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Abstract

We present DADS, a novel Data Augmentation001
technique for low-resource Dialogue002
Summarization. Our method generates003
synthetic examples by replacing sections of004
text from both the input dialogue and summary005
while preserving the augmented summary006
to correspond to a viable summary for the007
augmented dialogue. We utilize pretrained008
language models that produce highly likely009
dialogue alternatives while still being free to010
generate diverse alternatives. We applied our011
data augmentation method to the SAMSum012
dataset in low resource scenarios, mimicking013
real world problems such as chat, thread, and014
meeting summarization where large scale015
supervised datasets with human-written sum-016
maries are scarce. Through both automatic017
and human evaluations, we show that DADS018
shows strong improvements for low resource019
scenarios while generating topically diverse020
summaries without introducing additional021
hallucinations to the summaries.022

1 Introduction023

As many more language generation tasks are being024

explored, an outstanding issue is the lack of data025

available to train generation models. A question026

that follows is whether it is better to collect and027

annotate additional data in a particular domain or to028

generate synthetic data similar to the available data.029

Considering the elevated cost of collecting data, ex-030

pertise needed or the difficulty of finding the data,031

research on data augmentation is warranted. Data032

augmentation (DA) encompasses methods used to033

inject additional knowledge into learning systems034

without explicitly collecting new data; the knowl-035

edge injected comes in the form of additional train-036

ing examples assumed to be silver standard than037

the collected gold data.038

In this paper, we propose an approach for Data039

Augmentation for Dialogue Summarization, aka040

DADS, that creates semantically diverse synthetic041

examples from a low-resource dataset. Our method042

modifies both the input dialogue and the target sum-043

mary while preserving the augmented summary 044

to correspond to a viable summary for the aug- 045

mented dialogue. First, DADS aligns pairs of ut- 046

terances from the original dialogue to semantically 047

similar sections in the summary; a large dialogue 048

pretrained model, similar to Meena (Adiwardana 049

et al., 2020), finetuned for dialogue reconstruc- 050

tion, is then used to replace the aligned utterances 051

in the dialogue fabricating new dialogue. A new 052

summary is then synthesized for the newly gener- 053

ated dialogue and the original summary, replacing 054

the aligned sections in the summary using a state- 055

of-the-art pretrained summarization model (Zhang 056

et al., 2019). 057

Models trained with DADS augmented data pro- 058

duce important performance gains in automated 059

quality metrics for the SAMSum (Gliwa et al., 060

2019) dialogue summarization dataset in low re- 061

source settings, displaying 25% improvement in 062

Rouge when only 10 training examples are avail- 063

able. Gains in performance are present in other 064

low resource settings, such as 50 and 100 exam- 065

ples, but decrease as one would expect as more 066

data is available. As the data augmentation process 067

is inherently noisy, we further investigate whether 068

generation models augmented with DADS are less 069

faithful and analyze other aspects of language gen- 070

eration models such as diversity. 071

Our main contributions are as follows: (i) We 072

introduce DADS, a novel approach for data aug- 073

mentation for dialogue summarization for low re- 074

source scenarios. (ii) We demonstrate that models 075

trained with DADS augmented data are as faithful 076

as models trained with the original data via human 077

and automated faithfulness metrics. (iii) We found 078

that the outputs generated by DADS augmented 079

models are more diverse than the strong baselines 080

we compare against. 081

2 Related Work 082

There is an extensive literature that explores DA 083

for machine learning systems in computer vision 084

(Shorten and Khoshgoftaar, 2019), natural lan- 085
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Figure 1: Data augmentation for dialogue summarization. We show how one utterance-summary section pair is
aligned (Step 1), here S3 and U4 are aligned, and replaced both in the input (Step 2) and in the summary (Step 3)
producing a new dialogue-summary pair. S’s represent sections in the summary and U ’s utterances in the dialogue.

guage processing (Feng et al., 2021) and other ar-086

eas. In NLP approaches vary from general-purpose087

techniques that generate slightly modified copies088

of existing data; Devries and Taylor (2017) aug-089

ment examples with noise directly in feature space090

rather than input space, to domain-specific transfor-091

mations to create synthetic data, whereas Sennrich092

et al. (2016) use back-translation to augment text093

sequences.094

Many methods aim to incorporate external095

knowledge or harness systems and domains where096

more data is available, e.g. large language models.097

Recently, Lee et al. (2021) propose example extrap-098

olation by training pretrained language models to099

extrapolate examples as a few-shot task.100

Most prior work in text augmentation has fo-101

cused on classification tasks, Feng et al. (2021) pro-102

vide a comprehensive survey of this space. Even103

though limited, research on data augmentation for104

language generation has had various approaches105

to data synthetization, such as corrupting the in-106

put text (Xie et al., 2017), the output text (Norouzi107

et al., 2016) or both (Zhang et al., 2020a). Notably,108

Schick and Schütze (2021) use pretrained language109

models and a diverse set of instructions to augment110

generation datasets in low resource settings, rather111

than creating training examples.112

3 Data Augmentation113

We synthesize new training examples by augment-114

ing the dialogue and summary while ensuring that115

the generated summary is a good abstractive repre-116

sentation for the corresponding dialogue. The aug-117

mentation process is done in three steps: utterances-118

to-summary alignment, dialogue utterance replace-119

ment, and summary FillUp. Our workflow is shown120

in Figure 1 and described below.121

Utterances-to-Summary Alignment With the122

goal of transforming the (dialogue d, summary s)123

example pairs into a new training example (dia-124

logue d′, summary s′), great care has to be taken125

to avoid them diverging and losing the ’summary-126

of’ relation between the pair. To accomplish this, 127

DADS keeps modifications limited to the aligned 128

sections in the dialogue and summary. Firstly, we 129

align summary spans with utterances in the input. 130

For the particular dataset, SAMSum, summaries 131

are comprised of 1 to 2 sentences. We saw fit 132

to expand the granularity of augmentations to a 133

sub-sentence level by splitting each sentence into 134

clauses. For this, we use an off-the-shelf NLP 135

pipeline annotator spaCy (Honnibal and Montani, 136

2017). 137

Next, given the set of all summary clauses and di- 138

alogue utterances, we encoded them into a shared 139

space using the universal sentence encoder (Cer 140

et al., 2018). We computed the cosine similarity 141

between the pairs of encoding of utterances and 142

summary clauses. For each clause in the summary, 143

we select the top 20% utterances with the high- 144

est similarity scores as our input for augmentation. 145

One (utterances, clause) pair will generate one aug- 146

mented example. 147

Dialogue Utterance Replacement We use an 148

auto-regressive encoder-decoder model, inspired 149

by Meena (Adiwardana et al., 2020) and Dialog- 150

GPT (Zhang et al., 2020b), but initialized from 151

T5-11B (Raffel et al., 2020) and finetuned with a 152

dialog reconstruction loss. The model is trained 153

by randomly masking an utterance from an input 154

example. The task becomes to produce the masked 155

utterance given the masked input example. We 156

use the conversational dataset (SocialMedia), a 157

large-scale high-quality dialog dataset proposed 158

by Meena (Adiwardana et al., 2020) for finetuning. 159

We refer to this finetuned model as DIAL-REPL. 160

We use DIAL-REPL to generate synthetic alter- 161

natives for the selected utterances. Given the orig- 162

inal dialogue, the corresponding position of the 163

selected utterance is replaced by a [MASK] token, 164

DIAL-REPL is asked to predict the masked utter- 165

ance given the input dialogue, the summary and a 166

prompt, as shown in step 2 of Figure 1. We used 167

a standard prompt: "The following conversation 168
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is about: " following by the summary and the dia-169

logue. All the selected utterances are replaced one170

by one in an autoregressive manner: previously171

generated utterances become part of the input of172

the next masked position.173

Summary FillUp Lastly, we modify the sum-174

mary by replacing the selected clause with a new175

one consistent with the augmented synthetic dia-176

logue. We hope this procedure will fulfill two pur-177

poses, a more diverse set of summaries, avoiding178

downstream summarization models to memorize179

repetitive targets and correct semantic deviations180

expected to happen during dialogue utterance re-181

placement. We finetuned a large pretrained PEGA-182

SUS (Zhang et al., 2019) model for this particular183

task, to predict a masked sentence in the summary,184

given the input and summary as context.1 To gen-185

erate training data for this model, we converted ex-186

amples from the CNN/DailyMail (Hermann et al.,187

2015) dataset by masking a sentence in the gold188

summary, prepending the masked summary with189

the input document, separated by a special sepa-190

rator token and tasked the model with predicting191

the masked sentence, this is akin to the Gap Sen-192

tence Generation (Zhang et al., 2019) procedure.193

For summary augmentation, we mask the summary194

clause at hand and prepend with the augmented195

dialogue as input and predict a new replacement196

clause using the Summary FillUp model.197

We augment each annotated dialogue-summary198

(d, s) pair multiple times, drop duplicated outputs,199

and keep the rest unique outputs as augmented200

examples.201

4 Experimental Setup202

4.1 Low-Resource Dialogue Summarization203

We evaluate our method on the SAMSum dialogue204

summarization dataset (Gliwa et al., 2019), con-205

sisting of 14,732, 818 and 819 train, validation206

and test examples, respectively. To simulate the207

low-resource summarization setting, we randomly208

select 10, 50 and 100 annotated examples from the209

train split for augmentation, then select summariza-210

tion model parameters with the validation split and211

report the summarization performance on test split.212

The inputs and targets were truncated to 1024 and213

128.214

4.2 Model Comparison215

We compare DADS with two other strong base-216

lines: a model trained with no augmented data and217

1See Appendix A for details about model architecture and
parameter selection.

a model train using back-translation (Xie et al., 218

2019) to perturb data instead of language mod- 219

els. We refer to the first model as baseline and 220

the second model as back-translation (Back-trans.) 221

throughout the rest of the paper. In back-translation, 222

we aim to replicate the process we propose of mod- 223

ifying both the dialogue and summary but with a 224

limited semantically-preserving method.2 For all 225

models, we finetune a large PEGASUS model in 226

two stages: first with the silver standard augmented 227

examples, then we further finetune the model only 228

with the gold examples. For the baseline, we skip 229

the first stage since no silver data is used. The 230

checkpoints are selected using the SAMSum vali- 231

dation split and we report results on the test split. 232

See Table 6 in Appendix for example predictions 233

generated by three models. 234

4.3 Evaluation Metrics 235

Along with ROUGE F1 scores (Lin and Hovy, 236

2003), we report on standard metrics for Semantic 237

Diversity and Faithfulness. 238

Semantic Diversity We measure word-level se- 239

mantic diversity in generated summary with the 240

ratio of the number of distinct n-grams and the 241

number of total n-grams. A model that generates 242

semantic-diverse summaries would have a higher 243

proportion of distinct n-grams. 244

The spikiness of the topic distribution of sum- 245

maries reflects topic-level diversity. A good sum- 246

mary that captures the main topic in the dialogue 247

would have a sharp topic distribution. A lower en- 248

tropy value corresponds to a sharper topic distribu- 249

tion. To quantify the spikiness for all the generated 250

summaries, we take the average of the entropy val- 251

ues. Topic distributions of generated summaries are 252

inferred from a MALLET LDA model (McCallum, 253

2002) trained on the summaries in the SAMSum 254

train split.3 255

Faithfulness Following Maynez et al. (2020a), 256

we report on textual entailment (Pasunuru and 257

Bansal, 2018; Falke et al., 2019; Kryściński et al., 258

2019) for summary faithfulness evaluation.4 We 259

also assess faithfulness of generated summaries by 260

human annotation.5 261

5 Results 262

Compared with the non-augmented baseline, which 263

we call NoAug, we find that models trained with 264

2See Appendix B for the back-translation model.
3See Appendix C for more details.
4See Appendix D for details about the entailment classifier.
5See Appendix E for more on the faithfulness assessment.
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#Gold Ex NoAug Back-translation DADS
10 25.5/08.3/21.3 28.5/9.6/23.4 32.5/12.0/27.0
50 39.8/16.8/32.7 42.0/17.9/34.1 41.9/18.4/34.7
100 43.0/19.2/35.4 43.2/19.0/35.4 43.9/19.7/36.1

Table 1: ROUGE scores (R1/R2/RL) for models
trained on 10, 50, and 100 human annotated examples
using different data augmentation approaches. For each
task we train models in three different sampled sets and
report the average score.

Model #Gold Ex R1 R2 RL
NoAug 15 29.1 10.5 24.1
NoAug 20 32.4 12.2 26.6
DADS 10 32.5 12.0 27.0
NoAug 60 40.5 17.5 33.6
DADS 50 41.9 18.4 34.7
NoAug 110 43.6 19.7 35.9
DADS 100 43.9 19.7 36.1

Table 2: ROUGE scores for DADS models trained
with 10, 50 100 number of annotated examples, com-
pared with NoAug baseline models trained with 15, 20,
60 and 110 examples.

data augmentation generate better quality sum-265

maries in terms of ROUGE (see Table 1). More-266

over, DADS outperforms the back-translation base-267

line in all three low resource settings: k = 10, 50,268

and 100.269

For each low resource setting, we investigated270

the amount of augmented data that achieves the271

best performance, from 1 to 100 times the amount272

of gold data. For 10, 50 and 100 examples, back-273

translation achieves the best performance when 5,274

50 and 100 times augmented data is added, respec-275

tively. For DADS models, the best performance276

is achieved when the augmented data amount to277

1, 50 and 50 times the gold data, respectively. We278

hypothesize this is because DADS augmented data279

contain more diverse and novel information than280

back-translation augmented examples. Need to no-281

tice that 50× DADS augmentation generates about282

50% duplicates, resulting in 20× – 30× unique283

augments.284

For each model, the following evaluation and285

corresponding results are based on the one with the286

highest ROUGE score in the three runs.287

Data Augmentation equivalence to Data Collec-288

tion. Trying to understand how data augmenta-289

tion compares with data collection, we set out to290

find how many additional examples need to be col-291

lected to achieve the same performance as DADS292

augmentation. The result is shown in Table 2. We293

find that data augmentation when only 100 exam-294

ples are available is equivalent to more than 10295

additionally annotated examples in terms of Rouge-296

L.297

Effect on Semantic Diversity. In Table 3, we298

show the distinct n-gram proportions and average299

Model Distinct-n Avg.
n=1 n=2 Entropy

NoAug 0.162 0.514 6.598
Back-trans. 0.160 0.502 6.604
DADS 0.176 0.581 6.597

Table 3: The number of distinct uni-grams and bi-
grams divided by the number of total uni-grams and bi-
grams, respectively, higher is better, and average topic
distribution entropy, lower is better. All models were
trained with 50 annotated examples.

Model Entail. Faithfulness Agree.
Baseline 0.805 2.39 0.66
Back-trans. 0.796 2.41 0.70
DADS 0.829 2.60 0.64

Table 4: Faithfulness assessment (Entailment and Hu-
man evaluation) for models trained with 50 annotated
examples. Following Durmus et al. (2020), agreement
(Agree.) is computed by taking the percentage of the
annotators that annotate the majority class for the given
(dialogue, summary) pair.

entropy values for summaries predicted from mod- 300

els trained with 50 annotated examples. Summaries 301

generated by the model with DADS augmentation 302

have the highest proportion of distinct n-grams and 303

the lowest average topic distribution entropy (spiki- 304

est topic distribution), suggesting that DADS gener- 305

ates semantically diverse examples. The result also 306

suggests that DADS improved the summarization 307

model’s ability to produce textural-diverse, topic- 308

focused summaries. 309

Effect on Faithfulness. We report the entailment 310

score and the human evaluated faithfulness score 311

in Table 4. We randomly selected 50 documents 312

from the SAMSum test split and assessed the gener- 313

ated summaries from all 3 systems (NoAug, back- 314

translation, and DADS) trained with 50 annotated 315

examples. DADS has the highest Entailment score 316

and faithfulness score. However, through the one- 317

way ANOVA test (p < 0.01), we find that differ- 318

ences among all model pairs for both faithfulness 319

are insignificant. This finding suggests that our aug- 320

mentation approach does not introduce additional 321

hallucinations into the system. 322

6 Conclusion 323

We introduced DADS, a new augmentation ap- 324

proach for dialogue summarization tasks. Un- 325

der 100 annotated examples, the improvement 326

brought from augmentation is roughly equivalent 327

to 10 more annotated examples. Furthermore, we 328

showed that DADS generates semantically diverse 329

synthetic examples. Finally, through automatic 330

and human evaluation, we showed that our aug- 331

mentation approach does not introduce additional 332

hallucinations to the summarization model. 333
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Ethical Considerations334

The nature of text generation leads to multiple eth-335

ical considerations when applied to applications.336

The main failure mode is that the model can learn337

to mimic target properties in the training data that338

are not desirable.339

Faithfulness and Factuality Since models cre-340

ate new text, there is the danger that they may nei-341

ther be faithful to the source material nor factual.342

This can be exacerbated when the data itself has343

highly abstractive targets, which require the model344

to generate words not seen in the source material345

during training. This often leads the model to gen-346

erate content inconsistent with the source mate-347

rial (Maynez et al., 2020b; Kryscinski et al., 2020;348

Gabriel et al., 2021).349

Trustworthy Data If the data itself is not trust-350

worthy (comes from suspect or malicious sources)351

the model itself will naturally become untrustwor-352

thy as it will ultimately learn the language and353

topics of the training data. For instance, if the train-354

ing data is about Obama birther conspiracies, and355

the model is asked to generate information about356

the early life of Obama, there is a risk that such357

false claims will be predicted by the model.358

Bias in Data Similarly, biases in the data around359

gender, race, etc., risk being propagated in the360

model predictions, which is common for most361

NLP tasks. This is especially true when the models362

are trained from non-contemporary data that do not363

represent current norms and practices (Blodgett364

et al., 2020).365

366

The above considerations are non-malicious,367

in that the model is merely learning to behave as its368

underlying source material. If users of such models369

are not aware of these issues and do not account370

for them, e.g., with better data selection, evalu-371

ation, etc., then the generated text can be damaging.372

373

Generation models can also be misused in374

malicious ways. These include generating fake375

news, spam, and other text meant to mislead large376

parts of the general population.377
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Wojciech Kryściński, Bryan McCann, Caiming Xiong,442
and Richard Socher. 2019. Evaluating the factual443
consistency of abstractive text summarization. arXiv444
preprint arXiv:1910.12840.445

Wojciech Kryscinski, Bryan McCann, Caiming Xiong,446
and Richard Socher. 2020. Evaluating the factual447
consistency of abstractive text summarization. In448
Proceedings of the 2020 Conference on Empirical449
Methods in Natural Language Processing (EMNLP),450
pages 9332–9346, Online. Association for Computa-451
tional Linguistics.452

Kenton Lee, Kelvin Guu, Luheng He, Timothy Dozat,453
and Hyung Won Chung. 2021. Neural data454
augmentation via example extrapolation. ArXiv,455
abs/2102.01335.456

Chin-Yew Lin and Eduard Hovy. 2003. Auto-457
matic evaluation of summaries using n-gram co-458
occurrence statistics. In Proceedings of the 2003 Hu-459
man Language Technology Conference of the North460
American Chapter of the Association for Computa-461
tional Linguistics, pages 150–157.462

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and463
Ryan McDonald. 2020a. On faithfulness and factu-464
ality in abstractive summarization. arXiv preprint465
arXiv:2005.00661.466

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and467
Ryan McDonald. 2020b. On faithfulness and factu-468
ality in abstractive summarization. In Proceedings469
of the 58th Annual Meeting of the Association for470
Computational Linguistics, pages 1906–1919, On-471
line. Association for Computational Linguistics.472

Andrew Kachites McCallum. 2002. Mallet:473
A machine learning for language toolkit.474
Http://mallet.cs.umass.edu.475

Mohammad Norouzi, Samy Bengio, Z. Chen, Navdeep476
Jaitly, Mike Schuster, Yonghui Wu, and Dale Schu-477
urmans. 2016. Reward augmented maximum likeli-478
hood for neural structured prediction. In NIPS.479

Ramakanth Pasunuru and Mohit Bansal. 2018. Multi-480
reward reinforced summarization with saliency and481
entailment. arXiv preprint arXiv:1804.06451.482

Colin Raffel, Noam M. Shazeer, Adam Roberts,483
Katherine Lee, Sharan Narang, Michael Matena,484
Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Ex-485
ploring the limits of transfer learning with a unified486
text-to-text transformer. ArXiv, abs/1910.10683.487

Timo Schick and Hinrich Schütze. 2021. Generat-488
ing datasets with pretrained language models. In489
EMNLP.490

Rico Sennrich, Barry Haddow, and Alexandra Birch.491
2016. Improving neural machine translation models492
with monolingual data. ArXiv, abs/1511.06709.493

Noam Shazeer and Mitchell Stern. 2018. Adafactor: 494
Adaptive learning rates with sublinear memory cost. 495
In Proceedings of the 35th International Conference 496
on Machine Learning, volume 80 of Proceedings 497
of Machine Learning Research, pages 4596–4604. 498
PMLR. 499

Connor Shorten and Taghi M. Khoshgoftaar. 2019. 500
A survey on Image Data Augmentation for Deep 501
Learning. Journal of Big Data, 6(1):60. 502

Adina Williams, Nikita Nangia, and Samuel R Bow- 503
man. 2017. A broad-coverage challenge corpus for 504
sentence understanding through inference. arXiv 505
preprint arXiv:1704.05426. 506

Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Lu- 507
ong, and Quoc V Le. 2019. Unsupervised data aug- 508
mentation for consistency training. arXiv preprint 509
arXiv:1904.12848. 510

Ziang Xie, Sida I. Wang, Jiwei Li, Daniel Lévy, Allen 511
Nie, Dan Jurafsky, and A. Ng. 2017. Data noising 512
as smoothing in neural network language models. 513
ArXiv, abs/1703.02573. 514

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe- 515
ter J. Liu. 2019. Pegasus: Pre-training with ex- 516
tracted gap-sentences for abstractive summarization. 517

Rongsheng Zhang, Yinhe Zheng, Jianzhi Shao, Xiao- 518
Xi Mao, Yadong Xi, and Minlie Huang. 2020a. Dia- 519
logue distillation: Open-domain dialogue augmenta- 520
tion using unpaired data. ArXiv, abs/2009.09427. 521

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, 522
Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing 523
Liu, and William B. Dolan. 2020b. Dialogpt : Large- 524
scale generative pre-training for conversational re- 525
sponse generation. In ACL. 526

A Summary FillUp Model 527

Summary FillUp is finetuned from 528

PEGASUSLARGE public checkpoint. The 529

model had L = 16, H = 1024, F = 4096, A = 16 530

(568M parameters), where L denotes the number of 531

layers for encoder and decoder Transformer blocks, 532

H for the hidden size, F for the feed-forward layer 533

size and A for the number of self-attention heads. 534

All finetuning experiments are done with a batch 535

size of 8. For optimization, we use Adafactor 536

(Shazeer and Stern, 2018) with square root learning 537

rate decay with learning rate 0.0001 and a dropout 538

rate of 0.01. The model was decoded with a beam 539

size of 8 and a length-penalty of 0.6. 540

B Back-translation 541

For back-translation, we adapted Xie et al. (2019)’s 542

backtranslation implementation to increase diver- 543

sity. As reported by the authors, the models used 544

are trained in WMT’14 English-French (in both 545
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directions). The authors use the hyperparameter546

sampling_temp to control the diversity and quality547

of the back-translation. We found that setting it to548

0.5 yields best augmented examples.549

C LDA model550

Mallet LDA models are trained with all the 14,732551

human annotated summaries in SAMSum train552

split. We varied the number of topics from 2 to553

340, with a step of 2, and select the models with554

number of topics 100, 200 and 300, the correspond-555

ing coherence scores are 0.524, 0.587, and 0.614.556

Given summaries generated by models trained with557

DADS and tow baselines, the average topic dis-558

tribution entropy values calculated from the three559

LDA models are shown in Table 5. DADS has the560

lowest average entropy in all three settings.561

Model t=100 t=200 t=300
Baseline 6.598 7.583 8.163
Back-trans. 6.604 7.592 8.172
DADS 6.597 7.583 8.162

Table 5: Average entropy values for Baseline, Back-
translation and DADS calculated from three LDA mod-
els with number of topics t = 100, 200, and 300.

D Entailment Classifier562

Given summary and dialogue, the entailment clas-563

sifier outputs the probability of the summary entail-564

ing the dialogue. We finetuned a transformer-based565

model, initialized with a pretrained BERT-Large566

checkpoint (Devlin et al., 2018), on the Multi-NLI567

dataset (Williams et al., 2017).568

E Faithfulness Assessment569

We ran a small annotation task with three raters,570

all proficient in English and NLP reserahcers, who571

were asked to read the dialogue carefully and then572

grade the accompanying summary on a scale of 1-4573

(fully unfaithful, somewhat unfaithful, somewhat574

faithful, and fully faithful). A summary is "fully575

faithful" if all of its content is fully supported or576

can be inferred from the document.577
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Gold Emma was late and missed Andy’s song, but she still had fun.
Dialogue Emma: Hey it was fun right?

George: Yes, certainly.... but why you came so late. you missed andy’s song.
Emma: I know :(but still i had a lot of fun.
George: yes.. will plan again
Emma: yes pleaseeeeee

No Aug. George will plan again for Emma.
R1/R2/RL 16.2 / 9.8 / 16.2
Back Trans. George will come to Emma’s place again.
R1/R2/RL 10.3 / 0.0 / 10.3
DADS Emma came late but still had a lot of fun. George will plan again.
R1/R2/RL 52.2 / 24.0 / 47.8

Gold Robert wants Fred to send him the address of the music shop as he needs to buy guitar
cable.

Dialogue Robert: Hey give me the address of this music shop you mentioned before
Robert: I have to buy guitar cable
Fred: < file_other >
Fred: Catch it on google maps
Robert: thx m8
Fred: ur welcome

No Aug. Robert has to buy guitar cable and Fred has to Catch it on google maps.
R1/R2/RL 40.9 / 29.8 / 40.9
Back Trans. Robert and Fred will meet on google maps.
R1/R2/RL 15.4 / 9.8 / 15.4
DADS Robert wants Fred to give him the address of this music shop.
R1/R2/RL 37.2 / 22.2 / 32.6

Gold Heidi wants Noah to take items away from the balcony and close all the windows.
Dialogue Heidi: Could you take the things away from the balcony? I forgot about them and it’s

going to rain today.
Noah: I’ll do it as soon as I am back home.
Heidi: And close all the windows in case of a storm.
Noah: of course

No Aug. Noah will take the things away from Heidi’s balcony.
R1/R2/RL 21.3 / 15.4 / 21.3
Back Trans. Noah will take the things away from Heidi.
R1/R2/RL 21.7 / 15.7 / 21.7
DADS Noah will take the things away from the balcony as soon as he is back home.
R1/R2/RL 34.6 / 27.1 / 34.6

Table 6: Dialogue summarization examples: the dialogue, its gold summary and the model generated summaries.
We also present the [ROUGE-1, ROUGE-2, ROUGE-L] F1 scores relative to the reference dialogue. The models
are trained using 50 annotated examples in SAMSum, with No Augmentation (No Aug.), augmented by Back
Translation (Back Trans.), and DADS, respectively.
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