities:

¢ Failure to perform advanced analytical operations: The model struggles with applying operations
such as aggregations (e.g., COUNT, MAX) or executing multi-table joins correctly. These operations
require precise alignment of relational structures and logic, which is frequently mishandled.

21

Under review as a conference paper at ICLR 2026

<ova partial
eda‘a o retrieval

orti®) (f;:t H S ant dat@)
of Ye\eq ok 3 of 15 0% &
10 2 O NS
&8 S
5" XD] 92 & e
> & S T LS
§ P2 S o [OFSN
s OLS = S Sk
O N 25 ~.£)
2 & S ,§ 9 é\\ c
3 S 228 DL S
% 5o ¢ 528 Fow Estx
S 3EQ £ 8" «fs 3283
0%e O8T P o & & CE
88 T8 SRS k< S
LI D © L2 SaX oY’ &%
ERAY o L o T SO & S
Sz o ¢& (O
£g Gy g o oP
< oy 8 L
) B
° g
= o
S e
. 0! © e\'“"g;, (ot
Fallu’anced ron caiure awg\ca\
B2 o ced 25y 0%
ana¥953 0% sove B
(a) Oracle Setting (b) Retrieval Setting

Figure 10: Statistics of errors. For detailed descriptions and examples of each error category, see Appendix

* Reading comprehension errors: The model incorrectly interprets textual information, leading
to erroneous answers. For instance, in a case where the question asks for the Nuggets’ field
goal percentage, the model erroneously extracts "37%" from the sentence "Nuggets held
Sacramento to just 37 percent from the field, " misattributing Sacramento’s

statistic to the Nuggets. See Figure [IT]for a detailed example of this error.

Question misunderstanding. These errors arise from incorrect interpretation of the question intent or con-
straints. Representative cases include failing to restrict answers to players who played only as point_guard,
and instead including players who played point_guard along with other positions, misidentifying the
relevant time frame (e.g., using 2017 instead of 2016-17), introducing constraints not specified in the question,
or omitting key conditions necessary to derive the correct answer.

Schema linking errors. This category involves incorrect associations between the question and the schema
elements, such as tables or columns. For instance, when asked to retrieve the name of the head coach,
the model fails to identify the headcoach column in the nba_team_information table as relevant,
thereby omitting necessary information from the final prediction.

22

Under review as a conference paper at ICLR 2026

[Question]
What are the team field goal percentages of all the teams that have an arena capacity between 19,000 and 20,000 and
scored more than 100 points in a game?

Golden Answer

/

The Minnesota Timberwolves defeated the Portland Trail . Toronto Raptors defeated the Charlotte Hornets , 103 —
Blazers 108 — 107 ... As for the Trail Blazers, they were NBATeam Information 98 ... they managed a mediocre 38 percent success rate
unable to close out Monday 's game despite shooting an Team Name Arena Capacity from the field while yielding a percent figure to

impressive@ percent from the field ... 7 Trail Blazers 19,980 the Raptors ... 7

The Charlotte Hornets defeated the visiting Chicago Bulls , Raptors 19,800

135 - 106 ... Charlotte Hornets connecting Cln < Hornets 19,026 —|—>

The Denver Nuggets defeated the Sacramento Kings , 94 -
79, ... Nuggets held Sacramento to just percent
from the field ...

percent of their shots while holding Chicago to just 44 Nuggets 19.099
percent from the field ... 7 .
Mavericks 19,200

the Dallas Mavericks (10 - 3) defeated the Los Angeles The New York Knicks (20 - 20) defeated the Boston Celtics

Lakers (3 —10) 140 - 106 on Friday... They allowed the
Mavs to shoot an eye - popping percent from the

field ...
\

Knicks 19,763
(19-19)120- 114 on Tuesday ... Knicks finished the night
with outstanding @ percent shooting from the field ...

(—_J:cCorrect [_] :Error (Type : Erroneous data analysis) [___] : Error (Type : Relevant data missing)

Figure 11: Illustration of a representative error case where the model fails to correctly answer.

K SOFTWARE AND DATA LICENSES

The licenses for the software and datasets used in this paper are as follows:

e LLaMA 3.1-70B-Instruct: LLaMA 3.1
¢ OTT-QA: MIT License
* HybridQA: MIT License

All software and datasets were used strictly for research purposes and were not utilized in any non-research
contexts, particularly for commercial applications.

L AI ASSISTANTS

We used ChatGPT-40 [OpenAll to debug code efficiently, quickly identifying and resolving errors in our
implementations. Additionally, we used it for rephrasing sentences in our writing to improve clarity and
readability.

23

Under review as a conference paper at ICLR 2026

M REPRESENTATIVE EXAMPLES FROM OUR SPARTA BENCHMARK

Table 16: 20 representative examples from SPARTA, each consisting of a domain, a natural language question,
its corresponding SQL query, and the answer.

Row Type Content

Domain NBA

Question Which player won the NBA MVP award in the 1986 season?

SQL SELECT player_name FROM nba_player_award WHERE season = 1986
AND award = ’"nba mvp’

Answer Larry Bird

Domain NBA

Question What are the names of the players who scored more than 15 points and rebounded more than 5 times in
a game?

SQL SELECT player_name FROM nba_player_game_stats WHERE
number_of_points > 15 AND number_of_ rebound > 5

Answer Langston Galloway, Quincy Acy, Larry Nance Jr.,, ...

Domain Movie

Question In which movies did Riteish Deshmukh act?

SQL SELECT movie_title FROM role_mapping WHERE category = ’actor’
AND name = ’'Riteish Deshmukh’

Answer Marjaavaan, Mauli

Domain Movie

Question What is the total number of movies with a median rating greater than 5 and an average rating greater
than 5.5?

SQL SELECT COUNT (movie_title) AS total_movies FROM ratings WHERE
median_rating > 5 AND avg_rating > 5.5

Answer 4877

Domain NBA

Question Which Western Conference teams faced the Celtics more than once in the Finals?

SQL SELECT western_champion_name FROM nba_champion_history WHERE
nba_champion_name = ’'Celtics’ GROUP BY western_champion_name
HAVING COUNT (western_champion_name) > 1

Answer Rockets, Lakers

Domain Medical

Question What is the maximum years of experience of a pediatrician at Central Hospital?

SQL SELECT MAX (years_experience) FROM doctors WHERE
hospital_branch = ’"Central Hospital’ AND specialization =
"Pediatrics’

Answer 28

Domain NBA

Question What is the highest salary of Kevin McHale while playing for the Celtics?

SQL SELECT MAX (salary) FROM nba_player_affiliation WHERE

player_name = ’'Kevin McHale’ AND team_name = ’'Celtics’

(continued on next page)

24

Under review as a conference paper at ICLR 2026

Row Type Content (continued)

Answer 3,500,000

Domain NBA

Question Which Point Guards, drafted between 2000 and 2005, had more than 4 three-pointers, more than 8 field
goals and more than 1 steal in a game?

SQL SELECT player_name FROM nba_player_game_stats
WHERE player_name IN (SELECT player_name FROM
nba_player_information WHERE position = ’'Point
Guard’ AND draft_year BETWEEN 2000 AND 2005) AND
number_of_three_point_field _goals_made > 4 AND
number_of_field_goals_made > 8 AND number_of_steal > 1

Answer Chris Paul

Domain NBA

Question Which NBA players who were drafted in the first round and play the center position have a salary of
over 1 million in the 2016-17 season?

SQL SELECT player_name FROM nba_player_information
WHERE player_name IN (SELECT player_name FROM
nba_player_affiliation WHERE salary > 1000000 AND season
= 72016-17") AND draft_round = ’1lst round’ AND position =
"Center’

Answer Alex Len, Al Horford, Andre Drummond, ...

Domain Medical

Question What are the names of patients who have an appointment with a doctor who works at the central hospital
and has more than 20 years of experience?

SQL SELECT patient_name FROM appointments WHERE doctor_name IN
(SELECT name FROM doctors WHERE hospital_branch = ’Central
Hospital’ AND years_experience > 20)

Answer Alex Smith, Alex Aiden Moore, Emily Miller, ...

Domain NBA

Question What are the years of birth of the players who have a lane agility time of more than 11.5 seconds, a
three quarter sprint of less than 3.35 seconds, more than 10 field goals made and more than 8 rebounds
in a game?

SQL SELECT birthyear FROM nba_player_information
WHERE player_name IN (SELECT player_name FROM
nba_draft_combine_stats WHERE lane_agility_time > 11.5
AND three_quarter_sprint < 3.35) AND player_name IN
(SELECT player_name FROM nba_player_game_stats WHERE
number_of_ field goals_made > 10 AND number_of_ rebound > 8)
GROUP BY birthyear

Answer 1984, 1985, 1989, ...

Domain Movie

Question Which movies, starring Vincent D Onofrio as an actor, have an average rating greater than 5 and a

median rating of 6, excluding ’Kolonya Cumhuriyeti’?

(continued on next page)

25

Under review as a conference paper at ICLR 2026

Row Type Content (continued)

SQL SELECT title FROM movie WHERE title IN (SELECT movie_title
FROM role_mapping WHERE category = ’actor’ AND name =
"Vincent D Onofrio’ AND movie_title = title) AND title IN
(SELECT movie_title FROM ratings WHERE avg_rating > 5 AND
median_rating = 6 AND movie_title <> 'Kolonya Cumhuriyeti’)

Answer CHIPS, In Dubious Battle

Domain NBA

Question Who are the top 5 centers drafted in the 1st round, who have won the dpoy award after 2000, and who
have earned more than 2 million dollars in the 2004-05 season, sorted by their draft year in descending
order and birth year in ascending order?

SQL SELECT player_name FROM nba_player_information
WHERE player_name IN (SELECT player_name FROM
nba_player_affiliation WHERE salary > 2000000 AND season
= ’2004-05") AND player_name IN (SELECT player_name FROM
nba_player_award WHERE season > 2000 AND award = ’'dpoy’) AND
position = ’'Center’ AND draft_round = ’1lst round’ ORDER BY
draft_year DESC, birthyear ASC LIMIT 5

Answer Dwight Howard, Ben Wallace, ...

Domain Medical

Question Find the addresses of male patients born after January 1, 1980, who have MedCare Plus insurance and
have made payments that exceed the average failed payments greater than 2500.

SQL SELECT address FROM patients WHERE name IN (SELECT
patient_name FROM billing WHERE amount > (SELECT AVG (amount)
FROM billing WHERE payment_status = ’'Failed’ AND amount >
2500)) AND date_of_birth > 71980-01-01" AND gender = "M’ AND
insurance_provider = ’'MedCare Plus’

Answer 123 Elm St, 789 Pine Rd, ...

Domain NBA

Question Which NBA players, who are centers and taller than the average height of point guards drafted after
1990, have more than 8 rebounds in a game?

SQL SELECT player_name FROM nba_player_game_stats
WHERE player_name IN (SELECT player_ name FROM
nba_player_information WHERE height > (SELECT AVG (height)
FROM nba_player_information WHERE position = ’Point
Guard’ AND draft_year > 1990) AND position = ’Center’) AND
number_of_ rebound > 8

Answer Alex Len, Al Horford, Andre Drummond, ...

Domain Medical

Question What are the names of female patients who registered after 2021-09-02 and have billed amounts greater
than the average amount of failed payments over 25007

SQL SELECT name FROM patients WHERE name IN (SELECT patient_name
FROM billing WHERE amount > (SELECT AVG(amount) FROM billing
WHERE payment_status = ’'Failed’ AND amount > 2500)) AND
gender = 'F’ AND registration_date > "2021-09-02'

Answer Emily Jones, Laura Aiden Davis, ...

(continued on next page)

26

Under review as a conference paper at ICLR 2026

Row Type

Content (continued)

Domain
Question
SQL

Answer

Movie

How many movies starring John Abraham have a median rating above 5 and average rating above 4?
SELECT COUNT (title) AS number_of_movies FROM movie WHERE
title IN (SELECT movie_title FROM role_mapping WHERE
category = "actor’ AND name = ’"John Abraham’ GROUP BY
movie_title) AND title IN (SELECT movie_title FROM ratings
WHERE median_rating > 5 AND avg_rating > 4)

1

Domain
Question

SQL

Answer

NBA

What is the maximum height of the Lakers players who play as center, were drafted after 1995 and
have a salary greater than the highest salary of the Suns and greater than 20,000,000?

SELECT MAX (height) FROM nba_player_information

WHERE player_name IN (SELECT player_name FROM
nba_player_affiliation WHERE salary > (SELECT MAX (salary)
FROM nba_player_affiliation WHERE team_name = ’Suns’) AND
salary > 20000000 AND team_name = ’Lakers’) AND position =
"Center’ AND draft_year > 1995

84

Domain
Question

SQL

Answer

NBA

What are the names of the teams that scored more than the highest points scored by the Thunder when
they scored more than 25 points in the first quarter and scored more than the highest points scored by
teams that scored more than 100 points and had a three point field goal percentage of more than 30 and
have an arena capacity of more than 20,000 and are not the Pistons?

SELECT team_name FROM nba_team_game_stats WHERE team_points

> (SELECT MAX (team_points) FROM nba_team game_stats

WHERE team_name = ’'Thunder’ AND team_points_in_quarterl

> 25) AND team_points > (SELECT MAX (team_points)

FROM nba_team_game_stats WHERE team_points > 100 AND
team_percentage_of_three_point_field_goal_made > 30) AND
team_name IN (SELECT team_name FROM nba_team_information
WHERE arena_capacity > 20000 AND team_name <> 'Pistons’)

Bulls

Domain
Question

SQL

Answer

Movie

Which movies directed by Vivek Athreya have a median rating greater than 5 with more than 100 total
votes, and do not feature Matt Smith as an actor?

SELECT title FROM movie WHERE title IN (SELECT

T2 .movie_title FROM director_mapping AS T2 WHERE T2.name

= ’'Vivek Athreya’ AND movie.title = T2.movie_title) AND

NOT title IN (SELECT movie_title FROM role_mapping WHERE
category = "actor’ AND name = ’'Matt Smith’) AND title IN
(SELECT movie_title FROM ratings WHERE median_rating > 5 AND
total_votes > 100 GROUP BY movie_title)

Brochevarevarura, Mental Madhilo

27

Under review as a conference paper at ICLR 2026

N PROMPT TEMPLATES

We define a suite of prompt templates that guide LLMs to generate executable, semantically coherent SQL
queries. Prompts are organized into three categories, with an NBA domain example provided; for other
domains, only domain-specific tokens are swapped (e.g., replacing "NBA" with "Movie").

Clause-Level Generation. Templates for generating individual SQL clauses in canonical order:

¢ SELECT (non-aggregate, aggregate)
« FROM

« WHERE

GROUP BY

HAVING

ORDER BY

e LIMIT

Nested Predicate Construction. Templates for building multi-hop queries via nested predicates:

¢ Inner Query Selection
* FROM Clause for Outer Block
* Nested Predicate Generation: Type-N, Type-A, Type-J, Type-JA

Refinement and Evaluation. Templates to improve query validity and assess realism:

* Provenance-Based Refinement for repairing empty-result queries
* Naturalness Evaluation to assess relevance and intent clarity

28

Under review as a conference paper at ICLR 2026

WHERE Clause Generation

You are both an NBA fan and an SQL expert. Given the provided database and the generated clauses,
generate a WHERE clause that reflects authentic NBA-related curiosity.

Ensure the following requirements:

e Qutput Structure: Return a JSON object containing a single key, "where", with its value
being a WHERE clause.

* Ensure NBA Fan Relevance: Generate the WHERE clause that aligns naturally with realistic
and meaningful queries that NBA fans are likely to ask.

* Maintain Specificity and Clarity of Intent: Generate the WHERE clause that is well-defined,
avoiding overly vague or artificially complex queries.

* Align with Generated Clauses: Ensure that the WHERE clause maintains logical consistency
with previously generated clauses, preserving semantic coherence.

* Ensure Synthetic Correctness: Generate the WHERE clause that is syntactically correct and
executable on the provided database.

IMPORTANT: Do not generate conditions for NULL or None values. Also, avoid generating filter
conditions that duplicate any existing filters.

Database: {database}
Generated Clauses: {generated_clauses}

Return the results in a FLAT JSON format.
DO NOT include any explanations or notes in the output. ONLY return JSON.

29

Under review as a conference paper at ICLR 2026

GROUP BY Clause Generation

You are both an NBA fan and an SQL expert. Given the provided database and the generated clauses,
generate a GROUP BY clause that reflects authentic NBA-related curiosity.

Ensure the following requirements:

e Qutput Structure: Return a JSON object containing a single key, "group", with its value
being a GROUP BY clause. The GROUP BY clause should include a single column.

* Ensure NBA Fan Relevance: Generate the GROUP BY clause that aligns naturally with
realistic and meaningful queries that NBA fans are likely to ask.

» Align with Generated Clauses: Ensure that the GROUP BY clause maintains logical consis-
tency with previously generated clauses, preserving semantic coherence.

* Ensure Synthetic Correctness: Generate the GROUP BY clause that is syntactically correct
and executable on the provided database.

IMPORTANT: Do not group by any column whose value is fixed by an equality (=) condition in the
WHERE clause.

Database: {database}
Generated Clauses: {generated_clauses}

Return the results in a FLAT JSON format.
DO NOT include any explanations or notes in the output. ONLY return JSON.

30

Under review as a conference paper at ICLR 2026

HAVING Clause Generation

You are both an NBA fan and an SQL expert. Given the provided database and the generated clauses,
generate a HAVING clause that reflects authentic NBA-related curiosity.

Ensure the following requirements:

* Output Structure: Return a JSON object containing a single key, "having", with its value
being a HAVING clause.

» Ensure NBA Fan Relevance: Generate the HAVING clause that aligns naturally with realistic
and meaningful queries that NBA fans are likely to ask.

* Maintain Specificity and Clarity of Intent: Generate a well-defined and clear HAVING
clause without making it overly narrow or contrived.

* Align with Generated Clauses: Ensure that the HAVING clause maintains logical consistency
with previously generated clauses, preserving semantic coherence.

* Ensure Synthetic Correctness: Generate the HAVING clause that is syntactically correct and
executable on the provided database.

Database: {database}
Generated Clauses: {generated_clauses}

Return the results in a FLAT JSON format.
DO NOT include any explanations or notes in the output. ONLY return JSON.

ORDER BY Clause Generation

You are both an NBA fan and an SQL expert. Given the provided database and the generated clauses,
generate an ORDER BY clause that reflects authentic NBA-related curiosity.

Ensure the following requirements:

* QOutput Structure: Return a JSON object containing a single key, "order", with its value
being an ORDER BY clause.

* Ensure NBA Fan Relevance: Generate the ORDER BY clause that aligns naturally with
realistic and meaningful queries that NBA fans are likely to ask.

 Align with Generated Clauses: Ensure that the ORDER BY clause maintains logical consis-
tency with previously generated clauses, preserving semantic coherence.

* Ensure Synthetic Correctness: Generate the ORDER BY clause that is syntactically correct
and executable on the provided database.

Database: {database}
Generated Clauses: {generated_clauses}

Return the results in a FLAT JSON format.
DO NOT include any explanations or notes in the output. ONLY return JSON.

31

Under review as a conference paper at ICLR 2026

LIMIT Clause Generation

You are both an NBA fan and an SQL expert. Given the provided database and the generated clauses,
generate a LIMIT clause that reflects authentic NBA-related curiosity.

Ensure the following requirements:

* Output Structure: Return a JSON object containing a single key, "1imit", with its value
being a LIMIT clause.

* Ensure NBA Fan Relevance: Generate the LIMIT clause that aligns naturally with realistic
and meaningful queries that NBA fans are likely to ask.

 Align with Generated Clauses: Ensure that the LIMIT clause maintains logical consistency
with previously generated clauses, preserving semantic coherence.

* Ensure Synthetic Correctness: Generate the LIMIT clause that is syntactically correct and
executable on the provided database.

Database: {database}
Generated Clauses: {generated_clauses}

Return the results in a FLAT JSON format.
DO NOT include any explanations or notes in the output. ONLY return JSON.

32

Under review as a conference paper at ICLR 2026

SELECT Clause (Non-Aggregate)

You are both an NBA fan and an SQL expert. Given the provided database and the generated clauses,
generate a SELECT clause that specifies a necessary field for retrieving meaningful NBA-related
data.

Ensure the following requirements:

* Output Structure: Return a JSON object containing a single key, "select", with its value
being a SELECT clause that projects a single column without an aggregation function
meaningfully.

» Ensure NBA Fan Relevance: Generate the SELECT clause that aligns naturally with realistic
and meaningful queries that NBA fans are likely to ask.

 Align with Generated Clauses: Ensure that the SELECT clause maintains logical consistency
with previously generated clauses, preserving semantic coherence.

» Ensure Synthetic Correctness: Generate the SELECT clause that is syntactically correct and
executable on the provided database.

IMPORTANT: Do not project columns used in the WHERE clause.
Database: {database}
Generated Clauses: {generated_clauses}

Return the results in a FLAT JSON format.
DO NOT include any explanations or notes in the output. ONLY return JSON.

33

Under review as a conference paper at ICLR 2026

SELECT Clause (Aggregate)

You are both an NBA fan and an SQL expert. Given the provided database and the generated clauses,
generate a SELECT clause that aggregates a single column for retrieving meaningful NBA-related
statistics.

Ensure the following requirements:

e Qutput Structure: Return a JSON object containing a single key, "select", with its value
being a SELECT clause that aggregates (MAX, MIN, AVG, or COUNT, etc.) a single
column meaningfully.

» Ensure NBA Fan Relevance: Generate the SELECT clause that aligns naturally with realistic
and meaningful queries that NBA fans are likely to ask.

 Align with Generated Clauses: Ensure that the SELECT clause maintains logical consistency
with previously generated clauses, preserving semantic coherence.

* Ensure Synthetic Correctness: Generate the SELECT clause that is syntactically correct and
executable on the provided database.

Database: {database}
Generated Clauses: {generated_clauses}

Return the results in a FLAT JSON format.
DO NOT include any explanations or notes in the output. ONLY return JSON.

34

Under review as a conference paper at ICLR 2026

Inner Query Block Selection

You are both an NBA fan and an SQL expert. Given the provided database, generated clauses, and the
candidate inner query blocks, select the most appropriate inner query block for generating a nested
predicate that reflects authentic NBA-related curiosity.

Select the most appropriate inner query block to generate a nested predicate that aligns naturally with
realistic and meaningful multi-hop queries NBA fans are likely to ask.

Your output must be in JSON format with the key:

e "inner_ query block": Select the most appropriate inner query block from the Candi-
date Inner Query Blocks.

IMPORTANT:

* Do not select the inner query block that has already been used in the generated clauses and
is not included in the candidate inner query blocks.

Database: {schema}

Generated FROM Clause: {generated_from_clause}

Generated WHERE Clause: {generated_where_clause}

Candidate Inner Query Blocks: {candidate_inner_query_blocks}

Return the results in a FLAT JSON format.
DO NOT include any explanations or notes in the output. ONLY return JSON.

35

Under review as a conference paper at ICLR 2026

FROM Clause Generation

You are both an NBA fan and an SQL expert. Given the database and the inner query block, generate
a FROM clause of the outer query block that reflects authentic NBA-related curiosity.

Ensure the following requirements:

* Output Structure: Return a JSON object containing a single key, " from", with its value
being a single-table FROM clause of the outer query block from the provided database (i.e.,
do not include any sub-selects or nested queries directly in the FROM clause).

¢ Ensure NBA Fan Relevance: Generate the FROM clause that aligns naturally with realistic
and meaningful multi-hop queries that NBA fans are likely to ask.

* Ensure Synthetic Correctness: Generate the FROM clause that is syntactically correct and
executable on the provided database.

* Separate Inner Query: The inner query block must remain separate; it should later be
incorporated into the WHERE clause, not nested in the FROM clause.

* Ensure Natural Connection: Choose an outer table whose columns can be naturally
referenced or filtered against the results of the inner query block.

IMPORTANT: If the inner query block performs aggregation in the SELECT clause and no outer
table includes the aggregated columns, reuse the table referenced in the inner query as the outer table.

Database: {schema}
Inner Query Block: {subquery}

Return the results in a FLAT JSON format.
DO NOT include any explanations or notes in the output. ONLY return JSON.

36

Under review as a conference paper at ICLR 2026

Type-N Nested Predicate Generation

You are both an NBA fan and an SQL expert. Based on the given database, generated clauses,
selected inner query block Q, and its execution result, generate a type-n nested predicate that reflects
authentic NBA-related curiosity.

Ensure the following requirements:

* Ensure type-n Nesting: The inner query block Q must not contain a join predicate that
references the relation of the outer query block, and its SELECT clause must project a
column without an aggregate function.

» Ensure NBA Fan Relevance: Generate the nested predicate that aligns naturally with realistic
and meaningful multi-hop queries that NBA fans are likely to ask.

» Ensure Synthetic Correctness: Generate the nested predicate that is syntactically correct and
executable on the provided database.

* Ensure Semantic Alignment: If the inner query’s SELECT column does not semantically
match any column in the outer query’s table, revise it for consistency.

The type-n nested predicate must be in the form: OuterTable.column [IN | NOT IN] (
Q).

Your output must be in JSON format with the keys:

* "nested_predicate": Only the type-n nested predicate based on the selected inner
query block.

e "logical_operator": If a WHERE clause exists, return ’AND’ or "OR’.
IMPORTANT:

» Ensure that the nesting level of the inner query block is correctly preserved. The expected
nesting level is {height}.

¢ Do not modify the nesting level of the provided inner query block.

Database: { schema}

Generated FROM Clause of the Outer Query: {generated_from_clause}
Generated WHERE Clause of the Outer Query: {generated_where_clause}
Selected Inner Query Block Q: {selected_inner_query_block}

Return the results in a FLAT JSON format.
DO NOT include any explanations or notes in the output. ONLY return JSON.

37

Under review as a conference paper at ICLR 2026

Type-A Nested Predicate Generation

You are both an NBA fan and an SQL expert. Based on the given database, generated clauses,
selected inner query block, and its execution result, generate a type-a nested predicate that reflects
authentic NBA-related curiosity.

Ensure the following requirements:

* Ensure type-a Nesting: The inner query block Q must not contain a join predicate referencing
the outer query’s relation, and its SELECT clause must contain an aggregate function
associated with a column.

* Ensure NBA Fan Relevance: Generate the nested predicate that aligns naturally with realistic
and meaningful multi-hop queries that NBA fans are likely to ask.

* Ensure Synthetic Correctness: The predicate must be executable and logically valid over the
schema.

The type-a nested predicate must follow the form:

OuterTable.column [= | != | < | <= | > | >=] (Q with aggregate
function)

Your output must be in JSON format with the keys:

* "nested_predicate": Only the type-a nested predicate based on the selected inner
query block.

e "logical_operator": If a WHERE clause exists, return ’AND’ or "OR’.
IMPORTANT:

¢ Do not revise the SELECT clause of the Q.

* Ensure that the nesting level remains { height }.

Database: { schema}

Generated FROM Clause of the Outer Query: {generated_from_clause}
Generated WHERE Clause of the Outer Query: {generated_where_clause}
Selected Inner Query Block Q: {selected_inner_query_block}

Return the results in a FLAT JSON format.
DO NOT include any explanations or notes in the output. ONLY return JSON.

38

Under review as a conference paper at ICLR 2026

Type-J Nested Predicate Generation

You are both an NBA fan and an SQL expert. Based on the given database, generated clauses,
selected inner query block, and its execution result, generate a type-j nested predicate that reflects
authentic NBA-related curiosity.

Ensure the following requirements:

* Ensure type-j Nesting: Revise the inner query block Q to ensure it includes a join predicate
in its WHERE clause that references the outer query’s relation, and its SELECT clause must
project a column without an aggregate function.

* Ensure NBA Fan Relevance: Generate the nested predicate that aligns naturally with realistic
and meaningful multi-hop queries that NBA fans are likely to ask.

» Ensure Synthetic Correctness: Generate the nested predicate that is syntactically correct and
executable on the provided database.

* Ensure Semantic Alignment: If the inner query’s SELECT column does not semantically
match any column in the outer query’s table, revise it for consistency.

The type-j nested predicate must be in one of the following forms:

OuterTable.column [IN | NOT IN] (SELECT ... FROM ... WHERE
[join predicate] ...)

or

[EXISTS | NOT EXISTS] (SELECT ... FROM ... WHERE ... [join
predicate] ...)

Your output must be in JSON format with the keys:

* "nested_predicate": Only the type-j nested predicate based on the selected inner
query block.

e "logical_operator": If a WHERE clause exists, return ’AND’ or "OR’.
IMPORTANT:

* The join predicate involving the outer query’s relation must appear in the WHERE clause
of Q, not its FROM clause.

» The expected nesting level is {height }. Do not modify it.
Database: { schema}

Generated FROM Clause of the Outer Query: {generated_from_clause}
Generated WHERE Clause of the Outer Query: {generated_where_clause}
Selected Inner Query Block Q: {selected_inner_query_block}

Return the results in a FLAT JSON format.
DO NOT include any explanations or notes in the output. ONLY return JSON.

39

Under review as a conference paper at ICLR 2026

Type-JA Nested Predicate Generation

You are both an NBA fan and an SQL expert. Based on the given database, generated clauses,
selected inner query block, and its execution result, generate a type-ja nested predicate that reflects
authentic NBA-related curiosity.

Ensure the following requirements:

* Ensure type-ja Nesting: Revise the inner query block Q to include a join predicate in its
WHERE clause that references the outer query’s relation and ensure its SELECT clause
contains an aggregate function.

» Ensure NBA Fan Relevance: Generate the nested predicate that aligns naturally with realistic
and meaningful multi-hop queries that NBA fans are likely to ask.

* Ensure Synthetic Correctness: The resulting predicate must be executable and valid over the
database schema.

The type-ja nested predicate must follow one of the forms:

OuterTable.column [= | != | < | <= | > | >=] (SELECT [agg]
FROM ... WHERE ... [join predicate])

or

[EXISTS | NOT EXISTS] (SELECT [agg] ... FROM ... WHERE
[join predicate] ...)

Your output must be in JSON format with the keys:

* "nested_predicate": Only the type-ja nested predicate based on the selected inner
query block.

e "logical_operator": If a WHERE clause exists, return ’AND’ or "OR’.
IMPORTANT:

* The join predicate involving the outer query’s relation must appear in the WHERE clause,
not the FROM clause.

¢ Do not revise the SELECT clause of the Q.
* Do not modify the nesting level ({ height }).
Database: { schema}

Generated FROM Clause of the Outer Query: {generated_from clause}
Generated WHERE Clause of the Outer Query: {generated_where_clause}
Selected Inner Query Block Q: {selected_inner_query_block}

Return the results in a FLAT JSON format.
DO NOT include any explanations or notes in the output. ONLY return JSON.

40

Under review as a conference paper at ICLR 2026

Provenance-based Refinement

You are both an NBA fan and an SQL expert. Based on the given original SQL query, provenance
analysis results, and problematic subquery or condition which filters out all the rows, fix the original
query’s problematic subquery or condition so that it retrieves some results from the database.

Ensure the following requirements:

1) Output Structure: Return a JSON object containing a single key, "corrected_query", with
its value being the corrected SQL query.

2) Ensure NBA Fan Relevance: Maintain the original query’s NBA-related curiosity and focus on
realistic and meaningful queries that NBA fans are likely to ask.

IMPORTANT:

* You may add an additional predicate in the inner query or adjust the filtering threshold within
the problematic subquery Q to intentionally include the important rows or exclude outlier
rows (e.g., those with extremely high or low values) that overly constrain the outer query.

* You may also adjust the comparison operator (e.g., > to >=, < to <=) or the value of the
problematic condition to relax the filtering criteria.

* Do not delete the join predicate in the WHERE clause of the problem-
atic subquery Q (e.g., WHERE outer_ table name.column_name =
inner_table_name.column_name).

Original SQL Query: {query}

Problematic Condition: {problematic_condition}

Problematic Subquery Q: {problematic_subquery}

Execution Result of the Subquery Q: {problematic_subquery_execution_result}
Provenance Analysis Results: {provenance_analysis_results}

Return the results in a FLAT JSON.
NEVER include ANY EXPLANATION or NOTE in the output, ONLY OUTPUT JSON.

41

Under review as a conference paper at ICLR 2026

SQL Query Naturalness Evaluation

You have a set of evaluation criteria to judge whether a given SQL query reflects a question that is
likely to be asked by a typical person.

When evaluating the query, refer to the following points:
1. Relevance:

* Definition: Measures how likely it is that a real person would be interested in the query.

* Low Score (1): The query covers obscure or highly technical aspects unrelated to
typical person discussions (e.g., internal database IDs or rarely discussed statistics).

¢ High Score (5): The query reflects a common, popular interest among people (e.g.,
game stats, player/team information, draft results, etc.).

2. Specificity & Clarity of Intent:

* Definition: Evaluates whether the question is clearly targeted and sufficiently detailed
to reveal a genuine NBA-related interest—without being so narrow as to be contrived.

* Low Score (1): The query is too vague (“Show me some NBA data”) or overly
convoluted/contrived.

* High Score (5): The query clearly captures a plausible question (e.g., “Which NBA
player scored the most points in home games last month?”).

3. Overall Naturalness:

* Combine the above criteria and decide if the query is "natural" (likely to be asked by a
real person) or "unnatural".

* The query is considered natural if its overall score is 3 or higher.
Your output must be in JSON format with the following keys:
e "relevance_score": Integer from 1 to 5.
* "specificity_clarity_of_intent_score": Integer from I to 5.
* "overall_ naturalness_score": Integer from I to 5.
e "reason": Explanation referencing the scores and justifying whether the query is consid-
ered natural or unnatural.
Database Schema: {database_schema}

SQL Query Template: {question}

Return the results in a FLAT JSON format.
NEVER include ANY EXPLANATION or NOTE in the output, ONLY OUTPUT JSON.

42

	Introduction
	Related Work
	SPARTA
	Table–Text QA Task and Benchmark Generation
	Reference Fact Database Construction
	Query Generation
	Realistic-Structure Enforcement
	Provenance-Based Refinement

	Question Verbalisation

	Experiments
	Evaluation Setup
	Benchmark Generation Cost and Query Naturalness
	Table-Text QA Evaluation Results
	Analysis

	Conclusion
	Limitations and Future Work
	Cross-dataset Annotation Audit
	Supported Nested Query Patterns
	Schema of Reference-Fact Database
	Table-Level Statistics of the Reference-Fact Database
	Benchmark Configuration
	Generation Cost Analysis
	Cost Analysis Across LLM Scales
	Cost Analysis on Query Shape and Size

	Ablation Study on Nesting Types
	Analysis on Negation and Range Reasoning
	Ablation Study on Robustness to Linguistic Variability
	Error Case Analysis
	Software and Data Licenses
	AI Assistants
	Representative Examples from our SPARTA benchmark
	Prompt Templates

