23
24
25
26
27
28
29

39
40
41
42
43
44

Malicious Package Detection using Metadata Information

Anonymous Author(s)

ABSTRACT

Protecting software supply chains from malicious packages is para-
mount in the evolving landscape of software development. Attacks
on the software supply chain involve attackers injecting harmful
software into commonly used packages or libraries in a software
repository. For instance, JavaScript uses Node Package Manager
(NPM), and Python uses Python Package Index (PyPi) as their re-
spective package repositories. In the past, NPM has had vulnerabil-
ities such as the event-stream incident, where a malicious package
was introduced into a popular NPM package, potentially impacting
a wide range of projects. As the integration of third-party packages
becomes increasingly ubiquitous in modern software development,
accelerating the creation and deployment of applications, the need
for a robust detection mechanism has become critical. On the other
hand, due to the sheer volume of new packages being released
daily, the task of identifying malicious packages presents a signifi-
cant challenge. To address this issue, in this paper, we introduce a
metadata-based malicious package detection model, MeMPtec. This
model extracts a set of features from package metadata information.
These extracted features are classified as either easy-to-manipulate
(ETM) or difficult-to-manipulate (DTM) features based on mono-
tonicity and restricted control properties. By utilising these meta-
data features, not only do we improve the effectiveness of detecting
malicious packages, but also we demonstrate its resistance to ad-
versarial attacks in comparison with existing state-of-the-art. Our
experiments indicate a significant reduction in both false positives
(up to 97.56%) and false negatives (up to 91.86%).

CCS CONCEPTS

« Do Not Use This Code — Generate the Correct Terms for
Your Paper; Generate the Correct Terms for Your Paper; Generate
the Correct Terms for Your Paper; Generate the Correct Terms for
Your Paper.

KEYWORDS

NPM Metadata, Malicious Detection, Feature Extractions, Adver-
sarial Attacks, Software Supply Chain

ACM Reference Format:

Anonymous Author(s). 2018. Malicious Package Detection using Metadata
Information. In Proceedings of Make sure to enter the correct conference title
from your rights confirmation email (Conference acronym °XX). ACM, New
York, NY, USA, 11 pages. https://doi.org/XXXXXXX. XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference acronym XX, June 03-05, 2018, Woodstock, NY

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Nowadays, Free and Open-Source Software (FOSS) has become part
and parcel of the software supply chain. For example, the Open
Source Security and Risk Analysis (OSSRA) report in 2020 shows
that as much as 97% of codebases contain open-source code [23]
and the proportion of enterprise codebases that are open-source
increased from 85% [21] to 97% [25]. Thus, modern software develop-
ers thrive through the opportunistic reuse of software components
that save enormous amounts of time and money. The node package
manager (NPM) offers a vast collection of free and reusable code
packages to support JavaScript developers. Since its inception in
2010, NPM has grown steadily and offers over 3.3 million packages
as of September 2023 [14]. The extensive library of packages pro-
vided by NPM is a valuable resource for developers worldwide and
is expected to continue growing. Different from JavaScript, Python
uses Python Package Index (PyPi) as their package repositories.
Both NPM and PyPi have faced security vulnerabilities in the past,
such as the event-stream incident, where a malicious package was
introduced into a popular NPM package, potentially impacting a
wide range of projects. Similarly, PyPi has experienced concerns
with typo-squatted packages that appear similar to common li-
braries but contain malicious code, posing a risk of inadvertent
installation by developers. Therefore, detecting malicious packages
is essential to protect software supply chains.

Metadata associated with package repositories plays a crucial
role in the software development lifecycle. Such metadata includes
information about the creator, update history, frequency of updates,
and authorship, among other details. This information can be in-
dicative of maliciousness within packages, for example, a package
that has unknown authors is likely to be malicious [9]. However,
such heuristics are not sufficient as attackers can intentionally com-
promise metadata information to bypass detection models. Thus,
extracting a set of features that are both predictive yet resistant
to adversaries seeking to game the model is critical. There are
several advantages of using metadata feature selection to detect
malicious packages. First, it can help identify malicious packages
quickly without requiring extensive manual review. Second, it is
efficient because it can detect malicious packages faster than thor-
ough code analysis. Third, metadata analysis can be used to gain
insights into behavioural patterns of malicious packages in large
datasets. Lastly, the incorporation of metadata features increases
model resilience against adversarial attacks, offering a more robust
defense mechanism compared to existing state-of-the-art methods.

There are some existing research works that utilise metadata
information. For example, by using metadata information, Zahan
et al. [31] introduced a model for measuring NPM supply chain
weak link signals to prevent future supply chain attacks. However,
they do not consider the challenge of adversarial attacks. The main
motivation of this research is to propose a model to detect malicious
packages in the NPM repository to protect software developers,
organizations, and end-users from security breaches that can result
from downloading and using packages containing malicious code.

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

114

115

116

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

160
161
162
163
164
165
166
167
168
169
170
171
172
173

174

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

As the NPM repository is widely used to store and distribute open-
source packages, it is an attractive target for attackers looking to
compromise the security of a large number of systems. By detecting
malicious packages in the repository, organizations can ensure
that their software development processes are not disrupted and
that security threats do not compromise their systems. Detecting
malicious packages also helps maintain the trust and integrity of
open-source package repositories, which are essential for the long-
term success and growth of the software development community.
In this paper, we address the following research questions.

e RQ1: How can metadata information be effectively lever-
aged to accurately identify malicious packages within repos-
itories?

e ROQ2: How can the robustness of metadata-based detection
models be enhanced against adversarial attacks?

To address these research questions, a metadata based malicious
package detection model is developed. The main contributions of
our research work are as follows:

e We propose an advanced metadata based malicious pack-
age detection (MeMPtec) model leveraging new metadata
features and machine learning algorithm.

e We introduce a new metadata feature extraction technique

which partitions features into easy-to-manipulate and difficult-

to-manipulate.

e We investigate stakeholder based adversarial attacks and
propose adversarial attack resistant features based on mono-
tonicity and restricted control properties.

o We conduct extensive experiments! that show our proposed
MeMPtec outperforms the existing feature selection strate-
gies from the state-of-the-art in terms of precision, recall,
F1-score, accuracy and RMSE. It reduces false positives on
average by 93.44% and 97.5% in balanced data and imbal-
anced data, respectively, and reduces false negatives on
average by 91.86% and 80.42% in balanced and imbalanced
data, respectively.

2 EXISTING WORKS

In this research work, we have focused on attack detection utilis-
ing metadata in NPM ecosystems. Works on attack detection and
remediation include the followings. Liu et al. [10] introduced a
knowledge graph-driven approach for dependency resolution that
constructs a comprehensive dependency-vulnerability knowledge
graph and improved vulnerability remediation method for NPM
packages. Zhou et al. [34] enriched the representation of Syslog
by incorporating contextual information from log events and their
associated metadata to detect anomalies behaviour in log files. Zac-
carelli et al. [29] employed machine learning techniques to identify
amplitude anomalies within any seismic waveform segment meta-
data, whereas the segment’s content (such as distinguishing be-
tween earthquakes and noise) was not considered. Anomaly detec-
tion on signal detection metadata by utilising long and short-term
memory recurrent neural networks in the generative adversarial
network has been introduced in [3]. Mutmbak et al. [12] developed
a heterogeneous traffic classifier to classify anomalies and normal

!All code and datasets associated with this paper will be made available upon paper
acceptance.

Anon.

behaviour in network metadata. Pfretzschner et al. [17] introduced
a heuristic-based and static analysis to detect whether a Node.js is
malicious or not. Garrett et al. [5] proposed an anomaly detection
model to identify suspicious updates based on security-relevant
features in the context of Node.js/NPM ecosystem. Taylor et al. [24]
developed a tool named TypoGard that identifies and reports poten-
tial typosquatting packages based on lexical similarities between
names and their popularities.

Some efforts have been devoted in the literature to detect mali-
cious attacks using metadata features. For example, Abdellatif et al.
[1] utilised metadata information for the packages’ rank calculation
simplification. Zimmermann et al. [36] have demonstrated a connec-
tion between the number of package maintainers and the potential
for introducing malicious code. Scalco et al. [19] conducted a study
to assess the effectiveness and efficiency of identifying injected
code within malicious NPM artifacts. Sejfia et al. [20] presented au-
tomated malicious package finder for detecting malicious packages
on NPM repository by leveraging package reproducibility checks
from the source. Vu et al. [26] applied metadata to identify packages’
reliability and actual sources. Ohm et al. [15] investigated limited
metadata information (e.g., package information, dependencies and
scripts) to detect malicious software packages using supervised
machine learning classifiers. However, these approaches do not
address the issue of adversarial attacks, and as demonstrated by our
experiments (c.f. Section 6.3), the features proposed in the literature
are prone to adversarial manipulation.

Other works related to software security, but not metadata based
include [22, 28, 30, 32, 35]. Zahon et al. [30] compared the security
practices of NPM and PyPI ecosystems on GitHub using Scorecard
tools that identifies 13 compatible security metrics and 9 metrics
for package security. Sun et al. [22] introduced CoProtector, a tool
designed to safeguard open-source GitHub repositories from unau-
thorized use during training. Wi et al. [28] proposed a scalable
system that detects web vulnerabilities, such as bugs resulting from
improper sanitization, by employing optimization techniques to
tackle the subgraph isomorphism problem. Zhang et al. [32] devel-
oped GERAI which uses a differential private graph convolutional
network to protect users’ sensitive data from attribute inference
attacks. Zhu et al. [35] built a system that uses various information
types to detect spam reviews.

2.1 Differences with Previous Works

Our proposed malicious detection based on metadata information
differs from state-of-the-art malicious detection techniques in var-
ious aspects. Firstly, we categorise the different sets of features
that can be derived from metadata information, whereas existing
methods considering metadata information do not make a distinc-
tion between the types of metadata features that can be extracted.
Secondly, we consider the problem of adversarial attacks and in-
troduce the concept of difficult-to-manipulate (DTM) features that
reduce the risk of adversarial attacks. Table 1 highlights some key
differences between features derived from our approach versus
those proposed in the literature. In the foregoing, we use the term
Existing_tec wrt metadata features to refer collectively to the sets of
features proposed in the literature for malicious package detection.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

233
234
235
236
237
238
239
240

242
243
244
245
246
247
248
249
250

251

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286
287
288
289

290

Malicious Package Detection using Metadata Information

Table 1: Comparison between the types of metadata features
considered: literature vs. our approach.

w L]
2.8
El2l2]8 |5 .8
S121E|% |8 | %%
AR IR EREE
o S| @ g 3} 8 =
Research Work Alah|lA | S -V
Zimmermann et al. [36] v
Abdellatif et al. [1] IV
Zahan et al. [31] v/
Ohm et al. [15] v v
Vu et al. [26] v
Existing_tec [1,15,26,31,36] | v |V | v | v
MeMPtec_E v v |/
MeMPtec_D v v
MeMPtec (Proposed) AR ARANs v v

3 PRELIMINARIES AND PROBLEM
STATEMENT

In this section, we present the preliminary notations and definitions.

Let P = {p1,---,pn} be set of packages. A package often in-
volves several participants, namely author, maintainer, contributor,
publisher. We refer to these collectively as stakeholders denoted
by S; = {sj}i such that sj, is a stakeholder of type j involved in
package p;.

DEFINITION 1 (PACKAGE METADATA INFORMATION (PMI)). Given
a package p; € P, the package metadata information denoted I; =
{(k,v)} is the set of key-value pairs of all metadata information
associated with p;.

In this work, without loss of generality, we adopt the NPM pack-
age repository as an exemplar due to its popularity in web applica-
tions and various cross platforms [20]. Table 2 shows our considered
NPM package metadata information.

Table 2: Package Metadata Information.

package_name, version, description, readme, scripts, distri-
bution_tag, authors, contributors, maintainers, publishers, li-
censes, dependencies, development_dependencies, created_-
time, modified_time, published_time, NPM_link, homepage_-
link, GitHub_link, bugs_link, issues_link, keywords, tags and
topics.

DEFINITION 2 (PROBLEM DEFINITION). Given a package p; € P
and its package metadata information I; = {(k,v)}, the goal is to
develop a malicious package detector M as follows:

M(pi, Ti) = {1, if pi is ~malicious,
0, otherwise
There are three key challenges to address in the problem defini-
tion above. Firstly, the PMI of each package may contain several
pieces of information, some of which may be irrelevant to the detec-
tion task, and it may also have inconsistent representation across

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

different packages (Challenge 1). For example, packages may con-
tain copyright and browser dependencies that are often not relevant
for detecting malicious packages. Secondly, metadata information
may be prone to manipulation by an adversary who wishes to evade
detection by a detection model M (Challenge 2). Thirdly, for any
detection model M to be practical, it needs to achieve high true
positive rates with low false positive rates (Challenge 3).

To address the above challenges, we propose a novel solution

called Metadata based Malicious Package Detection (MeMPtec). MeMPtec

relies on a feature engineering approach to address the aforemen-
tioned challenges. This is detailed in the following sections.

4 CATEGORISATION OF PACKAGE
METADATA INFORMATION

Each piece of information contained in PMI represents a different
type of information. In this section, we categorise each PMI in order
to understand its relevance for malicious package detection. This
is important because not all information in metadata packages is
crucial for malicious package detection (Challenge 1). We consider
the following categories.

e Descriptive Information: This includes information that
describes the resource, such as package title, versions, de-
scription, readme, scripts and distribution tag.

e Stakeholder Information: It provides information about
the individuals or organizations involved in developing,
maintaining and distributing a package. Some stakeholder
information includes authors, contributors, maintainers,
publishers and licenses.

e Dependency Information: Dependency information pro-
vides details about the external packages or modules that a
particular package depends on. These include dependencies
and development dependencies.

e Provenance Information: It provides information about
when various events related to the package occurred. This
information can be useful for tracking the package’s his-
tory and understanding how it has evolved over time. For
example, package created, modified and published time
information.

e Repository Information: It provides information about
the location of the source code repository for a package,
such as the NPM link, homepage link and GitHub link.

o Context Information: Context information provides addi-
tional information based on their functionality and purpose.
For example, keywords, tags and topics.

Table 3 presents the categories of package metadata information.

5 FEATURE EXTRACTION AND SELECTION

It is necessary to extract features from the PMI for each package to
generate a consistent set of features for all packages. For example,
let (package_name, generator@1) € I be a toy example of a key-
value pair in the PMI 7. The package name is generator@1, but
we can derive features from this package name, such as whether
or not it contains a special character or the length of the package
name. These features are of particular relevance in the context of
detecting malicious packages since package names play a crucial
role in identifying combosquatting and typosquatting [27]. Thus,

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

349

350

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

Table 3: Package metadata information and their correspond-
ing categories.

Category Information Name

Descriptive Package name, Versions, Description, Readme
and Scripts

Stakeholder Authors, Contributors, Maintainers, Collabora-

tors and Publishers
Dependency Package Dependencies and Development De-
pendencies.

Provenance Package Created, Modified and Published time.

Repository NPM Link, Homepage Link, GitHub Link, Bugs
Link and Issues Link.

Context Keywords, Distribution Tag and Licenses.

feature extraction in our context is a one-to-many mapping between
PMI and a set of features that is formally defined as follows:

DEFINITION 3 (FEATURE EXTRACTOR ¥). Given a package p; and
its associated PMI containing ¢ key-value pairs, I; = {{k,v)1 - - - (k,)¢},
a feature extractor denoted ¥ is a multivalued function which maps
each PMI (k,v); unto one or more features in the set X:

F I X.

As noted earlier, one of the challenges to be addressed while
developing malicious package detector M is its ability to resist ad-
versarial attacks (Challenge 2). We define an adversary as follows:

DEFINITION 4 (ADVERSARY). An adversary A is any stakeholder
in S; of package p; who has the authority to modify the metadata
information I; of package p;, and attempt to do so to evade detection
by a model.

The definition above represents the scenario where a stakeholder
of a malicious package may alter the metadata information to evade
detection by a model. We make the following assumption and then
present two important properties relevant to the feature x € X.

AssuMPTION 1. Given a repository environment such as the NPM
package repository, we assume that all security protocols are intact,
and users follow the protocols to engage with the repository environ-
ment i.e. there is no subversion of the system by an adversary.

This assumption is pivotal to our approach and indeed to any
metadata-based malicious package detection technique, including
[5, 6, 9]. If this assumption does not hold, then it renders metadata
information useless for any purpose. At the same time, it is a rea-
sonable assumption because, although possible, the subversion of
a repository has not been observed as the preferred approach for
propagating malicious packages.

We now define the monotonicity and restricted control properties.

PROPERTY 1 (MONOTONICITY). A feature x € X is said to be
monotonic if and only if x is a numerical feature, and any update on
its value, x.value, can only occur in one direction.

For example, if package_age is a feature (measured in years) and
this value can only be increased, we say that package_age possesses
monotonicity property. On the other hand, package description_-
length as a feature can be increased or decreased by the author of

Anon.

the package and is thus non-monotonic. The monotonicity property
is hereinafter referred to as Property 1.

PROPERTY 2 (RESTRICTED CONTROL). A feature x € X is said to
possess the property of restricted control if and only if a stakeholder
in S; associated with package p; cannot change its value, x.value.

For example, if number_of stars is a feature (measured in count).
This feature is calculated based on the interactions that other de-
velopers and code users interact with a given package. As such
number_of stars cannot directly be modified by a package author.
Thus, we say that number_of _stars possesses the property of re-
stricted control. A counter-example is number_of_versions, which
a package author can directly influence by generating several ver-
sions. In this case, we say that number_of _versions possesses the
monotonicity property but lacks the property of restricted control.
The restricted control property is hereinafter referred to as Property

We define a feature x € X, specially denoted by x, as a difficult-
to-manipulate (DTM) feature if any one of the following cases
holds:

(1) Ifx satisfies the monotonicity property i.e.x < (Property1),
then x = x;

(2) Ifx satisfies the restricted control property i.e.x < (Property 2),

then x = x;

Otherwise, x is considered an easy-to-manipulate (ETM) fea-
ture. It is important to note that X comprises both easy-to-manipulate
(ETM) and difficult-to-manipulate (DTM) features denoted by x and
X respectively i.e. X 3 x, X.

5.1 Easy-to-Manipulate Features

As noted earlier, an easy-to-manipulate feature denoted by x is a
feature that does not possess either Property 1 or Property 2 and
thus can easily be changed by the author of a package. Although
ETM features are inherently good at helping to predict malicious
packages (c.f: Section 6.2), by being able to manipulate these fea-
tures, an adversary can trick detection models to classify malicious
packages as benign. In our metadata feature extraction 7, we iden-
tify the following types of features as not satisfying either Property
1 or Property 2 and thus considered as ETM.

e Exist: This type of feature refers to whether or not certain
Information is present in package metadata. This takes on a
binary indicator whose value is TRUE or FALSE depending
on whether or not the specified Information is present.

e Special Character: A special character is any character
that is not a letter, digit, or whitespace. The use of special
characters in package names is known to be indicative of
typo-squatting [24, 27].

o Length: The length of an item is the number of characters
it contains, can serve as a useful indicator of malicious
packages, especially when they lack detailed descriptions.

Our experiments show that, although these types of features are
simple and easy-to-manipulate by the adversary, they are often
useful predictors of maliciousness. For example, if the metadata
of a package does not contain author information or source code
address, that package is likely to be malicious. However, models

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

430
431

4

)

2

433

Fy

4
435
436
437
438
439
440
441
442
443
444
445

446

463

465

466

467

468

469

470

471

472

473

474

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494
495

Malicious Package Detection using Metadata Information

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

Table 4: List of easy-to-manipulate (ETM) and difficult-to-manipulate (DTM) Features

ETM Features

DTM Features

name_exist, name_length, dist-tags_exist, dist-tags_length, versions_exist, versions_-
length, versions_num_count, maintainers_exist, description_exist, description_length,
readme_exist, readme_length, scripts_exist, scripts_length, author_exist, author_name,
author_email, License_exist, License_length, directories_exist, directories_length, key-
words_exist, keywords_length, keywords_num_count, homepage_exist, homepage_-
length, github_exist, github_length, bugslink_exist, bugslink_length, issueslink_exist,
issueslink_length. dependencies_exist, dependencies_length, devDependencies_exist,

devDependencies_length

package_age, package_modified_duration, package_-
published_duration, author_CPN, author_service_time,
author CCS, maintainer CPN, maintainer service_time,
maintainer_CCS, contributor_CPN, contributor_service_time,
contributor_CCS, publisher_CPN, publisher_service_time,
publisher_CCS, pull_request, issues, fork_number, star,
subscriber_count

" CCS means community contribution score and CPN means contribute package number.

built solely on these features are vulnerable to adversarial attacks.
Incorporating DTM features can mitigate the risk.

5.2 Difficult-to-Manipulate Features

These are features which satisfy Property 1 or 2. They often depend
on time or package interaction, which are difficult to manipulate.
The types of features in this category are as follows:

e Temporal: Features that involve temporal information of-
ten satisfy Property 1 and as such are DTM. In this work,
our feature extractor # generates package_age, package -
modified_duration and package_published_duration which
represent the age of the package, the time interval between
package creation and last modification date, and the time
interval between when the package was created and when
it was published respectively. Other features include stake-
holder sj;, service time (sj, _service_time) which reflects the
number of days which a stakeholder has been associated
with the package p;.

o Package Interaction: This relates to the number of interac-
tions that a package p; or its stakeholder s;;, has. It includes
(1) number of other packages which s, has contributed
to denoted sj,_CPN;; (2) number of package pull requests
pull_request; (3) number of reported package issues; (4)
number of times package is forked; and (5) number of stars
a package has received. (1) satisfies Property 1 while (2),
(3), (4) and (5) satisfy Property 2.

Table 4 provides the list of the ETM and DTM features used in
this work. It is worth noting that the DTM features in the table
also include a combination of base DTM features e.g. stakehold-
ers’ community contribution score (sj,_CCS) is a combination of
stakeholder contribute package number s;,_CPN and stakeholder
service time sj,_service_time. Appendix A.1 provides details for
sj;_CCS DTM features derived from base DTM features.

5.3 Proposed MeMPtec Model

Figure 1 shows the pipeline for our proposed Metadata based Malicious
Package Detection (MeMPtec) model. The figure shows the phases
of model building i.e. training phase and prediction phase. In the
training phase, PMI is fed into the feature extraction stage and
assigned a label as either benign or malicious. The metadata is ex-
tracted using our feature extractor # into both easy-to-manipulate

(ETM) (c.f. Section 5.1) and difficult-to-manipulate (DTM) (c.f- Sec-
tion 5.2) features. We then adopt existing machine and deep learning
models to train a model. In the prediction phase, we follow a similar
process of feature extraction, feeding these extracted features into
the built model to make predictions regarding the maliciousness of
packages.

Algorithm 1 gives the details of the steps in MeMPtec. It takes PMI
{1, -, In}, ML_Algo, {Iew} as input and provides malicious
package detector M as output. The algorithm has two parts: Model
Training Phase and Prediction Phase. In the Training Phase, we
extract labels Y, ETM and DTM features (c.f. Section 5.1 and 5.2)
in lines 3-5, respectively. Then, we combine two sets of features
and create X in line 6. The X and Y are partitioned into train data
(70%), validation data (10%) and test data (20%) in line 7. After
that, the model is built based on the existing machine learning
algorithm and train and validation data in line 8. The build-in
model M performance has been measured using test data in lines
9-10. Therefore, the model training phase returns malicious package
detector model M and performance in line 11.

In the prediction phase, we similarly extract the relevant features
and apply the built model M to each set of features Xj;¢+y associated
with a package’s PMI I,;¢, (lines 13-16). The function returns
predicted label in line 17. Finally, in lines 18 and 19, these two
phases are called to as model training and prediction.

6 EXPERIMENTS
6.1 Experimental Setup

It is worth recalling that the crux of this work is in its feature
engineering approach; thus we compare our approach with existing
features proposed by closely related work such as [1, 15, 26, 31, 36].
All experiments were implemented in Python and conducted in
Windows 10 environment, on an Intel Core i7 processor (1.70 GHz,
16GB RAM).

6.1.1 Datasets and Baseline Methods. In this work, we use NPM
repository 2 as an exemplar to generate package metadata infor-
mation. We make the assumption that packages that are currently
not flagged as malicious in NPM repository are considered be-
nign. In NPM repository, packages flagged as malicious are often
removed. Thus, to obtain malicious NPM packages, we use pub-
licly available data on GitHub 3 [16]. We then generate a balanced

Zhttps://registry.npmjs.org/
3https://dasfreak.github.io/Backstabbers-Knife-Collection

539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562

576

577

https://registry.npmjs.org/

581
582
583
584

586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

638

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

Labeling
T~ (Malicious | Benign)

Easy to O
Manipulate 33
Features =7

Meta Data
Information

Deficult to e

Manipulate ¥

Features =

1 New
new Package

Anon.

= Prediction Phase

X1...Xn, X1

<. Xm|0) Train Data @
Xy, X1 X1

e
Validation

X1eo.Xp, X1...X;m|1
1 n‘v‘_l ml Data

. Xm|0
= = Test Data
x1...x,,.,“x1...xm|1

xl...x,,,)'cl..

ML Algorithm

b o o o o o o o e e e e e e e e o

X1e.-Xp,X1--

Train Model

Figure 1: Proposed Metadata-based Malicious Package Detection (MeMPtec) model architecture.

Algorithm 1: MeMPtec({I3, -+ , I}, ML_Algo, {Znew})

Data: {13, -, I,} : Label packages metadata information
1 ; ML_Algo : ML/ DL algorithm; { Z,,e4y } : New package;
Result: Malicious Package Detector M
2 Function Model_Training_Phase({ 1y, - -

-, In}, ML_Algo):

3 Y « Extract label (Malicious or Benign) from { Z,erv * -+, Zp }.

4 ETM_Features ({x; - - - , X, }) « Extract easy to manipulate features
(c.f. Section 5.1) from { Iy, - - -, I, }.

5 DTM_Features ({X; - - - X, }) < Extract difficult to manipulate features

(c.f: Section 5.2) from { Iy, - - -, I, }.

6 X < ETM_Features @ DTM_Features
7 Xtrain> Xoalid> Xtest> Ytrain, Yoalids Ytest < split(X)Y, 0.7, 0.1, 0.2)
8 M « Build_Model(ML_Algo, X¢rain, Xvalids Yvalid: Ytest)
9 Predict_Test_Result «— M.predict(X;es)
10 Performance «— Performance_Measurement(Predict_Test_Result, Yzesz)
11 Return: M, Performance
12 Function Prediction_Phase ({ M, { Tpew}):
13 ETM_Featurespew ({x1 - -+ ,xn}) < Extract easy to manipulate
features (c.f. Section 5.1) from { Zpeqy }-
14 DTM_Featurespew ({X1 - - - X }) < Extract difficult to manipulate

features (c.f. Section 5.2) from { Zpeqy }-

15 Xnew < ETM_Featurespe. ® DTM_Featurespeyw
16 Predict_label « M.predict(X,eqv)

17 Return: Predict_label

18 M, Performance < Model_Training_Phase ({13, - -
19 Predict_label « Prediction_Phase(M, { Zyew})

-, In}, ML_Algo)

dataset with a proportion of 50% malicious packages, and an im-
balanced datasets with only 10% malicious packages. Variants of
these datasets are generated for experimental purposes (Table 5).
In the table, Existing_tec refers to feature model generated using
features proposed in the literature [1, 15, 26, 31, 36]; MeMPtec_E
and MeMPtec_D refer to feature model with ETM and DTM features
respectively; while MeMPtec refers to the combination of ETM and
DTM features based feature model.

6.1.2 Machine Learning/Deep Learning Techniques. In building the
detection models, we adopted five different but commonly used

Table 5: Description of datasets parameters.

Feature 4 Features Balance Data Imbalance Data
Model # Malicious # Benign | # Malicious # Benign
Existing_tec 11 3232 3232 3232 32320
MeMPtec_E 36 3232 3232 3232 32320
MeMPtec_D 21 3232 3232 3232 32320
MeMPtec 57 3232 3232 3232 32320

model building techniques namely, Support Vector Machine [18];
Gradient Boosting Machine (GBM) [4]; Generalized Linear Model
(GLM) [11]; Distributed Random Forest (DRF) [7]; and Deep Learning
- ANN (DL) [2, 33].

In all experiments, we adopt a 70:10:20 split for training, valida-
tion and testing, respectively, and conduct five-fold cross-validation.

6.1.3 Evaluation Metrics. In this work, we adopt the well-known
metrics of precision, recall, F1-score, accuracy and root mean squared
error (RMSE) also used in [8, 15]. We also evaluate model per-
formances based on the number of false positives (FP) and false
negatives (FN) like in [19, 20].

6.2 Performance Evaluation of MeMPtec (RQ1)

Table 6 shows the performance analysis of our proposed approach.
From the table, we notice that MeMPtec (resp. balance and imbalance
data) consistently achieves the best results across all metrics and
ML/DL algorithms. It is important to note that RMSE indicates the
confidence of a model in its prediction as it measures the error
between the probability of the prediction and the true label. Notice
that MeMPtec (resp. for both data) consistently has significantly
lower errors, indicating that combining ETM and DTM leads to
more robust model.

Although one may question the significance of the improvement,
it is important to note that in the domain of software security, mar-
ginal improvements are desirable since even 1 missed malicious

639
640
641
642
643
644
645
646
647
648
649
650

652
653
654
655
656
657
658
659
660
661
662

663

665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

753
754

Malicious Package Detection using Metadata Information

Table 6: Performance evaluation results in terms of the mean and standard errors: T (resp. |) indicate higher (resp. lower) results

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

are better; bold values represent the best result and underlined values represent the second best result.

‘ ML/DL Algo Feature Model

Precision T

Recall T

F1-score T

Accuracy T

RMSE |

SVM

Existing_tec
MeMPtec_E
MeMPtec_D
MeMPtec

0.9651 =+ 0.003
0.9994 + 0.000
0.9856 = 0.002
0.9960 + 0.002

0.9817 + 0.002
0.9725 + 0.003
0.9972 + 0.001
0.9963 + 0.001

0.9733 + 0.001
0.9857 + 0.002
0.9914 + 0.001
0.9962 + 0.002

0.9731 + 0.001
0.9859 + 0.002
0.9913 + 0.001
0.9961 + 0.002

0.1640 + 0.002
0.1175 + 0.008
0.0927 + 0.004
0.0576 + 0.012

GLM

Existing_tec
MeMPtec_E
MeMPtec_D
MeMPtec

0.9798 + 0.001
0.9875 + 0.003
0.9951 + 0.001
0.9997 + 0.000

0.9734 + 0.002
0.9817 + 0.003
0.9963 + 0.001
0.9969 + 0.000

0.9766 + 0.001
0.9846 + 0.002
0.9957 + 0.000
0.9983 + 0.000

0.9766 + 0.001
0.9847 + 0.002
0.9957 + 0.000
0.9983 =+ 0.000

0.1595 + 0.002
0.1032 + 0.006
0.0689 + 0.002
0.0395 + 0.005

GBM

Balance Data

Existing_tec
MeMPtec_E
MeMPtec_D
MeMPtec

0.9813 % 0.001
0.9966 + 0.001
0.9963 =+ 0.002
0.9997 + 0.000

0.9753 % 0.002
0.9947 % 0.001
0.9976 + 0.001
0.9988 + 0.001

0.9783 % 0.001
0.9956 + 0.001
0.9969 + 0.001
0.9992 + 0.000

0.9783 % 0.001
0.9957 + 0.001
0.9969 + 0.001
0.9992 + 0.000

0.1407 = 0.003
0.0581 = 0.006
0.0512 + 0.004
0.0321 + 0.004

DRF

Existing_tec
MeMPtec_E
MeMPtec_D
MeMPtec

0.9798 + 0.001
0.9982 + 0.001
0.9963 =+ 0.002
0.9991 + 0.001

0.9762 + 0.003
0.9941 % 0.002
0.9972 + 0.001
0.9997 + 0.000

0.9780 + 0.001
0.9961 % 0.001
0.9968 + 0.000
0.9994 + 0.000

0.9780 + 0.001
0.9961 % 0.001
0.9968 + 0.000
0.9994 + 0.000

0.1416 + 0.003
0.0548 = 0.006
0.0471 + 0.002
0.0225 + 0.002

DL

Existing_tec
MeMPtec_E
MeMPtec_D
MeMPtec

0.9810 + 0.001
0.9891 + 0.003
0.9954 + 0.002
0.9981 + 0.001

0.9756 + 0.002
0.9922 * 0.002
0.9969 + 0.000
0.9988 + 0.001

0.9783 + 0.001
0.9907 + 0.002
0.9961 + 0.001
0.9984 + 0.001

0.9783 + 0.001
0.9907 *+ 0.002
0.9961 + 0.001
0.9985 + 0.001

0.1447 + 0.003
0.0874 + 0.011
0.0597 =+ 0.007
0.0288 + 0.009

SVM

Existing_tec
MeMPtec_E
MeMPtec_D
MeMPtec

0.9127 + 0.004
0.9940 + 0.001
0.9799 % 0.004
0.9981 + 0.001

0.9511 + 0.006
0.9688 + 0.003
0.9417 % 0.014
0.9765 + 0.003

0.9314 + 0.004
0.9812 + 0.001
0.9601 % 0.006
0.9872 + 0.001

0.9873 0.001
0.9966 + 0.000
0.9929 % 0.001
0.9977 + 0.000

0.1126 = 0.003
0.0579 + 0.002
0.0833 = 0.006
0.0477 + 0.003

GLM

D _imb L
MeMPtec_E
MeMPtec_D
MeMPtec

0.9134 + 0.010
0.9981 + 0.002
0.9776 + 0.004
0.9970 + 0.001

0.9508 % 0.014
0.9688 + 0.007
0.9663 = 0.006
0.9848 + 0.002

0.9317 % 0.008
0.9832 + 0.003
0.9718 + 0.004
0.9909 + 0.001

0.9873 % 0.001
0.9970 + 0.001
0.9949 + 0.001
0.9983 + 0.000

0.1094 = 0.005
0.0559 =+ 0.005
0.0712 + 0.003
0.0361 + 0.001

GBM

Imbalance Data

D_imb_L
MeMPtec E
MeMPtec_D
MeMPtec

0.9208 + 0.003
0.9927 + 0.002
0.9905 =+ 0.002
0.9984 + 0.001

0.9502 + 0.007
0.9870 = 0.003
0.9947 + 0.001
0.9954 + 0.001

0.9352 + 0.003
0.9898 =+ 0.002
0.9926 + 0.001
0.9969 + 0.001

0.988 + 0.001
0.9982 % 0.000
0.9986 + 0.000
0.9994 + 0.000

0.1000 =+ 0.002
0.0392 =+ 0.004
0.0320 + 0.003
0.0189 + 0.001

DRF

D_imb_L
MeMPtec E
MeMPtec_D
MeMPtec

0.9228 + 0.004
0.9978 + 0.001
0.9932 + 0.001
0.9979 + 0.001

0.9511 + 0.007
0.9880 = 0.002
0.9931 + 0.003
0.9984 + 0.001

0.9367 + 0.003
0.9929 % 0.001
0.9931 + 0.002
0.9981 + 0.000

0.9883 + 0.001
0.9987 % 0.000
0.9988 + 0.000
0.9997 + 0.000

0.0991 =+ 0.003
0.0321 = 0.003
0.0322 + 0.003
0.0185 + 0.001

DL

D_imb_L
MeMPtec_E
MeMPtec_D
MeMPtec

0.9221 + 0.004
0.9907 + 0.003
0.9877 + 0.004
0.9982 + 0.001

0.9502 + 0.007
0.9793 + 0.004
0.9907 + 0.003
0.9966 + 0.001

0.9359 + 0.003
0.9849 + 0.002
0.9891 + 0.002
0.9974 + 0.001

0.9882 + 0.001
0.9973 + 0.000
0.9980 + 0.000
0.9995 =+ 0.000

0.1005 + 0.002
0.0471 + 0.004
0.0429 + 0.005
0.0209 =+ 0.003

package (false negative) can have catastrophic consequences. For
this reason, we further analyse the false positives (FP) and false nega-
tives (FN). In a balanced dataset, MeMPtec significantly outperforms
Existing_tec in reducing FP in Figure 3 (a). On the GLM algorithm,
MeMPtec achieves a 98.33% reduction (12.0 — 0.2), and on the
SVM algorithm, it achieves an 88.69% reduction (23.0 — 2.6). On
average, MeMPtec reduces FPs by 93.44% (14.64 — 0.96). MeMPtec
also performs well in reducing FP in Figure 3 (b). It reduces the max-
imum number of FNs by 98.70% on the DRF algorithm (15.4 — 0.2)
and achieves a minimum reduction of 79.66% (11.8 — 2.4) on

the SVM algorithm. On average, MeMPtec reduces FNs by 91.86%
(15.24 — 1.24).

The results in Figure 3 (c) exhibit consistent trends in the im-
balanced dataset. MeMPtec reduces FP maximum 97.96% (58.8 to
1.2) on SVM, minimum 97.29% (51.4 — 1.4) on DRF algorithm.
It reduces FP on average 97.5% (54.6 — 1.36) than the Existing -
tec. It also reduces, on average, 80.42 % of the FN numbers from
31.88 — 6.24 in Figure 3 (d). In all Figures 3, we observe that by
using MeMPtec_E and MeMPtec_D, the FP and FN can be reduced
by an order of magnitude than the Existing_tec. These experiments
illustrate the efficacy of MeMPtec in addressing Challenges 1 & 3.

760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

812

813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870

Conference acronym °XX, June 03-05, 2018, Woodstock, NY

Anon.

10 g IR L0 u\.;_\ Lo e ;:.:::Ee; L0 L‘-“_\
e e—e—e. - \ |
508 SR 208 ‘3‘{___“\ SO TN £ \ oy 208 N
£ 06 N - £ 06 o et e £00 p £ 06 £ 00 N
5 S - Tt | S e e pieaaa| O | S ey L = B S T
2 04 -e= Existing tec 2 04 -e~ Existing tec 2 041 =e- Existing tec 204 2 04 -e- Existing tec -
02 T vk P 02] -* MR E 02 02] - MR E
tec MeMPtec MeMPtec MeMPtec
o 00 0.0 0

0
0 10 20 30 40 50 60 70 80 90 100
Percentage of Feature Manipulation

0 10 20 30 40 50 60 70 80 90 100
Percentage of Feature Manipulation

(a) DL (b) DRF

0 10 20 30 40 50 60 70 80 90 100
Percentage of Feature Manipulation

(c) GLM

0
0 10 20 30 40 50 60 70 80 90 100
Percentage of Feature Manipulation

0
0 10 20 30 40 50 60 70 80 90 100
Percentage of Feature Manipulation

(d) GBM (e) SVM

Figure 2: Performance analyses of various models wrt feature manipulation.

4 e Exising tec mEE MeMPrec D
W McMPiec £ B McMPtec

mmm Existing tec SN McMPtec_D
s McMPiec E BEEE MeMPlec

‘Number
‘Number

LR e ek 1,

)

DRF GLM DL
Algorithms

GBM SVM DRF GLM DL
Algorithms

(a) FP on balance data (b) FN on balance data.

mmm Fxisting tec WSS MeMPrec D
. MeMPlec £ BEEE McMPtec

mmm Existing tec SN McMPiec D
s McMPiec E - BEEl MeMPlec

‘Number
‘Number

Bl e) e

DRF GLM DL
Algorithms

GBM SVM DRF GLM DL
Algorithms

(c) FP on imbalance data (d) FN on imbalance data
Figure 3: False Positive and False Negative numbers compar-
ison on balanced and imbalanced datasets.

6.3 Robustness of MeMPtec (RQ2)

In this section, we evaluate the robustness of MeMPtec against ad-
versarial attack. We assess the impact of data manipulation on the
performance of the models by (1) ranking the features for each
dataset according to their importance for each model; and (2) re-
placing the true values of the features in the malicious dataset with
random values selected from a distribution of values for the same
feature in the benign dataset iteratively beginning from the most
important feature (Appendix A.2 has the details of the algorithm).
By doing this, we are simulating various degrees of the worst-case
scenario adversarial attack where an adversary deliberating tries
to game the model.

Figure 2 is the result of this experiment. In this experiment,
in decreasing order of importance, the values of features for the
malicious dataset are replaced. The figure shows the decline in
accuracy performance for the balanced dataset across the models.
We note that in all the models, as the percentage of features is
manipulated, the model performance decreases drastically for the
Existing_tec and MeMPtec_E based features. However, this is less so
for the MeMPtec features. In fact, even after manipulating 100% of
the features MeMPtec based approach performs significantly better
(e.g GLM model: 99.87% — 92.73%). We conduct further extensive
experiments, achieving similar results, by considering only the top
ten features (Appendix A.3) as well as indirect manipulation of the
features via the package metadata information (Appendix A.3)- not
included due to space constraints.

1.02 1.02
1.00 Wogigigegis s 100 | e PECREY SERR! (EF TETY TICE TIEY
20981 wewego - Tl 5098 N
g bl T 2
3 0.96 bl L E 0.96
2094{ —e— GLM DL — SVM 20941 o am oL SVM
0.92{ -#- DRF - GBM 092 | -m- DRF --#- GBM
0.90 0.90
LY S o000 D "
TERFESTTLS TS SRS RYSELES
Number of Days Count

(a) Temporal Information (b) Package Interaction
Figure 4: Performance analyses of MeMPtec wrt monotonic
property (temporal information and package interaction).

In Figure 4, we also investigate the impact of the monotonicity
property on the ability of an adversary to manipulate the DTM
features. Figure 4 (a) shows the modification of all temporal DTM
features by increasing their time-based values iteratively (in num-
ber of days). The aim of the experiment is to show the robust-
ness of MeMPtec even when the adversary attempts to game the
model via DTM features. We note that for DL, even after 360
days, MeMPtec features only decline marginally in performance
(0.9998 — 0.9928). Similarly, Figure 4 (b) shows the modification
of all package interaction-based DTM features. In this experiment,
the count of each figure increased iteratively. Similarly, we notice
that for DL, MeMPtec features only decline marginally in perfor-
mance after 50 count updates (0.9998 — 0.9989). As can be seen,
the behaviour is consistent across all the different models.

These experiments validate the MeMPtec’s ability to mitigate
against adversarial attacks (Challenge 2).

7 CONCLUSION

In this paper, we proposed metadata based malicious detection algo-
rithm named MeMPtec, which relies on a novel feature engineering
strategy resulting in easy-to-manipulate (ETM) and difficult-to-
manipulate (DTM) features from metadata. We conduct extensive
experiments to demonstrate MeMPtec’s efficacy for detecting mali-
cious packages in comparison with existing approaches proposed
in the state-of-the-art. In particular, MeMPtec leads to an average re-
duction of false positives by an impressive 93.44% and 97.5% across
two experimental datasets, respectively. Additionally, false nega-
tive numbers decrease on average 91.86% and 80.42% across the
same datasets, respectively. Furthermore, we analyse MeMPtec’s
resistance against adversarial attacks and show that, even under
worst-case scenarios, our approach is still highly resistant.

871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928

929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985

986

Malicious Package Detection using Metadata Information

REFERENCES

(1]

(2]

(3]

[10]

[11]
[12]

[14]

[15]

[16]

[21]

[22]

[23]

Ahmad Abdellatif, Yi Zeng, Mohamed Elshafei, Emad Shihab, and Weiyi Shang.
2020. Simplifying the search of npm packages. Information and Software Tech-
nology 126 (2020), 106365.

Malek Al-Zewairi, Sufyan Almajali, and Arafat Awajan. 2017. Experimental
evaluation of a multi-layer feed-forward artificial neural network classifier for
network intrusion detection system. In 2017 International Conference on New
Trends in Computing Sciences (ICTCS). IEEE, 167-172.

Blake Barnes-Cook and Timothy O’Shea. 2022. Scalable Wireless Anomaly
Detection with Generative-LSTMs on RF Post-Detection Metadata. In 2022 IEEE
Wireless Communications and Networking Conference (WCNC). IEEE, 483-488.
Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting
machine. Annals of statistics (2001), 1189-1232.

Kalil Garrett, Gabriel Ferreira, Limin Jia, Joshua Sunshine, and Christian Késtner.
2019. Detecting suspicious package updates. In 2019 IEEE/ACM 41st International
Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER).
IEEE, 13-16.

Danielle Gonzalez, Thomas Zimmermann, Patrice Godefroid, and Max Schifer.
2021. Anomalicious: Automated detection of anomalous and potentially mali-
cious commits on github. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 258-267.
Samiul Islam and Saman Hassanzadeh Amin. 2020. Prediction of probable
backorder scenarios in the supply chain using Distributed Random Forest and
Gradient Boosting Machine learning techniques. Journal of Big Data 7, 1 (2020),
1-22.

Yesi Novaria Kunang, Siti Nurmaini, Deris Stiawan, and Bhakti Yudho Suprapto.
2021. Attack classification of an intrusion detection system using deep learning
and hyperparameter optimization. Journal of Information Security and Applica-
tions 58 (2021), 102804.

Tysen Leckie and Alec Yasinsac. 2004. Metadata for anomaly-based security
protocol attack deduction. IEEE Transactions on Knowledge and Data Engineering
16, 9 (2004), 1157-1168

Chengwei Liu, Sen Chen, Lingling Fan, Bihuan Chen, Yang Liu, and Xin Peng.
2022. Demystifying the vulnerability propagation and its evolution via de-
pendency trees in the npm ecosystem. In Proceedings of the 44th International
Conference on Software Engineering. 672—684.

Marlene Miiller. 2012. Generalized linear models. Handbook of Computational
Statistics: Concepts and Methods (2012), 681-709.

Khaled Mutmbak, Sultan Alotaibi, Khalid Alharbi, Umar Albalawi, and Osama
Younes. 2022. Anomaly Detection using Network Metadata. International Journal
of Advanced Computer Science and Applications 13, 5 (2022).

Yasunobu Nohara, Koutarou Matsumoto, Hidehisa Soejima, and Naoki
Nakashima. 2019. Explanation of machine learning models using improved shap-
ley additive explanation. In Proceedings of the 10th ACM International Conference
on Bioinformatics, Computational Biology and Health Informatics. 546-546.
Npm, Inc. 2023. State Of Npm 2023: The Overview. Online. https://
blog.sandworm.dev/series/state- of-npm-2023 Accessed on 2023-9-12.

Marc Ohm, Felix Boes, Christian Bungartz, and Michael Meier. 2022. On the
feasibility of supervised machine learning for the detection of malicious software
packages. In Proceedings of the 17th International Conference on Availability,
Reliability and Security. 1-10.

Marc Ohm, Henrik Plate, Arnold Sykosch, and Michael Meier. 2020. Backstabber’s
Knife Collection: A Review of Open Source Software Supply Chain Attacks. In
International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer.

Brian Pfretzschner and Lotfi ben Othmane. 2017. Identification of dependency-
based attacks on node. js. In Proceedings of the 12th International Conference on
Availability, Reliability and Security. 1-6.

Derek A Pisner and David M Schnyer. 2020. Support vector machine. In Machine
learning. Elsevier, 101-121.

Simone Scalco, Ranindya Paramitha, Duc-Ly Vu, and Fabio Massacci. 2022. On
the feasibility of detecting injections in malicious npm packages. In Proceedings
of the 17th International Conference on Availability, Reliability and Security. 1-8.
Adriana Sejfia and Max Schifer. 2022. Practical automated detection of malicious
npm packages. In Proceedings of the 44th International Conference on Software
Engineering. 1681-1692.

Sonatype. 2019. 2019 State of the Software Supply Chain Report Reveals
Best Practices From 36,000 Open Source Software Development Teams.
https://www.sonatype.com/press-release-blog/2019-state- of-thesoftware-
supply-chain-report-reveals-best-practices-from-36000-opensource-software-
development-teams

Zhensu Sun, Xiaoning Du, Fu Song, Mingze Ni, and Li Li. 2022. Coprotector: Pro-
tect open-source code against unauthorized training usage with data poisoning.
In Proceedings of the ACM Web Conference 2022. 652-660.

Synopsys. 2020. Synopsys 2020 Open Source Security and Risk Analysis Re-
port. https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/
2020-ossra-report.pdf

[24

[25]

[26]

[27]

[28

[29

[30

[31

@
&,

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

Matthew Taylor, Ruturaj Vaidya, Drew Davidson, Lorenzo De Carli, and Vaibhav
Rastogi. 2020. Defending against package typosquatting. In Network and Sys-
tem Security: 14th International Conference, NSS 2020, Melbourne, VIC, Australia,
November 25-27, 2020, Proceedings 14. Springer, 112-131.

Laurie Voss. 2018. npm and the future of JavaScript. https://slides.com/seldo/
npmfuture-of-javascript.

Duc-Ly Vu. 2021. PY2SRC: Towards the Automatic (and Reliable) Identification
of Sources for PyPI Package. In 2021 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 1394-1396.

Duc-Ly Vu, Ivan Pashchenko, Fabio Massacci, Henrik Plate, and Antonino Sabetta.
2020. Typosquatting and combosquatting attacks on the python ecosystem. In
2020 ieee european symposium on security and privacy workshops (euros&pw).
IEEE, 509-514.

Seongil Wi, Sijae Woo, Joyce Jiyoung Whang, and Sooel Son. 2022. HiddenCPG:
large-scale vulnerable clone detection using subgraph isomorphism of code
property graphs. In Proceedings of the ACM Web Conference 2022. 755-766.
Riccardo Zaccarelli, Dino Bindi, and Angelo Strollo. 2021. Anomaly detection
in seismic data-metadata using simple machine-learning models. Seismological
Society of America 92, 4 (2021), 2627-2639.

Nusrat Zahan, Parth Kanakiya, Brian Hambleton, Shohanuzzaman Shohan, and
Laurie Williams. 2023. OpenSSF Scorecard: On the Path Toward Ecosystem-Wide
Automated Security Metrics. IEEE Security & Privacy (2023).

Nusrat Zahan, Thomas Zimmermann, Patrice Godefroid, Brendan Murphy, Chan-
dra Maddila, and Laurie Williams. 2022. What are weak links in the npm supply
chain?. In Proceedings of the 44th International Conference on Software Engineering:
Software Engineering in Practice. 331-340.

Shijie Zhang, Hongzhi Yin, Tong Chen, Zi Huang, Lizhen Cui, and Xiangliang
Zhang. 2021. Graph embedding for recommendation against attribute inference
attacks. In Proceedings of the Web Conference 2021. 3002-3014.

LM Zhao, HY Hu, DH Wei, and SQ Wang. 1999. Multilayer Feedforward Artificial
Neural Network. YellowRiver Water Conservancy Press: Zhengzhou, China (1999).
Junwei Zhou, Yijia Qian, Qingtian Zou, Peng Liu, and Jianwen Xiang. 2022.
DeepSyslog: Deep Anomaly Detection on Syslog Using Sentence Embedding
and Metadata. IEEE Transactions on Information Forensics and Security 17 (2022),
3051-3061.

Yao Zhu, Hongzhi Liu, Yingpeng Du, and Zhonghai Wu. 2021. IFSpard: An
information fusion-based framework for spam review detection. In Proceedings
of the Web Conference 2021. 507-517.

Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and Michael
Pradel. 2019. Small World with High Risks: A Study of Security Threats in
the npm Ecosystem.. In USENIX security symposium, Vol. 17.

987

988

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

1044

https://blog.sandworm.dev/series/state-of-npm-2023
https://blog.sandworm.dev/series/state-of-npm-2023
https://www.sonatype.com/press-release-blog/2019-state-of-thesoftware- supply-chain-report-reveals-best-practices-from-36000-opensource-software-development-teams
https://www.sonatype.com/press-release-blog/2019-state-of-thesoftware- supply-chain-report-reveals-best-practices-from-36000-opensource-software-development-teams
https://www.sonatype.com/press-release-blog/2019-state-of-thesoftware- supply-chain-report-reveals-best-practices-from-36000-opensource-software-development-teams
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/ 2020-ossra-report.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/ 2020-ossra-report.pdf
https://slides.com/seldo/npmfuture- of-javascript.
https://slides.com/seldo/npmfuture- of-javascript.

1045
1046
1047
1048

1049

1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

1102

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

A APPENDIX

A.1 Stakeholders Community Contribution
Score

Stakeholders play a significant role in ensuring malicious package
detection. It has been seen that popular or well-known stakeholders
are not involved as intruders. Thus, using the following equation,
we can define the stakeholders’ community contribution score
(sj;_CCS) using the stakeholder contribute package number and
service time for each package p;.

sj;_CCS = Logx(sj;_service_time) * Logx(sj,_CPN) (1)

We define the stakeholder’s community contribution score based on
logarithm base x (x= 2 default). The main reason for this logarithm
base score is that we want to avoid a certain label of manipulation.
Although it is difficult to manipulate author contributions, it might
be possible that attackers can upload multiple packages and increase
their stakeholder contribution package number. Thus, we defined
the s;, that stakeholders can not change easily without considering
temporal and package interaction properties.

A.2 MeMPtec Adversarial Manipulation
Algorithm

To prevent adversaries, we analysed data manipulation-based per-
formance analysis in the algorithm 2. The algorithm takes build
model M (from algorithm 1) and adversaries data as input and
returns adversaries-based results. Initially, we set a data frame that
is empty. Then, we calculate features significant for each model
and find the significant feature ranked based on Shapley additive
explanation (SHAP) [13] values (decreasing order) in line 2.

Algorithm 2: MeMPtec Adversaries (M, Data)

Data: M: Build MeMPtec Model; Data : Machine transferable data;

Result: DataFrame: Models performance based on data manipulation;

DataFrame « 0

Significant_Feature «— Rank_Features(M, SHAP)

manipulate_data < Data.copy()

Original Label «— Extract label from manipulate_data

Predict_Result «— M.predict(manipulate_data)

Performance < Performance_Measurement(Predict_Result, label_Test)

DataFrame «— DataFrame U [M.name, "ALL’, Performance]

Number_of MF = [TOP-N | len(Significant_Feature) if option = TOP-N |
Percentage]

for i € range(Number_of MF) do

10 feature = Significant_Feature[i]

1 manipulate_data = Manipulate_Data(manipulate_data, feature)

12 Predict_label «— M predict(manipulate_data)

13 Performance «— Performance_Measurement(Predict_label,

Original_label)
14 DataFrame « DataFrame U [M.name, feature, Performance]
15 Return: DataFrame /* Return manipulated feature based results. */

® N A G R W N e

©

Manipulate data has been initialised by our machine transferable
data in line 3. Then, we extract the original label that should be
used to check our predicted results accuracy measurement in line
4 and find the without manipulated data-based results in line 5.
We measure the results and save them in the data frame in lines 6
and 7, respectively. This model is applicable for TOP-N feature ma-
nipulation analysis as well as percentage of features manipulation
analysis. Thus, we select the number of manipulated features in line

10

Anon.

8, where TOP-N selects only TOP-N features and the percentage
option selects all feature numbers. In the feature item, we only
manipulate corresponding malicious package feature values based
on benign value distributions in lines 10-11. After that, predict the
target variable using manipulated data and the selected model in
line 12. Furthermore, various evaluation metric values have been
calculated using prediction and original output and saved to the
data frame in lines 13 and 14, respectively. This process continues
for each feature in the model and each model in our considered five
ML/DL methods. Finally, the algorithm returns the manipulated
results for TOP-N or Percentage in line 15.

A.3 TOP-N Features Manipulation Analysis

Generally, the attacker’s motive is to manipulate less number of
features that have a significant influence on the model performance
degradation. To consider this intention, we analysis the perfor-
mance of our features-based algorithm considering TOP-N signif-
icant information and features. To detect the significant features,
we used SHAP [13] values ranking algorithms.

Figure 5 shows the TOP-10 features manipulation result perfor-
mance. It is clear that our MeMPtec based results are more robust
than the MeMPtec_E and Existing_tec for all algorithms. The main
reason is the significant features that each algorithm selects based
on its dataset. In our proposed feature selection method MeMPtec,
top notable features are difficult to manipulate that attackers can
not change easily. As a result, the model performance reduces a
little bit. For example, after 10 features manipulation, MeMPtec per-
formance reduces 99.94% — 89.55% in DL, 99.98% — 99.98% in DRF
98.87% — 95.25% in GLM, 99.95% — 58.16% in GBM and 99.59% —
99.13 in SVM model. In contrast, Existing_tec based features per-
formance reduced rapidly and reached around 50.0% for all ML/DL
methods.

A.4 Information Manipulation Analysis

In this research work, we have utilised information and feature.
Thus, we can easily modify algorithm 2 for information manipu-
lation. To make the algorithm for information manipulatable, we
make information ranked based on their features SHAP values. Af-
ter that, we change that information one by one by changing their
corresponding features manipulation and find the results.

We observe similar results patterns in figure 2 for the percentage
of information manipulation in Figure 6. In the GLM algorithm,
MeMPtec information reduces model performances by 7.19% (99.87%
— 92.68%) after 100% manipulation, while Existing_tec information
reduces model performances by around 46.70% (97.64% — 50.94%)
after only 30% information manipulation. In the DL algorithm,
MeMPtec based performance reduces 17.32% (99.98% — 82.66%),
whereas Existing_tec-based performance reduces 47.82% (97.94% —
50.12%).

Figure 7 shows the TOP-N (1-10) significant information changed
based on results. This result is slightly different from the TOP-N fea-
tures results because, in this case, we added corresponding features
SHAP values to indicate information SHAP values. That means
the selected information set differs from the chosen TOP-N fea-
tures set. Our MeMPtec based results outperform the MeMPtec E
and Existing_tec for all algorithms regarding model robustness. For

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144

1145

1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217

1218

Malicious Package Detection using Metadata Information

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

e 107 &z 107 gy 107 &z 10
08 N 08] St Tmmm-a-wea 08 1% 08 {—— X JE=m 08
Y \ 7 \ | g N Y NN 7 \
£ 0o Fr A £ 06 e P [R o i £ 0o S, £ 06 e \
E -~ Existing_tec | — 2 —-- Existing_tec S 8 == Existing tec brge=p=gi=g=ay g ---- Existing tec }=gungrp-—v—9 a8 == Existing tec »—e-—o—$=3 "
<047 - MeMPlec E <047 - NeMPlec E <047~ MeMPlec E <047 —a- MeMPiec E <047 - NeMPlec E
02 MeMPtec 02 MeMPtec 02 MeMPtec 02 MeMPtec 02 MeMPtec
0.0 0.0 0.0 0.0 0.0
01 2 3 4 5 6 7 8 910 01 2 3 4 5 6 78 09010 01 2 3 4 5 6 78 910 01 2 3 4 5 6 78 910 01 2 3 4 5 6 78 9010
Mumber of Manipulated Feature Number of Manipulated Feature Number of Manipulated Feature Mumber of Manipulated Feature Number of Manipulated Feature
(a) DL (b) DRF (c) GLM (d) GBM () SVM
Figure 5: Performance analyses of various models wrt TOP-N significant feature manipulation.
101 By 101 & 101 e 10 \ —e- Existing tec KGR —
= SN -
L 08 \\'r—'*-"~-a-__-=:_\ L 08 ‘“ﬂ--l\—q ,.08 ‘\ L 08 \ - mmﬂf L 08 '\\\
B N z N, 5 \ B tee)
£ 06 e £ 06 o -, 206 £ 06 N £ 06
E L S T C SR i B h ==
2 04 —#- Existing_tec 2 04 —e- Existing_tec 2 0.4 - Existing_tec 204 2 04 —e- Existing_tec .
Py [Epveviing Py [JOf (e o Py [
MeMPtec MeMPtec MeMPtec MeMPtec
0.0 0.0 0.0 0.0 0.0
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Percentage of Information Manipulation Percentage of Information Manipulation Percentage of Information Manipulation Percentage of Information Manipulation Percentage of Information Manipulation
(a) DL (b) DRF (c) GLM (d) GBM (e) SVM
Figure 6: Performance analyses of various models wrt information manipulation.
10 Q\"\"**‘r:t_— 1.0 rg::\-'_ 1.0 c\._,\ 10 1.0 =y
Eoss et e
5,08 ~> R S 508 e 508 \ 5,08 508 \
g N £ 0. L e £ 0 A £ 0 . £ 0 B
2001 o Existing tec | — E 007 oo Existing fec T BT s £ 001 o Existing tec [T £ 007 o xisting tec jo ottt £ 067 o Existing tec ESE= BB "
: E E : E
<041 - MeMPrec E <041 = MeMPrec E <04 e MeMPec E <041 - MeMPrec E < 041 = MeMPrec E
02 MeMPtec 02 MeMPtec 02 MeMPtec 02 MeMPtec 02 MeMPtec
0.0 0.0 0.0 0.0 0.0
01 2 3 4 5 6 7 8 910 01 2 3 4 5 078 910 01 2 3 4 5 06 78 910 01 2 3 4 5 6 7 8 910 01 2 3 4 5 078 910
Number of Manipulated Information Number of Manipulated Information Number of Manipulated Information Number of Manipulated Information Number of Manipulated Information
(a) DL (b) DRF (c) GLM (d) GBM (e) SVM

Figure 7: Performance analyses of various models wrt TOP-N significant information manipulation.

example, after 10 information manipulation MeMPtec method per-
formances reduced 99.94% — 81.03% in DL, 99.98% — 99.98% in
DRF and 98.87% — 93.25% in GLM, whereas Existing_tec based
features performances reduced rapidly and reached around 50.0%
for all algorithms. It shows that MeMPtec performances reduce

11

significantly on the GBM algorithm and it is still better than the
Existing_tec model. Finally, we can say our MeMPtec feature selec-
tion model outperforms existing works for well known machine
learning algorithms.

1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276

	Abstract
	1 Introduction
	2 Existing Works
	2.1 Differences with Previous Works

	3 Preliminaries and Problem Statement
	4 Categorisation of Package Metadata Information
	5 Feature Extraction and Selection
	5.1 Easy-to-Manipulate Features
	5.2 Difficult-to-Manipulate Features
	5.3 Proposed MeMPtec Model

	6 Experiments
	6.1 Experimental Setup
	6.2 Performance Evaluation of MeMPtec (RQ1)
	6.3 Robustness of MeMPtec (RQ2)

	7 Conclusion
	References
	A Appendix
	A.1 Stakeholders Community Contribution Score
	A.2 MeMPtec Adversarial Manipulation Algorithm
	A.3 TOP-N Features Manipulation Analysis
	A.4 Information Manipulation Analysis

