

000 SPARTA: SCALABLE AND PRINCIPLED BENCHMARK OF 001 TREE-STRUCTURED MULTI-HOP QA OVER TEXT AND TA- 002 BLES 003 004

005 **Anonymous authors**
006
007 Paper under double-blind review
008

009 010 ABSTRACT 011 012

013 Real-world Table–Text question answering (QA) tasks require models that can reason across
014 long text and source tables, traversing multiple hops and executing complex operations
015 such as aggregation. Yet existing benchmarks are small, manually curated—and therefore
016 error-prone—and contain shallow questions that seldom demand more than two hops or
017 invoke aggregations, grouping, or other advanced analytical operations expressible in
018 natural-language queries. We present SPARTA, an end-to-end construction framework that
019 automatically generates large-scale Table–Text QA benchmarks with lightweight human
020 validation, requiring only one quarter of the annotation time of HybridQA. The framework
021 first constructs a reference fact database by enriching each source table with grounding
022 tables whose tuples are atomic facts automatically extracted from the accompanying
023 unstructured passages, then synthesizes nested queries whose number of nested predicates
024 matches the desired hop count. To ensure that every SQL statement is executable and
025 that its verbalization yields a fluent, human-sounding question, we propose two novel
026 techniques: provenance-based refinement, which rewrites any syntactically valid query that
027 returns a non-empty result, and realistic-structure enforcement, which confines generation
028 to post-order traversals of the query graph. The resulting pipeline produces thousands of
029 high-fidelity question–answer pairs covering aggregations, grouping, and deep multi-hop
030 reasoning across text and tables. On SPARTA, state-of-the-art models that reach over 70
031 F1 on HybridQA or over 50 F1 on OTT-QA drop by more than 30 F1 points, exposing
032 fundamental weaknesses in current cross-modal reasoning. We will release the benchmark,
033 construction code, and baseline results to spur progress toward robust, realistic Table–Text
034 QA models.
035

036 1 INTRODUCTION

037 Table–Text QA has emerged as a fundamental challenge in building robust question answering (QA) systems
038 capable of operating across heterogeneous data modalities (i.e., text and tables) Chen et al. (2020a;b; 2021);
039 Zhao et al. (2022); Zhu et al. (2021). Such a task is particularly evident in scenarios where textual descriptions
040 and table entries originate from one or more sources (e.g., textual information and tables in multiple Wikipedia
041 pages) and must be jointly analyzed to arrive at the correct answer. While a single Wikipedia page often
042 contains both text and tables, it is not unusual for relevant information to span multiple pages or documents,
043 necessitating cross-document retrieval and the effective integration of disparate information.

044 A significant limitation of existing Table–Text QA benchmarks is that human annotators manually construct
045 them Chen et al. (2020a;b; 2021); Zhao et al. (2022); Zhu et al. (2021), resulting in fundamentally flawed
046 benchmark designs that hinder comprehensive system evaluation.

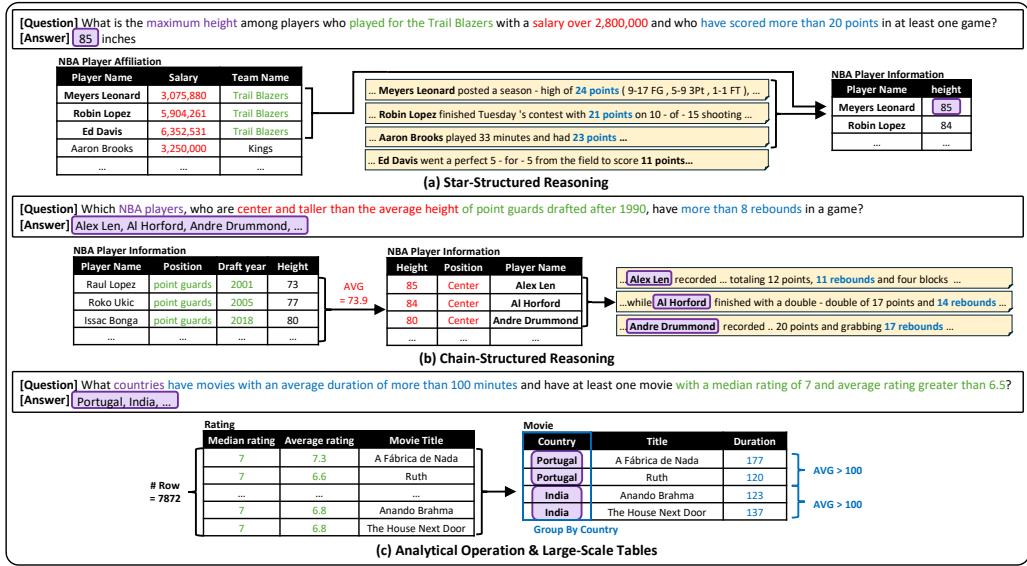


Figure 1: Representative examples of our SPARTA benchmark. (see Appendix M for more examples).

Benchmark	Table Size	Question Generation	Grouping/Having	Query Shape Supported	Multi-hop Reasoning	Annotation Error Rate
	#Col #Row			Chain (> 3-Hop) Star	Cross-modal Uni-modal	
TAT-QA Zhu et al. (2021)	4.0 9.4	Manual	X	X X	✓ X	30%
FinQA Chen et al. (2021)	– 6.4	Manual	X	X X	✓ X	27%
MULTIHERITT Zhao et al. (2022)	5.0 10.8	Manual	X	X X	✓ ✓	26%
HybridQA Chen et al. (2020b)	4.4 15.7	Manual	X	X X	✓ X	21%
OTT-QA Chen et al. (2020a)	4.4 15.7	Manual	X	X X	✓ X	21%
SPARTA (NBA)	12.2 3,280.5					
SPARTA (Movie)	4.7 10,054.0	Auto (LLM)	✓	✓ ✓	✓ ✓	0%
SPARTA (Medical)	6.7 200.0	w/ Lightweight Human Validation				

Table 1: Comparison of Table–Text QA benchmarks.

(1) Limited question types and shallow reasoning. Existing Table–Text QA benchmarks, constrained by manual annotation complexities, feature a restricted range of shallow questions. These typically require only direct information extraction (such as pinpointing a fact within a single textual passage or locating a specific entry in a table). Even for questions that go beyond this simple extraction, the reasoning depth remains shallow, seldom demanding more than two hops or involving advanced analytical operations like aggregation or grouping. This is despite such operations being common in real-world natural language queries yet underrepresented in benchmarks. This deficiency hinders the thorough evaluation of a system’s deep, multi-step inference capabilities. Furthermore, current multi-hop questions usually follow simplistic linear chains, rather than the expressive, tree-structured reasoning (e.g., multi-branch paths, longer chains, or uni-modality hops) crucial for assessing systems on complex inference tasks, as exemplified in Figure 1.

(2) Annotation noise. Our quality audit uncovers numerous annotation errors that undermine the reliability of the benchmark. Re-inspecting 100 randomly sampled dev examples from HYBRIDQA, we find that 21% contain at least one error, which we classify into three categories: (1) *Redundant modality* (52.4%): table and passage encode the same fact, yet the instance is tagged as a cross-modal question even though a single modality suffices; (2) *Incomplete answer set* (23.8%): several answers are correct but only one is recorded, distorting recall; (3) *Incorrect or unanswerable* (23.8%): the labelled answer is wrong or cannot be derived from the provided data, revealing a lapse in quality control. Our audits on other benchmarks reveal similar error patterns (see Appendix A).

094 **(3) Reliance on single, small-scale web tables.** Current benchmarks almost exclusively draw on compact web
 095 tables—typically scraped from Wikipedia or corporate reports—thereby providing only toy-scale scenarios.
 096 As Table 1 shows, tasks either involve a single table or, when multiple tables are present, the mean table
 097 cardinality hovers around 15 rows, far short of the thousands of rows found in real-world databases. This
 098 simplification is largely pragmatic: reasoning over larger tables dramatically increases annotator effort and
 099 error rates Chen et al. (2020b). Consequently, existing benchmarks cannot meaningfully evaluate QA systems
 100 in realistic, high-complexity settings that demand reasoning over large, heterogeneous relational data.

101 SPARTA unifies all evidence—structured and unstructured—inside a single relational store called the *reference fact database*. Each original relation (e.g., a web table or a financial ledger) remains intact as a
 102 *source table*. *Grounding tables*, which store atomic propositions as tuples for SQL-addressable access, are
 103 populated using two complementary methods (detailed in Section 3.2): (1) utilizing validated corpora such as
 104 ROTOWIRE Wu et al. (2022); and (2) employing a table-to-text strategy that generates atomic facts directly
 105 from structured data. With textual facts now addressable via SQL, queries over this combined store freely
 106 mix modalities; no pointer to the original span is needed as answers are returned directly by query execution.
 107

108 **Stage 1 – Reference fact database construction.** Source and grounding tables are merged into the reference
 109 fact database, making all facts uniformly queryable.

110 **Stage 2 – Query generation.** A large language model (LLM) receives the schema and sample rows and emits
 111 SQL whose *number of nested predicates matches a target hop count*. Note that SPARTA synthesizes queries
 112 that instantiate the four representative nesting patterns—Types N, A, J, and JA—outlined in Appendix B. Two
 113 safeguards ensure that only realistic, executable statements survive: (1) *Provenance-based refinement* loops
 114 provenance feedback—unmatched joins or overly selective predicates—back to the LLM until the query
 115 returns a non-empty result. (2) *Realistic-structure enforcement* confines generation to post-order traversals of
 116 query graph, yielding human-like join orders and enabling early pruning of infeasible subqueries.

117 **Stage 3 – Question verbalisation.** Each validated query is paired with its execution result, then a second
 118 LLM rewrites the SQL into a fluent natural-language question, producing high-fidelity pair \langle question, answer \rangle
 119 that span aggregation, grouping, and deep multi-hop joins across large tables. Here, the final correctness—i.e.,
 120 the validity of the question–answer pair—is checked via lightweight human verification; unlike HybridQA,
 121 our pipeline does not require re-performing full multi-hop reasoning, thereby keeping audit costs low (see
 122 Section 3.4).

123 This SQL-centric pipeline yields a large, diverse, and rigorously validated benchmark that corrects the size,
 124 noise, and logical shallowness of previous Table–Text QA resources. On SPARTA, state-of-the-art models
 125 that exceed 70 F1 on HybridQA or exceed 50 F1 on OTT-QA drop by more than 30 F1 points, revealing
 126 fundamental weaknesses in current cross-modal reasoning and highlighting directions for future research.
 127

128 2 RELATED WORK

130 **Table–Text QA Benchmark.** Table–Text QA benchmarks evaluate a model’s ability to jointly reason
 131 over structured tables and unstructured passages. HybridQA Chen et al. (2020b) introduced the task, and
 132 OTT-QA Chen et al. (2020a) extended it to open-domain settings, but both suffer from annotation noise,
 133 shallow reasoning depth, and a lack of support for advanced analytical operations. Specifically, they do not
 134 support GROUP BY or HAVING clauses, and only 1.1% of questions involve aggregation. Their multi-hop
 135 reasoning is confined to short, linear chains and fails to capture tree-structured or uni-modal reasoning
 136 paths. Other benchmarks—TAT-QA Zhu et al. (2021), FinQA Chen et al. (2021), and MultiHierTT Zhao
 137 et al. (2022)—focus narrowly on numerical reasoning in financial contexts rather than multi-hop reasoning,
 138 further limiting coverage Zhang et al. (2023). Additionally, all existing Table–Text QA datasets rely on small,
 139 manually annotated web tables, which hinders scalability and realism. SPARTA addresses these gaps with an
 140 SQL-centric pipeline that constructs a large-scale benchmark of executable, compositional questions over
 hybrid corpora, offering a principled testbed for multi-hop QA across text and tables.

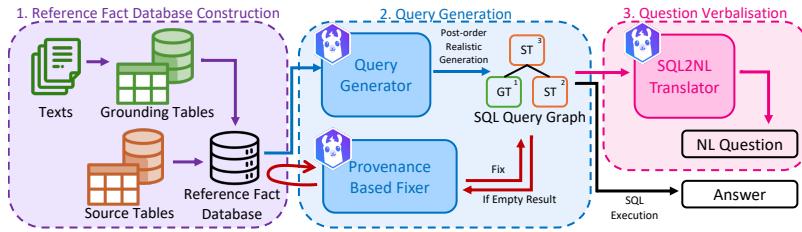


Figure 2: Overview of SPARTA: (1) Reference Fact Database Construction, (2) Query Generation, (3) Question Verbalisation. ST and GT denote a source table and a grounding table, respectively.

Synthetic Benchmark Generation. Recent synthetic benchmark generation scales QA pairs from pre-existing sources, but most are single-modal: relying on knowledge graphs Sun et al. (2024); Omar et al. (2025); Orogat & El-Roby (2023; 2022) or text corpora Bonifacio et al. (2022); Jeronymo et al. (2023), ignoring cross-modal reasoning. ERBench Oh et al. (2024) uses relational databases, yet its questions are binary or multiple-choice, based on shallow templates excluding analytical operators like GROUP BY, HAVING, and aggregations; it also lacks table-text interplay. In contrast, SPARTA generates multi-hop questions bridging tables and passages, mirroring complex nested SQL patterns to provide a rigorous cross-modal benchmark for Table–Text QA. Beyond QA, benchmarks in other domains impose domain-specific constraints: database performance benchmarks Nambiar & Poess (2006); Erling et al. (2015) use fixed schemas and templates for reproducible profiling; unlearning benchmarks Maini et al. (2024); Zhong et al. (2024) create forget/retain partitions for selective forgetting. SPARTA’s constraint is fundamentally different: every synthetic example must encode tree-structured multi-hop reasoning grounding executable SQL and natural-language questions, requiring analytical operations and table-text alignment. Our provenance-based refinement and realistic-structure enforcement address this, producing semantically rich, executable queries.

3 SPARTA

3.1 TABLE–TEXT QA TASK AND BENCHMARK GENERATION

Given a natural-language question q_{NL} , a set of source tables $\mathcal{S}_T = \{T^{(1)}, \dots, T^{(m)}\}$, and a set of passages $\mathcal{C}_P = \{P^{(1)}, \dots, P^{(n)}\}$, a QA system f_θ must return the answer $a = f_\theta(q_{NL}, \mathcal{S}_T, \mathcal{C}_P)$. Each passage in \mathcal{C}_P is decomposed into atomic facts and stored as tuples in *grounding tables* \mathcal{G}_T . Merging these with the original source tables yields a unified *reference fact database* \mathcal{D} . An LLM then: (i) generates executable SQL queries on \mathcal{D} that vary in depth (selection, aggregation, nesting, etc.), and (ii) verbalises each query into a fluent natural-language question q_{NL} . The resulting pairs (q_{NL}, a) constitute a scalable benchmark for Table–Text QA. An overview of the entire pipeline is provided in Figure 2.

3.2 REFERENCE FACT DATABASE CONSTRUCTION

We use the ROTOWIRE dataset as part of our reference fact database, whose structured tables are widely used as gold supervision for text-to-table and have been verified by the authors of Wu et al. (2022) for consistency with the accompanying game reports. Each NBA game report in this corpus is decomposed into atomic facts, which are stored as tuples in \mathcal{G}_T , guaranteeing perfect alignment between text and relational data. To construct \mathcal{S}_T , we integrate six public NBA datasets—covering salaries, awards, draft data, and team histories—sourced from Kaggle and data.world kag (f;a;g;b;e); dat. Shared entity attributes such as `PLAYER_NAME` and `TEAM_NAME` are enforced as primary–foreign key pairs, yielding a connected schema in which every tuple from \mathcal{G}_T can be joined to at least one table in \mathcal{S}_T . The resulting database contains three grounding tables and six source tables (see Appendix C).

While our construction uses NBA data for illustration, SPARTA is inherently domain-agnostic. From any relational database, one designates a subset of relations as \mathcal{S}_T and treats the remaining relations as \mathcal{G}_T . Applying table-to-text generation to \mathcal{G}_T yields a companion set of textual passages \mathcal{C}_P , forming the reference-

fact database $\mathcal{D} = \mathcal{S}_T \cup \mathcal{G}_T$ with no information overlap between the two sets. The query-generation pipeline then applies unchanged, yielding a portable recipe for building large-scale Table–Text QA benchmarks in any domain with relational data. To demonstrate this, we extended our pipeline to two new domains—movies and medical—using Kaggle datasets kag (c;d), with configurations identical to the NBA domain (see Appendix E). For these datasets, we start from existing structured tables and convert a subset into grounding tables using rule-based templates. This table-to-text transformation is deterministic and template-driven, with templates manually designed and verified to prevent spurious facts or errors.

3.3 QUERY GENERATION

For non-nested queries, SPARTA builds the statement clause-by-clause: the LLM emits each clause in canonical SQL order, conditioned on the schema and previously written clauses, and immediately executes the partial query. If the result is empty, the execution outcome is fed back so the LLM can revise the offending clause, ensuring the query remains executable and semantically meaningful at every step.

The next step is to synthesise nested SQL queries that act as faithful logical forms for multi-hop reasoning. A generated query must satisfy two criteria: (i) it should resemble a query that a human analyst would plausibly write, avoiding degenerate template artifacts, and (ii) it must execute over \mathcal{D} without error and return a non-empty result. These guarantees ensure that every (q_{NL}, a) pair is both natural and answerable.

Template-based generation fills fixed slots with ad-hoc limits or auxiliary predicates to guarantee execution, yet the resulting SQL is often semantically unsound. For instance, `SELECT birthplace FROM nba_player_information WHERE birthplace <> 'Chicago, Illinois' OR birthplace <> 'Dallas, Texas'` runs without error but expresses a vacuous intent (“... not born in Chicago *or* not born in Dallas,” matching everyone). Conversely, one-shot LLM prompting produces natural queries, but these frequently yield empty results and show limited diversity (see Table 3). We therefore introduce a dual-stage framework: (i) *realistic-structure enforcement* and (ii) *provenance-based refinement*.

3.3.1 REALISTIC-STRUCTURE ENFORCEMENT

A nested SQL query can be modeled as a *query graph* $G = (V, E)$ where each node $v_i \in V$ corresponds to a distinct query block—namely every `SELECT ... FROM ... WHERE ...` subquery including the outermost statement—while each (directed) edge $e_{ij} \in E$ denotes a *nested predicate* that correlates blocks Q_i and Q_j through a shared attribute reference, thus capturing the dependency structure of the original nested query in graph form (see Appendix B for representative nested query patterns). Based on this representation, we measure query complexity by the number of edges in the query tree, each representing a reasoning hop.

For nested-query generation, SPARTA adopts *Post-Order+Prov* as the default. That is, to preserve realistic structure, we force the LLM to build the query tree in post-order: compose each leaf subquery first, then wrap it with successively higher-level blocks—exactly how analysts craft nested SQL. We choose post-order traversal over alternatives like breadth-first or top-down, because the latter require validating incomplete queries before inner subqueries are constructed. In contrast, post-order ensures that each intermediate block is executable by validating subqueries first and then composing higher-level predicates. In *Post-Order+Prov*, leaf nodes are generated clause-by-clause. For the target question type we pick the relevant clauses (`WHERE`, `GROUP BY`, `ORDER BY`, ...) in canonical order, and let the LLM fill each one using (i) the schema, (ii) earlier clauses, and (iii) partial results. If a clause yields an empty result, we roll back to the last valid subquery, sparing redundant LLM calls. Internal nodes arise by recursively enclosing validated subqueries. At every step the LLM selects a child query, picks a joinable table, and emits a connecting predicate (`AND/OR`, etc.). Empty outputs trigger provenance-guided repair (§3.3.2); otherwise the predicate is kept. The loop iterates until the query graph grows to the specified target size.

3.3.2 PROVENANCE-BASED REFINEMENT

The LLM builds the query graph in post-order—validated leaves first, then one outer predicate at a time. If an evolving query returns no rows, a provenance-based refinement process is initiated to repair the query. The refinement process leverages “why-not provenance,” a database technique used to identify which predicates in

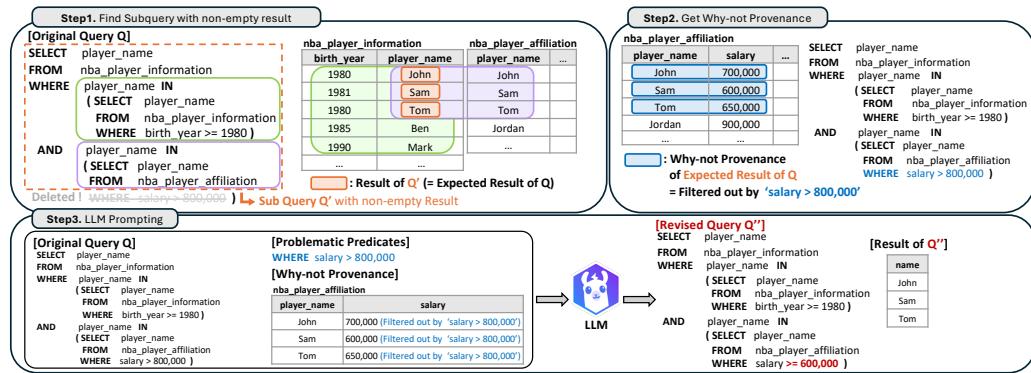


Figure 3: Overview of provenance-based refinement.

a query are responsible for filtering out expected tuples Bidoit et al. (2014); Chapman & Jagadish (2009); Lee et al. (2017). While traditional why-not provenance often relies on user-provided examples of the missing tuples, our approach dynamically derives the expected tuples from intermediate query results.

The process unfolds in three steps. First, when a query yields an empty result, we peel off predicates in reverse order until the query yields a result. Second, we sample a tuple from this non-empty result set. Finally, we run a why-not provenance tool Dietrich et al. (2022) to identify the blocking predicate and provide this provenance report to the LLM, instructing it to rewrite only the problematic clause.

Ablations are (i) *One-Shot*– k , which inserts all k predicates in a single pass with no checks, and (ii) *Post-Order* (no provenance), which follows the same construction but skips the repair loop. Figure 3 illustrates the overall process of provenance-based refinement. Provenance feedback relaxes the predicate from `salary > 800000` to `salary > 600000`.

3.4 QUESTION VERBALISATION

For each executable SQL query q_{SQL} , we generate a corresponding natural-language question q_{NL} using AST-ICL AI Lawati et al. (2025), a SOTA LLM-based SQL-to-text model. We adopted the LLM-based model over template-based methods, which are limited by rigidity and reliance on handcrafted templates, as documented in prior work Iyer et al. (2016); Xu et al. (2018). In AST-ICL, the SQL abstract syntax tree is supplied as an in-context exemplar, and the model emits a fluent question q_{NL} whose semantics align with the query. Executing q_{SQL} on \mathcal{D} yields the answer a , completing the benchmark pair (q_{NL}, a) . Every instance is thus interpretable, executable, and suitable for probing multi-hop reasoning over hybrid (table + text) data.

The verbalized questions were validated and corrected by three CS graduate students with SQL/schema literacy to ensure factuality and meaningfulness. This process is lightweight, requiring substantially less effort than full manual annotation. Specifically, validating 3,300 queries takes about 1,493 minutes of total worker time, whereas HybridQA required roughly 6,600 minutes to create the same number of queries from scratch.

4 EXPERIMENTS

4.1 EVALUATION SETUP

Hardware and Software Settings. We conducted our experiments on a machine with Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz and 1.5 TB of RAM running Ubuntu 22.04.4 and 4 RTX A6000 GPUs, with LLM inference managed via the SGLang Zheng et al. (2024) inference engine. We used Llama-3.1-70B-Instruct Dubey et al. (2024) as the LLM.

Query Generation Methods. For non-nested query generation, SPARTA’s default is *Execution-Guided* generation: the LLM writes each clause in canonical order, executes the partial query, and immediately edits any clause that empties the result. As an ablation we also evaluate (i) *One-Shot*, which emits the whole query from schema only, and (ii) *Clause*, which builds the query sequentially without execution feedback.

For nested-query generation, SPARTA’s default is *Post-Order+Prov*: validated leaves are wrapped one predicate at a time (post-order); each new predicate is executed immediately and, when empty, repaired with provenance feedback. Ablations include (i) *One-Shot-k*, which inserts all k predicates in a single pass with no intermediate checks, and (ii) *Post-Order* (no provenance), which follows the same post-order construction without provenance-based repair. We generate 500 non-nested and 600 nested SQL queries per method on the NBA domain (configuration as in Table 10), so that quality and cost can be compared on equal footing.

Table-Text QA Methods. To gauge how current state-of-the-art systems break down under SPARTA’s deeper hops, larger tables, and advanced analytical operations, we evaluate SOTA Table–Text QA methods, including methods based on prompting LLMs such as ODYSSEY Agarwal et al. (2025) and HProPro Shi et al. (2024). These models have shown strong results on HybridQA, where models reason over provided tables and linked documents. ODYSSEY constructs a graph from the table and linked documents, enabling the LLM to traverse the graph for query answers. HProPro generates and executes program via the LLM to produce query responses. Since existing Table–Text QA methods are not originally designed to support uni-modal hops, we apply minimal extensions to enable such behavior during evaluation on SPARTA. Specifically, for ODYSSEY, we augment the hybrid graph by adding edges between matching cells of columns that share a join relationship. For HProPro, we adapt the prompt format by replacing the input table with a list of relevant tables. For a fully end-to-end scenario in which no oracle is provided, we pair the Table–Text QA methods with HELIOS Park et al. (2025)—the top retriever on OTT-QA—so the model must both retrieve evidence and reason over it. We also run every method with GPT-5 and GPT-3.5-turbo backbones to test LLM sensitivity.

4.2 BENCHMARK GENERATION COST AND QUERY NATURALNESS

A scalable benchmark must maximise *useful* queries while minimising LLM calls and wall time. We therefore track seven complementary metrics in Table 2.

Table 2: Cost metrics used for benchmark generation.

Metric	Definition
Success-Q	# of non-nested queries that execute without error and return at least one row.
Exec-Err	# of statements that fail at parse or runtime, revealing schema or logic errors.
Empty-Q	# of syntactically valid queries that return zero rows because predicates are too restrictive.
Duplicate-Q	# of queries whose result duplicates a previously generated query, reducing diversity.
Ideal Calls	# of LLM invocations required if every step succeeds on the first attempt (baseline cost).
Total Calls	# of actual LLM invocations, i.e., Ideal Calls plus extra calls for provenance-guided fixes or other retries.
Wall Time	Total wall-clock time to obtain all successful queries.

Table 3 summarizes generation overheads for both non-nested and nested SQL. For non-nested queries, *Execution-Guided* is most economical, needing only 1,134 total LLM calls—just 7.2% above the ideal 1,058—and finishing in 2,466s. In contrast, *One-Shot* begins with the lowest ideal budget (500 calls) but produces 60 empty and 1,265 duplicate outputs, inflating usage to 1,830 real calls (266% of ideal) and incurring the highest latency; *Clause* mitigates these failures yet still exceeds its ideal by 24.9%. For nested queries, *Post-Order+Prov* is most cost-effective, completing with 4,722 calls in 26,278s—cutting call volume by 42.8% versus vanilla post-order and by 66.2% versus *One-Shot-k*. These results show that disciplined post-order construction combined with provenance-driven repair minimizes redundant generations while ensuring executable, semantically plausible SQL; detailed analysis of generation overheads across varying query graph shapes and sizes is provided in Appendix F.

To assess the realism of the generated SQL queries, we employ a scoring-based evaluation framework combining automatic and human assessments. Each query is rated from 1 (least natural) to 5 (most natural) across three dimensions: **Relevance**, which measures alignment with the genuine curiosity of a typical person; **Specificity & Clarity**, which assesses whether the query expresses a clear and well-scoped information need; and **Overall Naturalness**, which combines the above criteria to decide whether the query is likely to be asked by a real person. For a comprehensive assessment, we conduct an automatic evaluation (*auto-eval*) using ChatGPT-4o OpenAI and an independent human evaluation (*human-eval*) by three external CS graduate students with SQL/schema literacy. As a baseline for comparison, we also evaluate

Table 3: Generation Cost Comparison of Query Generation Methods.

Method	Success-Q	Empty-Q	Duplicate-Q	Exec-Err	Ideal Calls	Total Calls	Wall Time (s)
Non-nested Query Generation							
<i>One-Shot</i>	500	60	1265	5	500	1830	4256.96
<i>Clause</i>	500	51	78	0	1053	1316	3218.83
<i>Execution-Guided</i>	500	0	27	0	1058	1134	2466.47
Nested Query Generation							
<i>One-Shot-k</i>	600	0	0	0	2664	13962	115316.67
<i>Post-Order</i> (no provenance)	600	0	0	0	3104	8253	38867.40
<i>Post-Order+Prov</i>	600	0	0	0	3074	4722	26277.87

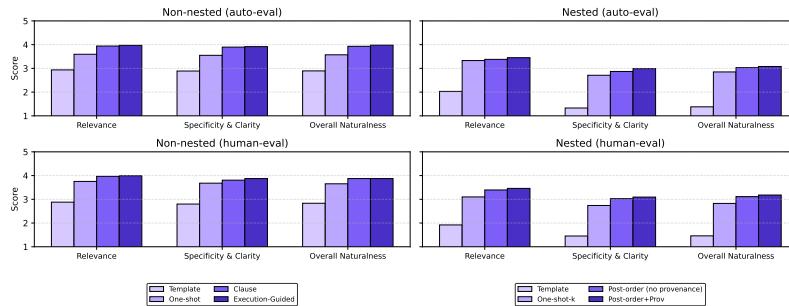


Figure 4: Comparison of Query Naturalness for Different Generation Methods.

queries generated by template filling with randomly sampled column–value pairs. This dual approach, integrating LLM-based auto-evaluation with human judgment, yields a robust, multi-perspective measure of how convincingly the generated queries mirror real user intent.

Figure 4 reports the naturalness scores of queries generated by different methods, evaluated across three criteria. Among the non-nested query generation methods, Execution-Guided Generation achieved the highest scores consistently across both automatic and human evaluations. Specifically, in terms of overall naturalness, it outperformed Clause-by-Clause, One-shot, and Template-based generation by 1.3%, 11.4%, and 37.5%, respectively, in auto-eval; and by 6.0% and 36.7% over One-shot and Template-based methods in human-eval. For nested query generation, Post-order Generation with Execution Guidance achieved the top scores across all three metrics. Compared to Post-order, One-shot Nested, and Template-based generation, it yielded auto-eval improvements of 1.7%, 8.1%, and 123.2%, and human-eval gains of 2.1%, 12.5%, and 117.8%, respectively. These results confirm that LLM-based generation strategies—especially those leveraging clause-wise generation and post-order traversal—are significantly more effective at producing realistic and fluent SQL queries than template-based approaches.

4.3 TABLE-TEXT QA EVALUATION RESULTS

Table 4 and Table 5 report the Table–Text QA performance of representative methods across eight benchmarks, revealing the increased difficulty posed by SPARTA. We evaluate SPARTA under two configurations: (1) SPARTA (Oracle), where models are given ground-truth tables and linked passages; and (2) SPARTA (Retrieval), where models must retrieve relevant content from the entire corpus. On SPARTA (Oracle), ODYSSEY with GPT-5 achieves an average F1 score of 35.6% across all domains, representing a sharp 33.9-point drop compared to its performance on HybridQA (69.5%). Similarly, HProPro with GPT-5 achieves an average F1 score of 40.4%, a 30.1-point drop from its HybridQA performance (70.5%). These results reveal the limitations of existing methods when scaled to larger, more complex queries. Interestingly, HProPro with GPT-5 outperforms ODYSSEY on the NBA and Movie domains, which feature tables with thousands of rows (as shown in Table 1), owing to its ability to generate executable programs that directly operate over tables. This result highlights the limitations of ODYSSEY when applied to large-scale tables and aligns with the broader observation that larger table sizes increase the difficulty of table-QA for LLMs Patnaik

Table 4: Table-Text QA Accuracy on the SPARTA (Oracle) across multiple domains.

Method	SPARTA												HybridQA			
	NBA				Movie				Medical				Avg.			
	EM	F1	P	R	EM	F1	P	R	EM	F1	P	R	EM	F1	P	R
ODYSSEY w/ GPT-3.5-turbo	9.0	15.1	26.8	14.8	20.2	23.9	33.6	24.7	6.7	22.9	33.2	21.3	12.0	20.6	31.2	20.3
HProPro w/ GPT-3.5-turbo	11.0	13.6	16.4	13.8	22.2	27.8	29.1	29.2	15.5	19.5	20.2	19.7	16.2	20.3	21.9	20.9
ODYSSEY w/ GPT-5	21.2	28.4	38.4	28.1	20.4	24.3	32.9	24.3	47.5	54.2	60.3	54.2	29.7	35.6	43.9	35.5
HProPro w/ GPT-5	23.6	33.1	36.2	30.4	36.6	47.1	49.2	48.8	28.1	41.0	43.2	41.6	25.9	40.4	42.9	41.5
													39.7	70.5	71.1	73.1

Table 5: Table-Text QA Accuracy on the SPARTA (Retrieval) across multiple domains.

et al.. The performance gap between GPT-5 and GPT-3.5-turbo (35.6 vs. 20.6 F1 for ODYSSEY and 40.4 vs. 20.3 F1 for HProPro) underscores the importance of advanced LLM reasoning capabilities in handling such challenges. In the retrieval setting, where no gold tables are provided, performance degrades further: the best method (HELIOS + HProPro with GPT-5) attains only 22.6 F1. This sharp decline illustrates the compounded challenge of retrieval and reasoning over heterogeneous corpora. We additionally evaluate the FiE Reader Ma et al. (2023), the state-of-the-art fine-tuned reader model on OTT-QA. While FiE Reader surpasses HELIOS + HProPro w/ GPT-5 by 9.2 points on OTT-QA, it lags behind on SPARTA by 11.0 points, showing fine-tuned models fail to generalize to SPARTA’s more complex, out-of-domain settings.

4.4 ANALYSIS

We conducted a comprehensive analysis of the models' execution results on the SPARTA benchmark. This investigation uncovers several fundamental vulnerabilities in current table-text QA models, pointing to critical directions for future work.

Models struggle to handle complex multi-hop query structures. We evaluate Table–Text QA models under various tree-structured query configurations, fixing the number of edges to four: (Depth 1, Breadth 3), (Depth 2, Breadth 2), and (Depth 3, Breadth 1). We also included intermediate shapes with three edges, such as (Depth 1, Breadth 2) and (Depth 2, Breadth 1), to further validate the trend.

As shown in Figure 5a, model performance degrades sharply as either depth or breadth increases. At fixed depth, expanding breadth from (Depth 1, Breadth 1) to (Depth 1, Breadth 3) reduces HProPro and ODYSSEY by 25.2% and 27.5%, respectively. At fixed breadth, increasing depth from (Depth 1, Breadth 1) to (Depth 3, Breadth 1) yields 47.2% and 49.9% declines. Additional comparisons—(Depth 2, Breadth 1) to (Depth 2, Breadth 2), and (Depth 1, Breadth 2) to (Depth 2, Breadth 2)—show consistent degradation, further confirming that both deeper and broader queries cause substantial F1 drops. These findings suggest that existing methods are fundamentally limited in performing tree-structured reasoning over multiple relational paths, regardless of whether complexity arises from depth or breadth.

Models struggle with analytical operations such as grouping and ordering. As shown in Figure 5b, both ODYSSEY and HProPro exhibit consistent performance degradation when advanced analytical clauses are present. For queries that include GROUP BY and HAVING clauses, ODYSSEY attains an F1 score of 35.4, whereas HProPro attains 27.1. When ORDER BY and LIMIT are present, the scores are 31.2 for ODYSSEY and 21.4 for HProPro. Aggregation queries show a similar pattern, yielding 28.4 for ODYSSEY and 37.2 for HProPro. Compared with each model’s average F1, these analytical scores are markedly lower, indicating weak numerical reasoning, filtering, and ranking capabilities and exposing fundamental limitations in addressing real-world table–text questions. Notably, ODYSSEY performs worst on aggregation queries, whereas HProPro struggles most with ORDER BY and LIMIT.

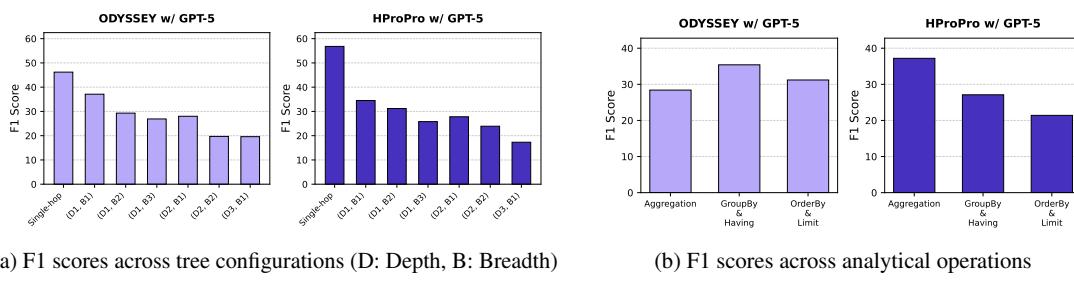


Figure 5: Comparison of F1 scores across different configurations.

Table 6: Performance Comparison With and Without Text Data in Table-Text QA.

Method	Setting	EM	F1	P	R
ODYSSEY w/ GPT-5	Table-Text Cross Reasoning	23.9	28.6	36.3	28.4
	Table-only Reasoning	32.0	39.2	49.5	38.8
HProPro w/ GPT-5	Table-Text Cross Reasoning	11.9	16.3	17.2	16.7
	Table-only Reasoning	29.2	45.2	46.9	46.4

Performance drops sharply when unstructured text is required. As shown in Table 6, the inclusion of table-text cross reasoning leads to a significant decline in performance. HProPro’s F1 score drops by 63.9% (from 45.2 to 16.3), while ODYSSEY experiences an even steeper drop of 23.0% (from 39.2 to 28.6). This sharp contrast highlights the difficulty of reasoning over unstructured passages in conjunction with structured tables. Although both models perform moderately well when queries rely only on tabular data, they consistently fail to retrieve and integrate relevant textual spans when external context is present. These failures indicate that current Table–Text QA models lack robust cross-modal alignment and semantic grounding, limiting their effectiveness in real-world scenarios that demand joint reasoning over heterogeneous data sources.

To further support our findings, we include supplementary analyses in the appendix: an ablation study on nesting types (Appendix G) and an error case analysis (Appendix J).

5 CONCLUSION

In summary, we present SPARTA, a benchmark generation framework that rectifies the three critical shortcomings of existing Table–Text QA resources—shallow question design, annotation noise, and toy-scale tables—by (i) unifying heterogeneous evidence inside a reference fact database, (ii) generating logically deep, human-like SQL nested queries whose hop count and analytical operations are explicitly controlled through a provenance-guided LLM pipeline, and (iii) verbalising them into natural-language questions using an LLM-based SQL-to-text model, with lightweight human validation for fluency and correctness. On SPARTA, state-of-the-art models that reach over 70 F1 on HybridQA or over 50 F1 on OTT-QA drop by more than 30 F1 points, exposing fundamental weaknesses in current cross-modal reasoning.

6 LIMITATIONS AND FUTURE WORK

SPARTA currently focuses on the Table–Text setting. Future work will extend it to multimodal inputs like images and videos by using vision–language models to summarize visuals into atomic statements, normalizing them into grounding tables, and merging with the existing fact database. Since these tuples follow the same schema as \mathcal{D} , the query-generation pipeline (§3.3) applies unchanged. A complete multimodal extension, including dataset collection, schema design, and evaluation, is planned for future research.

Reproducibility Statement We include prompt examples for provenance-based refinement, realistic-structure enforcement, and automatic naturalness evaluation in Appendix N. Details of the experimental setup are provided in Section 4.1. All source code, datasets, and related artifacts for SPARTA are available at anonymous.4open.science.

REFERENCES

Nba salaries. <https://data.world/datadavis/nba-salaries>. Accessed: 2025-05-15.

Nba games. <https://www.kaggle.com/datasets/nathanlauga/nba-games>, a. Accessed: 2025-05-15.

Historical nba finals and mvp results. <https://www.kaggle.com/datasets/thedevastator/historical-nba-finals-and-mvp-results>, b. Accessed: 2025-05-15.

Imdb movies analysis - sql. <https://www.kaggle.com/datasets/gauravbr/imdb-movies-data-erd>, c.

Hospital management dataset. <https://www.kaggle.com/datasets/kanakbaghel/hospital-management-dataset>, d.

Nba dataset project. <https://www.kaggle.com/datasets/kareemignacio/nba-dataset-project>, e. Accessed: 2025-05-15.

1991-2021 nba stats. <https://www.kaggle.com/datasets/vivovinco/19912021-nba-stats>, f. Accessed: 2025-05-15.

Nba/aba/baa team stats per game. <https://www.kaggle.com/datasets/sumitrodatta/nba-aba-baa-stats?select=Team+Stats+Per+Game.csv>, g. Accessed: 2025-05-15.

Ankush Agarwal, Chaitanya Devaguptapu, and Ganesh S. Hybrid graphs for table-and-text based question answering using LLMs. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 858–875, Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-189-6. URL <https://aclanthology.org/2025.naacl-long.39/>.

Ali Al Lawati, Jason Lucas, and Prasenjit Mitra. Semantic captioning: Benchmark dataset and graph-aware few-shot in-context learning for sql2text. In *Proceedings of the 31st International Conference on Computational Linguistics*, pp. 8026–8042, 2025.

Nicole Bidoit, Melanie Herschel, and Katerina Tzompanaki. Query-based why-not provenance with nedex-plain. In *Extending database technology (EDBT)*, 2014.

Luiz Bonifacio, Hugo Abonizio, Marzieh Fadaee, and Rodrigo Nogueira. Inpars: Unsupervised dataset generation for information retrieval. In *Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 2387–2392, 2022.

Adriane Chapman and HV Jagadish. Why not? In *Proceedings of the 2009 ACM SIGMOD International Conference on Management of data*, pp. 523–534, 2009.

Wenhu Chen, Ming-Wei Chang, Eva Schlinger, William Wang, and William W Cohen. Open question answering over tables and text. *arXiv preprint arXiv:2010.10439*, 2020a.

517 Wenhui Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong, Hong Wang, and William Wang. Hybridqa: A
 518 dataset of multi-hop question answering over tabular and textual data. *arXiv preprint arXiv:2004.07347*,
 519 2020b.

520 Zhiyu Chen, Wenhui Chen, Charese Smiley, Sameena Shah, Iana Borova, Dylan Langdon, Reema Moussa,
 521 Matt Beane, Ting-Hao Huang, Bryan R Routledge, et al. Finqa: A dataset of numerical reasoning over
 522 financial data. In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language
 523 Processing*, pp. 3697–3711, 2021.

524

525 Benjamin Dietrich, Tobias Müller, and Torsten Grust. Data provenance for recursive sql queries. In
 526 *Proceedings of the 14th International Workshop on the Theory and Practice of Provenance*, pp. 1–8, 2022.

527

528 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
 529 Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. *arXiv preprint
 530 arXiv:2407.21783*, 2024.

531

532 Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey Gubichev, Arnau Prat, Minh-Duc
 533 Pham, and Peter Boncz. The ldbc social network benchmark: Interactive workload. In *Proceedings of
 534 the 2015 ACM SIGMOD International Conference on Management of Data*, SIGMOD ’15, pp. 619–630,
 535 New York, NY, USA, 2015. Association for Computing Machinery. ISBN 9781450327589. doi: 10.1145/
 2723372.2742786. URL <https://doi.org/10.1145/2723372.2742786>.

536

537 Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Summarizing source code using a
 538 neural attention model. In *54th Annual Meeting of the Association for Computational Linguistics 2016*, pp.
 539 2073–2083. Association for Computational Linguistics, 2016.

540

541 Vitor Jeronymo, Luiz Bonifacio, Hugo Abonizio, Marzieh Fadaee, Roberto Lotufo, Jakub Zavrel, and Rodrigo
 542 Nogueira. Inpars-v2: Large language models as efficient dataset generators for information retrieval. *arXiv
 543 preprint arXiv:2301.01820*, 2023.

544

545 Won Kim. On optimizing an sql-like nested query. *ACM Transactions on Database Systems (TODS)*, 7(3):
 443–469, 1982.

546

547 Seokki Lee, Sven Köhler, Bertram Ludäscher, and Boris Glavic. A sql-middleware unifying why and why-not
 548 provenance for first-order queries. In *2017 IEEE 33rd International Conference on Data Engineering
 (ICDE)*, pp. 485–496. IEEE, 2017.

549

550 Kaixin Ma, Hao Cheng, Yu Zhang, Xiaodong Liu, Eric Nyberg, and Jianfeng Gao. Chain-of-skills: A
 551 configurable model for open-domain question answering. In *Proceedings of the 61st Annual Meeting of the
 552 Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 1599–1618, 2023.

553

554 Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary C. Lipton, and J. Zico Kolter. Tofu: A task of
 555 fictitious unlearning for llms, 2024. URL <https://arxiv.org/abs/2401.06121>.

556

557 Raghunath Othayoth Nambiar and Meikel Poess. The making of tpc-ds. In *Proceedings of the 32nd
 558 International Conference on Very Large Data Bases*, VLDB ’06, pp. 1049–1058. VLDB Endowment, 2006.

559

560 Jio Oh, Soyeon Kim, Junseok Seo, Jindong Wang, Ruochen Xu, Xing Xie, and Steven Whang. Erbench:
 561 An entity-relationship based automatically verifiable hallucination benchmark for large language models.
 562 *Advances in Neural Information Processing Systems*, 37:53064–53101, 2024.

563

564 Reham Omar, Omij Mangukiya, and Essam Mansour. Dialogue benchmark generation from knowledge
 565 graphs with cost-effective retrieval-augmented llms. *Proceedings of the ACM on Management of Data*, 3
 566 (1):1–26, 2025.

564 OpenAI. Chatgpt via chat completions api. URL [https://platform.openai.com/docs/models/
565 chatgpt-4o-latest](https://platform.openai.com/docs/models/chatgpt-4o-latest).

566

567 Abdelghny Orogat and Ahmed El-Roby. Smartbench: demonstrating automatic generation of comprehensive
568 benchmarks for question answering over knowledge graphs. *Proceedings of the VLDB Endowment*, 15(12):
569 3662–3665, 2022.

570 Abdelghny Orogat and Ahmed El-Roby. Maestro: Automatic generation of comprehensive benchmarks for
571 question answering over knowledge graphs. *Proceedings of the ACM on Management of Data*, 1(2):1–24,
572 2023.

573

574 Sungho Park, Joohyung Yun, Jongwuk Lee, and Wook-Shin Han. HELIOS: Harmonizing early fusion, late
575 fusion, and LLM reasoning for multi-granular table-text retrieval. In Wanxiang Che, Joyce Nabende,
576 Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the
577 Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 32424–32444, Vienna, Austria,
578 July 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.
579 acl-long.1559. URL <https://aclanthology.org/2025.acl-long.1559/>.

580 Sohan Patnaik, Heril Changwal, Milan Aggarwal, Sumit Bhatia, Yaman Kumar, and Balaji Krishnamurthy.
581 Cabinet: Content relevance-based noise reduction for table question answering. In *The Twelfth International
582 Conference on Learning Representations*.

583

584 Qi Shi, Han Cui, Haofeng Wang, Qingfu Zhu, Wanxiang Che, and Ting Liu. Exploring hybrid question
585 answering via program-based prompting. In *Proceedings of the 62nd Annual Meeting of the Association
586 for Computational Linguistics (Volume 1: Long Papers)*, pp. 11035–11046, 2024.

587 Kai Sun, Yifan Xu, Hanwen Zha, Yue Liu, and Xin Luna Dong. Head-to-tail: How knowledgeable are
588 large language models (llms)? aka will llms replace knowledge graphs? In *Proceedings of the 2024
589 Conference of the North American Chapter of the Association for Computational Linguistics: Human
590 Language Technologies (Volume 1: Long Papers)*, pp. 311–325, 2024.

591 Xueqing Wu, Jiacheng Zhang, and Hang Li. Text-to-table: A new way of information extraction. In
592 *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
593 Papers)*, pp. 2518–2533, 2022.

594

595 Kun Xu, Lingfei Wu, Zhiguo Wang, Yansong Feng, and Vadim Sheinin. Sql-to-text generation with graph-
596 to-sequence model. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language
597 Processing*, pp. 931–936, 2018.

598 Lingxi Zhang, Jing Zhang, Xirui Ke, Haoyang Li, Xinmei Huang, Zhonghui Shao, Shulin Cao, and Xin Lv.
599 A survey on complex factual question answering. *AI Open*, 4:1–12, 2023.

600

601 Yilun Zhao, Yunxiang Li, Chenying Li, and Rui Zhang. Multihierett: Numerical reasoning over multi
602 hierarchical tabular and textual data. In *Proceedings of the 60th Annual Meeting of the Association for
603 Computational Linguistics (Volume 1: Long Papers)*, pp. 6588–6600, 2022.

604

605 Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
606 Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sclang: Efficient execution of structured language
607 model programs. *Advances in Neural Information Processing Systems*, 37:62557–62583, 2024.

608

609 Zexuan Zhong, Zhengxuan Wu, Christopher D. Manning, Christopher Potts, and Danqi Chen. Mquake:
610 Assessing knowledge editing in language models via multi-hop questions, 2024. URL <https://arxiv.org/abs/2305.14795>.

611 Fengbin Zhu, Wenqiang Lei, Youcheng Huang, Chao Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng, and
612 Tat-Seng Chua. Tat-qa: A question answering benchmark on a hybrid of tabular and textual content in
613 finance. In *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and*
614 *the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)*, pp.
615 3277–3287, 2021.

616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

658 **A CROSS-DATASET ANNOTATION AUDIT**

Dataset	Error breakdown (within erroneous samples)			
	% of all samples	Redundant modality	Incomplete answer set	Incorrect / unanswerable
HYBRIDQA	21%	52.4%	23.8%	23.8%
MULTIHIERITT	26%	15.4%	30.8%	53.8%
TAT-QA	30%	96.7%	0.0%	3.3%
FINQA	17%	41.2%	0.0%	58.8%
SPARTA	0%	0.0%	0.0%	0.0%

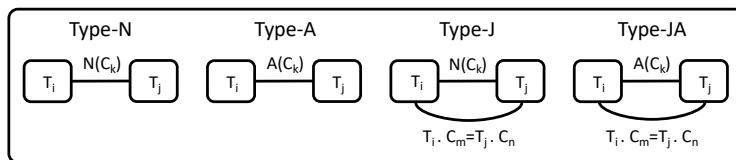
667 Table 7: Audit of 100 randomly sampled dev examples from each dataset. “Any error” shows the fraction
 668 of all samples containing at least one error. The breakdown columns report the relative distribution among
 669 erroneous samples.

670 **B SUPPORTED NESTED QUERY PATTERNS**

671 SPARTA synthesizes queries for each of the four primary nesting patterns Kim (1982) commonly observed in
 672 real-world SQL, as illustrated in Fig 6.

673 Table 8: Nested-query patterns.

Type	Inner aggreg.	Correlation	Typical intent / example
Type-N			<i>Pure set membership.</i> Outer block tests whether a value belongs to the set returned by a non-correlated subquery (e.g., WHERE x IN (SELECT ...)).
Type-A	✓		<i>Aggregate comparison.</i> Inner block computes an aggregate such as AVG or MAX and the result is compared with each outer tuple (e.g., salary > (SELECT AVG(salary) FROM ...)).
Type-J		✓	<i>Correlated filtering.</i> Inner query references attributes of the outer block without aggregation (e.g., EXISTS (SELECT 1 FROM Items i WHERE i.order_id = o.id)).
Type-JA	✓	✓	<i>Correlated aggregate comparison.</i> Inner query both correlates with the outer block and aggregates its own rows before the comparison (e.g., EXISTS (SELECT 1 FROM Items i WHERE i.order_id = o.id GROUP BY ... HAVING SUM(i.qty) > o.limit)).



702 Figure 6: Four primary nesting patterns—type (N, A, J, JA) queries of depth 1. Each consists of an outer
 703 block (T_i) and an inner block (T_j). Arcs labeled ‘A’ indicate aggregation in the inner SELECT; straight arcs
 704 ‘N’ denote set-inclusion predicates; curved arcs denote join predicates.

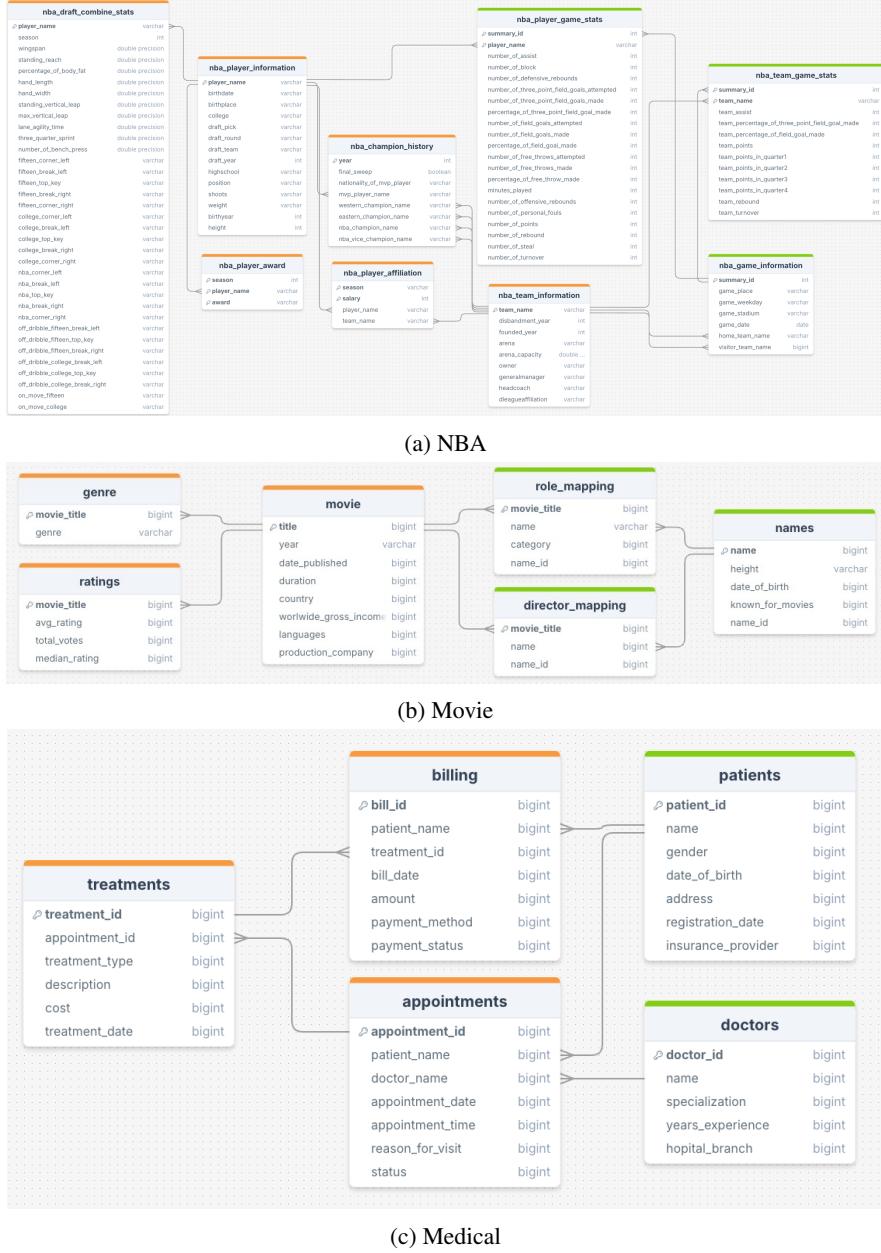
705 **C SCHEMA OF REFERENCE-FACT DATABASE**
706

Figure 7: Schemas of the reference-fact databases used in SPARTA across three domains. Each database consists of two complementary types of tables: source tables S_T (orange) from public datasets (e.g., NBA player salaries, movie metadata, medical records) and grounding tables G_T (green) encoding atomic facts extracted from textual passages.

752 **D TABLE-LEVEL STATISTICS OF THE REFERENCE-FACT DATABASE**
753754 Table 9: Row/Column Statistics of All Tables in the Sparta Benchmark
755

756	757	Domain	Table Name	# Columns	# Rows
758	nba	nba	nba_draft_combine_stats	35	772
759			nba_player_information	14	4596
760			nba_player_award	3	236
761			nba_champion_history	8	69
762			nba_player_affiliation	4	13980
763			nba_team_information	9	30
764			nba_player_game_stats	21	45640
765			nba_team_game_stats	12	12750
			nanba_game_informtaion	7	6665
766	imdb	imdb	genre	2	14418
767			ratings	4	7872
768			movie	8	7872
769			role_mapping	4	15336
770			director_mapping	3	3800
			names	5	25617
771	medical	medical	treatments	6	200
772			billing	7	200
773			appointments	7	200
774			patients	7	50
775			doctors	5	10

776
777 Table 9 provides an overview of the structural statistics for all tables in the SPARTA benchmark, including
778 the number of columns and rows per table, grouped by domain (NBA, IMDB, and Medical). These metrics
779 highlight the scale and diversity of the reference-fact database used for evaluation.
780

781 **E BENCHMARK CONFIGURATION**
782783 Table 10: Benchmark Configuration: SQL Operator Coverage, Query-Shape/Size Distribution.
784

785 Query Shape and Size Distribution (%)									
786 Non-nested	(Depth 1, Breadth 1)	(Depth 1, Breadth 2)	(Depth 1, Breadth 3)	(Depth 2, Breadth 1)	(Depth 2, Breadth 2)	(Depth 3, Breadth 1)	Total		
787 45.5	9.1	9.1	9.1	9.1	9.1	9.1	100.0		
788 SQL Operator Presence (%)									
789 WHERE	GROUP BY	HAVING	ORDER BY	LIMIT	AGGREGATION				
790 100.0	15.3	3.4	7.7	4.5	50.0				
791 Nested Predicate Type Presence in Nested Query (%)									
792 Type-N	Type-A	Type-J	Type-JA						
793 57.8	64.3	32.4	15.2						

794 **F GENERATION COST ANALYSIS**
795796 **F.1 COST ANALYSIS ACROSS LLM SCALES**
797

To demonstrate that our provenance-based refinement is effective regardless of the LLM’s size, we conducted additional experiments comparing generation costs across LLMs of varying sizes. Specifically, in addition to the Llama-3.1-70B-Instruct model evaluated in the manuscript, we measured generation costs using a smaller-parameter LLM (gpt-oss-20B) and a larger-parameter LLM (gpt-oss-120B).

Table 11 shows that Post-Order + Prov is the most cost-effective approach across all LLM variants, completing with 4854, 4,722, and 3831 calls for the respective models, while cutting call volume by 18.8%, 42.8%, and 54.5% versus vanilla Post-Order, and by 64.7%, 66.2%, and 65.7% versus One-Shot-k. These results indicate that disciplined post-order construction combined with provenance-driven repair minimizes redundant generations independent of the LLM’s scale.

Note that the "Ideal Calls" metric represents the number of LLM calls required if every step succeeds. It varies slightly due to probabilistic clause inclusion in SQL query generation (based on predefined per-clause probabilities). As shown in the table, the variance is very small when we repeat experiments three times per method.

LLM	Method	Ideal Calls	Total Calls
gpt-oss-20B	One-Shot-k	2661	13736
	Post-Order (no provenance)	3073	5977
	Post-Order + Prov	3146	4854
Llama-3.1-70B-Instruct	One-Shot-k	2664	13962
	Post-Order (no provenance)	3104	8253
	Post-Order + Prov	3074	4722
gpt-oss-120B	One-Shot-k	2621	11225
	Post-Order (no provenance)	3152	8425
	Post-Order + Prov	3145	3831

Table 11: Generation cost comparison across LLM sizes for three refinement strategies.

F.2 COST ANALYSIS ON QUERY SHAPE AND SIZE

Figure 8 contrasts LLM usage for *star* and *chain* query trees as their size grows from one to three nested predicates. Here, *star* queries fix depth to 1 while increasing breadth (number of branches), whereas *chain* queries fix breadth to 1 while increasing depth (number of nested levels). The size thus reflects how many nested predicates are added along either the breadth or depth dimension. For star shapes, one-shot generation quickly becomes prohibitive, ballooning to $17\times$ the ideal call count when the hub size reaches three. Building the same queries in post-order slashes that overhead to $3.2\times$; provenance repair trims it further to $1.6\times$. Chains tell a different story: because their natural construction order already matches post-order, one-shot and post-order costs are similar, yet provenance still removes 30–40 % of redundant calls at every depth. Branching structures profit most from post-order generation, while provenance-guided repair is a universally cheap “insurance policy” that cuts waste regardless of query shape.

Beyond structural complexity, we also measured the average number of LLM calls required to generate a single query as the number of accessed tables increases. Table 12 shows increases of +2.6 calls (from 1 to 2 tables), +3.9 (from 2 to 3), and +2.2 (from 3 to 4), indicating near-linear growth.

G ABLATION STUDY ON NESTING TYPES

For a deeper analysis, we examined the best-performing system on the SPARTA Benchmark—HProPro with GPT-5—by breaking down its performance across query-nesting types: plain nesting (N), nesting with aggregates (A), nesting with correlated joins (J), and nesting that combines correlated joins + aggregates (JA). Results are shown below.

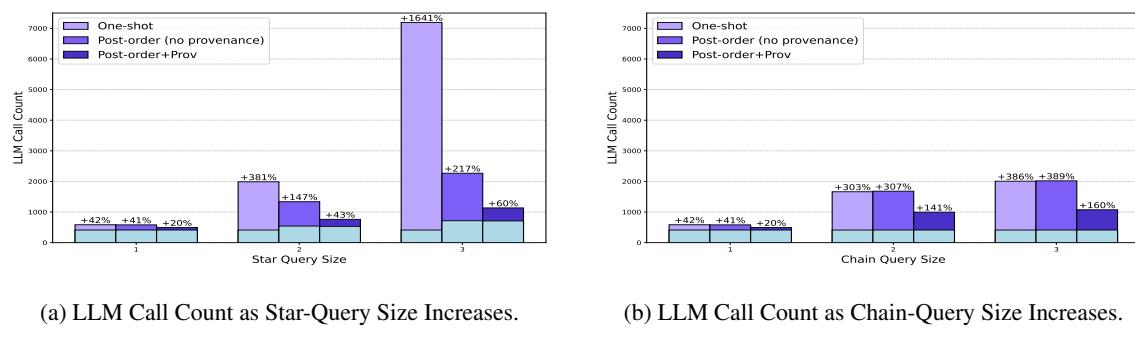


Figure 8: Generation cost for varying (a) star-query size and (b) chain-query size. Sky-blue bars mark ideal LLM calls, and the labels above each bar represent the actual excess percentage.

Table 12: Average LLM calls per query as the number of accessed tables increases.

# of Accessed Tables	Average LLM Calls per Query
1	2.3
2	4.9 (+ 2.6)
3	8.8 (+ 3.9)
4	11.0 (+ 2.2)

As shown in Table 13, F1 falls steadily as structural (correlated joins) and analytical (aggregates) complexity increases, with the largest drop when both factors are present (Type JA). This ablation study underscores that correlated joins and aggregates are the model’s primary pain points.

H ANALYSIS ON NEGATION AND RANGE REASONING

To better understand which logical operators and conditions most challenge SPARTA models, we conduct an ablation study focusing on two key query categories: *negation* and *numeric range* conditions. These categories capture a large portion of structural breadth in SPARTA and represent frequent sources of model errors.

We evaluate HProPro with GPT-5 on queries containing explicit negation operators (NOT LIKE, NOT EXISTS, NOT IN, <>) as well as numeric range operators (>, <, >=, <=). Table 14 presents the results.

Both categories show notable degradation compared to the overall SPARTA score, with negation queries dropping by 28.3% and range queries by 18.6%. These findings indicate that logical negation and numeric range reasoning remain significant bottlenecks.

In addition to this quantitative breakdown, we selected representative samples from both query types and conducted a qualitative error analysis, shown in Figure 9. As illustrated in Figure 9(a), negation reasoning presents a recurring challenge. The example query requires identifying players for whom *there is no record indicating* that they (i) are a Center with height > 90, (ii) were born after 1970, and (iii) were drafted “9th overall.” All three criteria fall under the scope of a single negated condition. However, the model applies negation only to the first clause (“Center with height > 90”) while incorrectly treating the remaining clauses (“born after 1970,” “drafted 9th overall”) as independent positive filters. This partial scoping of negation leads the model to misinterpret the logical structure and include players who should have been excluded.

893 Table 13: F1 scores of HProPro (w/ GPT-5) across different nesting types. Percentage values indicate relative
 894 change from the overall average (34.5).

Nesting Type	F1 (HProPro w/ GPT-5)
Type-N	40.0 (+15.9%)
Type-A	33.7 (-2.3%)
Type-J	30.8 (-10.7%)
Type-JA	25.6 (-25.8%)
Total	34.5

903 Table 14: F1 scores of HProPro (w/ GPT-5) on negation and range queries.

Query Category	F1 (HProPro w/ GPT-5)
Negation (NOT LIKE, NOT EXISTS, NOT IN, <>)	28.7 (-28.3%)
Range (>, <, >=, <=)	32.9 (-18.6%)
SPARTA (Oracle)	40.4

912 A similar pattern is observed for range reasoning, as shown in Figure 9(b). The gold query requires identifying
 913 teams whose arena capacity exceeds the maximum capacity among teams that (i) were founded before
 914 1970 and (ii) have capacities between 20,000 and 21,711. Although the model correctly computes the
 915 maximum capacity among pre-1970 teams, it fails to apply the upper bound constraint (`arena_capacity`
 916 `< 21,711`) during the final filtering stage. As a result, the predicted code returns teams that satisfy the
 917 lower-bound conditions and the dynamic threshold but violate the required upper-bound range condition,
 918 producing an incorrect answer.

I ABLATION STUDY ON ROBUSTNESS TO LINGUISTIC VARIABILITY

923 We further study the robustness of table-text qa models to linguistic variability by evaluating performance
 924 under human-verified rephrased questions. Specifically, we sampled 100 queries from our benchmark and had
 925 them manually rephrased by human annotators, ensuring the core semantic meaning and the correct answer
 926 were preserved. We then evaluated the HProPro model with GPT-5 on both the original and the rephrased sets
 927 of queries.

929 Table 15: F1 scores of HProPro (w/ GPT-5) on original and human-verified rephrased queries.

Query Set	F1 (HProPro w/ GPT-5)
Original Questions	45.22
Rephrased Questions	45.02 (-0.44%)

935 As shown in Table 15, the F1 score dropped from 45.22 on the original queries to 45.02 on the rephrased
 936 versions, amounting to a negligible decrease of 0.44%. This finding indicates that the model is highly robust
 937 to surface-level linguistic variations. We have incorporated the details of this new experiment and its results
 938 into the Appendix I of our revised manuscript to strengthen our robustness analysis.

<p>940 Question: What is the maximum number of points scored in a single game by player who, in that game, recorded more than 5 rebounds and more than 5 steals, and weight is less than 180lb and for whom there is no record indicating that they are a Center with height greater than 90, born after 1970, and drafted '9th overall'?</p> <p>941 Answer: 19</p> <hr/> <p>942 Gold Code:</p> <pre>943 def solve(table) -> str: 944 for row in table: 945 if not (row[weight][0] < 180): 946 continue 947 if (row[position][0] include 'Center' AND row[height][0] > 90 and 948 row[birthyear][0] > 1970 and row[draft_pick][0] == '9th overall'): 949 continue 950 passage_links = row[player_name][1] 951 # ... extract the points with >5 rebounds and >5 steals ... 952 return max_points</pre> <hr/> <p>953 Predicted Code:</p> <pre>954 def solve(table) -> str: 955 max_points = [] 956 for row in table: 957 if not (row[weight][0] < 180): 958 continue 959 if (row[position][0] include 'Center' AND row[height][0] > 90): 960 continue 961 if not (row[birthyear][0] > 1970 AND row[draft_pick][0] == '9th overall'): 962 continue 963 passage_links = row[player_name][1] 964 # ... extract the points with >5 rebounds and >5 steals ... 965 return max_points</pre>	<p>940 Question: What is the highest team points in a game for any team whose arena capacity is above the maximum arena capacity of any team founded before 1970, with an arena capacity above 20000, and owned by someone other than Paul Allen, and with an arena capacity below 21711, and which scored more than 100 points and rebounded more than 40 times in a game?</p> <p>941 Answer: 127</p> <hr/> <p>942 Gold Code:</p> <pre>943 def solve(table) -> str: 944 max_before_1970 = None 945 for row in table: 946 if (row['founded_year'][0] < 1970) and (row['owner'][0] != 'Paul Allen') and 947 (row['arena_capacity'][0] > 20000 and row['arena_capacity'][0] < 21711): 948 if row['arena_capacity'][0] > max_before_1970: 949 max_before_1970 = row['arena_capacity'][0] 950 for row in table: 951 if arena_capacity > max_before_1970: 952 passage_link = row['team_name'][1] 953 # ... extract the points with >100 points and >40 rebounds ... 954 return max_points max_before_1970</pre> <hr/> <p>955 Predicted Code:</p> <pre>956 def solve(table) -> str: 957 max_before_1970 = None 958 for row in table: 959 if (row['founded_year'][0] < 1970) and (row['owner'][0] != 'Paul Allen') and 960 (row['arena_capacity'][0] > 20000 and row['arena_capacity'][0] < 21711): 961 if row['arena_capacity'][0] > max_before_1970: missing! 962 max_before_1970 = row['arena_capacity'][0] 963 for row in table: 964 if arena_capacity > max_before_1970: 965 passage_link = row['team_name'][1] 966 # ... extract the points with >100 points and >40 rebounds ... 967 return max_points</pre>
---	--

(a)

(b)

Figure 9: Illustration of representative error cases where the model fails to correctly answer. (a) Negation reasoning error. (b) Range reasoning error.

J ERROR CASE ANALYSIS

We conduct an analysis of the errors encountered by Table-Text QA models on randomly sampled sets of 100 examples each for SPARTA (Oracle) and SPARTA (Retrieval), as illustrated in Fig 10. Representative error types, along with their frequencies and causal interpretations, are summarized below.

Relevant data missing. This was the most frequent category of failure, where the model failed to identify all the necessary information to correctly answer the question. SPARTA poses increased demands for multi-hop reasoning across table and text sources, which existing methods often struggle with:

- **Partial retrieval of relevant data:** The model identifies only a subset of the necessary sources, resulting in incomplete answers. As illustrated in Figure 11, the model was expected to return both 62 and 53 as the field goal percentages for the Dallas Mavericks and New York Knicks, respectively, but failed to do so.
- **Failure to identify relevant data:** The model does not identify crucial supporting data, leading to either no answer or an incorrect one. For example, in questions requiring information from both `nba_player_information` and `nba_player_award`, the model may access only the former, overlooking the award records, and consequently returning an incorrect answer.

Erroneous data analysis. Compared to prior benchmarks, SPARTA introduces more complex analytical requirements that reveal limitations in model capabilities:

- **Failure to perform advanced analytical operations:** The model struggles with applying operations such as aggregations (e.g., COUNT, MAX) or executing multi-table joins correctly. These operations require precise alignment of relational structures and logic, which is frequently mishandled.

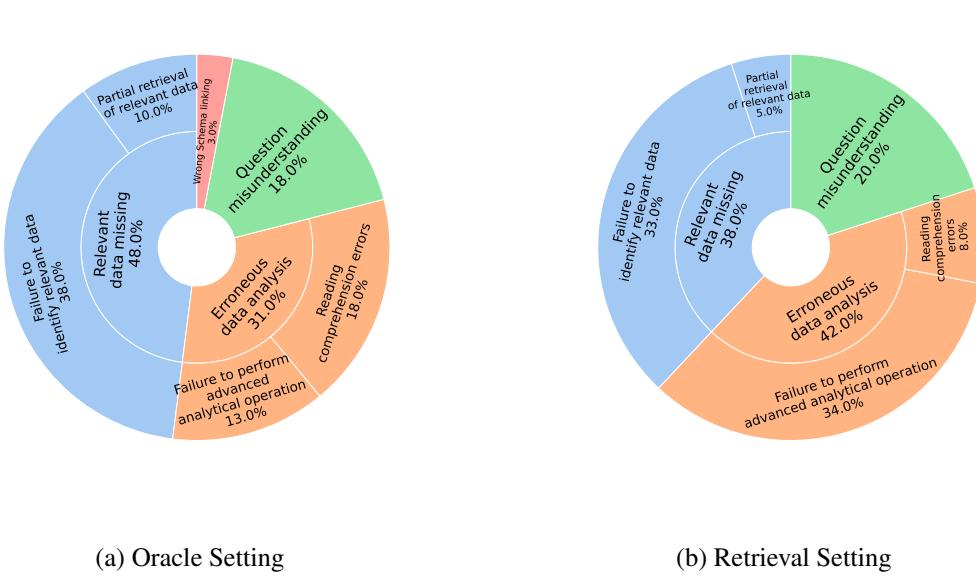


Figure 10: Statistics of errors. For detailed descriptions and examples of each error category, see Appendix J.

• **Reading comprehension errors:** The model incorrectly interprets textual information, leading to erroneous answers. For instance, in a case where the question asks for the Nuggets' field goal percentage, the model erroneously extracts "37%" from the sentence "Nuggets held Sacramento to just 37 percent from the field," misattributing Sacramento's statistic to the Nuggets. See Figure 11 for a detailed example of this error.

Question misunderstanding. These errors arise from incorrect interpretation of the question intent or constraints. Representative cases include failing to restrict answers to players who played only as `point_guard`, and instead including players who played `point_guard` along with other positions, misidentifying the relevant time frame (e.g., using 2017 instead of 2016–17), introducing constraints not specified in the question, or omitting key conditions necessary to derive the correct answer.

Schema linking errors. This category involves incorrect associations between the question and the schema elements, such as tables or columns. For instance, when asked to retrieve the name of the head coach, the model fails to identify the `headcoach` column in the `nba_team_information` table as relevant, thereby omitting necessary information from the final prediction.

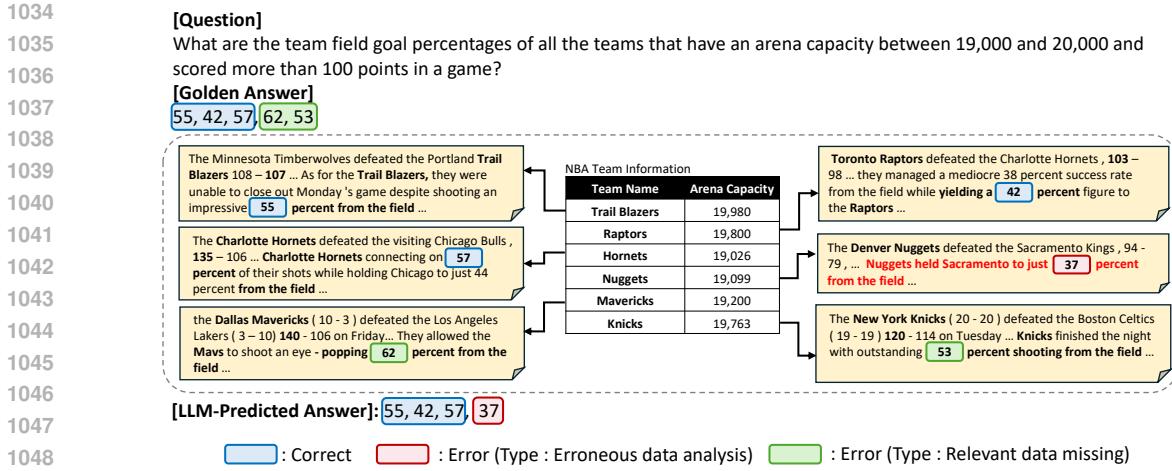


Figure 11: Illustration of a representative error case where the model fails to correctly answer.

K SOFTWARE AND DATA LICENSES

The licenses for the software and datasets used in this paper are as follows:

- LLaMA 3.1-70B-Instruct: LLaMA 3.1
- OTT-QA: MIT License
- HybridQA: MIT License

All software and datasets were used strictly for research purposes and were not utilized in any non-research contexts, particularly for commercial applications.

L AI ASSISTANTS

We used ChatGPT-4o OpenAI to debug code efficiently, quickly identifying and resolving errors in our implementations. Additionally, we used it for rephrasing sentences in our writing to improve clarity and readability.

1081 **M REPRESENTATIVE EXAMPLES FROM OUR SPARTA BENCHMARK**
10821083
1084 Table 16: 20 representative examples from SPARTA, each consisting of a domain, a natural language question,
1085 its corresponding SQL query, and the answer.

1086 1087 Row Type	1088 Content
1088 Domain	NBA
1089 Question	Which player won the NBA MVP award in the 1986 season?
1090 SQL	SELECT player_name FROM nba_player_award WHERE season = 1986 AND award = 'nba mvp'
1091 Answer	Larry Bird
1093 Domain	NBA
1094 Question	What are the names of the players who scored more than 15 points and rebounded more than 5 times in a game?
1095 SQL	SELECT player_name FROM nba_player_game_stats WHERE number_of_points > 15 AND number_of_rebound > 5
1097 Answer	Langston Galloway, Quincy Acy, Larry Nance Jr., ...
1099 Domain	Movie
1100 Question	In which movies did Riteish Deshmukh act?
1101 SQL	SELECT movie_title FROM role_mapping WHERE category = 'actor' AND name = 'Riteish Deshmukh'
1102 Answer	Marjaavaan, Mauli
1104 Domain	Movie
1105 Question	What is the total number of movies with a median rating greater than 5 and an average rating greater than 5.5?
1106 SQL	SELECT COUNT(movie_title) AS total_movies FROM ratings WHERE median_rating > 5 AND avg_rating > 5.5
1108 Answer	4877
1110 Domain	NBA
1111 Question	Which Western Conference teams faced the Celtics more than once in the Finals?
1112 SQL	SELECT western_champion_name FROM nba_champion_history WHERE nba_champion_name = 'Celtics' GROUP BY western_champion_name HAVING COUNT(western_champion_name) > 1
1114 Answer	Rockets, Lakers
1116 Domain	Medical
1117 Question	What is the maximum years of experience of a pediatrician at Central Hospital?
1118 SQL	SELECT MAX(years_experience) FROM doctors WHERE hospital_branch = 'Central Hospital' AND specialization = 'Pediatrics'
1120 Answer	28
1122 Domain	NBA
1123 Question	What is the highest salary of Kevin McHale while playing for the Celtics?
1124 SQL	SELECT MAX(salary) FROM nba_player_affiliation WHERE player_name = 'Kevin McHale' AND team_name = 'Celtics'

1125 *(continued on next page)*
1126
1127

1128	Row Type	Content (continued)
1129	Answer	3,500,000
1130	Domain	NBA
1131	Question	Which Point Guards, drafted between 2000 and 2005, had more than 4 three-pointers, more than 8 field goals and more than 1 steal in a game?
1132	SQL	<pre>SELECT player_name FROM nba_player_game_stats WHERE player_name IN (SELECT player_name FROM nba_player_information WHERE position = 'Point Guard' AND draft_year BETWEEN 2000 AND 2005) AND number_of_three_point_field_goals_made > 4 AND number_of_field_goals_made > 8 AND number_of_steal > 1</pre>
1133	Answer	Chris Paul
1134	Domain	NBA
1135	Question	Which NBA players who were drafted in the first round and play the center position have a salary of over 1 million in the 2016-17 season?
1136	SQL	<pre>SELECT player_name FROM nba_player_information WHERE player_name IN (SELECT player_name FROM nba_player_affiliation WHERE salary > 1000000 AND season = '2016-17') AND draft_round = '1st round' AND position = 'Center'</pre>
1137	Answer	Alex Len, Al Horford, Andre Drummond, ...
1138	Domain	Medical
1139	Question	What are the names of patients who have an appointment with a doctor who works at the central hospital and has more than 20 years of experience?
1140	SQL	<pre>SELECT patient_name FROM appointments WHERE doctor_name IN (SELECT name FROM doctors WHERE hospital_branch = 'Central Hospital' AND years_experience > 20)</pre>
1141	Answer	Alex Smith, Alex Aiden Moore, Emily Miller, ...
1142	Domain	NBA
1143	Question	What are the years of birth of the players who have a lane agility time of more than 11.5 seconds, a three quarter sprint of less than 3.35 seconds, more than 10 field goals made and more than 8 rebounds in a game?
1144	SQL	<pre>SELECT birthyear FROM nba_player_information WHERE player_name IN (SELECT player_name FROM nba_draft_combine_stats WHERE lane_agility_time > 11.5 AND three_quarter_sprint < 3.35) AND player_name IN (SELECT player_name FROM nba_player_game_stats WHERE number_of_field_goals_made > 10 AND number_of_rebound > 8) GROUP BY birthyear</pre>
1145	Answer	1984, 1985, 1989, ...
1146	Domain	Movie
1147	Question	Which movies, starring Vincent D Onofrio as an actor, have an average rating greater than 5 and a median rating of 6, excluding 'Kolonya Cumhuriyeti'?
1148	<i>(continued on next page)</i>	
1149		
1150		
1151		
1152		
1153		
1154		
1155		
1156		
1157		
1158		
1159		
1160		
1161		
1162		
1163		
1164		
1165		
1166		
1167		
1168		
1169		
1170		
1171		
1172		
1173		
1174		

Row Type	Content (continued)
1175	
1176	
1177	SQL SELECT title FROM movie WHERE title IN (SELECT movie_title FROM role_mapping WHERE category = 'actor' AND name = 'Vincent D Onofrio' AND movie_title = title) AND title IN (SELECT movie_title FROM ratings WHERE avg_rating > 5 AND median_rating = 6 AND movie_title <> 'Kolonya Cumhuriyeti')
1178	
1179	
1180	
1181	Answer CHIPS, In Dubious Battle
1182	
1183	
1184	Domain NBA
1185	Question Who are the top 5 centers drafted in the 1st round, who have won the dploy award after 2000, and who have earned more than 2 million dollars in the 2004-05 season, sorted by their draft year in descending order and birth year in ascending order?
1186	SQL SELECT player_name FROM nba_player_information WHERE player_name IN (SELECT player_name FROM nba_player_affiliation WHERE salary > 2000000 AND season = '2004-05') AND player_name IN (SELECT player_name FROM nba_player_award WHERE season > 2000 AND award = 'dploy') AND position = 'Center' AND draft_round = '1st round' ORDER BY draft_year DESC, birthyear ASC LIMIT 5
1187	
1188	
1189	
1190	
1191	
1192	
1193	Answer Dwight Howard, Ben Wallace, ...
1194	
1195	
1196	Domain Medical
1197	Question Find the addresses of male patients born after January 1, 1980, who have MedCare Plus insurance and have made payments that exceed the average failed payments greater than 2500.
1198	SQL SELECT address FROM patients WHERE name IN (SELECT patient_name FROM billing WHERE amount > (SELECT AVG(amount) FROM billing WHERE payment_status = 'Failed' AND amount > 2500)) AND date_of_birth > '1980-01-01' AND gender = 'M' AND insurance_provider = 'MedCare Plus'
1199	
1200	
1201	Answer 123 Elm St, 789 Pine Rd, ...
1202	
1203	
1204	Domain NBA
1205	Question Which NBA players, who are centers and taller than the average height of point guards drafted after 1990, have more than 8 rebounds in a game?
1206	SQL SELECT player_name FROM nba_player_game_stats WHERE player_name IN (SELECT player_name FROM nba_player_information WHERE height > (SELECT AVG(height) FROM nba_player_information WHERE position = 'Point Guard' AND draft_year > 1990) AND position = 'Center') AND number_of_rebound > 8
1207	
1208	
1209	
1210	
1211	Answer Alex Len, Al Horford, Andre Drummond, ...
1212	
1213	
1214	Domain Medical
1215	Question What are the names of female patients who registered after 2021-09-02 and have billed amounts greater than the average amount of failed payments over 2500?
1216	SQL SELECT name FROM patients WHERE name IN (SELECT patient_name FROM billing WHERE amount > (SELECT AVG(amount) FROM billing WHERE payment_status = 'Failed' AND amount > 2500)) AND gender = 'F' AND registration_date > '2021-09-02'
1217	
1218	Answer Emily Jones, Laura Aiden Davis, ...
1219	
1220	
1221	

(continued on next page)

1222	Row Type	Content (continued)
1223		
1224	Domain	Movie
1225	Question	How many movies starring John Abraham have a median rating above 5 and average rating above 4?
1226	SQL	SELECT COUNT(title) AS number_of_movies FROM movie WHERE title IN (SELECT movie_title FROM role_mapping WHERE category = 'actor' AND name = 'John Abraham') GROUP BY movie_title) AND title IN (SELECT movie_title FROM ratings WHERE median_rating > 5 AND avg_rating > 4)
1227		
1228	Answer	1
1229		
1230		
1231	Domain	NBA
1232	Question	What is the maximum height of the Lakers players who play as center, were drafted after 1995 and have a salary greater than the highest salary of the Suns and greater than 20,000,000?
1233	SQL	SELECT MAX(height) FROM nba_player_information WHERE player_name IN (SELECT player_name FROM nba_player_affiliation WHERE salary > (SELECT MAX(salary) FROM nba_player_affiliation WHERE team_name = 'Suns') AND salary > 20000000 AND team_name = 'Lakers') AND position = 'Center' AND draft_year > 1995
1234		
1235	Answer	84
1236		
1237		
1238	Domain	NBA
1239	Question	What are the names of the teams that scored more than the highest points scored by the Thunder when they scored more than 25 points in the first quarter and scored more than the highest points scored by teams that scored more than 100 points and had a three point field goal percentage of more than 30 and have an arena capacity of more than 20,000 and are not the Pistons?
1240	SQL	SELECT team_name FROM nba_team_game_stats WHERE team_points > (SELECT MAX(team_points) FROM nba_team_game_stats WHERE team_name = 'Thunder' AND team_points_in_quarter1 > 25) AND team_points > (SELECT MAX(team_points) FROM nba_team_game_stats WHERE team_points > 100 AND team_percentage_of_three_point_field_goal_made > 30) AND team_name IN (SELECT team_name FROM nba_team_information WHERE arena_capacity > 20000 AND team_name <> 'Pistons')
1241		
1242	Answer	Bulls
1243		
1244		
1245		
1246	Domain	Movie
1247	Question	Which movies directed by Vivek Athreya have a median rating greater than 5 with more than 100 total votes, and do not feature Matt Smith as an actor?
1248	SQL	SELECT title FROM movie WHERE title IN (SELECT T2.movie_title FROM director_mapping AS T2 WHERE T2.name = 'Vivek Athreya' AND movie.title = T2.movie_title) AND NOT title IN (SELECT movie_title FROM role_mapping WHERE category = 'actor' AND name = 'Matt Smith') AND title IN (SELECT movie_title FROM ratings WHERE median_rating > 5 AND total_votes > 100 GROUP BY movie_title)
1249		
1250	Answer	Brochevarevarura, Mental Madhilo
1251		
1252		
1253		
1254		
1255		
1256		
1257		
1258		
1259		
1260		
1261		
1262		
1263		
1264		
1265		
1266		
1267		
1268		

1269 N PROMPT TEMPLATES
12701271 We define a suite of prompt templates that guide LLMs to generate executable, semantically coherent SQL
1272 queries. Prompts are organized into three categories, with an NBA domain example provided; for other
1273 domains, only domain-specific tokens are swapped (e.g., replacing "NBA" with "Movie").1274 **Clause-Level Generation.** Templates for generating individual SQL clauses in canonical order:
12751276

- **SELECT** (non-aggregate, aggregate)
- **FROM**
- **WHERE**
- **GROUP BY**
- **HAVING**
- **ORDER BY**
- **LIMIT**

12851286 **Nested Predicate Construction.** Templates for building multi-hop queries via nested predicates:
12871288

- **Inner Query Selection**
- **FROM Clause for Outer Block**
- **Nested Predicate Generation:** Type-N, Type-A, Type-J, Type-JA

12911292 **Refinement and Evaluation.** Templates to improve query validity and assess realism:
12931294

- **Provenance-Based Refinement** for repairing empty-result queries
- **Naturalness Evaluation** to assess relevance and intent clarity

12961297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

WHERE Clause Generation

1328

You are both an NBA fan and an SQL expert. Given the provided database and the generated clauses, generate a WHERE clause that reflects authentic NBA-related curiosity.

1329

1330

1331

Ensure the following requirements:

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

- Output Structure: Return a JSON object containing a single key, "where", with its value being a WHERE clause.
- Ensure NBA Fan Relevance: Generate the WHERE clause that aligns naturally with realistic and meaningful queries that NBA fans are likely to ask.
- Maintain Specificity and Clarity of Intent: Generate the WHERE clause that is well-defined, avoiding overly vague or artificially complex queries.
- Align with Generated Clauses: Ensure that the WHERE clause maintains logical consistency with previously generated clauses, preserving semantic coherence.
- Ensure Synthetic Correctness: Generate the WHERE clause that is syntactically correct and executable on the provided database.

1343

IMPORTANT: Do not generate conditions for NULL or None values. Also, avoid generating filter conditions that duplicate any existing filters.

1344

1345

1346

Database: {database}

1347

1348

Generated Clauses: {generated_clauses}

1349

Return the results in a FLAT JSON format.

1350

DO NOT include any explanations or notes in the output. **ONLY** return JSON.

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

GROUP BY Clause Generation

1376 You are both an NBA fan and an SQL expert. Given the provided database and the generated clauses,
1377 generate a GROUP BY clause that reflects authentic NBA-related curiosity.
1378

1379

Ensure the following requirements:

1380

- Output Structure: Return a JSON object containing a single key, "group", with its value being a GROUP BY clause. The GROUP BY clause should include a single column.
- Ensure NBA Fan Relevance: Generate the GROUP BY clause that aligns naturally with realistic and meaningful queries that NBA fans are likely to ask.
- Align with Generated Clauses: Ensure that the GROUP BY clause maintains logical consistency with previously generated clauses, preserving semantic coherence.
- Ensure Synthetic Correctness: Generate the GROUP BY clause that is syntactically correct and executable on the provided database.

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

IMPORTANT: Do not group by any column whose value is fixed by an equality (=) condition in the WHERE clause.

1391

1392

Database: {database}

1393

1394

Generated Clauses: {generated_clauses}

1395

Return the results in a FLAT JSON format.

1396

DO NOT include any explanations or notes in the output. **ONLY** return JSON.

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

HAVING Clause Generation

1411

You are both an NBA fan and an SQL expert. Given the provided database and the generated clauses, generate a HAVING clause that reflects authentic NBA-related curiosity.

1412

1413

1414

1415

Ensure the following requirements:

1416

- Output Structure: Return a JSON object containing a single key, "having", with its value being a HAVING clause.
- Ensure NBA Fan Relevance: Generate the HAVING clause that aligns naturally with realistic and meaningful queries that NBA fans are likely to ask.
- Maintain Specificity and Clarity of Intent: Generate a well-defined and clear HAVING clause without making it overly narrow or contrived.
- Align with Generated Clauses: Ensure that the HAVING clause maintains logical consistency with previously generated clauses, preserving semantic coherence.
- Ensure Synthetic Correctness: Generate the HAVING clause that is syntactically correct and executable on the provided database.

1417

Database: {database}

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

ORDER BY Clause Generation

You are both an NBA fan and an SQL expert. Given the provided database and the generated clauses, generate an ORDER BY clause that reflects authentic NBA-related curiosity.

Ensure the following requirements:

- Output Structure: Return a JSON object containing a single key, "order", with its value being an ORDER BY clause.
- Ensure NBA Fan Relevance: Generate the ORDER BY clause that aligns naturally with realistic and meaningful queries that NBA fans are likely to ask.
- Align with Generated Clauses: Ensure that the ORDER BY clause maintains logical consistency with previously generated clauses, preserving semantic coherence.
- Ensure Synthetic Correctness: Generate the ORDER BY clause that is syntactically correct and executable on the provided database.

Database: {database}

Generated Clauses: {generated_clauses}

Return the results in a FLAT JSON format.

DO NOT include any explanations or notes in the output. **ONLY** return JSON.

1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469

1470 LIMIT Clause Generation

1471
1472 You are both an NBA fan and an SQL expert. Given the provided database and the generated clauses,
1473 generate a LIMIT clause that reflects authentic NBA-related curiosity.

1474 Ensure the following requirements:

1475

- 1476 • Output Structure: Return a JSON object containing a single key, "limit", with its value
1477 being a LIMIT clause.
- 1478 • Ensure NBA Fan Relevance: Generate the LIMIT clause that aligns naturally with realistic
1479 and meaningful queries that NBA fans are likely to ask.
- 1480 • Align with Generated Clauses: Ensure that the LIMIT clause maintains logical consistency
1481 with previously generated clauses, preserving semantic coherence.
- 1482 • Ensure Synthetic Correctness: Generate the LIMIT clause that is syntactically correct and
1483 executable on the provided database.

1484 Database: {database}

1485
1486 Generated Clauses: {generated_clauses}

1487
1488 Return the results in a FLAT JSON format.

1489 **DO NOT** include any explanations or notes in the output. **ONLY** return JSON.

1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515 **SELECT Clause (Non-Aggregate)**

1516

1517 You are both an NBA fan and an SQL expert. Given the provided database and the generated clauses,
1518 generate a SELECT clause that specifies a necessary field for retrieving meaningful NBA-related
1519 data.

1520

1521

Ensure the following requirements:

- Output Structure: Return a JSON object containing a single key, "select", with its value being a SELECT clause that projects a single column without an aggregation function meaningfully.
- Ensure NBA Fan Relevance: Generate the SELECT clause that aligns naturally with realistic and meaningful queries that NBA fans are likely to ask.
- Align with Generated Clauses: Ensure that the SELECT clause maintains logical consistency with previously generated clauses, preserving semantic coherence.
- Ensure Synthetic Correctness: Generate the SELECT clause that is syntactically correct and executable on the provided database.

1531 **IMPORTANT:** Do not project columns used in the WHERE clause.

1532

1533 Database: {database}

1534

1535 Generated Clauses: {generated_clauses}

1536

1537 Return the results in a FLAT JSON format.

1538 **DO NOT** include any explanations or notes in the output. **ONLY** return JSON.

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563 **SELECT Clause (Aggregate)**

1564

1565 You are both an NBA fan and an SQL expert. Given the provided database and the generated clauses,
1566 generate a SELECT clause that aggregates a single column for retrieving meaningful NBA-related
1567 statistics.

1568

1569

Ensure the following requirements:

1570

1571

- Output Structure: Return a JSON object containing a single key, "select", with its value being a SELECT clause that aggregates (MAX, MIN, AVG, or COUNT, etc.) a single column meaningfully.
- Ensure NBA Fan Relevance: Generate the SELECT clause that aligns naturally with realistic and meaningful queries that NBA fans are likely to ask.
- Align with Generated Clauses: Ensure that the SELECT clause maintains logical consistency with previously generated clauses, preserving semantic coherence.
- Ensure Synthetic Correctness: Generate the SELECT clause that is syntactically correct and executable on the provided database.

1572

1573

1574

1575

1576

1577

1578

1579

1580

Database: {database}

1581

1582

Generated Clauses: {generated_clauses}

1583

Return the results in a FLAT JSON format.

1584

DO NOT include any explanations or notes in the output. **ONLY** return JSON.

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

Inner Query Block Selection

1610

1611

1612

1613

1614

1615

1616

1617

You are both an NBA fan and an SQL expert. Given the provided database, generated clauses, and the candidate inner query blocks, select the most appropriate inner query block for generating a nested predicate that reflects authentic NBA-related curiosity.

Select the most appropriate inner query block to generate a nested predicate that aligns naturally with realistic and meaningful **multi-hop** queries NBA fans are likely to ask.

Your output must be in JSON format with the key:

- "inner_query_block": Select the most appropriate inner query block from the Candidate Inner Query Blocks.

IMPORTANT:

- Do not select the inner query block that has already been used in the generated clauses and is not included in the candidate inner query blocks.

Database: {schema}

Generated FROM Clause: {generated_from_clause}

Generated WHERE Clause: {generated_where_clause}

Candidate Inner Query Blocks: {candidate_inner_query_blocks}

Return the results in a FLAT JSON format.

DO NOT include any explanations or notes in the output. **ONLY** return JSON.

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645
1646
1647
1648
1649
1650
1651
1652
1653
1654

1655 FROM Clause Generation

1656
1657
1658
1659
1660

You are both an NBA fan and an SQL expert. Given the database and the inner query block, generate a **FROM** clause of the outer query block that reflects authentic NBA-related curiosity.

Ensure the following requirements:

- **Output Structure:** Return a JSON object containing a single key, "from", with its value being a **single-table** FROM clause of the outer query block from the provided database (i.e., do not include any sub-selects or nested queries directly in the FROM clause).
- **Ensure NBA Fan Relevance:** Generate the FROM clause that aligns naturally with realistic and meaningful **multi-hop** queries that NBA fans are likely to ask.
- **Ensure Synthetic Correctness:** Generate the FROM clause that is syntactically correct and executable on the provided database.
- **Separate Inner Query:** The inner query block must remain separate; it should later be incorporated into the WHERE clause, not nested in the FROM clause.
- **Ensure Natural Connection:** Choose an outer table whose columns can be naturally referenced or filtered against the results of the inner query block.

IMPORTANT: If the inner query block performs aggregation in the SELECT clause and no outer table includes the aggregated columns, reuse the table referenced in the inner query as the outer table.

1675 Database: {schema}

1676
1677

Inner Query Block: {subquery}

1678

1679 Return the results in a FLAT JSON format.

1680

1681 **DO NOT** include any explanations or notes in the output. **ONLY** return JSON.

1682
1683
1684
1685
1686
1687
1688
1689
1690
1691

1692

1693

1694

1695

1696 Type-N Nested Predicate Generation

1697

1698 You are both an NBA fan and an SQL expert. Based on the given database, generated clauses,
 1699 selected inner query block Q, and its execution result, generate a **type-n** nested predicate that reflects
 1700 authentic NBA-related curiosity.

1701

1702

Ensure the following requirements:

- 1703 • Ensure **type-n** Nesting: The inner query block Q must **not** contain a join predicate that
 1704 references the relation of the outer query block, and its SELECT clause must project a
 1705 column without an aggregate function.
- 1706 • Ensure NBA Fan Relevance: Generate the nested predicate that aligns naturally with realistic
 1707 and meaningful **multi-hop** queries that NBA fans are likely to ask.
- 1708 • Ensure Synthetic Correctness: Generate the nested predicate that is syntactically correct and
 1709 executable on the provided database.
- 1710 • Ensure Semantic Alignment: If the inner query's SELECT column does not semantically
 1711 match any column in the outer query's table, revise it for consistency.

1712 The **type-n** nested predicate must be in the form: OuterTable.column [IN | NOT IN] (Q).

1713

1714

1715 Your output must be in JSON format with the keys:

- 1716 • "nested_predicate": Only the type-n nested predicate based on the selected inner
 1717 query block.
- 1718 • "logical_operator": If a WHERE clause exists, return 'AND' or 'OR'.

1719 **IMPORTANT:**

- 1720 • Ensure that the nesting level of the inner query block is correctly preserved. The expected
 1721 nesting level is {height}.
- 1722 • Do not modify the nesting level of the provided inner query block.

1723 Database: {schema}

1724 Generated FROM Clause of the Outer Query: {generated_from_clause}

1725 Generated WHERE Clause of the Outer Query: {generated_where_clause}

1726 Selected Inner Query Block Q: {selected_inner_query_block}

1727 Return the results in a FLAT JSON format.

1728 **DO NOT** include any explanations or notes in the output. **ONLY** return JSON.

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739
1740
1741
1742
17431744 Type-A Nested Predicate Generation
17451746 You are both an NBA fan and an SQL expert. Based on the given database, generated clauses,
1747 selected inner query block, and its execution result, generate a **type-a** nested predicate that reflects
1748 authentic NBA-related curiosity.1749 Ensure the following requirements:
1750

- 1751 • Ensure **type-a** Nesting: The inner query block Q must not contain a join predicate referencing
1752 the outer query's relation, and its SELECT clause must contain an aggregate function
1753 associated with a column.
- 1754 • Ensure NBA Fan Relevance: Generate the nested predicate that aligns naturally with realistic
1755 and meaningful **multi-hop** queries that NBA fans are likely to ask.
- 1756 • Ensure Synthetic Correctness: The predicate must be executable and logically valid over the
1757 schema.

1758 The **type-a** nested predicate must follow the form:
1759 OuterTable.column [= | != | < | <= | > | >=] (Q with aggregate
1760 function)
17611762 Your output must be in JSON format with the keys:
1763

- 1764 • "nested_predicate": Only the type-a nested predicate based on the selected inner
query block.
- 1765 • "logical_operator": If a WHERE clause exists, return 'AND' or 'OR'.

1766 **IMPORTANT:**

- 1767 • Do not revise the SELECT clause of the Q.
- 1768 • Ensure that the nesting level remains {height}.

1769 Database: {schema}

1770 Generated FROM Clause of the Outer Query: {generated_from_clause}

1771 Generated WHERE Clause of the Outer Query: {generated_where_clause}

1772 Selected Inner Query Block Q: {selected_inner_query_block}

1773 Return the results in a FLAT JSON format.

1774 **DO NOT** include any explanations or notes in the output. **ONLY** return JSON.1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785

1786

1787

1788 Type-J Nested Predicate Generation

1789

1790 You are both an NBA fan and an SQL expert. Based on the given database, generated clauses,
 1791 selected inner query block, and its execution result, generate a **type-j** nested predicate that reflects
 1792 authentic NBA-related curiosity.

1793

1794

Ensure the following requirements:

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

- Ensure **type-j** Nesting: Revise the inner query block Q to ensure it includes a join predicate in its WHERE clause that references the outer query's relation, and its SELECT clause must project a column without an aggregate function.
- Ensure NBA Fan Relevance: Generate the nested predicate that aligns naturally with realistic and meaningful **multi-hop** queries that NBA fans are likely to ask.
- Ensure Synthetic Correctness: Generate the nested predicate that is syntactically correct and executable on the provided database.
- Ensure Semantic Alignment: If the inner query's SELECT column does not semantically match any column in the outer query's table, revise it for consistency.

The **type-j** nested predicate must be in one of the following forms:

OuterTable.column [IN | NOT IN] (SELECT ... FROM ... WHERE ...
 [join predicate] ...)

or

[EXISTS | NOT EXISTS] (SELECT ... FROM ... WHERE ... [join
 predicate] ...)

1811

Your output must be in JSON format with the keys:

1812

1813

1814

1815

1816

IMPORTANT:

1817

1818

1819

1820

1821

- The join predicate involving the outer query's relation must appear in the **WHERE clause** of Q, not its FROM clause.
- The expected nesting level is {height}. Do not modify it.

Database: {schema}

Generated FROM Clause of the Outer Query: {generated_from_clause}

Generated WHERE Clause of the Outer Query: {generated_where_clause}

Selected Inner Query Block Q: {selected_inner_query_block}

Return the results in a FLAT JSON format.

DO NOT include any explanations or notes in the output. **ONLY** return JSON.

1830

1831

1832

1833

1834

1835

1836 Type-JA Nested Predicate Generation

1837

1838

1839

1840

1841 Ensure the following requirements:

1842

1843

1844

1845

1846

1847

1848

1849

- Ensure **type-ja** Nesting: Revise the inner query block Q to include a join predicate in its WHERE clause that references the outer query's relation and ensure its SELECT clause contains an aggregate function.
- Ensure NBA Fan Relevance: Generate the nested predicate that aligns naturally with realistic and meaningful **multi-hop** queries that NBA fans are likely to ask.
- Ensure Synthetic Correctness: The resulting predicate must be executable and valid over the database schema.

1850 The **type-ja** nested predicate must follow one of the forms:

```
1851 OuterTable.column [= | != | < | <= | > | >=] (SELECT [agg] ...
1852 FROM ... WHERE ... [join predicate] ...)
1853 or
1854 [EXISTS | NOT EXISTS] (SELECT [agg] ... FROM ... WHERE ...
1855 [join predicate] ...)
```

1856 Your output must be in JSON format with the keys:

1857

1858

1859

1860

1861

IMPORTANT:

1862

1863

- The join predicate involving the outer query's relation must appear in the **WHERE clause**, not the FROM clause.
- Do not revise the SELECT clause of the Q.
- Do not modify the nesting level (`{height}`).

1867 Database: {schema}

1868

1869 Generated FROM Clause of the Outer Query: {generated_from_clause}

1870

1871 Generated WHERE Clause of the Outer Query: {generated_where_clause}

1872

1873 Selected Inner Query Block Q: {selected_inner_query_block}

1874

1875 Return the results in a FLAT JSON format.

1876 **DO NOT** include any explanations or notes in the output. **ONLY** return JSON.

1877

1878

1879

1880
1881
1882
1883
1884
1885
1886
1887
1888

1889 Provenance-based Refinement

1890
1891 You are both an NBA fan and an SQL expert. Based on the given original SQL query, provenance
1892 analysis results, and problematic subquery or condition which filters out all the rows, fix the original
1893 query's problematic subquery or condition so that it retrieves some results from the database.

1894 Ensure the following requirements:

- 1) **Output Structure:** Return a JSON object containing a single key, "corrected_query", with its value being the corrected SQL query.
- 2) **Ensure NBA Fan Relevance:** Maintain the original query's NBA-related curiosity and focus on realistic and meaningful queries that NBA fans are likely to ask.

1900 **IMPORTANT:**

- 1901 You may add an additional predicate in the inner query or adjust the filtering threshold within
1902 the problematic subquery Q to intentionally include the important rows or exclude outlier
1903 rows (e.g., those with extremely high or low values) that overly constrain the outer query.
- 1904 You may also adjust the comparison operator (e.g., > to >=, < to <=) or the value of the
1905 problematic condition to relax the filtering criteria.
- 1906 • Do **not** delete the join predicate in the WHERE clause of the problematic
1907 subquery Q (e.g., WHERE outer_table_name.column_name =
1908 inner_table_name.column_name).

1909 **Original SQL Query:** {query}

1910 **Problematic Condition:** {problematic_condition}

1911 **Problematic Subquery Q:** {problematic_subquery}

1912 **Execution Result of the Subquery Q:** {problematic_subquery_execution_result}

1913 **Provenance Analysis Results:** {provenance_analysis_results}

1914 Return the results in a **FLAT JSON**.

1915 **NEVER include ANY EXPLANATION or NOTE in the output, ONLY OUTPUT JSON.**

1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926

1927

1928

1929

1930

1931

SQL Query Naturalness Evaluation

1932

1933 You have a set of evaluation criteria to judge whether a given SQL query reflects a question that is
 1934 likely to be asked by a typical person.

1935

1936 When evaluating the query, refer to the following points:

1937

1. Relevance:

1938

- **Definition:** Measures how likely it is that a real person would be interested in the query.
- **Low Score (1):** The query covers obscure or highly technical aspects unrelated to typical person discussions (e.g., internal database IDs or rarely discussed statistics).
- **High Score (5):** The query reflects a common, popular interest among people (e.g., game stats, player/team information, draft results, etc.).

1943

2. Specificity & Clarity of Intent:

1944

- **Definition:** Evaluates whether the question is clearly targeted and sufficiently detailed to reveal a genuine NBA-related interest—without being so narrow as to be contrived.
- **Low Score (1):** The query is too vague ("Show me some NBA data") or overly convoluted/contrived.
- **High Score (5):** The query clearly captures a plausible question (e.g., "Which NBA player scored the most points in home games last month?").

1951

3. Overall Naturalness:

1952

- Combine the above criteria and decide if the query is "natural" (likely to be asked by a real person) or "unnatural".
- The query is considered natural if its overall score is 3 or higher.

1955

1956 Your output must be in JSON format with the following keys:

1957

- "relevance_score": Integer from 1 to 5.
- "specificity_clarity_of_intent_score": Integer from 1 to 5.
- "overall_naturalness_score": Integer from 1 to 5.
- "reason": Explanation referencing the scores and justifying whether the query is considered natural or unnatural.

1962

1963 Database Schema: {database_schema}

1964

1965 SQL Query Template: {question}

1966

1967 Return the results in a FLAT JSON format.

1968

1969 **NEVER include ANY EXPLANATION or NOTE in the output, ONLY OUTPUT JSON.**

1970

1971

1972

1973