
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2026

SPARTA: SCALABLE AND PRINCIPLED BENCHMARK OF
TREE-STRUCTURED MULTI-HOP QA OVER TEXT AND TA-
BLES

Anonymous authors
Paper under double-blind review

ABSTRACT

Real-world Table–Text question answering (QA) tasks require models that can reason across
long text and source tables, traversing multiple hops and executing complex operations
such as aggregation. Yet existing benchmarks are small, manually curated—and therefore
error-prone—and contain shallow questions that seldom demand more than two hops or
invoke aggregations, grouping, or other advanced analytical operations expressible in
natural-language queries. We present SPARTA, an end-to-end construction framework that
automatically generates large-scale Table–Text QA benchmarks with lightweight human
validation, requiring only one quarter of the annotation time of HybridQA. The framework
first constructs a reference fact database by enriching each source table with grounding
tables whose tuples are atomic facts automatically extracted from the accompanying
unstructured passages, then synthesizes nested queries whose number of nested predicates
matches the desired hop count. To ensure that every SQL statement is executable and
that its verbalization yields a fluent, human-sounding question, we propose two novel
techniques: provenance-based refinement, which rewrites any syntactically valid query that
returns a non-empty result, and realistic-structure enforcement, which confines generation
to post-order traversals of the query graph. The resulting pipeline produces thousands of
high-fidelity question–answer pairs covering aggregations, grouping, and deep multi-hop
reasoning across text and tables. On SPARTA, state-of-the-art models that reach over 70
F1 on HybridQA or over 50 F1 on OTT-QA drop by more than 30 F1 points, exposing
fundamental weaknesses in current cross-modal reasoning. We will release the benchmark,
construction code, and baseline results to spur progress toward robust, realistic Table–Text
QA models.

1 INTRODUCTION

Table–Text QA has emerged as a fundamental challenge in building robust question answering (QA) systems
capable of operating across heterogeneous data modalities (i.e., text and tables) Chen et al. (2020a;b; 2021);
Zhao et al. (2022); Zhu et al. (2021). Such a task is particularly evident in scenarios where textual descriptions
and table entries originate from one or more sources (e.g., textual information and tables in multiple Wikipedia
pages) and must be jointly analyzed to arrive at the correct answer. While a single Wikipedia page often
contains both text and tables, it is not unusual for relevant information to span multiple pages or documents,
necessitating cross-document retrieval and the effective integration of disparate information.

A significant limitation of existing Table-Text QA benchmarks is that human annotators manually construct
them Chen et al. (2020a;b; 2021); Zhao et al. (2022); Zhu et al. (2021), resulting in fundamentally flawed
benchmark designs that hinder comprehensive system evaluation.

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

Player Name Salary Team Name

Meyers Leonard 3,075,880 Trail Blazers

Robin Lopez 5,904,261 Trail Blazers

Mike Miller 2,854,940 Trail Blazers

Ed Davis 6,352,531 Trail Blazers

Tracy Murray 1,160,000 Trail Blazers

Aaron Brooks 3,250,000 Kings

[Question]
What is the maximum height among players
who played for the Trail Blazers with a salary
over 2,800,000 and who have scored more
than 20 points in at least one game?

[Answer]

… Meyers Leonard posted a season - high of 24 points
(9-17 FG , 5-9 3Pt , 1-1 FT) , …

NBA Player Affiliation

NBA Player Information

… Robin Lopez finished Tuesday 's contest with 21 points
on 10 - of - 15 shooting …

… Mike Miller added 21 points , all of which came via
three - pointers …

… Aaron Brooks played 33 minutes and had 23 points …

… Ed Davis went a perfect 5 - for - 5 from the field to
score 11 points…

85 inches

Player Name height

Meyers Leonard 85

Robin Lopez 84

Mike Miller 80

Figure 1: An example from our SPARTA benchmark (see Appendix K for more examples).

Table 1: Comparison of Table–Text QA benchmarks.

Benchmark
Table Size Question

Generation Grouping/Having
Query Shape Supported Multi-hop Reasoning

#Col #Row Chain
(>3-Hop) Star Cross-modal Uni-modal

TAT-QA Zhu et al. (2021) 4.0 9.4 Manual ✗ ✗ ✗ ✓ ✗
FinQA Chen et al. (2021) – 6.4 Manual ✗ ✗ ✗ ✓ ✗
MULTIHIERITT Zhao et al. (2022) 5.0 10.8 Manual ✗ ✗ ✗ ✓ ✓
HybridQA Chen et al. (2020b) 4.4 15.7 Manual ✗ ✗ ✗ ✓ ✗
OTT-QA Chen et al. (2020a) 4.4 15.7 Manual ✗ ✗ ✗ ✓ ✗

SPARTA (NBA) 12.2 3,280.5
Auto (LLM)

w/ Lightweight Human Validation
✓ ✓ ✓ ✓ ✓SPARTA (Movie) 4.7 10,054.0

SPARTA (Medical) 6.7 200.0

(1) Limited question types and shallow reasoning. Existing Table-Text QA benchmarks, constrained by
manual annotation complexities, feature a restricted range of shallow questions. These typically require
only direct information extraction (such as pinpointing a fact within a single textual passage or locating
a specific entry in a table). Even for questions that go beyond this simple extraction, the reasoning depth
remains shallow, seldom demanding more than two hops or involving advanced analytical operations like
aggregation or grouping. This is despite such operations being common in real-world natural language
queries yet underrepresented in benchmarks. This deficiency hinders the thorough evaluation of a system’s
deep, multi-step inference capabilities. Furthermore, current multi-hop questions usually follow simplistic
linear chains, rather than the expressive, tree-structured reasoning (e.g., multi-branch paths, longer chains, or
uni-modality hops) crucial for assessing systems on complex inference tasks, as exemplified in Figure 1.

(2) Annotation noise. Our quality audit uncovers numerous annotation errors that undermine the reliability
of the benchmark. Re-inspecting 100 randomly sampled dev examples from HYBRIDQA, we find that 21%
contain at least one error, which we classify into three categories: (1) Redundant modality (52.4%): table
and passage encode the same fact, yet the instance is tagged as a cross-modal question even though a single
modality suffices; (2) Incomplete answer set (23.8%): several answers are correct but only one is recorded,
distorting recall; (3) Incorrect or unanswerable (23.8%): the labelled answer is wrong or cannot be derived
from the provided data, revealing a lapse in quality control. Our audits on other benchmarks reveal similar
error patterns (see Appendix A).

(3) Reliance on single, small-scale web tables. Current benchmarks almost exclusively draw on compact web
tables—typically scraped from Wikipedia or corporate reports—thereby providing only toy-scale scenarios.
As Table 1 shows, tasks either involve a single table or, when multiple tables are present, the mean table
cardinality hovers around 15 rows, far short of the thousands of rows found in real-world databases. This
simplification is largely pragmatic: reasoning over larger tables dramatically increases annotator effort and
error rates Chen et al. (2020b). Consequently, existing benchmarks cannot meaningfully evaluate QA systems
in realistic, high-complexity settings that demand reasoning over large, heterogeneous relational data.

SPARTA unifies all evidence—structured and unstructured—inside a single relational store called the refer-
ence fact database. Each original relation (e.g., a web table or a financial ledger) remains intact as a source
table, while every atomic proposition extracted from the accompanying passages is inserted as a tuple in a
grounding table. With textual facts now addressable via SQL, queries over this combined store freely mix
modalities; no pointer to the original span is needed as answers are returned directly by query execution.

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2026

Stage 1 – Reference fact database construction. Source and grounding tables are merged into the reference
fact database, making all facts uniformly queryable.

Stage 2 – Query generation. A large language model (LLM) receives the schema and sample rows and emits
SQL whose number of nested predicates matches a target hop count. Note that SPARTA synthesizes queries
that instantiate the four representative nesting patterns—Types N, A, J, and JA—outlined in Appendix B. Two
safeguards ensure that only realistic, executable statements survive: (1) Provenance-based refinement loops
provenance feedback—unmatched joins or overly selective predicates—back to the LLM until the query
returns a non-empty result. (2) Realistic-structure enforcement confines generation to post-order traversals of
query graph, yielding human-like join orders and enabling early pruning of infeasible subqueries.

Stage 3 – Question verbalisation. Each validated query is paired with its execution result, then a second
LLM rewrites the SQL into a fluent natural-language question, producing high-fidelity pair ⟨question, answer⟩
that span aggregation, grouping, and deep multi-hop joins across large tables. Here, the final correctness—i.e.,
the validity of the question–answer pair—is checked via lightweight human verification; unlike HybridQA,
our pipeline does not require re-performing full multi-hop reasoning, thereby keeping audit costs low (see
Section 3.4).

This SQL-centric pipeline yields a large, diverse, and rigorously validated benchmark that corrects the size,
noise, and logical shallowness of previous Table–Text QA resources. On SPARTA, state-of-the-art models
that exceed 70 F1 on HybridQA or exceed 50 F1 on OTT-QA drop by more than 30 F1 points, revealing
fundamental weaknesses in current cross-modal reasoning and highlighting directions for future research.

2 RELATED WORK

Table-Text QA Benchmark. Table–Text QA benchmarks evaluate a model’s ability to jointly reason
over structured tables and unstructured passages. HybridQA Chen et al. (2020b) introduced the task, and
OTT-QA Chen et al. (2020a) extended it to open-domain settings, but both suffer from annotation noise,
shallow reasoning depth, and a lack of support for advanced analytical operations. Specifically, they do not
support GROUP BY or HAVING clauses, and only 1.1% of questions involve aggregation. Their multi-hop
reasoning is confined to short, linear chains and fails to capture tree-structured or uni-modal reasoning
paths. Other benchmarks—TAT-QA Zhu et al. (2021), FinQA Chen et al. (2021), and MultiHiertt Zhao
et al. (2022)—focus narrowly on numerical reasoning in financial contexts rather than multi-hop reasoning,
further limiting coverage Zhang et al. (2023). Additionally, all existing Table-Text QA datasets rely on small,
manually annotated web tables, which hinders scalability and realism. SPARTA addresses these gaps with an
SQL-centric pipeline that constructs a large-scale benchmark of executable, compositional questions over
hybrid corpora, offering a principled testbed for multi-hop QA across text and tables.

Synthetic Benchmark Generation. Recent synthetic benchmark generation scales QA pairs from pre-
existing sources, but most are single-modal: relying on knowledge graphs Sun et al. (2024); Omar et al.
(2025); Orogat & El-Roby (2023; 2022) or text corpora Bonifacio et al. (2022); Jeronymo et al. (2023),
ignoring cross-modal reasoning. ERBench Oh et al. (2024) uses relational databases, yet its questions
are binary or multiple-choice, based on shallow templates excluding analytical operators like GROUP BY,
HAVING, and aggregations; it also lacks table-text interplay. In contrast, SPARTA generates multi-hop
questions bridging tables and passages, mirroring complex nested SQL patterns to provide a rigorous cross-
modal benchmark for Table–Text QA. Beyond QA, benchmarks in other domains impose domain-specific
constraints: database performance benchmarks Nambiar & Poess (2006); Erling et al. (2015) use fixed
schemas and templates for reproducible profiling; unlearning benchmarks Maini et al. (2024); Zhong et al.
(2024) create forget/retain partitions for selective forgetting. SPARTA’s constraint is fundamentally different:
every synthetic example must encode tree-structured multi-hop reasoning grounding executable SQL and
natural-language questions, requiring analytical operations and table-text alignment. Our provenance-based
refinement and realistic-structure enforcement address this, producing semantically rich, executable queries.

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

Grounding Tables

Source Tables

Texts

Reference Fact
Database

3. Question Verbalisation

AnswerSQL
Execution

1. Reference Fact Database Construction 2. Query Generation

SQL Query Graph

ST

GT ST

Query
Generator

Provenance
Based Fixer

If Empty Result

Fix

SQL2NL
Translator

NL Question

21

3
Post-order

Realistic
Generation

Figure 2: Overview of SPARTA: (1) Reference Fact Database Construction, (2) Query Generation, (3)
Question Verbalisation. ST and GT denote a source table and a grounding table, respectively.

3 SPARTA

3.1 TABLE–TEXT QA TASK AND BENCHMARK GENERATION

Given a natural-language question qNL, a set of source tables ST={T (1),. . . , T (m)}, and a set of passages
CP={P (1),. . . , P (n)}, a QA system fθ must return the answer a = fθ(qNL,ST , CP). Each passage in CP is
decomposed into atomic facts and stored as tuples in grounding tables GT . Merging these with the original
source tables yields a unified reference fact database D. An LLM then: (i) generates executable SQL queries
on D that vary in depth (selection, aggregation, nesting, etc.), and (ii) verbalises each query into a fluent
natural-language question qNL. The resulting pairs (qNL, a) constitute a scalable benchmark for Table–Text
QA. An overview of the entire pipeline is provided in Figure 2.

3.2 REFERENCE FACT DATABASE CONSTRUCTION

We employ the post-processed ROTOWIRE corpus Wu et al. (2022). Each NBA game summary in this corpus
is decomposed into atomic facts, which are stored as tuples in GT , guaranteeing perfect alignment between
text and relational data. To construct ST , we integrate six public NBA datasets—covering salaries, awards,
draft data, and team histories—sourced from Kaggle and data.world kag (f;a;g;b;e); dat. Shared entity
attributes such as PLAYER_NAME and TEAM_NAME are enforced as primary–foreign key pairs, yielding a
connected schema in which every tuple from GT can be joined to at least one table in ST . The resulting
database contains three grounding tables and six source tables (see Appendix C).

While our construction uses NBA data for illustration, SPARTA is inherently domain-agnostic. From any
relational database, one designates a subset of relations as ST and treats the remaining relations as GT .
Applying table-to-text generation to GT yields a companion set of textual passages CP , forming the reference-
fact database D = ST ∪ GT with no information overlap between the two sets. The query-generation pipeline
then applies unchanged, yielding a portable recipe for building large-scale Table–Text QA benchmarks in any
domain with relational data. To demonstrate this, we extended our pipeline to two new domains—movies and
medical—using Kaggle datasets kag (c;d), with configurations identical to the NBA domain (see Appendix D).
3.3 QUERY GENERATION

For non-nested queries, SPARTA builds the statement clause-by-clause: the LLM emits each clause in
canonical SQL order, conditioned on the schema and previously written clauses, and immediately executes
the partial query. If the result is empty, the execution outcome is fed back so the LLM can revise the offending
clause, ensuring the query remains executable and semantically meaningful at every step.

The next step is to synthesise nested SQL queries that act as faithful logical forms for multi-hop reasoning. A
generated query must satisfy two criteria: (i) it should resemble a query that a human analyst would plausibly
write, avoiding degenerate template artifacts, and (ii) it must execute over D without error and return a
non-empty result. These guarantees ensure that every (qNL, a) pair is both natural and answerable.

Template-based generation fills fixed slots with ad-hoc limits or auxiliary predicates to guarantee
execution, yet the resulting SQL is often semantically unsound. For instance, SELECT birthplace

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

SELECT player_name
FROM nba_player_information
WHERE player_name IN

(SELECT player_name
FROM nba_player_information
WHERE birth_year >= 1980)

AND player_name IN
(SELECT player_name

FROM nba_player_affiliation
WHERE salary > 800,000)

SELECT player_name
FROM nba_player_information
WHERE player_name IN

(SELECT player_name
FROM nba_player_information
WHERE birth_year >= 1980)

AND player_name IN
(SELECT player_name
FROM nba_player_affiliation
WHERE salary > 800,000)

: Result of Q’ (= Expected Result of Q)

nba_player_information

Sub Query Q’ with non-empty Result

[Original Query Q]

: Why-not Provenance
of Expected Result of Q
= Filtered out by ‘salary > 800,000’

nba_player_affiliation

SELECT player_name
FROM nba_player_information
WHERE player_name IN

(SELECT player_name
FROM nba_player_information
WHERE birth_year >= 1980)

AND player_name IN
(SELECT player_name

FROM nba_player_affiliation
WHERE salary > 800,000)

SELECT player_name
FROM nba_player_information
WHERE player_name IN

(SELECT player_name
FROM nba_player_information
WHERE birth_year >= 1980)

AND player_name IN
(SELECT player_name

FROM nba_player_affiliation
WHERE salary >= 600,000)

[Revised Query Q’’]

name

John

Sam

Tom

[Result of Q’’][Original Query Q] [Problematic Predicates]
WHERE salary > 800,000

player_name salary

John 700,000 (Filtered out by ‘salary > 800,000’)

Sam 600,000 (Filtered out by ‘salary > 800,000’)

Tom 650,000 (Filtered out by ‘salary > 800,000’)

nba_player_affiliation
[Why-not Provenance]

LLM

nba_player_affiliation

Step3. LLM Prompting

player_name salary …
John 700,000
Sam 600,000
Tom 650,000

Jordan 900,000
… …

player_name …
John
Sam
Tom

Jordan
…

birth_year player_name
1980 John
1981 Sam
1980 Tom
1985 Ben
1990 Mark

… …

Step1. Find Subquery with non-empty result Step2. Get Why-not Provenance

Deleted !

Figure 3: Overview of provenance-based refinement.
FROM nba_player_information WHERE birthplace <> ‘Chicago, Illinois’ OR
birthplace <> ‘Dallas, Texas’ runs without error but expresses a vacuous intent (“. . . not born
in Chicago or not born in Dallas,” matching everyone). Conversely, one-shot LLM prompting produces
natural queries, but these frequently yield empty results and show limited diversity (see Table 3). We therefore
introduce a dual-stage framework: (i) realistic-structure enforcement and (ii) provenance-based refinement.
3.3.1 REALISTIC-STRUCTURE ENFORCEMENT

A nested SQL query can be modeled as a query graph G = (V,E) where each node vi ∈ V corresponds to a
distinct query block—namely every SELECT ... FROM ... WHERE ... subquery including the
outermost statement—while each (directed) edge eij ∈ E denotes a nested predicate that correlates blocks
Qi and Qj through a shared attribute reference, thus capturing the dependency structure of the original nested
query in graph form (see Appendix B for representative nested query patterns). Based on this representation,
we measure query complexity by the number of edges in the query tree, each representing a reasoning hop.

For nested-query generation, SPARTA adopts Post-Order+Prov as the default. That is, to preserve realistic
structure, we force the LLM to build the query tree in post-order: compose each leaf subquery first, then
wrap it with successively higher-level blocks—exactly how analysts craft nested SQL. We choose post-order
traversal over alternatives like breadth-first or top-down, because the latter require validating incomplete
queries before inner subqueries are constructed. In contrast, post-order ensures that each intermediate block
is executable by validating subqueries first and then composing higher-level predicates. In Post-Order+Prov,
leaf nodes are generated clause-by-clause. For the target question type we pick the relevant clauses (WHERE,
GROUP BY, ORDER BY, . . .) in canonical order, and let the LLM fill each one using (i) the schema, (ii)
earlier clauses, and (iii) partial results. If a clause yields an empty result, we roll back to the last valid
subquery, sparing redundant LLM calls. Internal nodes arise by recursively enclosing validated subqueries.
At every step the LLM selects a child query, picks a joinable table, and emits a connecting predicate (AND/OR,
etc.). Empty outputs trigger provenance-guided repair (§3.3.2); otherwise the predicate is kept. The loop
iterates until the query graph grows to the specified target size.

3.3.2 PROVENANCE-BASED REFINEMENT
The LLM builds the query graph in post-order—validated leaves first, then one outer predicate at a time. If
the evolving query returns no rows, we peel off predicates in reverse order until it yields a result, sample one
surviving tuple, run why-not provenance Dietrich et al. (2022) to identify the blocking predicate, and let the
LLM rewrite only that clause based on the provenance report. Ablations are (i) One-Shot–k, which inserts all
k predicates in a single pass with no checks, and (ii) Post-Order (no provenance), which follows the same
construction but skips the repair loop. Figure 3 illustrates the overall process of provenance-based refinement.
Provenance feedback relaxes the predicate from salary > 800000 to salary > 600000.
3.4 QUESTION VERBALISATION

For each executable SQL query qSQL, we generate a corresponding natural-language question qNL using
AST-ICL Al Lawati et al. (2025), a SOTA LLM-based SQL-to-text model. We adopted the LLM-based
model over template-based methods, which are limited by rigidity and reliance on handcrafted templates, as
documented in prior work Iyer et al. (2016); Xu et al. (2018). In AST-ICL, the SQL abstract syntax tree is

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

supplied as an in-context exemplar, and the model emits a fluent question qNL whose semantics align with the
query. Executing qSQL on D yields the answer a, completing the benchmark pair (qNL, a). Every instance is
thus interpretable, executable, and suitable for probing multi-hop reasoning over hybrid (table + text) data.

The verbalized questions were validated and corrected by three CS graduate students with SQL/schema
literacy to ensure factuality and meaningfulness. This process is lightweight, requiring substantially less effort
than full manual annotation. Specifically, validating 3,300 queries takes about 1,493 minutes of total worker
time, whereas HybridQA required roughly 6,600 minutes to create the same number of queries from scratch.

4 EXPERIMENTS

4.1 EVALUATION SETUP

Hardware and Software Settings. We conducted our experiments on a machine with Intel(R) Xeon(R) Gold
6230 CPU @ 2.10GHz and 1.5 TB of RAM running Ubuntu 22.04.4 and 4 RTX A6000 GPUs, with LLM
inference managed via the SGLang Zheng et al. (2024) inference engine. We used Llama-3.1-70B-Instruct
Dubey et al. (2024) as the LLM.

Query Generation Methods. For non-nested query generation, SPARTA’s default is Execution-Guided
generation: the LLM writes each clause in canonical order, executes the partial query, and immediately edits
any clause that empties the result. As an ablation we also evaluate (i) One-Shot, which emits the whole query
from schema only, and (ii) Clause, which builds the query sequentially without execution feedback.

For nested-query generation, SPARTA’s default is Post-Order+Prov: validated leaves are wrapped one
predicate at a time (post-order); each new predicate is executed immediately and, when empty, repaired with
provenance feedback. Ablations include (i) One-Shot–k, which inserts all k predicates in a single pass with
no intermediate checks, and (ii) Post-Order (no provenance), which follows the same post-order construction
without provenance-based repair. We generate 500 non-nested and 600 nested SQL queries per method on the
NBA domain (configuration as in Table 9), so that quality and cost can be compared on equal footing.

Table-Text QA Methods. To gauge how current state-of-the-art systems break down under SPARTA’s
deeper hops, larger tables, and advanced analytical operations, we evaluate SOTA Table–Text QA methods,
including methods based on prompting LLMs such as ODYSSEY Agarwal et al. (2025) and HProPro Shi et al.
(2024). These models have shown strong results on HybridQA, where models reason over provided tables and
linked documents. ODYSSEY constructs a graph from the table and linked documents, enabling the LLM
to traverse the graph for query answers. HProPro generates and executes program via the LLM to produce
query responses. Since existing Table–Text QA methods are not originally designed to support uni-modal
hops, we apply minimal extensions to enable such behavior during evaluation on SPARTA. Specifically, for
ODYSSEY, we augment the hybrid graph by adding edges between matching cells of columns that share a
join relationship. For HProPro, we adapt the prompt format by replacing the input table with a list of relevant
tables. For a fully end-to-end scenario in which no oracle is provided, we pair the Table–Text QA methods
with HELIOS Park et al. (2025)—the top retriever on OTT-QA—so the model must both retrieve evidence and
reason over it. We also run every method with GPT-5 and GPT-3.5-turbo backbones to test LLM sensitivity.
4.2 BENCHMARK GENERATION COST AND QUERY NATURALNESS

A scalable benchmark must maximise useful queries while minimising LLM calls and wall time. We therefore
track seven complementary metrics in Table 2.

Table 2: Cost metrics used for benchmark generation.

Metric Definition

Success-Q # of non-nested queries that execute without error and return at least one row.
Exec-Err # of statements that fail at parse or runtime, revealing schema or logic errors.
Empty-Q # of syntactically valid queries that return zero rows because predicates are too restrictive.
Duplicate-Q # of queries whose result duplicates a previously generated query, reducing diversity.
Ideal Calls # of LLM invocations required if every step succeeds on the first attempt (baseline cost).
Total Calls # of actual LLM invocations, i.e., Ideal Calls plus extra calls for provenance-guided fixes or other retries.
Wall Time Total wall-clock time to obtain all successful queries.

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

Table 3: Generation Cost Comparison of Query Generation Methods.
Method Success-Q Empty-Q Duplicate-Q Exec-Err Ideal Calls Total Calls Wall Time (s)

Non-nested Query Generation
One-Shot 500 60 1265 5 500 1830 4256.96

Clause 500 51 78 0 1053 1316 3218.83

Execution-Guided 500 0 27 0 1058 1134 2466.47

Nested Query Generation
One-Shot–k 600 0 0 0 2664 13962 115316.67

Post-Order (no provenance) 600 0 0 0 3104 8253 38867.40

Post-Order+Prov 600 0 0 0 3074 4722 26277.87

Table 3 summarizes generation overheads for both non-nested and nested SQL. For non-nested queries,
Execution-Guided is most economical, needing only 1,134 total LLM calls—just 7.2% above the ideal
1,058—and finishing in 2,466s. In contrast, One-Shot begins with the lowest ideal budget (500 calls) but
produces 60 empty and 1,265 duplicate outputs, inflating usage to 1,830 real calls (266% of ideal) and
incurring the highest latency; Clause mitigates these failures yet still exceeds its ideal by 24.9%. For nested
queries, Post-Order+Prov is most cost-effective, completing with 4,722 calls in 26,278s—cutting call volume
by 42.8% versus vanilla post-order and by 66.2% versus One-Shot–k. These results show that disciplined
post-order construction combined with provenance-driven repair minimizes redundant generations while
ensuring executable, semantically plausible SQL; detailed analysis of generation overheads across varying
query graph shapes and sizes is provided in Appendix E.

To assess the naturalness of the generated queries, we employ a scoring-based evaluation framework com-
bining automatic and human assessments. Each query is rated from 1 (least natural) to 5 (most natural)
across three dimensions: Relevance, which measures alignment with the genuine curiosity of a typical
person; Specificity & Clarity, which assesses whether the query expresses a clear and well-scoped
information need; and Overall Naturalness, which captures linguistic fluency and realism. For a
comprehensive assessment, we conduct an automatic evaluation (auto-eval) using ChatGPT-4o OpenAI and an
independent human evaluation (human-eval) by three external CS graduate students with SQL/schema literacy.
As a baseline for comparison, we also evaluate queries generated by template filling with randomly sampled
column–value pairs. This dual approach, integrating LLM-based auto-evaluation with human judgment,
yields a robust, multi-perspective measure of how convincingly the generated queries mirror real user intent.

Figure 4 reports the naturalness scores of queries generated by different methods, evaluated across three
criteria. Among the non-nested query generation methods, Execution-Guided Generation achieved the highest
scores consistently across both automatic and human evaluations. Specifically, in terms of overall naturalness,
it outperformed Clause-by-Clause, One-shot, and Template-based generation by 1.3%, 11.4%, and 37.5%,
respectively, in auto-eval; and by 6.0% and 36.7% over One-shot and Template-based methods in human-eval.
For nested query generation, Post-order Generation with Execution Guidance achieved the top scores across
all three metrics. Compared to Post-order, One-shot Nested, and Template-based generation, it yielded
auto-eval improvements of 1.7%, 8.1%, and 123.2%, and human-eval gains of 2.1%, 12.5%, and 117.8%,
respectively. These results confirm that LLM-based generation strategies—especially those leveraging clause-
wise generation and post-order traversal—are significantly more effective at producing realistic and fluent
SQL queries than template-based approaches.

4.3 TABLE-TEXT QA EVALUATION RESULTS

Table 4 and Table 5 report the Table–Text QA performance of representative methods across eight benchmarks,
revealing the increased difficulty posed by SPARTA. We evaluate SPARTA under two configurations: (1)
SPARTA (Oracle), where models are given ground-truth tables and linked passages; and (2) SPARTA
(Retrieval), where models must retrieve relevant content from the entire corpus. On SPARTA (Oracle),
ODYSSEY with GPT-5 achieves an average F1 score of 35.6% across all domains, representing a sharp
33.9-point drop compared to its performance on HybridQA (69.5%). Similarly, HProPro with GPT-5 achieves
an average F1 score of 40.4%, a 30.1-point drop from its HybridQA performance (70.5%). These results
reveal the limitations of existing methods when scaled to larger, more complex queries. Interestingly, HProPro

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

Relevance Specificity & Clarity Overall Naturalness
1

2

3

4

5

Sc
or

e

Non-nested (auto-eval)

Relevance Specificity & Clarity Overall Naturalness

Nested (auto-eval)

Relevance Specificity & Clarity Overall Naturalness
1

2

3

4

5

Sc
or

e

Non-nested (human-eval)

Template
One-shot

Clause
Execution-Guided

Relevance Specificity & Clarity Overall Naturalness

Nested (human-eval)

Template
One-shot-k

Post-order (no provenance)
Post-order+Prov

Figure 4: Comparison of Query Naturalness for Different Generation Methods.

Table 4: Table-Text QA Accuracy on the SPARTA (Oracle) across multiple domains.

Method
SPARTA HybridQA

NBA Movie Medical Avg.

EM F1 P R EM F1 P R EM F1 P R EM F1 P R EM F1 P R
ODYSSEY w/ GPT-3.5-turbo 9.0 15.1 26.8 14.8 20.2 23.9 33.6 24.7 6.7 22.9 33.2 21.3 12.0 20.6 31.2 20.3 32.7 42.2 42.6 44.2
HProPro w/ GPT-3.5-turbo 11.0 13.6 16.4 13.8 22.2 27.8 29.1 29.2 15.5 19.5 20.2 19.7 16.2 20.3 21.9 20.9 21.4 25.3 25.7 26.1
ODYSSEY w/ GPT-5 21.2 28.4 38.4 28.1 20.4 24.2 32.9 24.3 47.5 54.2 60.3 54.2 29.7 35.6 43.9 35.5 55.3 69.5 69.3 73.5
HProPro w/ GPT-5 23.6 33.1 36.2 34.0 36.6 47.1 49.2 48.8 28.1 41.0 43.2 41.6 29.5 40.4 42.9 41.5 59.7 70.5 71.1 73.1

with GPT-5 outperforms ODYSSEY on the NBA and Movie domains, which feature tables with thousands of
rows (as shown in Table 1), owing to its ability to generate executable programs that directly operate over
tables. This result highlights the limitations of ODYSSEY when applied to large-scale tables and aligns
with the broader observation that larger table sizes increase the difficulty of table-QA for LLMs Patnaik
et al.. The performance gap between GPT-5 and GPT-3.5-turbo (35.6 vs. 20.6 F1 for ODYSSEY and 40.4
vs. 20.3 F1 for HProPro) underscores the importance of advanced LLM reasoning capabilities in handling
such challenges. In the retrieval setting, where no gold tables are provided, performance degrades further:
the best method (HELIOS + HProPro with GPT-5) attains only 22.6 F1. This sharp decline illustrates the
compounded challenge of retrieval and reasoning over heterogeneous corpora. We additionally evaluate the
FiE Reader Ma et al. (2023), the state-of-the-art fine-tuned reader model on OTT-QA. While FiE Reader
surpasses HELIOS + HProPro w/ GPT-5 by 9.2 points on OTT-QA, it lags behind on SPARTA by 11.0 points,
showing fine-tuned models fail to generalize to SPARTA’s more complex, out-of-domain settings.
4.4 ANALYSIS

Models struggle to handle complex multi-hop query structures. We evaluate Table–Text QA models
under various tree-structured query configurations, fixing the number of edges to four: (Depth 1, Breadth 3),
(Depth 2, Breadth 2), and (Depth 3, Breadth 1). We also included intermediate shapes with three edges, such
as (Depth 1, Breadth 2) and (Depth 2, Breadth 1), to further validate the trend.

As shown in Figure 5a, model performance degrades sharply as either depth or breadth increases. At fixed
depth, expanding breadth from (Depth 1, Breadth 1) to (Depth 1, Breadth 3) reduces HProPro and ODYSSEY
by 25.2% and 27.5%, respectively. At fixed breadth, increasing depth from (Depth 1, Breadth 1) to (Depth
3, Breadth 1) yields 47.2% and 49.9% declines. Additional comparisons—(Depth 2, Breadth 1) to (Depth
2, Breadth 2), and (Depth 1, Breadth 2) to (Depth 2, Breadth 2)—show consistent degradation, further
confirming that both deeper and broader queries cause substantial F1 drops. These findings suggest that
existing methods are fundamentally limited in performing tree-structured reasoning over multiple relational
paths, regardless of whether complexity arises from depth or breadth.

Models struggle with analytical operations such as grouping and ordering. As shown in Figure 5b,
both ODYSSEY and HProPro exhibit consistent performance degradation when advanced analytical clauses
are present. For queries that include GROUP BY and HAVING clauses, ODYSSEY attains an F1 score of
35.4, whereas HProPro attains 27.1. When ORDER BY and LIMIT are present, the scores are 31.2 for

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

Table 5: Table-Text QA Accuracy on the SPARTA (Retrieval) across multiple domains.

Method
SPARTA OTT-QA

NBA Movie Medical Avg.

EM F1 P R EM F1 P R EM F1 P R EM F1 P R EM F1 P R
HELIOS+FiE Reader 4.6 6.9 17.6 6.4 8.6 11.9 23.0 11.6 6.6 16.0 33.0 12.9 6.6 11.6 24.5 10.3 58.6 65.2 66.7 65.2
HELIOS+HProPro w/ GPT-5 14.5 19.0 24.2 18.6 17.4 21.6 28.6 21.7 13.7 27.3 31.3 27.1 15.2 22.6 28.0 22.5 47.7 56.0 57.4 56.5

Sin
gle

-ho
p

(D1,
B1)

(D1,
B2)

(D1,
B3)

(D2,
B1)

(D2,
B2)

(D3,
B1)

0

10

20

30

40

50

60

F1
 S

co
re

ODYSSEY w/ GPT-5

Sin
gle

-ho
p

(D1,
B1)

(D1,
B2)

(D1,
B3)

(D2,
B1)

(D2,
B2)

(D3,
B1)

0

10

20

30

40

50

60

F1
 S

co
re

HProPro w/ GPT-5

(a) F1 scores across tree configurations (D: Depth, B: Breadth)

Aggregation GroupBy
&

Having

OrderBy
&

Limit

0

10

20

30

40

F1
 S

co
re

ODYSSEY w/ GPT-5

Aggregation GroupBy
&

Having

OrderBy
&

Limit

0

10

20

30

40

F1
 S

co
re

HProPro w/ GPT-5

(b) F1 scores across analytical operations

Figure 5: Comparison of F1 scores across different configurations.
ODYSSEY and 21.4 for HProPro. Aggregation queries show a similar pattern, yielding 28.4 for ODYSSEY
and 37.2 for HProPro. Compared with each model’s average F1, these analytical scores are markedly lower,
indicating weak numerical reasoning, filtering, and ranking capabilities and exposing fundamental limitations
in addressing real-world table–text questions. Notably, ODYSSEY performs worst on aggregation queries,
whereas HProPro struggles most with ORDER BY and LIMIT.

Table 6: Performance Comparison With and Without Text Data in Table-Text QA.

Method Setting EM F1 P R

ODYSSEY w/ GPT-5 w/ Text Data 23.9 28.6 36.3 28.4
w/o Text Data 32.0 39.2 49.5 38.8

HProPro w/ GPT-5 w/ Text Data 11.9 16.3 17.2 16.7
w/o Text Data 29.2 45.2 46.9 46.4

Performance drops sharply when unstructured text is required. As shown in Figure 6, the inclusion
of textual data leads to a significant decline in performance. HProPro’s F1 score drops by 63.9% (from
45.2 to 16.3), while ODYSSEY experiences an even steeper drop of 23.0% (from 39.2 to 28.6). This sharp
contrast highlights the difficulty of reasoning over unstructured passages in conjunction with structured tables.
Although both models perform moderately well when queries rely only on tabular data, they consistently fail
to retrieve and integrate relevant textual spans when external context is present. These failures indicate that
current Table–Text QA models lack robust cross-modal alignment and semantic grounding, limiting their
effectiveness in real-world scenarios that demand joint reasoning over heterogeneous data sources.

To further support our findings, we include supplementary analyses in the appendix: an ablation study on
nesting types (Appendix F) and an error case analysis (Appendix G).

5 CONCLUSION

In summary, we present SPARTA, a benchmark generation framework that rectifies the three critical short-
comings of existing Table–Text QA resources—shallow question design, annotation noise, and toy-scale
tables—by (i) unifying heterogeneous evidence inside a reference fact database, (ii) generating logically deep,
human-like SQL nested queries whose hop count and analytical operations are explicitly controlled through
a provenance-guided LLM pipeline, and (iii) verbalising them into natural-language questions using an
LLM-based SQL-to-text model, with lightweight human validation for fluency and correctness. On SPARTA,
state-of-the-art models that reach over 70 F1 on HybridQA or over 50 F1 on OTT-QA drop by more than 30
F1 points, exposing fundamental weaknesses in current cross-modal reasoning. Limitations and future work
are discussed in Appendix H.

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2026

Reproducibility Statement We include prompt examples for provenance-based refinement, realistic-
structure enforcement, and automatic naturalness evaluation in Appendix L. Details of the experimental setup
are provided in Section 4.1. All source code, datasets, and related artifacts for SPARTA are available at
anonymous.4open.science.

REFERENCES

Nba salaries. https://data.world/datadavis/nba-salaries. Accessed: 2025-05-15.

Nba games. https://www.kaggle.com/datasets/nathanlauga/nba-games, a. Accessed:
2025-05-15.

Historical nba finals and mvp results. https://www.kaggle.com/datasets/thedevastator/
historical-nba-finals-and-mvp-results, b. Accessed: 2025-05-15.

Imdb movies analysis - sql. https://www.kaggle.com/datasets/gauravbr/
imdb-movies-data-erd, c.

Hospital management dataset. https://www.kaggle.com/datasets/kanakbaghel/
hospital-management-dataset, d.

Nba dataset project. https://www.kaggle.com/datasets/kareemignacio/
nba-dataset-project, e. Accessed: 2025-05-15.

1991-2021 nba stats. https://www.kaggle.com/datasets/vivovinco/
19912021-nba-stats, f. Accessed: 2025-05-15.

Nba/aba/baa team stats per game. https://www.kaggle.com/datasets/sumitrodatta/
nba-aba-baa-stats?select=Team+Stats+Per+Game.csv, g. Accessed: 2025-05-15.

Ankush Agarwal, Chaitanya Devaguptapu, and Ganesh S. Hybrid graphs for table-and-text based question
answering using LLMs. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), Proceedings of the 2025
Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pp. 858–875, Albuquerque, New Mexico,
April 2025. Association for Computational Linguistics. ISBN 979-8-89176-189-6. URL https://
aclanthology.org/2025.naacl-long.39/.

Ali Al Lawati, Jason Lucas, and Prasenjit Mitra. Semantic captioning: Benchmark dataset and graph-
aware few-shot in-context learning for sql2text. In Proceedings of the 31st International Conference on
Computational Linguistics, pp. 8026–8042, 2025.

Luiz Bonifacio, Hugo Abonizio, Marzieh Fadaee, and Rodrigo Nogueira. Inpars: Unsupervised dataset
generation for information retrieval. In Proceedings of the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 2387–2392, 2022.

Wenhu Chen, Ming-Wei Chang, Eva Schlinger, William Wang, and William W Cohen. Open question
answering over tables and text. arXiv preprint arXiv:2010.10439, 2020a.

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong, Hong Wang, and William Wang. Hybridqa: A
dataset of multi-hop question answering over tabular and textual data. arXiv preprint arXiv:2004.07347,
2020b.

10

https://anonymous.4open.science/r/SPARTA-7407
https://data.world/datadavis/nba-salaries
https://www.kaggle.com/datasets/nathanlauga/nba-games
https://www.kaggle.com/datasets/thedevastator/historical-nba-finals-and-mvp-results
https://www.kaggle.com/datasets/thedevastator/historical-nba-finals-and-mvp-results
https://www.kaggle.com/datasets/gauravbr/imdb-movies-data-erd
https://www.kaggle.com/datasets/gauravbr/imdb-movies-data-erd
https://www.kaggle.com/datasets/kanakbaghel/hospital-management-dataset
https://www.kaggle.com/datasets/kanakbaghel/hospital-management-dataset
https://www.kaggle.com/datasets/kareemignacio/nba-dataset-project
https://www.kaggle.com/datasets/kareemignacio/nba-dataset-project
https://www.kaggle.com/datasets/vivovinco/19912021-nba-stats
https://www.kaggle.com/datasets/vivovinco/19912021-nba-stats
https://www.kaggle.com/datasets/sumitrodatta/nba-aba-baa-stats?select=Team+Stats+Per+Game.csv
https://www.kaggle.com/datasets/sumitrodatta/nba-aba-baa-stats?select=Team+Stats+Per+Game.csv
https://aclanthology.org/2025.naacl-long.39/
https://aclanthology.org/2025.naacl-long.39/

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2026

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena Shah, Iana Borova, Dylan Langdon, Reema Moussa,
Matt Beane, Ting-Hao Huang, Bryan R Routledge, et al. Finqa: A dataset of numerical reasoning over
financial data. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 3697–3711, 2021.

Benjamin Dietrich, Tobias Müller, and Torsten Grust. Data provenance for recursive sql queries. In
Proceedings of the 14th International Workshop on the Theory and Practice of Provenance, pp. 1–8, 2022.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey Gubichev, Arnau Prat, Minh-Duc
Pham, and Peter Boncz. The ldbc social network benchmark: Interactive workload. In Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data, SIGMOD ’15, pp. 619–630,
New York, NY, USA, 2015. Association for Computing Machinery. ISBN 9781450327589. doi: 10.1145/
2723372.2742786. URL https://doi.org/10.1145/2723372.2742786.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Summarizing source code using a
neural attention model. In 54th Annual Meeting of the Association for Computational Linguistics 2016, pp.
2073–2083. Association for Computational Linguistics, 2016.

Vitor Jeronymo, Luiz Bonifacio, Hugo Abonizio, Marzieh Fadaee, Roberto Lotufo, Jakub Zavrel, and Rodrigo
Nogueira. Inpars-v2: Large language models as efficient dataset generators for information retrieval. arXiv
preprint arXiv:2301.01820, 2023.

Won Kim. On optimizing an sql-like nested query. ACM Transactions on Database Systems (TODS), 7(3):
443–469, 1982.

Kaixin Ma, Hao Cheng, Yu Zhang, Xiaodong Liu, Eric Nyberg, and Jianfeng Gao. Chain-of-skills: A
configurable model for open-domain question answering. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 1599–1618, 2023.

Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary C. Lipton, and J. Zico Kolter. Tofu: A task of
fictitious unlearning for llms, 2024. URL https://arxiv.org/abs/2401.06121.

Raghunath Othayoth Nambiar and Meikel Poess. The making of tpc-ds. In Proceedings of the 32nd
International Conference on Very Large Data Bases, VLDB ’06, pp. 1049–1058. VLDB Endowment, 2006.

Jio Oh, Soyeon Kim, Junseok Seo, Jindong Wang, Ruochen Xu, Xing Xie, and Steven Whang. Erbench:
An entity-relationship based automatically verifiable hallucination benchmark for large language models.
Advances in Neural Information Processing Systems, 37:53064–53101, 2024.

Reham Omar, Omij Mangukiya, and Essam Mansour. Dialogue benchmark generation from knowledge
graphs with cost-effective retrieval-augmented llms. Proceedings of the ACM on Management of Data, 3
(1):1–26, 2025.

OpenAI. Chatgpt via chat completions api. URL https://platform.openai.com/docs/models/
chatgpt-4o-latest.

Abdelghny Orogat and Ahmed El-Roby. Smartbench: demonstrating automatic generation of comprehensive
benchmarks for question answering over knowledge graphs. Proceedings of the VLDB Endowment, 15(12):
3662–3665, 2022.

11

https://doi.org/10.1145/2723372.2742786
https://arxiv.org/abs/2401.06121
https://platform.openai.com/docs/models/chatgpt-4o-latest
https://platform.openai.com/docs/models/chatgpt-4o-latest

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

Abdelghny Orogat and Ahmed El-Roby. Maestro: Automatic generation of comprehensive benchmarks for
question answering over knowledge graphs. Proceedings of the ACM on Management of Data, 1(2):1–24,
2023.

Sungho Park, Joohyung Yun, Jongwuk Lee, and Wook-Shin Han. HELIOS: Harmonizing early fusion, late
fusion, and LLM reasoning for multi-granular table-text retrieval. In Wanxiang Che, Joyce Nabende,
Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 32424–32444, Vienna, Austria,
July 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.
acl-long.1559. URL https://aclanthology.org/2025.acl-long.1559/.

Sohan Patnaik, Heril Changwal, Milan Aggarwal, Sumit Bhatia, Yaman Kumar, and Balaji Krishnamurthy.
Cabinet: Content relevance-based noise reduction for table question answering. In The Twelfth International
Conference on Learning Representations.

Qi Shi, Han Cui, Haofeng Wang, Qingfu Zhu, Wanxiang Che, and Ting Liu. Exploring hybrid question
answering via program-based prompting. In Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 11035–11046, 2024.

Kai Sun, Yifan Xu, Hanwen Zha, Yue Liu, and Xin Luna Dong. Head-to-tail: How knowledgeable are
large language models (llms)? aka will llms replace knowledge graphs? In Proceedings of the 2024
Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), pp. 311–325, 2024.

Xueqing Wu, Jiacheng Zhang, and Hang Li. Text-to-table: A new way of information extraction. In
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 2518–2533, 2022.

Kun Xu, Lingfei Wu, Zhiguo Wang, Yansong Feng, and Vadim Sheinin. Sql-to-text generation with graph-
to-sequence model. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pp. 931–936, 2018.

Lingxi Zhang, Jing Zhang, Xirui Ke, Haoyang Li, Xinmei Huang, Zhonghui Shao, Shulin Cao, and Xin Lv.
A survey on complex factual question answering. AI Open, 4:1–12, 2023.

Yilun Zhao, Yunxiang Li, Chenying Li, and Rui Zhang. Multihiertt: Numerical reasoning over multi
hierarchical tabular and textual data. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 6588–6600, 2022.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of structured language
model programs. Advances in Neural Information Processing Systems, 37:62557–62583, 2024.

Zexuan Zhong, Zhengxuan Wu, Christopher D. Manning, Christopher Potts, and Danqi Chen. Mquake:
Assessing knowledge editing in language models via multi-hop questions, 2024. URL https://arxiv.
org/abs/2305.14795.

Fengbin Zhu, Wenqiang Lei, Youcheng Huang, Chao Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng, and
Tat-Seng Chua. Tat-qa: A question answering benchmark on a hybrid of tabular and textual content in
finance. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp.
3277–3287, 2021.

12

https://aclanthology.org/2025.acl-long.1559/
https://arxiv.org/abs/2305.14795
https://arxiv.org/abs/2305.14795

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2026

A CROSS-DATASET ANNOTATION AUDIT

Dataset Any error Error breakdown (within erroneous samples)

% of all samples Redundant modality Incomplete answer set Incorrect / unanswerable

HYBRIDQA 21% 52.4% 23.8% 23.8%
MULTIHIERITT 26% 15.4% 30.8% 53.8%
TAT-QA 30% 96.7% 0.0% 3.3%
FINQA 17% 41.2% 0.0% 58.8%
SPARTA 0% 0.0% 0.0% 0.0%

Table 7: Audit of 100 randomly sampled dev examples from each dataset. “Any error” shows the fraction
of all samples containing at least one error. The breakdown columns report the relative distribution among
erroneous samples.

B SUPPORTED NESTED QUERY PATTERNS

SPARTA synthesizes queries for each of the four primary nesting patterns Kim (1982) commonly observed in
real-world SQL, as illustrated in Fig 6.

Table 8: Nested–query patterns.

Type Inner aggreg. Correlation Typical intent / example

Type–N Pure set membership. Outer block tests whether
a value belongs to the set returned by a
non-correlated subquery (e.g., WHERE x IN
(SELECT ...)).

Type–A ✓ Aggregate comparison. Inner block computes an
aggregate such as AVG or MAX and the result is
compared with each outer tuple (e.g., salary >
(SELECT AVG(salary) FROM ...)).

Type–J ✓ Correlated filtering. Inner query references at-
tributes of the outer block without aggregation
(e.g., EXISTS (SELECT 1 FROM Items i
WHERE i.order_id = o.id)).

Type–JA ✓ ✓ Correlated aggregate comparison. Inner
query both correlates with the outer block
and aggregates its own rows before the com-
parison (e.g., EXISTS (SELECT 1 FROM
Items i WHERE i.order_id = o.id
GROUP BY ... HAVING SUM(i.qty) >
o.limit)).

Type-N
A(Ck)

Type-A

Ti TjTi Tj

Type-J
A(Ck)

Type-JA

Ti TjTi Tj

N(Ck) N(Ck)

Ti . Cm=Tj . Cn Ti . Cm=Tj . Cn

Figure 6: Four primary nesting patterns—type (N, A, J, JA) queries of depth 1. Each consists of an outer
block (Ti) and an inner block (Tj). Arcs labeled ‘A’ indicate aggregation in the inner SELECT; straight arcs
‘N’ denote set-inclusion predicates; curved arcs denote join predicates.

13

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

C SCHEMA OF REFERENCE-FACT DATABASE

(a) NBA

(b) Movie

(c) Medical

Figure 7: Schemas of the reference-fact databases used in SPARTA across three domains. Each database
consists of two complementary types of tables: source tables ST (orange) from public datasets (e.g., NBA
player salaries, movie metadata, medical records) and grounding tables GT (green) encoding atomic facts
extracted from textual passages.

14

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

D BENCHMARK CONFIGURATION

Table 9: Benchmark Configuration: SQL Operator Coverage, Query-Shape/Size Distribution.

Query Shape and Size Distribution (%)

Non-nested (Depth 1, Breadth 1) (Depth 1, Breadth 2) (Depth 1, Breadth 3) (Depth 2, Breadth 1) (Depth 2, Breadth 2) (Depth 3, Breadth 1) Total

45.5 9.1 9.1 9.1 9.1 9.1 9.1 100.0

SQL Operator Presence (%)

WHERE GROUP BY HAVING ORDER BY LIMIT AGGREGATION

100.0 15.3 3.4 7.7 4.5 50.0

Nested Predicate Type Presence in Nested Query (%)

Type-N Type-A Type-J Type-JA

57.8 64.3 32.4 15.2

E GENERATION COST ANALYSIS ON QUERY SHAPE AND SIZE

Figure 8 contrasts LLM usage for star and chain query trees as their size grows from one to three nested
predicates. Here, star queries fix depth to 1 while increasing breadth (number of branches), whereas chain
queries fix breadth to 1 while increasing depth (number of nested levels). The size thus reflects how many
nested predicates are added along either the breadth or depth dimension. For star shapes, one-shot generation
quickly becomes prohibitive, ballooning to 17× the ideal call count when the hub size reaches three. Building
the same queries in post-order slashes that overhead to 3.2×; provenance repair trims it further to 1.6×.
Chains tell a different story: because their natural construction order already matches post-order, one-shot
and post-order costs are similar, yet provenance still removes 30–40 % of redundant calls at every depth.
Branching structures profit most from post-order generation, while provenance-guided repair is a universally
cheap “insurance policy” that cuts waste regardless of query shape.

1 2 3
Star Query Size

0

1000

2000

3000

4000

5000

6000

7000

LL
M

Ca
ll C

ou
nt

+42%

+381%

+1641%

+41%

+147%

+217%

+20%
+43%

+60%

One-shot
Post-order (no provenance)
Post-order+Prov

(a) LLM Call Count as Star-Query Size Increases.

1 2 3
Chain Query Size

0

1000

2000

3000

4000

5000

6000

7000

LL
M

Ca
ll C

ou
nt

+42%

+303%
+386%

+41%

+307%
+389%

+20%
+141% +160%

One-shot
Post-order (no provenance)
Post-order+Prov

(b) LLM Call Count as Chain-Query Size Increases.

Figure 8: Generation cost for varying (a) star-query size and (b) chain-query size. Sky-blue bars mark ideal
LLM calls, and the labels above each bar represent the actual excess percentage.

15

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

Table 10: F1 scores of HProPro (w/ GPT-5) across different nesting types. Percentage values indicate relative
change from the overall average (34.5).

Nesting Type F1 (HProPro w/ GPT-5)
Type-N 40.0 (+15.9%)
Type-A 33.7 (−2.3%)
Type-J 30.8 (−10.7%)
Type-JA 25.6 (−25.8%)

Total 34.5

F ABLATION STUDY ON NESTING TYPES

For a deeper analysis, we examined the best-performing system on the SPARTA Benchmark—HProPro
with GPT-5—by breaking down its performance across query-nesting types: plain nesting (N), nesting with
aggregates (A), nesting with correlated joins (J), and nesting that combines correlated joins + aggregates (JA).
Results are shown below.

As shown in Table 10, F1 falls steadily as structural (correlated joins) and analytical (aggregates) complexity
increases, with the largest drop when both factors are present (Type JA). This ablation study underscores that
correlated joins and aggregates are the model’s primary pain points.

G ERROR CASE ANALYSIS

We conduct an analysis of the errors encountered by Table-Text QA models on a randomly sampled set of
100 examples, as illustrated in Fig. 9. Representative error types, along with their frequencies and causal
interpretations, are summarized below.

Relevant
 data missing

48.0%

Erroneous
 data analysis

31.0%

Que
sti

on

 m
isu

nd
ers

tan
din

g

18
.0%

W
ro

ng
 S

ch
em

a
lin

ki
ng

3.
0%

Figure 9: Statistics of errors. For detailed descriptions and examples of each error category, see Appendix G
Relevant data missing (48%). This was the most frequent category of failure, where the model failed to
identify all the necessary information to correctly answer the question. SPARTA poses increased demands for
multi-hop reasoning across table and text sources, which existing methods often struggle with:

• Partial retrieval of relevant data (10%): The model identifies only a subset of the necessary
sources, resulting in incomplete answers. As illustrated in Figure 10, the model was expected to

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2026

return both 62 and 53 as the field goal percentages for the Dallas Mavericks and New York
Knicks, respectively, but failed to do so.

• Failure to identify relevant data (38%): The model does not identify crucial supporting data,
leading to either no answer or an incorrect one. For example, in questions requiring information from
both nba_player_information and nba_player_award, the model may access only the
former, overlooking the award records, and consequently returning an incorrect answer.

Erroneous data analysis (31%). Compared to prior benchmarks, SPARTA introduces more complex
analytical requirements that reveal limitations in model capabilities:

• Failure to perform advanced analytical operations (13%): The model struggles with apply-
ing operations such as aggregations (e.g., COUNT, MAX) or executing multi-table joins correctly.
These operations require precise alignment of relational structures and logic, which is frequently
mishandled.

• Reading comprehension errors (18%): The model incorrectly interprets textual information,
leading to erroneous answers. For instance, in a case where the question asks for the Nuggets’
field goal percentage, the model erroneously extracts "37%" from the sentence "Nuggets held
Sacramento to just 37 percent from the field," misattributing Sacramento’s
statistic to the Nuggets. See Figure 10 for a detailed example of this error.

Question misunderstanding (18%). These errors arise from incorrect interpretation of the question
intent or constraints. Representative cases include failing to restrict answers to players who played only
as point_guard, and instead including players who played point_guard along with other positions,
misidentifying the relevant time frame (e.g., using 2017 instead of 2016–17), introducing constraints not
specified in the question, or omitting key conditions necessary to derive the correct answer.

Schema linking errors (3%). This category involves incorrect associations between the question and the
schema elements, such as tables or columns. For instance, when asked to retrieve the name of the head coach,
the model fails to identify the headcoach column in the nba_team_information table as relevant,
thereby omitting necessary information from the final prediction.

Team Name Arena Capacity

Trail Blazers 19,980

Raptors 19,800

Hornets 19,026

Nuggets 19,099

Mavericks 19,200

Knicks 19,763

The Charlotte Hornets defeated the visiting Chicago Bulls ,
135 – 106 … Charlotte Hornets connecting on 57
percent of their shots while holding Chicago to just 44
percent from the field …

NBA Team Information
The Minnesota Timberwolves defeated the Portland Trail
Blazers 108 – 107 … As for the Trail Blazers, they were
unable to close out Monday 's game despite shooting an
impressive 55 percent from the field …

The New York Knicks (20 - 20) defeated the Boston Celtics
(19 - 19) 120 - 114 on Tuesday … Knicks finished the night
with outstanding 53. percent shooting from the field …

Toronto Raptors defeated the Charlotte Hornets , 103 –
98 … they managed a mediocre 38 percent success rate
from the field while yielding a 42 percent figure to
the Raptors …

The Denver Nuggets defeated the Sacramento Kings , 94 -
79 , … Nuggets held Sacramento to just 37. percent
from the field …

: Correct

the Dallas Mavericks (10 - 3) defeated the Los Angeles
Lakers (3 – 10) 140 - 106 on Friday… They allowed the
Mavs to shoot an eye - popping 62 percent from the
field …

: Error (Type : Erroneous data analysis) : Error (Type : Relevant data missing)

37

53

42
55

57

62

[LLM-Predicted Answer]: 55, 42, 57, 37

[Question]
What are the team field goal percentages of all the teams that have an arena capacity between 19,000 and 20,000 and
scored more than 100 points in a game?
[Golden Answer]
55, 42, 57, 62, 53

Figure 10: Illustration of a representative error case where the model fails to correctly answer.

17

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2026

H LIMITATIONS AND FUTURE WORK

SPARTA presently targets the Table–Text setting. A natural next step is to incorporate additional modalities
such as images and video. Recent vision–language models can translate visual content into textual summaries;
the resulting atomic statements can be normalized into grounding tables and merged with the existing reference
fact database. Because these tuples satisfy the same schema constraints as DGT , the query–generation pipeline
described in §3.3 remains applicable without modification. A full multimodal extension—including dataset
collection, schema design, and evaluation protocols—will be explored in future work.

I SOFTWARE AND DATA LICENSES

The licenses for the software and datasets used in this paper are as follows:

• LLaMA 3.1-70B-Instruct: LLaMA 3.1
• OTT-QA: MIT License
• HybridQA: MIT License

All software and datasets were used strictly for research purposes and were not utilized in any non-research
contexts, particularly for commercial applications.

J AI ASSISTANTS

We used ChatGPT-4o OpenAI to debug code efficiently, quickly identifying and resolving errors in our
implementations. Additionally, we used it for rephrasing sentences in our writing to improve clarity and
readability.

18

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2026

K REPRESENTATIVE EXAMPLES FROM OUR SPARTA BENCHMARK

Table 11: 20 representative examples from SPARTA, each consisting of a domain, a natural language question,
its corresponding SQL query, and the answer.

Row Type Content
Domain NBA
Question Which player won the NBA MVP award in the 1986 season?
SQL SELECT player_name FROM nba_player_award WHERE season = 1986

AND award = ’nba mvp’
Answer Larry Bird

Domain NBA
Question What are the names of the players who scored more than 15 points and rebounded more than 5 times in

a game?
SQL SELECT player_name FROM nba_player_game_stats WHERE

number_of_points > 15 AND number_of_rebound > 5
Answer Langston Galloway, Quincy Acy, Larry Nance Jr., ...

Domain Movie
Question In which movies did Riteish Deshmukh act?
SQL SELECT movie_title FROM role_mapping WHERE category = ’actor’

AND name = ’Riteish Deshmukh’
Answer Marjaavaan, Mauli

Domain Movie
Question What is the total number of movies with a median rating greater than 5 and an average rating greater

than 5.5?
SQL SELECT COUNT(movie_title) AS total_movies FROM ratings WHERE

median_rating > 5 AND avg_rating > 5.5
Answer 4877

Domain NBA
Question Which Western Conference teams faced the Celtics more than once in the Finals?
SQL SELECT western_champion_name FROM nba_champion_history WHERE

nba_champion_name = ’Celtics’ GROUP BY western_champion_name
HAVING COUNT(western_champion_name) > 1

Answer Rockets, Lakers

Domain Medical
Question What is the maximum years of experience of a pediatrician at Central Hospital?
SQL SELECT MAX(years_experience) FROM doctors WHERE

hospital_branch = ’Central Hospital’ AND specialization =
’Pediatrics’

Answer 28

Domain NBA
Question What is the highest salary of Kevin McHale while playing for the Celtics?
SQL SELECT MAX(salary) FROM nba_player_affiliation WHERE

player_name = ’Kevin McHale’ AND team_name = ’Celtics’

(continued on next page)

19

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2026

Row Type Content (continued)
Answer 3,500,000

Domain NBA
Question Which Point Guards, drafted between 2000 and 2005, had more than 4 three-pointers, more than 8 field

goals and more than 1 steal in a game?
SQL SELECT player_name FROM nba_player_game_stats

WHERE player_name IN (SELECT player_name FROM
nba_player_information WHERE position = ’Point
Guard’ AND draft_year BETWEEN 2000 AND 2005) AND
number_of_three_point_field_goals_made > 4 AND
number_of_field_goals_made > 8 AND number_of_steal > 1

Answer Chris Paul

Domain NBA
Question Which NBA players who were drafted in the first round and play the center position have a salary of

over 1 million in the 2016-17 season?
SQL SELECT player_name FROM nba_player_information

WHERE player_name IN (SELECT player_name FROM
nba_player_affiliation WHERE salary > 1000000 AND season
= ’2016-17’) AND draft_round = ’1st round’ AND position =
’Center’

Answer Alex Len, Al Horford, Andre Drummond, ...

Domain Medical
Question What are the names of patients who have an appointment with a doctor who works at the central hospital

and has more than 20 years of experience?
SQL SELECT patient_name FROM appointments WHERE doctor_name IN

(SELECT name FROM doctors WHERE hospital_branch = ’Central
Hospital’ AND years_experience > 20)

Answer Alex Smith, Alex Aiden Moore, Emily Miller, ...

Domain NBA
Question What are the years of birth of the players who have a lane agility time of more than 11.5 seconds, a

three quarter sprint of less than 3.35 seconds, more than 10 field goals made and more than 8 rebounds
in a game?

SQL SELECT birthyear FROM nba_player_information
WHERE player_name IN (SELECT player_name FROM
nba_draft_combine_stats WHERE lane_agility_time > 11.5
AND three_quarter_sprint < 3.35) AND player_name IN
(SELECT player_name FROM nba_player_game_stats WHERE
number_of_field_goals_made > 10 AND number_of_rebound > 8)
GROUP BY birthyear

Answer 1984, 1985, 1989, ...

Domain Movie
Question Which movies, starring Vincent D Onofrio as an actor, have an average rating greater than 5 and a

median rating of 6, excluding ’Kolonya Cumhuriyeti’?

(continued on next page)

20

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2026

Row Type Content (continued)
SQL SELECT title FROM movie WHERE title IN (SELECT movie_title

FROM role_mapping WHERE category = ’actor’ AND name =
’Vincent D Onofrio’ AND movie_title = title) AND title IN
(SELECT movie_title FROM ratings WHERE avg_rating > 5 AND
median_rating = 6 AND movie_title <> ’Kolonya Cumhuriyeti’)

Answer CHIPS, In Dubious Battle

Domain NBA
Question Who are the top 5 centers drafted in the 1st round, who have won the dpoy award after 2000, and who

have earned more than 2 million dollars in the 2004-05 season, sorted by their draft year in descending
order and birth year in ascending order?

SQL SELECT player_name FROM nba_player_information
WHERE player_name IN (SELECT player_name FROM
nba_player_affiliation WHERE salary > 2000000 AND season
= ’2004-05’) AND player_name IN (SELECT player_name FROM
nba_player_award WHERE season > 2000 AND award = ’dpoy’) AND
position = ’Center’ AND draft_round = ’1st round’ ORDER BY
draft_year DESC, birthyear ASC LIMIT 5

Answer Dwight Howard, Ben Wallace, ...

Domain Medical
Question Find the addresses of male patients born after January 1, 1980, who have MedCare Plus insurance and

have made payments that exceed the average failed payments greater than 2500.
SQL SELECT address FROM patients WHERE name IN (SELECT

patient_name FROM billing WHERE amount > (SELECT AVG(amount)
FROM billing WHERE payment_status = ’Failed’ AND amount >
2500)) AND date_of_birth > ’1980-01-01’ AND gender = ’M’ AND
insurance_provider = ’MedCare Plus’

Answer 123 Elm St, 789 Pine Rd, ...

Domain NBA
Question Which NBA players, who are centers and taller than the average height of point guards drafted after

1990, have more than 8 rebounds in a game?
SQL SELECT player_name FROM nba_player_game_stats

WHERE player_name IN (SELECT player_name FROM
nba_player_information WHERE height > (SELECT AVG(height)
FROM nba_player_information WHERE position = ’Point
Guard’ AND draft_year > 1990) AND position = ’Center’) AND
number_of_rebound > 8

Answer Alex Len, Al Horford, Andre Drummond, ...

Domain Medical
Question What are the names of female patients who registered after 2021-09-02 and have billed amounts greater

than the average amount of failed payments over 2500?
SQL SELECT name FROM patients WHERE name IN (SELECT patient_name

FROM billing WHERE amount > (SELECT AVG(amount) FROM billing
WHERE payment_status = ’Failed’ AND amount > 2500)) AND
gender = ’F’ AND registration_date > ’2021-09-02’

Answer Emily Jones, Laura Aiden Davis, ...

(continued on next page)

21

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Under review as a conference paper at ICLR 2026

Row Type Content (continued)

Domain Movie
Question How many movies starring John Abraham have a median rating above 5 and average rating above 4?
SQL SELECT COUNT(title) AS number_of_movies FROM movie WHERE

title IN (SELECT movie_title FROM role_mapping WHERE
category = ’actor’ AND name = ’John Abraham’ GROUP BY
movie_title) AND title IN (SELECT movie_title FROM ratings
WHERE median_rating > 5 AND avg_rating > 4)

Answer 1

Domain NBA
Question What is the maximum height of the Lakers players who play as center, were drafted after 1995 and

have a salary greater than the highest salary of the Suns and greater than 20,000,000?
SQL SELECT MAX(height) FROM nba_player_information

WHERE player_name IN (SELECT player_name FROM
nba_player_affiliation WHERE salary > (SELECT MAX(salary)
FROM nba_player_affiliation WHERE team_name = ’Suns’) AND
salary > 20000000 AND team_name = ’Lakers’) AND position =
’Center’ AND draft_year > 1995

Answer 84

Domain NBA
Question What are the names of the teams that scored more than the highest points scored by the Thunder when

they scored more than 25 points in the first quarter and scored more than the highest points scored by
teams that scored more than 100 points and had a three point field goal percentage of more than 30 and
have an arena capacity of more than 20,000 and are not the Pistons?

SQL SELECT team_name FROM nba_team_game_stats WHERE team_points
> (SELECT MAX(team_points) FROM nba_team_game_stats
WHERE team_name = ’Thunder’ AND team_points_in_quarter1
> 25) AND team_points > (SELECT MAX(team_points)
FROM nba_team_game_stats WHERE team_points > 100 AND
team_percentage_of_three_point_field_goal_made > 30) AND
team_name IN (SELECT team_name FROM nba_team_information
WHERE arena_capacity > 20000 AND team_name <> ’Pistons’)

Answer Bulls

Domain Movie
Question Which movies directed by Vivek Athreya have a median rating greater than 5 with more than 100 total

votes, and do not feature Matt Smith as an actor?
SQL SELECT title FROM movie WHERE title IN (SELECT

T2.movie_title FROM director_mapping AS T2 WHERE T2.name
= ’Vivek Athreya’ AND movie.title = T2.movie_title) AND
NOT title IN (SELECT movie_title FROM role_mapping WHERE
category = ’actor’ AND name = ’Matt Smith’) AND title IN
(SELECT movie_title FROM ratings WHERE median_rating > 5 AND
total_votes > 100 GROUP BY movie_title)

Answer Brochevarevarura, Mental Madhilo

22

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Under review as a conference paper at ICLR 2026

L PROMPT TEMPLATES

We define a suite of prompt templates that guide LLMs to generate executable, semantically coherent SQL
queries. Prompts are organized into three categories, with an NBA domain example provided; for other
domains, only domain-specific tokens are swapped (e.g., replacing "NBA" with "Movie").

Clause-Level Generation. Templates for generating individual SQL clauses in canonical order:

• SELECT (non-aggregate, aggregate)
• FROM
• WHERE
• GROUP BY
• HAVING
• ORDER BY
• LIMIT

Nested Predicate Construction. Templates for building multi-hop queries via nested predicates:

• Inner Query Selection
• FROM Clause for Outer Block
• Nested Predicate Generation: Type-N, Type-A, Type-J, Type-JA

Refinement and Evaluation. Templates to improve query validity and assess realism:

• Provenance-Based Refinement for repairing empty-result queries
• Naturalness Evaluation to assess relevance and intent clarity

23

1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Under review as a conference paper at ICLR 2026

WHERE Clause Generation

You are both an NBA fan and an SQL expert. Given the provided database and the generated clauses,
generate a WHERE clause that reflects authentic NBA-related curiosity.

Ensure the following requirements:
• Output Structure: Return a JSON object containing a single key, "where", with its value

being a WHERE clause.
• Ensure NBA Fan Relevance: Generate the WHERE clause that aligns naturally with realistic

and meaningful queries that NBA fans are likely to ask.
• Maintain Specificity and Clarity of Intent: Generate the WHERE clause that is well-defined,

avoiding overly vague or artificially complex queries.
• Align with Generated Clauses: Ensure that the WHERE clause maintains logical consistency

with previously generated clauses, preserving semantic coherence.
• Ensure Synthetic Correctness: Generate the WHERE clause that is syntactically correct and

executable on the provided database.
IMPORTANT: Do not generate conditions for NULL or None values. Also, avoid generating filter
conditions that duplicate any existing filters.

Database: {database}

Generated Clauses: {generated_clauses}

Return the results in a FLAT JSON format.
DO NOT include any explanations or notes in the output. ONLY return JSON.

24

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

Under review as a conference paper at ICLR 2026

GROUP BY Clause Generation

You are both an NBA fan and an SQL expert. Given the provided database and the generated clauses,
generate a GROUP BY clause that reflects authentic NBA-related curiosity.

Ensure the following requirements:
• Output Structure: Return a JSON object containing a single key, "group", with its value

being a GROUP BY clause. The GROUP BY clause should include a single column.
• Ensure NBA Fan Relevance: Generate the GROUP BY clause that aligns naturally with

realistic and meaningful queries that NBA fans are likely to ask.
• Align with Generated Clauses: Ensure that the GROUP BY clause maintains logical consis-

tency with previously generated clauses, preserving semantic coherence.
• Ensure Synthetic Correctness: Generate the GROUP BY clause that is syntactically correct

and executable on the provided database.
IMPORTANT: Do not group by any column whose value is fixed by an equality (=) condition in the
WHERE clause.

Database: {database}

Generated Clauses: {generated_clauses}

Return the results in a FLAT JSON format.
DO NOT include any explanations or notes in the output. ONLY return JSON.

25

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

Under review as a conference paper at ICLR 2026

HAVING Clause Generation

You are both an NBA fan and an SQL expert. Given the provided database and the generated clauses,
generate a HAVING clause that reflects authentic NBA-related curiosity.

Ensure the following requirements:
• Output Structure: Return a JSON object containing a single key, "having", with its value

being a HAVING clause.
• Ensure NBA Fan Relevance: Generate the HAVING clause that aligns naturally with realistic

and meaningful queries that NBA fans are likely to ask.
• Maintain Specificity and Clarity of Intent: Generate a well-defined and clear HAVING

clause without making it overly narrow or contrived.
• Align with Generated Clauses: Ensure that the HAVING clause maintains logical consistency

with previously generated clauses, preserving semantic coherence.
• Ensure Synthetic Correctness: Generate the HAVING clause that is syntactically correct and

executable on the provided database.
Database: {database}

Generated Clauses: {generated_clauses}

Return the results in a FLAT JSON format.
DO NOT include any explanations or notes in the output. ONLY return JSON.

ORDER BY Clause Generation

You are both an NBA fan and an SQL expert. Given the provided database and the generated clauses,
generate an ORDER BY clause that reflects authentic NBA-related curiosity.

Ensure the following requirements:
• Output Structure: Return a JSON object containing a single key, "order", with its value

being an ORDER BY clause.
• Ensure NBA Fan Relevance: Generate the ORDER BY clause that aligns naturally with

realistic and meaningful queries that NBA fans are likely to ask.
• Align with Generated Clauses: Ensure that the ORDER BY clause maintains logical consis-

tency with previously generated clauses, preserving semantic coherence.
• Ensure Synthetic Correctness: Generate the ORDER BY clause that is syntactically correct

and executable on the provided database.
Database: {database}

Generated Clauses: {generated_clauses}

Return the results in a FLAT JSON format.
DO NOT include any explanations or notes in the output. ONLY return JSON.

26

1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268

Under review as a conference paper at ICLR 2026

LIMIT Clause Generation

You are both an NBA fan and an SQL expert. Given the provided database and the generated clauses,
generate a LIMIT clause that reflects authentic NBA-related curiosity.

Ensure the following requirements:
• Output Structure: Return a JSON object containing a single key, "limit", with its value

being a LIMIT clause.
• Ensure NBA Fan Relevance: Generate the LIMIT clause that aligns naturally with realistic

and meaningful queries that NBA fans are likely to ask.
• Align with Generated Clauses: Ensure that the LIMIT clause maintains logical consistency

with previously generated clauses, preserving semantic coherence.
• Ensure Synthetic Correctness: Generate the LIMIT clause that is syntactically correct and

executable on the provided database.
Database: {database}

Generated Clauses: {generated_clauses}

Return the results in a FLAT JSON format.
DO NOT include any explanations or notes in the output. ONLY return JSON.

27

1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315

Under review as a conference paper at ICLR 2026

SELECT Clause (Non-Aggregate)

You are both an NBA fan and an SQL expert. Given the provided database and the generated clauses,
generate a SELECT clause that specifies a necessary field for retrieving meaningful NBA-related
data.

Ensure the following requirements:
• Output Structure: Return a JSON object containing a single key, "select", with its value

being a SELECT clause that projects a single column without an aggregation function
meaningfully.

• Ensure NBA Fan Relevance: Generate the SELECT clause that aligns naturally with realistic
and meaningful queries that NBA fans are likely to ask.

• Align with Generated Clauses: Ensure that the SELECT clause maintains logical consistency
with previously generated clauses, preserving semantic coherence.

• Ensure Synthetic Correctness: Generate the SELECT clause that is syntactically correct and
executable on the provided database.

IMPORTANT: Do not project columns used in the WHERE clause.

Database: {database}

Generated Clauses: {generated_clauses}

Return the results in a FLAT JSON format.
DO NOT include any explanations or notes in the output. ONLY return JSON.

28

1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362

Under review as a conference paper at ICLR 2026

SELECT Clause (Aggregate)

You are both an NBA fan and an SQL expert. Given the provided database and the generated clauses,
generate a SELECT clause that aggregates a single column for retrieving meaningful NBA-related
statistics.

Ensure the following requirements:
• Output Structure: Return a JSON object containing a single key, "select", with its value

being a SELECT clause that aggregates (MAX, MIN, AVG, or COUNT, etc.) a single
column meaningfully.

• Ensure NBA Fan Relevance: Generate the SELECT clause that aligns naturally with realistic
and meaningful queries that NBA fans are likely to ask.

• Align with Generated Clauses: Ensure that the SELECT clause maintains logical consistency
with previously generated clauses, preserving semantic coherence.

• Ensure Synthetic Correctness: Generate the SELECT clause that is syntactically correct and
executable on the provided database.

Database: {database}

Generated Clauses: {generated_clauses}

Return the results in a FLAT JSON format.
DO NOT include any explanations or notes in the output. ONLY return JSON.

29

1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409

Under review as a conference paper at ICLR 2026

Inner Query Block Selection

You are both an NBA fan and an SQL expert. Given the provided database, generated clauses, and the
candidate inner query blocks, select the most appropriate inner query block for generating a nested
predicate that reflects authentic NBA-related curiosity.

Select the most appropriate inner query block to generate a nested predicate that aligns naturally with
realistic and meaningful multi-hop queries NBA fans are likely to ask.

Your output must be in JSON format with the key:
• "inner_query_block": Select the most appropriate inner query block from the Candi-

date Inner Query Blocks.
IMPORTANT:

• Do not select the inner query block that has already been used in the generated clauses and
is not included in the candidate inner query blocks.

Database: {schema}

Generated FROM Clause: {generated_from_clause}

Generated WHERE Clause: {generated_where_clause}

Candidate Inner Query Blocks: {candidate_inner_query_blocks}

Return the results in a FLAT JSON format.
DO NOT include any explanations or notes in the output. ONLY return JSON.

30

1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456

Under review as a conference paper at ICLR 2026

FROM Clause Generation

You are both an NBA fan and an SQL expert. Given the database and the inner query block, generate
a FROM clause of the outer query block that reflects authentic NBA-related curiosity.

Ensure the following requirements:
• Output Structure: Return a JSON object containing a single key, "from", with its value

being a single-table FROM clause of the outer query block from the provided database (i.e.,
do not include any sub-selects or nested queries directly in the FROM clause).

• Ensure NBA Fan Relevance: Generate the FROM clause that aligns naturally with realistic
and meaningful multi-hop queries that NBA fans are likely to ask.

• Ensure Synthetic Correctness: Generate the FROM clause that is syntactically correct and
executable on the provided database.

• Separate Inner Query: The inner query block must remain separate; it should later be
incorporated into the WHERE clause, not nested in the FROM clause.

• Ensure Natural Connection: Choose an outer table whose columns can be naturally
referenced or filtered against the results of the inner query block.

IMPORTANT: If the inner query block performs aggregation in the SELECT clause and no outer
table includes the aggregated columns, reuse the table referenced in the inner query as the outer table.

Database: {schema}

Inner Query Block: {subquery}

Return the results in a FLAT JSON format.
DO NOT include any explanations or notes in the output. ONLY return JSON.

31

1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503

Under review as a conference paper at ICLR 2026

Type-N Nested Predicate Generation

You are both an NBA fan and an SQL expert. Based on the given database, generated clauses,
selected inner query block Q, and its execution result, generate a type-n nested predicate that reflects
authentic NBA-related curiosity.

Ensure the following requirements:
• Ensure type-n Nesting: The inner query block Q must not contain a join predicate that

references the relation of the outer query block, and its SELECT clause must project a
column without an aggregate function.

• Ensure NBA Fan Relevance: Generate the nested predicate that aligns naturally with realistic
and meaningful multi-hop queries that NBA fans are likely to ask.

• Ensure Synthetic Correctness: Generate the nested predicate that is syntactically correct and
executable on the provided database.

• Ensure Semantic Alignment: If the inner query’s SELECT column does not semantically
match any column in the outer query’s table, revise it for consistency.

The type-n nested predicate must be in the form: OuterTable.column [IN | NOT IN] (
Q).

Your output must be in JSON format with the keys:
• "nested_predicate": Only the type-n nested predicate based on the selected inner

query block.
• "logical_operator": If a WHERE clause exists, return ’AND’ or ’OR’.

IMPORTANT:
• Ensure that the nesting level of the inner query block is correctly preserved. The expected

nesting level is {height}.
• Do not modify the nesting level of the provided inner query block.

Database: {schema}

Generated FROM Clause of the Outer Query: {generated_from_clause}

Generated WHERE Clause of the Outer Query: {generated_where_clause}

Selected Inner Query Block Q: {selected_inner_query_block}

Return the results in a FLAT JSON format.
DO NOT include any explanations or notes in the output. ONLY return JSON.

32

1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550

Under review as a conference paper at ICLR 2026

Type-A Nested Predicate Generation

You are both an NBA fan and an SQL expert. Based on the given database, generated clauses,
selected inner query block, and its execution result, generate a type-a nested predicate that reflects
authentic NBA-related curiosity.

Ensure the following requirements:
• Ensure type-a Nesting: The inner query block Q must not contain a join predicate referencing

the outer query’s relation, and its SELECT clause must contain an aggregate function
associated with a column.

• Ensure NBA Fan Relevance: Generate the nested predicate that aligns naturally with realistic
and meaningful multi-hop queries that NBA fans are likely to ask.

• Ensure Synthetic Correctness: The predicate must be executable and logically valid over the
schema.

The type-a nested predicate must follow the form:
OuterTable.column [= | != | < | <= | > | >=] (Q with aggregate
function)

Your output must be in JSON format with the keys:
• "nested_predicate": Only the type-a nested predicate based on the selected inner

query block.
• "logical_operator": If a WHERE clause exists, return ’AND’ or ’OR’.

IMPORTANT:
• Do not revise the SELECT clause of the Q.
• Ensure that the nesting level remains {height}.

Database: {schema}

Generated FROM Clause of the Outer Query: {generated_from_clause}

Generated WHERE Clause of the Outer Query: {generated_where_clause}

Selected Inner Query Block Q: {selected_inner_query_block}

Return the results in a FLAT JSON format.
DO NOT include any explanations or notes in the output. ONLY return JSON.

33

1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597

Under review as a conference paper at ICLR 2026

Type-J Nested Predicate Generation

You are both an NBA fan and an SQL expert. Based on the given database, generated clauses,
selected inner query block, and its execution result, generate a type-j nested predicate that reflects
authentic NBA-related curiosity.

Ensure the following requirements:
• Ensure type-j Nesting: Revise the inner query block Q to ensure it includes a join predicate

in its WHERE clause that references the outer query’s relation, and its SELECT clause must
project a column without an aggregate function.

• Ensure NBA Fan Relevance: Generate the nested predicate that aligns naturally with realistic
and meaningful multi-hop queries that NBA fans are likely to ask.

• Ensure Synthetic Correctness: Generate the nested predicate that is syntactically correct and
executable on the provided database.

• Ensure Semantic Alignment: If the inner query’s SELECT column does not semantically
match any column in the outer query’s table, revise it for consistency.

The type-j nested predicate must be in one of the following forms:
OuterTable.column [IN | NOT IN] (SELECT ... FROM ... WHERE ...
[join predicate] ...)
or
[EXISTS | NOT EXISTS] (SELECT ... FROM ... WHERE ... [join
predicate] ...)

Your output must be in JSON format with the keys:
• "nested_predicate": Only the type-j nested predicate based on the selected inner

query block.
• "logical_operator": If a WHERE clause exists, return ’AND’ or ’OR’.

IMPORTANT:
• The join predicate involving the outer query’s relation must appear in the WHERE clause

of Q, not its FROM clause.
• The expected nesting level is {height}. Do not modify it.

Database: {schema}

Generated FROM Clause of the Outer Query: {generated_from_clause}

Generated WHERE Clause of the Outer Query: {generated_where_clause}

Selected Inner Query Block Q: {selected_inner_query_block}

Return the results in a FLAT JSON format.
DO NOT include any explanations or notes in the output. ONLY return JSON.

34

1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644

Under review as a conference paper at ICLR 2026

Type-JA Nested Predicate Generation

You are both an NBA fan and an SQL expert. Based on the given database, generated clauses,
selected inner query block, and its execution result, generate a type-ja nested predicate that reflects
authentic NBA-related curiosity.

Ensure the following requirements:
• Ensure type-ja Nesting: Revise the inner query block Q to include a join predicate in its

WHERE clause that references the outer query’s relation and ensure its SELECT clause
contains an aggregate function.

• Ensure NBA Fan Relevance: Generate the nested predicate that aligns naturally with realistic
and meaningful multi-hop queries that NBA fans are likely to ask.

• Ensure Synthetic Correctness: The resulting predicate must be executable and valid over the
database schema.

The type-ja nested predicate must follow one of the forms:
OuterTable.column [= | != | < | <= | > | >=] (SELECT [agg] ...
FROM ... WHERE ... [join predicate] ...)
or
[EXISTS | NOT EXISTS] (SELECT [agg] ... FROM ... WHERE ...
[join predicate] ...)

Your output must be in JSON format with the keys:
• "nested_predicate": Only the type-ja nested predicate based on the selected inner

query block.
• "logical_operator": If a WHERE clause exists, return ’AND’ or ’OR’.

IMPORTANT:
• The join predicate involving the outer query’s relation must appear in the WHERE clause,

not the FROM clause.
• Do not revise the SELECT clause of the Q.
• Do not modify the nesting level ({height}).

Database: {schema}

Generated FROM Clause of the Outer Query: {generated_from_clause}

Generated WHERE Clause of the Outer Query: {generated_where_clause}

Selected Inner Query Block Q: {selected_inner_query_block}

Return the results in a FLAT JSON format.
DO NOT include any explanations or notes in the output. ONLY return JSON.

35

1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691

Under review as a conference paper at ICLR 2026

Provenance-based Refinement

You are both an NBA fan and an SQL expert. Based on the given original SQL query, provenance
analysis results, and problematic subquery or condition which filters out all the rows, fix the original
query’s problematic subquery or condition so that it retrieves some results from the database.

Ensure the following requirements:
1) Output Structure: Return a JSON object containing a single key, "corrected_query", with
its value being the corrected SQL query.
2) Ensure NBA Fan Relevance: Maintain the original query’s NBA-related curiosity and focus on
realistic and meaningful queries that NBA fans are likely to ask.

IMPORTANT:
• You may add an additional predicate in the inner query or adjust the filtering threshold within

the problematic subquery Q to intentionally include the important rows or exclude outlier
rows (e.g., those with extremely high or low values) that overly constrain the outer query.

• You may also adjust the comparison operator (e.g., > to >=, < to <=) or the value of the
problematic condition to relax the filtering criteria.

• Do not delete the join predicate in the WHERE clause of the problem-
atic subquery Q (e.g., WHERE outer_table_name.column_name =
inner_table_name.column_name).

Original SQL Query: {query}
Problematic Condition: {problematic_condition}
Problematic Subquery Q: {problematic_subquery}
Execution Result of the Subquery Q: {problematic_subquery_execution_result}
Provenance Analysis Results: {provenance_analysis_results}

Return the results in a FLAT JSON.
NEVER include ANY EXPLANATION or NOTE in the output, ONLY OUTPUT JSON.

36

1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738

Under review as a conference paper at ICLR 2026

SQL Query Naturalness Evaluation

You have a set of evaluation criteria to judge whether a given SQL query reflects a question that is
likely to be asked by a typical person.

When evaluating the query, refer to the following points:
1. Relevance:

• Definition: Measures how likely it is that a real person would be interested in the query.
• Low Score (1): The query covers obscure or highly technical aspects unrelated to

typical person discussions (e.g., internal database IDs or rarely discussed statistics).
• High Score (5): The query reflects a common, popular interest among people (e.g.,

game stats, player/team information, draft results, etc.).
2. Specificity & Clarity of Intent:

• Definition: Evaluates whether the question is clearly targeted and sufficiently detailed
to reveal a genuine NBA-related interest—without being so narrow as to be contrived.

• Low Score (1): The query is too vague (“Show me some NBA data”) or overly
convoluted/contrived.

• High Score (5): The query clearly captures a plausible question (e.g., “Which NBA
player scored the most points in home games last month?”).

3. Overall Naturalness:
• Combine the above criteria and decide if the query is "natural" (likely to be asked by a

real person) or "unnatural".
• The query is considered natural if its overall score is 3 or higher.

Your output must be in JSON format with the following keys:
• "relevance_score": Integer from 1 to 5.
• "specificity_clarity_of_intent_score": Integer from 1 to 5.
• "overall_naturalness_score": Integer from 1 to 5.
• "reason": Explanation referencing the scores and justifying whether the query is consid-

ered natural or unnatural.

Database Schema: {database_schema}

SQL Query Template: {question}

Return the results in a FLAT JSON format.
NEVER include ANY EXPLANATION or NOTE in the output, ONLY OUTPUT JSON.

37

	Introduction
	Related Work
	SPARTA
	Table–Text QA Task and Benchmark Generation
	Reference Fact Database Construction
	Query Generation
	Realistic-Structure Enforcement
	Provenance-Based Refinement

	Question Verbalisation

	Experiments
	Evaluation Setup
	Benchmark Generation Cost and Query Naturalness
	Table-Text QA Evaluation Results
	Analysis

	Conclusion
	Cross-dataset Annotation Audit
	Supported Nested Query Patterns
	Schema of Reference-Fact Database
	Benchmark Configuration
	Generation Cost Analysis on Query Shape and Size
	Ablation Study on Nesting Types
	Error Case Analysis
	Limitations and Future Work
	Software and Data Licenses
	AI Assistants
	Representative Examples from our SPARTA benchmark
	Prompt Templates

