
Is Behavior Cloning All You Need?
Understanding Horizon in Imitation Learning

Dylan J. Foster
Microsoft Research

dylanfoster@microsoft.com

Adam Block
Department of Mathematics

MIT
ablock@mit.edu

Dipendra Misra
Microsoft Research

dipendrakumar.misra@databricks.com

Abstract

Imitation learning (IL) aims to mimic the behavior of an expert in a sequential
decision making task by learning from demonstrations, and has been widely applied
to robotics, autonomous driving, and autoregressive text generation. The simplest
approach to IL, behavior cloning (BC), is thought to incur sample complexity with
unfavorable quadratic dependence on the problem horizon, motivating a variety of
different online algorithms that attain improved linear horizon dependence under
stronger assumptions on the data and the learner’s access to the expert.

We revisit the apparent gap between offline and online IL from a learning-theoretic
perspective, with a focus on the realizable/well-specified setting with general
policy classes up to and including deep neural networks. Through a new analysis
of behavior cloning with the logarithmic loss, we show that it is possible to achieve
horizon-independent sample complexity in offline IL whenever (i) the range of
the cumulative payoffs is controlled, and (ii) an appropriate notion of supervised
learning complexity for the policy class is controlled. Specializing our results to
deterministic, stationary policies, we show that the gap between offline and online
IL is smaller than previously thought: (i) it is possible to achieve linear dependence
on horizon in offline IL under dense rewards (matching what was previously only
known to be achievable in online IL); and (ii) without further assumptions on the
policy class, online IL cannot improve over offline IL with the logarithmic loss,
even in benign MDPs. We complement our theoretical results with experiments on
standard RL tasks and autoregressive language generation to validate the practical
relevance of our findings.

1 Introduction
Imitation learning (IL) is the problem of emulating an expert policy for sequential decision making by
learning from demonstrations. Compared to reinforcement learning (RL), the learner in IL does not
observe reward-based feedback, and must imitate the expert’s behavior based on demonstrations alone;
their objective is to achieve performance close to that of the expert on an unobserved reward function.
Imitation learning is motivated by the observation that in many domains, demonstrating the desired
behavior for a task (e.g., robotic grasping) is simple, while designing a reward function to elicit the
desired behavior can be challenging. IL is also often preferable to RL because it removes the need for
exploration, leading to empirically reduced sample complexity and often much more stable training.
Indeed, the relative ease of applying IL (over RL methods) has led to extensive adoption, ranging from
classical applications in autonomous driving [63] and helicopter flight [1] to contemporary works that

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

0 200 400
Number of Trajectories

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

E
xp

ec
te

d
R

eg
re

t

MuJoCo

horizon 50

horizon 100

horizon 200

horizon 300

horizon 400

horizon 500

(a)

0 50 100 150 200
Number of Trajectories

0.05

0.10

0.15

0.20

0.25

0.30

E
xp

ec
te

d
R

eg
re

t

Atari

horizon 50

horizon 100

horizon 200

horizon 300

(b)

Figure 1: Suboptimality of a policy learned with log-loss behavior cloning (LogLossBC) as a function
of the number of expert trajectories, for varying values of horizon H . In each environment, an imitator
is trained according to LogLossBC and the regret with respect to the expert is reported, with reward
normalized to be horizon-independent. (a) Continuous control with MuJoCo environment Walker2d-
v4. (b) Discrete control with Atari environment BeamRiderNoFrameskip-v4. For both environments,
we find that the regret is independent of horizon (or in the case of Atari, slightly improving with
horizon), as predicted by our theoretical results. Full experimental details are provided in Appendix C.

leverage deep learning to achieve state-of-the-art performance for self-driving vehicles [15, 6, 44],
visuomotor control [30, 103], navigation [45], and game AI [46, 90]. Imitation learning also offers
a conceptual framework through which to study autoregressive language modeling [21, 13], and a
number of useful empirical insights have arisen as a result of this perspective. However, a central
challenge limiting broader real-world deployment is to understand and improve the reliability and
stability properties of algorithms that support general-purpose (deep/neural) function approximation.

In more detail, imitation learning algorithms can be loosely grouped into offline and online approaches.
Offline imitation learning algorithms only require access to a dataset of logged trajectories from the
expert, making them broadly applicable. The most widely used approach, behavior cloning, reduces
imitation learning to a standard supervised learning problem in which the learner attempts to predict
the expert’s actions from observations given the collected trajectories. The simplicity of this approach
allows the learner to leverage the considerable machinery developed for supervised learning and
readily incorporate complex function approximation with deep models [10, 70]. On the other hand, BC
seemingly ignores the problem of distribution shift, wherein small deviations from the expert policy
early in rollout lead the learner off-distribution to regions where they are less able to accurately imitate.
This apparent error amplification phenomenon has been widely observed empirically [70, 54, 13],
and motivates online or interactive approaches to imitation learning [70, 72, 71, 78], which avoid
error amplification by interactively querying the expert and learning to correct mistakes on-policy.

In theory, online imitation learning enables sample complexity guarantees with improved (linear,
as opposed to quadratic) dependence on horizon for favorable MDPs. Yet, while online imitation
learning has found empirical success [73, 52, 38, 6, 26, 51, 7, 108, 59], online access to the expert
can be costly or infeasible in many applications, and offline imitation learning remains a dominant
empirical paradigm. Motivated by this disconnect between theory and practice, we aim to understand
to what extent the apparent gap between offline and online imitation learning is fundamental. We ask:

Is online imitation learning truly more sample-efficient than offline imitation learning, or can existing
algorithms or analyses be improved?

1.1 Background: Offline and Online Imitation Learning
To motivate our results, we begin by formally introducing the offline and online imitation learning
frameworks, highlighting gaps in current sample complexity guarantees concerning horizon
dependence. We take a learning-theoretic perspective, with a focus on general policy classes.

Markov decision processes. We study imitation learning in episodic Markov decision processes.
Formally, a Markov decision process M = (X ,A, P, r,H) consists of a (potentially large) state

2

space X , action space A, horizon H , probability transition function P = {Ph}Hh=0, where
Ph : X ×A → ∆(X), and reward function r = {rh}Hh=1, where rh : X ×A → R. A (randomized)
policy is a sequence of per-timestep functions π = {πh : X → ∆(A)}Hh=1. The policy induces
a distribution over trajectories (x1, a1, r1), . . . , (xH , aH , rH) via the following process. The
initial state is drawn via x1 ∼ P0(∅),1 then for h = 1, . . . ,H: ah ∼ π(xh), rh = rh(xh, ah),
and xh+1 ∼ Ph(xh, ah). For notational convenience, we use xH+1 to denote a deterministic
terminal state with zero reward. We let Eπ[·] and Pπ[·] denote expectation and probability law for
(x1, a1), . . . , (xH , aH) under this process, respectively.2

The expected reward for policy π is given by J(π) := Eπ
[∑H

h=1 rh
]
, and the value functions for π are

given by V π
h (x) := Eπ

[∑H
h′=h rh′ | xh = x

]
and Qπ

h(x, a) := Eπ
[∑H

h′=h rh′ | xh = x, ah = a
]
.

Reward normalization. To study the role of horizon in imitation learning in a way that disentangles
the effects of reward scaling from other factors, we assume that rewards are normalized such
that

∑H
h=1 rh ∈ [0, R] for a parameter R > 0 [47, 94, 104, 48]. We refer to the setting in which

rh ∈ [0, 1] for all h ∈ [H], which is the focus of most prior work [70, 72, 71, 67–69, 80], as the
dense reward setting, which has R ≤ H; we will frequently specialize our results to this setting.

1.1.1 Offline Imitation Learning: Behavior Cloning
Let π⋆ = {π⋆

h : X → ∆(A)}Hh=1 denote the expert policy. In the offline imitation learning setting,
we receive a dataset D = {oi}ni=1 of (reward-free) trajectories oi = (xi

1, a
i
1), . . . , (x

i

H , ai

H) obtained
by executing π⋆ in the underlying MDP M⋆. Using these trajectories, our goal is to learn a policy
π̂ such that the rollout regret J(π⋆)− J(π̂) to π⋆ is as small as possible. We emphasize that π⋆ is
an arbitrary policy, and is not assumed to be optimal.

Behavior cloning. Behavior cloning, which reduces the imitation learning problem to supervised
prediction, is the dominant offline imitation learning paradigm. To describe the algorithm in its
simplest form, consider the case where π⋆ := {π⋆

h : X → A}Hh=1 is deterministic. For a user-
specified policy class Π ⊂ {πh : X → ∆(A)}Hh=1, the most basic version of behavior cloning [70]
solves the supervised classification problem π̂ = argminπ∈Π

∑n
i=1

1
H

∑H
h=1 I{πh(x

i

h) ̸= ai

h} =:

L̂bc(π). Naturally, other classification losses (e.g., square loss, logistic loss, or log loss) may be used
in place of the indicator loss.3 To provide sample complexity bounds for this algorithm, we make a
standard realizability assumption (e.g., Agarwal et al. [2], Foster and Rakhlin [33]).

Assumption 1.1 (Realizability). The policy class Π contains the expert policy, i.e. π⋆ ∈ Π.

This assumption asserts that Π is expressive enough to represent the expert policy. Depending on
the application, Π might be parameterized by simple linear models, or by flexible models such as
convolutional neural networks or transformers. We primarily restrict our attention to the realizable
setting throughout the paper, as it is meaningful and non-trivial, yet not fully understood. Our main
results extend to provide guarantees for the misspecified case, but a thorough study of the role of
misspecification is beyond the scope of this work.To simplify presentation, we adopt a standard
convention in RL theory and focus on finite classes with |Π| <∞ [2, 33].

To proceed with analyzing the behavior cloning algorithm, a standard uniform convergence argument
implies that if we define Lbc(π) =

1
H

∑H
h=1 Pπ⋆

[πh(xh) ̸= π⋆
h(xh)], then with probability at least

1− δ, behavior cloning has

Lbc(π̂) ≲
log(|Π|δ−1)

n
.

Meanwhile, a standard error analysis for BC leads to the following bound on rollout performance:

J(π⋆)− J(π̂) ≲ RH · Lbc(π̂). (1)

1We use the convention that P0(∅) denotes the initial state distribution.
2To simplify presentation, we assume that X and A are countable, but our results trivially extend to general

spaces with an appropriate measure-theoretic treatment.
3Behavior cloning for stochastic expert policies has received limited attention in theory [67], but the

logarithmic loss is widely used in practice. One contribution of our work is to fill this lacuna.

3

Combining these bounds, we conclude that

J(π⋆)− J(π̂) ≲ RH · log(|Π|δ
−1)

n
. (2)

For the dense reward setting where R = H , this leads to quadratic dependence on horizon; that
is, Ω(H2) trajectories are required to achieve constant accuracy. Unfortunately, both steps in this
argument are tight in general:

• The generalization bound Lbc(π̂) ≲
log(|Π|δ−1)

n is tight even when |Π| = 2 (this is true not just
for the indicator loss, but for other standard losses such as square loss, absolute loss, and hinge
loss). Since the amount of information in a trajectory grows with H , one might hope a-priori that
the generalization error would decrease with H; alas, this does not occur due to the dependence
between samples in each trajectory.

• Ross and Bagnell [70] show that the inequality J(π⋆)− J(π̂) ≲ RH · Lbc(π̂) is tight for MDPs
with 3 states; the quadratic scaling in H this induces under dense rewards is often attributed to
error amplification or distribution shift incurred by passing from error under the state distribution
of π⋆ to the state distribution of π̂.

Combining, these observations, it is natural to conclude that offline imitation learning is fundamen-
tally harder than supervised classification, where linear dependence on horizon might be expected
(e.g., with H independent prediction tasks).

1.1.2 Online Imitation Learning and Recoverability
The aforementioned limitations of behavior cloning have motivated online approaches to IL
[70, 72, 71, 78]. In the online framework, the learner can interactively choose policies to roll out
and query the expert for the action at each state in the trajectory (see Appendix E.2 for a formal
description), representing a substantially stronger (and in some cases unrealistic) assumption on the
learner’s access both to the MDP and the expert than in the offline setting. Online imitation learning
can avoid error amplification and achieve improved dependence on horizon for MDPs that satisfy
a recoverability condition [72, 68].

Definition 1.1 (Recoverability parameter). The recoverability parameter for an MDP M⋆ and expert
π⋆ is given by4

Under recoverability, the Dagger algorithm of Ross et al. [72] leverages online interaction by inter-
actively querying the expert and learning to correct mistakes on-policy, leading to sample complexity

J(π⋆)− J(π̂) ≲ µH · log|Π|
n

(3)

for any finite class Π and deterministic expert policy π⋆ (for completeness, we include an analysis
in Appendix E.2; see Propositions E.1 and E.2). For the dense reward setting where R = H , we
can have µ = H in the worst case, in which case Eq. (3) matches the quadratic horizon dependence
of behavior cloning, but when µ = O(1) (informally, this means it is possible to “recover” from a
bad action that deviates from π⋆), the bound in Eq. (3) achieves linear dependence on horizon. Other
online IL algorithms such as Forward, Smile [70], and Aggrevate [71] achieve similar guarantees
(we are not aware of an approach that improves upon Eq. (3) for general finite classes).

The improvements of online IL notwithstanding, Eq. (2) is known to be tight for BC, but this is an
algorithm-dependent (as opposed to information-theoretic) lower bound, and does not preclude the
existence of more sample-efficient, purely offline algorithms. In this context, our central question can
be restated as: Can offline imitation learning algorithms achieve sub-quadratic horizon dependence
for general policy classes Π? While prior work has investigated this question for tabular and linear
policies [67–69], we approach the problem from a new (learning-theoretic) perspective by considering
general policy classes.

1.2 Contributions
We present several new results that clarify the role of horizon in offline and online imitation learning.

4For stochastic policies, we overload notation and write f(π(x)) as shorthand for Ea∼π(x)[f(a)].

4

Parameter Sharing
(Corollary 2.1)

No Parameter Sharing (Π = Π1 × · · ·ΠH)
(e.g., [70])

Sparse Rewards O
(

R log(|Π|)
n

)
O
(

HR log(maxh |Πh|)
n

)
Dense Rewards (R = H) O

(
H log(|Π|)

n

)
O
(

H2 log(maxh |Πh|)
n

)
Table 1: Summary of upper bounds for deterministic experts; lower bounds are more nuanced, and
discussed in Section 2.2. Each cell denotes the regret of a policy learned with log-loss behavior cloning
(LogLossBC), which is optimal in each setting. Here, Π is the policy class, R is the reward range, H
is the horizon, and n is the number of expert trajectories. In the dense-reward setting, we set R = H .

1. Horizon-independent analysis of log-loss behavior cloning. Through a new analysis of
behavior cloning with the logarithmic loss (LogLossBC), we show that it is possible to achieve
horizon-independent sample complexity [47, 94, 104, 105] in offline imitation learning
whenever (i) the range of the cumulative payoffs is normalized, and (ii) an appropriate notion
of supervised learning complexity for the policy class is controlled. Our result is facilitated
by a novel information-theoretic analysis which controls policy behavior at the trajectory level,
supporting both deterministic and stochastic expert policies.

2. Deterministic policies: Closing the gap between offline and online IL. Specializing LogLossBC
to deterministic stationary policies (more generally, policies with parameter sharing) and
cumulative rewards in the range [0, H], we show that it is possible to achieve sample complexity
with linear dependence on horizon in offline IL in arbitrary MDPs, matching was was previously
only known of online IL. We complement this result with a lower bound showing that, without
further structural assumptions on the policy class (e.g., no parameter sharing [67]), online
IL cannot improve over offline IL with LogLossBC, even for benign MDPs. Our results are
summarized in Table 1. Nonetheless, as observed in prior work [67], online imitation learning
can still be beneficial for non-stationary policies.

3. Stochastic policies: Tight understanding of optimal sample complexity. For stochastic
expert policies, our analysis of LogLossBC gives the first variance-dependent sample complexity
bounds for imitation learning with general policy classes, which we prove to be tight in a
problem-dependent and minimax sense. Using this result, we show that for stochastic stationary
experts, (i) quadratic dependence on the horizon is necessary when cumulative rewards lie
in the range [0, H], in contrast to the deterministic setting, but (ii) LogLossBC—through our
variance-dependent analysis—can sidestep this hardness and achieve linear dependence on
horizon under a recoverability-like condition. Finally, we show that—as in the deterministic
case—online IL cannot improve over offline IL with LogLossBC without further assumptions
on the policy class. Our results are summarized in Table 2.

Toward a learning-theoretic understanding of imitation learning. Our findings highlight the
need to develop a fine-grained, problem-dependent understanding of algorithms and complexity for
IL. Instabilities of offline IL [60, 27, 13] and benefits of online IL [73, 52, 38, 6, 26, 51, 7, 108, 59]
likely arise in practice, but existing assumptions in theoretical research are often too coarse to give
insights into the true nature of these phenomena, leading to an important gap between theory and
practice. As a first step in this direction, we highlight several under-explored mechanisms through
which online IL can lead to improved sample complexity, including representational benefits and
exploration (Appendix I). We also complement our theoretical results with empirical demonstrations
of the phenomena we describe (Appendix C).

Experiments. In Appendix C (deferred to the appendix due to space constraints), we complement
our theoretical results with an empirical demonstration of the horizon-independence of LogLossBC
predicted by our theory (under parameter sharing and sparse rewards). We consider tasks where
the horizon H can be naturally scaled up and down—for example, an agent walking for a set number
of timesteps—and use an expert trained according to RL to generate expert trajectories, before
training a policy using LogLossBC. We consider both continuous action space (MuJoCo environment
Walker2d) and discrete action space (Atari environment Beamrider) tasks to demonstrate the broad
applicability of our theoretical results. As can be seen in Figure 1, the performance of the learned
policy is independent or improving with horizon, consistent with our theoretical results. We also
perform simplified experiments on autoregressive language generation with transformers. Here, we

5

find that the performance of the imitator is largely independent of H , as predicted by our results,
though the results are more nuanced.

Notation. We use Ix ∈ ∆(X) to denote the direct delta distribution, which places probability
mass 1 on x. We adopt standard big-oh notation, and write f = Õ(g) to denote that f = O(g ·
max{1,polylog(g)}) and a ≲ b as shorthand for a = O(b).

2 Horizon-Independent Analysis of Log-Loss Behavior Cloning
This section presents the first of our main results, a horizon-independent sample complexity analysis
of log-loss behavior cloning for the case of deterministic experts. Our second main result, which
handles the case of stochastic experts, builds on our results here and is presented in Section 3.

2.1 Log-Loss Behavior Cloning and Supervised Learning Guarantees
The workhorse for all of our results (both for deterministic and stochastic experts) is the following
simple modification to behavior cloning. For a class of (potentially stochastic) policies Π, we
minimize the logarithmic loss:

π̂ = argmin
π∈Π

n∑
i=1

H∑
h=1

log

(
1

πh(ai

h | xi

h)

)
. (4)

This scheme is ubiquitous in practice [45, 31], and forms the basis for autoregressive language
modeling [64]; we refer to it as LogLossBC. We will show that this seemingly small change—
moving from indicator loss to log loss—has significant benefits. Following the classical tradition
of imitation learning [70, 72, 71], our analysis proceeds via reduction to supervised learning. We
first show that LogLossBC satisfies an appropriate supervised learning guarantee, then translate
this into rollout performance. Our starting point is to observe that LogLossBC, via Eq. (4), can
be interpreted as performing maximum likelihood estimation over the set {Pπ}π∈Π in order to
estimate the law Pπ⋆

over trajectories under π⋆ (see Appendix E.1 for details). As a result, standard
guarantees for maximum likelihood estimation [89, 102] imply convergence in distribution whenever
π⋆ ∈ Π. To be precise, define the squared Hellinger distance for probability measures P and Q by
D2

H(P,Q) =
∫ (√

dP−√dQ
)2

. Then for any finite policy class Π, we have the following guarantee.5

Proposition 2.1 (Supervised learning guarantee for LogLossBC (special case of Theorem E.1)). For
any (potentially stochastic) expert π⋆ ∈ Π, the LogLossBC algorithm ensures that with probability
at least 1− δ,D2

H

(
Pπ̂,Pπ⋆) ≤ 2 log(|Π|δ−1)

n .

That is, by performing LogLossBC, we are implicitly estimating the law Pπ⋆

; note that this result
holds even if π⋆ is stochastic, as long as π⋆ ∈ Π. We will focus on finite, realizable policy classes
throughout this section to simplify presentation as much as possible, but guarantees for infinite
classes under misspecification are given in Appendix E.1.

2.2 Horizon-Independent Analysis of LogLossBC for Deterministic Experts
We first consider the case where the expert π⋆ is deterministic. Our main result is the following theo-
rem, which translates the supervised learning error D2

H

(
Pπ̂,Pπ⋆)

into a bound on rollout performance
in a horizon-independent fashion.

Theorem 2.1 (Horizon-independent regret decomposition (deterministic case)). For any deterministic
policy π⋆ and potentially stochastic policy π̂,

J(π⋆)− J(π̂) ≤ 4R ·D2
H

(
Pπ̂,Pπ⋆)

. (5)

This result shows that horizon-independent bounds on rollout performance are possible whenever
(i) rewards are appropriately normalized, and (ii) the supervised learning error D2

H

(
Pπ̂,Pπ⋆)

is
appropriately controlled. It is proven using novel trajectory-level control over deviations between
π̂ and π⋆; we will elaborate upon this in the sequel. We emphasize that this result would be trivial

5While unfamiliar readers might expect a bound on KL divergence, Hellinger distance turns out to be more
natural due to a connection to the MGF of the log-loss [89, 102]. This facilitates scale-free generalization
guarantees in spite of the potential unboundedness of the log-loss. .

6

if squared Hellinger distance were replaced by total variation distance in (5); that the bound scales
with squared Hellinger distance is crucial for obtaining fast 1/n-type rates and linear horizon
dependence. We further remark that this reduction is not specific to LogLossBC, and can be applied
to any IL algorithm for which we can bound the Hellinger distance. Combining Theorem 2.1 with
Proposition 2.1, we obtain the following guarantee for finite policy classes.

Corollary 2.1 (Regret of LogLossBC). For any deterministic expert π⋆ ∈ Π, the LogLossBC

algorithm in Eq. (4) ensures that with probability at least 1− δ, J(π⋆)− J(π̂) ≤ 8R · log(2|Π|δ−1)
n .

To the best of our knowledge, this is the tightest available sample complexity guarantee for offline
imitation learning with general policy classes. This bound improves upon the guarantee for indicator-
loss behavior cloning in Eq. (2) by an O(H) factor, and improves upon the guarantee for Dagger in
Eq. (3) (replacing H with R ≤ H under rh ∈ [0, 1]) in the typical regime where µ = Ω(1).

2.3 Interpreting the Sample Complexity of LogLossBC
To understand the behavior of the bound for LogLossBC in Corollary 2.1 in more detail, we consider
two special cases (summarized in Table 1).

Stationary policies and parameter sharing. If log|Π| = O(1), the bound in Corollary 2.1 is
independent of horizon in the case of sparse rewards (R = O(1)), and linear in horizon in the case of
dense rewards (R = O(H)). In other words, our work establishes for the first time that:

O(H) sample complexity can be achieved in offline IL under dense rewards for general classes Π,

as long as log|Π| is appropriately controlled and realizability holds. This runs somewhat counter to
intuition expressed in prior work [70, 72, 71, 67–69, 80], but we will show in the sequel that there is
no contradiction.

Generally speaking, we expect to have log|Π| = O(1) if Π consists of stationary policies or more
broadly, policies with parameter sharing across steps h ∈ [H] (as is the case in transformers used
for autoregressive text generation). As an example, for a tabular (finite state/action) MDP, if Π
consists of all stationary policies, we have log|Π| = |X | log|A|, so Corollary 2.1 gives J(π⋆) −
J(π̂) ≲ R|X | log(|A|δ−1)

n ; that is, stationary policies can be learned with horizon-independent samples
complexity under sparse rewards and linear dependence on horizon under dense rewards. Similar
behavior holds for non-stationary policies with parameter sharing (e.g., log-linear policies of the form
πh(a | x) ∝ exp(⟨ϕh(x, a), θ⟩)); see Appendix E.1 for details.

Non-stationary policies or no parameter sharing. For non-stationary policies or policies with
no parameter sharing across steps h (e.g., product classes where Π = Π1 ×Π2 · · · ×ΠH), we expect
log|Π| = O(H) (more generally, D2

H

(
Pπ̂,Pπ⋆)

= Õ(H/n)). For example, in a tabular MDP, if Π
consists of all non-stationary policies, we have log|Π| = H|X | log|A|. In this case, Corollary 2.1
gives linear dependence on horizon for sparse rewards (J(π⋆) − J(π̂) ≲ RH|X | log(|A|δ−1)

n) and

quadratic dependence on horizon for dense rewards (J(π⋆)− J(π̂) ≲ H2|X | log(|A|δ−1)
n). The latter

bound is known to be optimal [67] for offline IL.

2.4 Optimality and Consequences for Online versus Offline Imitation Learning
We now investigate the optimality of Theorem 2.1 and discuss implications for online versus offline
imitation learning, as well as connections to prior work. Our main result here shows that in the
dense-reward regime where rh ∈ [0, 1] and R = H , Theorem 2.1 cannot be improved when
log|Π| = O(1)—even with online access, recoverability, and known dynamics.

Theorem 2.2 (Lower bound for deterministic experts). For any n ∈ N and H ∈ N, there exists
a (reward-free) MDP M⋆ with |X | = |A| = 2, a class of reward functions R with |R| = 2, and
a class of deterministic policies Π with |Π| = 2 with the following property. For any (online or
offline) imitation learning algorithm, there exists a deterministic reward function r = {rh}Hh=1
with rh ∈ [0, 1] (in particular, R ≤ H) and (optimal) expert policy π⋆ ∈ Π with µ = 1 such that
E[J(π⋆)− J(π̂)] ≥ c · Hn for an absolute constant c > 0. In addition, the dynamics, rewards, and
expert policies are stationary.

Together, Theorems 2.1 and 2.2 show that without further assumptions on Π, online imitation learning
cannot improve upon offline imitation learning in the realizable setting. That is, even if recoverability

7

is satisfied, there is no online imitation learning algorithm that improves upon Theorem 2.1 uniformly
for all policy classes. See Appendix H.1 for further lower bounds.

Benefits of online IL for policies with no parameter sharing. How can we reconcile our results
with prior work showing that that online IL improves the horizon dependence of offline IL [70, 72,
71, 67–69, 80]? The important distinction here is that online IL can still improve on a policy-class
dependent basis. In particular, methods like Dagger can still lead to improved sample complexity for
policy classes with no parameter sharing across steps h ∈ [H]. Let Πh := {πh | π ∈ Π} denote the
projection of Π onto step h. In Appendix E.2, we prove the following refined guarantee for a variant
of Dagger based on the log-loss (LogLossDagger).

Proposition 2.2 (Special case of Proposition E.2). When π⋆ ∈ Π is deterministic, LogLossDagger
ensures that with probability at least 1− δ, J(π⋆)− J(π̂) ≲ µ · ∑H

h=1
log(|Πh|Hδ−1)

n .

For classes with no parameter sharing (i.e., product classes where Π = Π1 ×Π2 · · · ×ΠH), we have∑H
h=1 log|Πh| = log|Π|. In this case, Proposition 2.2 scales as J(π⋆) − J(π̂) ≲ µ · log(|Π|Hδ−1)

n ,
improving on the bound for LogLossBC in Theorem 2.1 by replacing R with µ ≤ R. Thus, online
IL can indeed improve over offline IL for classes with no parameter sharing. This is consistent
with Rajaraman et al. [67, 68], who proved a µH vs. H2 gap between online and offline IL for
the special case of non-stationary tabular policies (where Π is a product class with log|Π| ∝ H)
under dense rewards. However, for classes with parameter sharing (i.e., where log|Πh| ∝ log|Π|),
the bound in Proposition 2.2 scales as µH log|Π|

n , which does not improve over Theorem 2.1 unless
µ≪ 1. Since virtually all empirical work on imitation learning uses parameter sharing across steps
h ∈ [H], we believe the finding that online IL does not improve over offline IL in this regime is quite
salient. Nevertheless, it is important to emphasize that there are various practical considerations (e.g.,
misspecification or geometric structure) which this result may not account for.6

2.5 Proving Theorem 2.1: How Does LogLossBC Avoid Error Amplification?
The central object in the proof of Theorem 2.1 is the following trajectory-level distance function
between policies. For a pair of potentially stochastic policies π and π′, define

ρ(π ∥ π′) := Eπ Ea′
1:H∼π′(x1:H)[I{∃h : ah ̸= a′h}], (6)

where we use the shorthand a′1:H ∼ π′(x1:H) to indicate that a′1 ∼ π′(x1), . . . , a
′
H ∼ π′(xH). We

begin by showing (Lemma F.2) that for all (potentially stochastic) policies π⋆ and π̂, J(π⋆)−J(π̂) ≤
R · ρ(π⋆ ∥ π̂). We then show (Lemma F.3) that whenever π⋆ is deterministic, Hellinger distance
satisfies7 D2

H

(
Pπ̂,Pπ⋆

)
≥ 1

4 · ρ(π̂ ∥ π⋆). Finally, we show (Lemma F.1) that the trajectory-level
distance is symmetric, i.e. ρ(π̂ ∥ π⋆) = ρ(π⋆ ∥ π̂). This step is perhaps the most critical: by
considering trajectory-level errors, we can switch from the state distribution induced by π̂ to that
of π⋆ for free, without incurring error amplification or spurious horizon factors. Combining the
preceding inequalities yields Theorem 2.1; see Appendix F for the full proof.

This analysis is closely related to a result in Rajaraman et al. [68]. For the special case of deterministic,
linearly parameterized policies with parameter sharing, Rajaraman et al. [68] consider an algorithm
that minimizes an empirical analogue of the trajectory-wise distance in Eq. (6), and show that it
leads to a bound similar to Corollary 2.1 (i.e., linear-in-H sample complexity under dense rewards).
Relative to this work, our contributions are threefold: (i) we show that horizon-independent sample
complexity can be achieved for arbitrary policy classes with parameter sharing, not just linear classes;
(ii) we show that said guarantees can be achieved by a natural algorithm, LogLossBC, which is already
widely used in practice; and (iii), by virtue of considering the log loss, our results readily generalize
to encompass stochastic expert policies, as we will show in the sequel.

3 Horizon-Independent Analysis of LogLossBC for Stochastic Experts
In this section, we turn out attention to the general setting in which the expert policy π⋆ is stochastic.
Stochastic policies are widely used in practice, where they are useful for modeling multimodal behav-
ior [76, 25, 14], but have received relatively little exploration in theory beyond the work of Rajaraman

6Complementary to our results, various works show improved horizon dependence in the inverse RL setup
where either (i) the MDP dynamics are known, or (ii) the learner can interact with the MDP online, but cannot
interact with the expert itself [67, 79]; see Appendix B.

7In fact, the opposite direction of this inequality holds as well, up to an absolute constant.

8

et al. [67] for tabular policies.8 Our main result for this section is a regret decomposition based
on the supervised learning error D2

H

(
Pπ̂,Pπ⋆)

that is horizon-independent and variance-dependent
[107, 106, 93]. To state the result, define σ2

π⋆ :=
∑H

h=1 E
π⋆[

(Qπ⋆

h (xh, π
⋆
h(xh))−Qπ⋆

h (xh, ah))
2
]

as the variance for the expert policy.

Theorem 3.1 (Horizon-independent regret decomposition). Assume R ≥ 1. For any pair of (poten-
tially stochastic) policies π⋆ and π̂ and any ε ∈ (0, e−1),

J(π⋆)− J(π̂) ≤
√
6σ2

π⋆ ·D2
H

(
Pπ̂,Pπ⋆

)
+O

(
R log(Rε−1)

)
·D2

H

(
Pπ̂,Pπ⋆)

+ ε. (7)

Applying this result with LogLossBC leads to the following guarantee.

Corollary 3.1 (Regret of LogLossBC). For any π⋆ ∈ Π, the LogLossBC algorithm in Eq. (4) ensures

that with prob. at least 1− δ, J(π⋆)− J(π̂) ≤ O(1) ·
√

σ2
π⋆ log(|Π|δ−1)

n +O(R log(n)) · log(|Π|δ−1)
n .

As we show, when the expert policy is stochastic, we can no longer hope for a “fast” 1/n-type rate,
and must instead settle for a “slow” 1/

√
n-type rate. The slow term in Corollary 3.1 is controlled

by the variance σ2
π⋆ for the optimal policy. In particular, if π⋆ is deterministic, then σ2

π⋆ = 0, and
Corollary 3.1 recovers our bound for the deterministic setting in Corollary 2.1 up to a log(n) factor.

3.1 Horizon-Independence and Optimality for Stochastic Experts
To understand the dependence on horizon in Corollary 3.1, we restrict our attention to the “parameter
sharing” case where log|Π| = O(1), and separately discuss the sparse and dense reward settings
(results summarized in Table 2).

Consider the sparse reward setting where R = O(1). Here, at first glance it would appear that
the variance σ2

π⋆ should scale with the horizon. Fortunately, this is not the case: The following
result—via a law-of-total-variance-type argument [4]—implies that Corollary 3.1 is fully horizon-
independent, with no explicit dependence on horizon when R = O(1) and log|Π| = O(1). For a
function f(x1:H , a1:H), let Varπ[f] denote the variance of f under (x1, a1), . . . , (xH , aH) ∼ π .

Proposition 3.1. We have that σ2
π⋆ ≤ Varπ

⋆[∑H
h=1 rh

]
≤ R2.

For the dense-reward regime where R = H , Proposition 3.1 gives J(π⋆)− J(π̂) ≲ H
√
log(|Π|)/n.

This is somewhat disappointing, as we now require Ω(H2) trajectories (quadratic sample complexity)
to learn a non-trivial policy, even when log|Π| = O(1). We show now that this quadratic lower
bound is qualitatively tight: the slow H/

√
n rate for σ2

π⋆ = H2 is necessary in both offline and
online IL. This reveals a fundamental difference between deterministic and stochastic experts, since
O(H) sample complexity is sufficient in the former case.

Theorem 3.2 (informal). For any σ2 ∈
[
H,H2

]
, there exists Π with |Π| = 2 such that σ2

π⋆ ≤ σ2

and any (offline or online) IL algorithm must have J(π⋆)− J(π̂) ≳
√

σ2

n with constant probability.

Nonetheless, it is possible to obtain linear-in-H sample complexity for dense rewards under
a recoverability-like condition. Let us define the signed recoverability constant via µ̃ =
maxx∈X ,a∈A,h∈[H]

∣∣(Qπ⋆

h (x, π⋆
h(x))−Qπ⋆

h (x, a)
∣∣. Note that µ̃ ∈ [0, R], and that µ̃ ≥ µ, since this

version counts actions a that outperform π⋆, not just those that underperform. It is immediate to see
that σ2

π⋆ ≤ µ̃2H . Hence, even if R = H , as long as µ̃ = O(1), Corollary 3.1 yields J(π⋆)− J(π̂) ≲√
H log(|Π|)/n, so that O

(H log|Π|
ε2

)
trajectories suffice to learn an ε-optimal policy.9

See Appendix H for further results concerning tightness of Theorem 3.1, including instance-dependent
lower bounds.

8As discussed at length in Rajaraman et al. [67], many prior works [70, 72] state results in a level of
generality that allows for stochastic experts, but the notions of supervised learning error found in these works
(e.g., TV distance) do not lead to tight rates when instantiated for stochastic experts.

9An interesting question for future work is to understand if a similar conclusion holds if we replace µ̃ with µ.

9

Consequences for online versus offline IL. The lower bound in Theorem G.1 holds even for
online imitation learning algorithms. Thus, similar to the deterministic setting, there is no online IL
algorithm that improves upon Theorem 3.1 uniformly for all policy classes. This means that even for
stochastic experts, online imitation learning cannot improve upon offline imitation learning in the
realizable setting without further assumptions (e.g., no parameter sharing) on the policy class under
consideration.

Proof sketch for Theorem 3.1. When the expert is stochastic, the trajectory-wise distance in Eq. (6),
is no longer useful (i.e., ρ(π⋆ ∥ π⋆) ̸= 0), which necessitates a more information-theoretic analysis.
Our starting point is the following scale-sensitive change-of-measure lemma for Hellinger distance.

Lemma 3.1 (Change-of-measure for Hellinger distance [34, 35]). Let P and Q be probability
distributions over a measurable space (X ,F). Then for all functions h : X → R,

|EP[h(X)]− EQ[h(X)]| ≤
√

1
2 (EP[h2(X)] + EQ[h2(X)]) ·D2

H(P,Q). (8)

In particular, if h ∈ [0, R] almost surely, then EP[h(X)] ≤ 2EQ[h(X)] +R ·D2
H(P,Q).

We sketch how to use Lemma 3.1 to prove a weaker version of Theorem 3.1, and defer the full
proof, which builds on this argument, to Appendix G.1. Define the sum of advantages for a
trajectory o = (x1, a1), . . . , (xH , aH) via ∆(o) =

∑H
h=1 Q

π⋆

h (xh, π
⋆
h(xh))−Qπ⋆

h (xh, ah). By the
performance difference lemma, we can write J(π⋆)− J(π̂) = Eπ̂[∆(o)], so applying Eq. (8) yields

J(π⋆)− J(π̂) = Eπ̂[∆(o)] ≲ Eπ⋆

[∆(o)] +

√
(Eπ̂[∆2(o)] + Eπ⋆

[∆2(o)]) ·D2
H(Pπ̂,Pπ⋆).

From here, we observe that Eπ⋆

[∆(o)] = 0 and Eπ⋆[
∆2(o)

]
= σ2

π⋆ (this follows because advantages
are a martingale difference sequence under Pπ⋆

), so all that remains is to bound the term Eπ̂
[
∆2(o)

]
.

A crude approach is to observe that |∆(o)| ≤ µ̃H , so that applying Lemma 3.1 gives ≲ Eπ⋆[
∆2(o)

]
+

(µ̃H)2·D2
H

(
Pπ̂,Pπ⋆)

, and consequently J(π⋆)−J(π̂) ≲
√
σ2
π⋆ ·D2

H

(
Pπ̂,Pπ⋆

)
+µ̃H ·D2

H

(
Pπ̂,Pπ⋆)

.
This falls short of Eq. (9) due to the suboptimal lower-order term, which does not recover Theorem 2.1
when π⋆ is deterministic (σ2

π⋆ = 0). The full proof in Appendix G.1 corrects this disparity using a sub-
tle and significantly more involved argument based on stopping times and martingale concentration.

4 Discussion and Additional Results
Our results clarify the role of horizon in offline and online IL, and show that—at least under standard
theoretical assumptions—the gap between online and offline IL is smaller than previously thought.

Benefits of online interaction Instabilities of offline IL [60, 27, 13] and benefits of online IL
[73, 52, 38, 6, 26, 51, 7, 108, 59] likely arise in practice, but existing assumptions in theoretical
research on imitation learning appear be too coarse to give insights into the true nature of these
phenomena. Toward developing a fine-grained, problem-dependent understanding of algorithms and
complexity for IL, in Appendix I, we highlight several special cases in which online interaction does
lead to benefits over offline imitation learning, but in a policy class-dependent fashion not captured
by existing theory. We identify three phenomena that can lead to improved sample complexity: (i)
representational benefits; (ii) value-based feedback; and (iii) exploration.

Further directions. Additional directions for future research include (i) developing and analyzing
imitation learning algorithms under control-theoretic assumptions that more directly capture practical
notions of instability [61, 88, 13, 14], and (ii) developing a more refined theory in the context of
language models, via the connection in Appendix B.3. For both settings, an important question is to
understand whether the notion of supervised learning error D2

H

(
Pπ̂,Pπ⋆)

we consider is a suitable
proxy for real-world performance, or whether more refined notions are required.

Additional results. Secondary results deferred to the appendix for space include (i) examples and
additional guarantees for LogLossBC and LogLossDagger (Appendix E); and (ii) additional lower
bounds and results concerning the tightness of Theorems 2.2 and 3.1 (Appendix H).

10

Acknowledgements
We thank Jordan Ash, Audrey Huang, Akshay Krishnamurthy, Max Simchowitz, and Cyril Zhang
for many helpful discussions. We thank Drew Bagnell for valuable comments and pointers to related
work.

References
[1] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In

Proceedings of the twenty-first international conference on Machine learning, page 1, 2004.

[2] A. Agarwal, N. Jiang, and S. M. Kakade. Reinforcement learning: Theory and algorithms.
2019.

[3] A. Ayoub, K. Wang, V. Liu, S. Robertson, J. McInerney, D. Liang, N. Kallus, and
C. Szepesvári. Switching the loss reduces the cost in batch reinforcement learning. arXiv
preprint arXiv:2403.05385, 2024.

[4] M. G. Azar, I. Osband, and R. Munos. Minimax regret bounds for reinforcement learning. In
International Conference on Machine Learning, pages 263–272, 2017.

[5] G. Bachmann and V. Nagarajan. The pitfalls of next-token prediction. arXiv preprint
arXiv:2403.06963, 2024.

[6] M. Bansal, A. Krizhevsky, and A. Ogale. Chauffeurnet: Learning to drive by imitating the
best and synthesizing the worst. arXiv preprint arXiv:1812.03079, 2018.

[7] M. Barnes. World scale inverse reinforcement learning in Google Maps. https://research.
google/blog/world-scale-inverse-reinforcement-learning-in-google-maps/,
2023. [Online; accessed 26-Oct-2024].

[8] P. L. Bartlett, D. J. Foster, and M. J. Telgarsky. Spectrally-normalized margin bounds for
neural networks. In Advances in Neural Information Processing Systems, 2017.

[9] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment:
An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

[10] A. Beygelzimer, V. Dani, T. Hayes, J. Langford, and B. Zadrozny. Error limiting reductions
between classification tasks. In Proceedings of the 22nd international conference on Machine
learning, pages 49–56, 2005.

[11] A. Beygelzimer, J. Langford, L. Li, L. Reyzin, and R. Schapire. Contextual bandit algorithms
with supervised learning guarantees. In Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, pages 19–26, 2011.

[12] S. Bhattamishra, K. Ahuja, and N. Goyal. On the ability and limitations of transformers to
recognize formal languages. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 7096–7116, 2020.

[13] A. Block, D. J. Foster, A. Krishnamurthy, M. Simchowitz, and C. Zhang. Butterfly effects
of sgd noise: Error amplification in behavior cloning and autoregression. International
Conference on Learning Representations (ICLR), 2024.

[14] A. Block, A. Jadbabaie, D. Pfrommer, M. Simchowitz, and R. Tedrake. Provable guarantees
for generative behavior cloning: Bridging low-level stability and high-level behavior. Advances
in Neural Information Processing Systems, 36, 2024.

[15] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel,
M. Monfort, U. Muller, and J. Zhang. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016.

[16] K. Brantley, W. Sun, and M. Henaff. Disagreement-regularized imitation learning. In Interna-
tional Conference on Learning Representations, 2019.

11

https://research.google/blog/world-scale-inverse-reinforcement-learning-in-google-maps/
https://research.google/blog/world-scale-inverse-reinforcement-learning-in-google-maps/

[17] M. Braverman, X. Chen, S. Kakade, K. Narasimhan, C. Zhang, and Y. Zhang. Calibration,
entropy rates, and memory in language models. In International Conference on Machine
Learning, pages 1089–1099. PMLR, 2020.

[18] C. L. Canonne. A short note on learning discrete distributions. arXiv preprint
arXiv:2002.11457, 2020.

[19] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University
Press, New York, NY, USA, 2006. ISBN 0521841089.

[20] J. D. Chang, M. Uehara, D. Sreenivas, R. Kidambi, and W. Sun. Mitigating covariate shift in
imitation learning via offline data without great coverage. Advances in Neural Information
Processing Systems, 2021.

[21] J. D. Chang, K. Brantley, R. Ramamurthy, D. Misra, and W. Sun. Learning to generate better
than your llm. arXiv preprint arXiv:2306.11816, 2023.

[22] C.-A. Cheng and B. Boots. Convergence of value aggregation for imitation learning. In
International Conference on Artificial Intelligence and Statistics, pages 1801–1809. PMLR,
2018.

[23] C.-A. Cheng, X. Yan, E. Theodorou, and B. Boots. Accelerating imitation learning with
predictive models. In The 22nd International Conference on Artificial Intelligence and
Statistics, pages 3187–3196. PMLR, 2019.

[24] C.-A. Cheng, A. Kolobov, and A. Agarwal. Policy improvement via imitation of multiple
oracles. Advances in Neural Information Processing Systems, 33:5587–5598, 2020.

[25] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:
Visuomotor policy learning via action diffusion. arXiv preprint arXiv:2303.04137, 2023.

[26] S. Choudhury, M. Bhardwaj, S. Arora, A. Kapoor, G. Ranade, S. Scherer, and D. Dey. Data-
driven planning via imitation learning. The International Journal of Robotics Research, 37
(13-14):1632–1672, 2018.

[27] P. De Haan, D. Jayaraman, and S. Levine. Causal confusion in imitation learning. Advances in
neural information processing systems, 32, 2019.

[28] D. L. Donoho and R. C. Liu. Geometrizing rates of convergence, II. The Annals of Statistics,
pages 633–667, 1991.

[29] J. Farebrother, J. Orbay, Q. Vuong, A. A. Taïga, Y. Chebotar, T. Xiao, A. Irpan, S. Levine, P. S.
Castro, and A. Faust. Stop regressing: Training value functions via classification for scalable
deep rl. arXiv preprint arXiv:2403.03950, 2024.

[30] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine. One-shot visual imitation learning via
meta-learning. In Conference on robot learning, pages 357–368. PMLR, 2017.

[31] P. Florence, C. Lynch, A. Zeng, O. A. Ramirez, A. Wahid, L. Downs, A. Wong, J. Lee,
I. Mordatch, and J. Tompson. Implicit behavioral cloning. In Conference on Robot Learning,
pages 158–168. PMLR, 2022.

[32] D. J. Foster and A. Krishnamurthy. Efficient first-order contextual bandits: Prediction, al-
location, and triangular discrimination. Neural Information Processing Systems (NeurIPS),
2021.

[33] D. J. Foster and A. Rakhlin. Foundations of reinforcement learning and interactive decision
making. arXiv preprint arXiv:2312.16730, 2023.

[34] D. J. Foster, S. M. Kakade, J. Qian, and A. Rakhlin. The statistical complexity of interactive
decision making. arXiv preprint arXiv:2112.13487, 2021.

[35] D. J. Foster, A. Rakhlin, A. Sekhari, and K. Sridharan. On the complexity of adversarial
decision making. Advances in Neural Information Processing Systems, 35:35404–35417,
2022.

12

[36] D. J. Foster, Y. Han, J. Qian, and A. Rakhlin. Online estimation via offline estimation: An
information-theoretic framework. arXiv preprint arXiv:2404.10122, 2024.

[37] N. Golowich, A. Rakhlin, and O. Shamir. Size-independent sample complexity of neural
networks. In Conference On Learning Theory, pages 297–299. PMLR, 2018.

[38] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik. Cognitive mapping and planning
for visual navigation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2616–2625, 2017.

[39] M. Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions of
the Association for Computational Linguistics, 8:156–171, 2020.

[40] S. Hanneke. Theory of disagreement-based active learning. Foundations and Trends® in
Machine Learning, 7(2-3):131–309, 2014.

[41] A. Havens and B. Hu. On imitation learning of linear control policies: Enforcing stability and
robustness constraints via lmi conditions. In 2021 American Control Conference (ACC), pages
882–887. IEEE, 2021.

[42] J. Ho and S. Ermon. Generative adversarial imitation learning. Advances in neural information
processing systems, 29, 2016.

[43] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751, 2019.

[44] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne. Imitation learning: A survey of learning
methods. ACM Computing Surveys (CSUR), 50(2):1–35, 2017.

[45] A. Hussein, E. Elyan, M. M. Gaber, and C. Jayne. Deep imitation learning for 3d navigation
tasks. Neural computing and applications, 29:389–404, 2018.

[46] B. Ibarz, J. Leike, T. Pohlen, G. Irving, S. Legg, and D. Amodei. Reward learning from human
preferences and demonstrations in atari. Advances in neural information processing systems,
31, 2018.

[47] N. Jiang and A. Agarwal. Open problem: The dependence of sample complexity lower bounds
on planning horizon. In Conference On Learning Theory, pages 3395–3398. PMLR, 2018.

[48] C. Jin, Q. Liu, and S. Miryoosefi. Bellman eluder dimension: New rich classes of RL problems,
and sample-efficient algorithms. Neural Information Processing Systems, 2021.

[49] L. Ke, S. Choudhury, M. Barnes, W. Sun, G. Lee, and S. Srinivasa. Imitation learning as
f-divergence minimization. In Algorithmic Foundations of Robotics XIV: Proceedings of the
Fourteenth Workshop on the Algorithmic Foundations of Robotics 14, pages 313–329. Springer,
2021.

[50] L. Ke, J. Wang, T. Bhattacharjee, B. Boots, and S. Srinivasa. Grasping with chopsticks:
Combating covariate shift in model-free imitation learning for fine manipulation. In 2021
IEEE International Conference on Robotics and Automation (ICRA), pages 6185–6191. IEEE,
2021.

[51] M. Kelly, C. Sidrane, K. Driggs-Campbell, and M. J. Kochenderfer. Hg-dagger: Interactive
imitation learning with human experts. In 2019 International Conference on Robotics and
Automation (ICRA), pages 8077–8083. IEEE, 2019.

[52] B. Kim, A.-m. Farahmand, J. Pineau, and D. Precup. Learning from limited demonstrations.
Advances in Neural Information Processing Systems, 26, 2013.

[53] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. International Conference
on Learning Representations, 2015.

[54] M. Laskey, J. Lee, R. Fox, A. Dragan, and K. Goldberg. Dart: Noise injection for robust
imitation learning. In Conference on robot learning, pages 143–156. PMLR, 2017.

13

[55] Y. LeCun. Do large language models need sensory grounding for meaning and understanding.
In Workshop on Philosophy of Deep Learning, NYU Center for Mind, Brain, and Consciousness
and the Columbia Center for Science and Society, 2023.

[56] Y. Li and C. Zhang. On efficient online imitation learning via classification. Advances in
Neural Information Processing Systems, 35:32383–32397, 2022.

[57] Y. Li, J. Song, and S. Ermon. Infogail: Interpretable imitation learning from visual demonstra-
tions. Advances in neural information processing systems, 30, 2017.

[58] B. Liu, J. T. Ash, S. Goel, A. Krishnamurthy, and C. Zhang. Transformers learn shortcuts to
automata. In The Eleventh International Conference on Learning Representations, 2022.

[59] T. G. W. Lum, M. Matak, V. Makoviychuk, A. Handa, A. Allshire, T. Hermans, N. D. Ratliff,
and K. Van Wyk. Dextrah-g: Pixels-to-action dexterous arm-hand grasping with geometric
fabrics. arXiv preprint arXiv:2407.02274, 2024.

[60] U. Muller, J. Ben, E. Cosatto, B. Flepp, and Y. Cun. Off-road obstacle avoidance through
end-to-end learning. Advances in neural information processing systems, 18, 2005.

[61] D. Pfrommer, T. Zhang, S. Tu, and N. Matni. Tasil: Taylor series imitation learning. Advances
in Neural Information Processing Systems, 35:20162–20174, 2022.

[62] Y. Polyanskiy and Y. Wu. Lecture notes on information theory. 2014.

[63] D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in
neural information processing systems, 1, 1988.

[64] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models are
unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[65] A. Raffin. Rl baselines3 zoo. https://github.com/DLR-RM/rl-baselines3-zoo, 2020.

[66] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann. Stable-baselines3:
Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22
(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.

[67] N. Rajaraman, L. Yang, J. Jiao, and K. Ramchandran. Toward the fundamental limits of
imitation learning. Advances in Neural Information Processing Systems, 33:2914–2924, 2020.

[68] N. Rajaraman, Y. Han, L. Yang, J. Liu, J. Jiao, and K. Ramchandran. On the value of interaction
and function approximation in imitation learning. Advances in Neural Information Processing
Systems, 34:1325–1336, 2021.

[69] N. Rajaraman, Y. Han, L. F. Yang, K. Ramchandran, and J. Jiao. Provably breaking
the quadratic error compounding barrier in imitation learning, optimally. arXiv preprint
arXiv:2102.12948, 2021.

[70] S. Ross and D. Bagnell. Efficient reductions for imitation learning. In Proceedings of the
thirteenth international conference on artificial intelligence and statistics, pages 661–668.
JMLR Workshop and Conference Proceedings, 2010.

[71] S. Ross and J. A. Bagnell. Reinforcement and imitation learning via interactive no-regret
learning. arXiv preprint arXiv:1406.5979, 2014.

[72] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured predic-
tion to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pages 627–635. JMLR Workshop and Conference
Proceedings, 2011.

[73] S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey, J. A. Bagnell, and
M. Hebert. Learning monocular reactive uav control in cluttered natural environments. In
2013 IEEE international conference on robotics and automation, pages 1765–1772. IEEE,
2013.

14

https://github.com/DLR-RM/rl-baselines3-zoo
http://jmlr.org/papers/v22/20-1364.html

[74] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[75] A. Sekhari, K. Sridharan, W. Sun, and R. Wu. Selective sampling and imitation learning via
online regression. Advances in Neural Information Processing Systems, 36, 2024.

[76] N. M. Shafiullah, Z. Cui, A. A. Altanzaya, and L. Pinto. Behavior transformers: Cloning k
modes with one stone. Advances in neural information processing systems, 35:22955–22968,
2022.

[77] J. Spencer, S. Choudhury, A. Venkatraman, B. Ziebart, and J. A. Bagnell. Feedback in imitation
learning: The three regimes of covariate shift. arXiv preprint arXiv:2102.02872, 2021.

[78] W. Sun, A. Venkatraman, G. J. Gordon, B. Boots, and J. A. Bagnell. Deeply aggrevated:
Differentiable imitation learning for sequential prediction. In International conference on
machine learning, pages 3309–3318. PMLR, 2017.

[79] G. Swamy, S. Choudhury, J. A. Bagnell, and S. Wu. Of moments and matching: A game-
theoretic framework for closing the imitation gap. In International Conference on Machine
Learning, pages 10022–10032. PMLR, 2021.

[80] G. Swamy, N. Rajaraman, M. Peng, S. Choudhury, J. Bagnell, S. Z. Wu, J. Jiao, and K. Ram-
chandran. Minimax optimal online imitation learning via replay estimation. Advances in
Neural Information Processing Systems, 35:7077–7088, 2022.

[81] U. Syed and R. E. Schapire. A game-theoretic approach to apprenticeship learning. Advances
in neural information processing systems, 20, 2007.

[82] U. Syed and R. E. Schapire. A reduction from apprenticeship learning to classification.
Advances in neural information processing systems, 23, 2010.

[83] U. Syed, M. Bowling, and R. E. Schapire. Apprenticeship learning using linear programming.
In Proceedings of the 25th international conference on Machine learning, pages 1032–1039,
2008.

[84] D. Tiapkin, D. Belomestny, D. Calandriello, E. Moulines, A. Naumov, P. Perrault, M. Valko,
and P. Menard. Demonstration-regularized rl. International Conference on Learning Repre-
sentations, 2024.

[85] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033.
IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

[86] M. Towers, J. K. Terry, A. Kwiatkowski, J. U. Balis, G. d. Cola, T. Deleu, M. Goulão,
A. Kallinteris, A. KG, M. Krimmel, R. Perez-Vicente, A. Pierré, S. Schulhoff, J. J. Tai, A. T. J.
Shen, and O. G. Younis. Gymnasium, Mar. 2023. URL https://zenodo.org/record/
8127025.

[87] S. Tu, R. Frostig, and M. Soltanolkotabi. Learning from many trajectories. arXiv preprint
arXiv:2203.17193, 2022.

[88] S. Tu, A. Robey, T. Zhang, and N. Matni. On the sample complexity of stability constrained
imitation learning. In Learning for Dynamics and Control Conference, pages 180–191. PMLR,
2022.

[89] S. A. van de Geer. Empirical Processes in M-Estimation. Cambridge University Press, 2000.

[90] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi,
R. Powell, T. Ewalds, P. Georgiev, et al. Grandmaster level in starcraft ii using multi-agent
reinforcement learning. Nature, 575(7782):350–354, 2019.

[91] M. J. Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48.
Cambridge University Press, 2019.

15

https://zenodo.org/record/8127025
https://zenodo.org/record/8127025

[92] K. Wang, K. Zhou, R. Wu, N. Kallus, and W. Sun. The benefits of being distributional:
Small-loss bounds for reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2023.

[93] K. Wang, O. Oertell, A. Agarwal, N. Kallus, and W. Sun. More benefits of being distributional:
Second-order bounds for reinforcement learning. arXiv preprint arXiv:2402.07198, 2024.

[94] R. Wang, S. S. Du, L. F. Yang, and S. M. Kakade. Is long horizon reinforcement learning more
difficult than short horizon reinforcement learning? Neural Information Processing Systems
(NeurIPS), 2020.

[95] K. Wen, Y. Li, B. Liu, and A. Risteski. Transformers are uninterpretable with myopic methods:
a case study with bounded dyck grammars. Advances in Neural Information Processing
Systems, 36, 2024.

[96] D. Williams. Probability with martingales. Cambridge university press, 1991.

[97] W. H. Wong and X. Shen. Probability inequalities for likelihood ratios and convergence rates
of sieve mles. The Annals of Statistics, pages 339–362, 1995.

[98] T. Xu, Z. Li, Y. Yu, and Z.-Q. Luo. Understanding adversarial imitation learning in small
sample regime: A stage-coupled analysis. arXiv preprint arXiv:2208.01899, 2022.

[99] X. Yan, B. Boots, and C.-A. Cheng. Explaining fast improvement in online imitation learning.
In Uncertainty in Artificial Intelligence, pages 1874–1884. PMLR, 2021.

[100] S. Yao, B. Peng, C. Papadimitriou, and K. Narasimhan. Self-attention networks can process
bounded hierarchical languages. In Proceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pages 3770–3785, 2021.

[101] A. Zanette and E. Brunskill. Tighter problem-dependent regret bounds in reinforcement
learning without domain knowledge using value function bounds. In International Conference
on Machine Learning, pages 7304–7312. PMLR, 2019.

[102] T. Zhang. From ϵ-entropy to KL-entropy: Analysis of minimum information complexity
density estimation. The Annals of Statistics, 34(5):2180–2210, 2006.

[103] T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg, and P. Abbeel. Deep imitation
learning for complex manipulation tasks from virtual reality teleoperation. In 2018 IEEE
international conference on robotics and automation (ICRA), pages 5628–5635. IEEE, 2018.

[104] Z. Zhang, X. Ji, and S. Du. Is reinforcement learning more difficult than bandits? a near-
optimal algorithm escaping the curse of horizon. In Conference on Learning Theory, pages
4528–4531. PMLR, 2021.

[105] Z. Zhang, X. Ji, and S. Du. Horizon-free reinforcement learning in polynomial time: the power
of stationary policies. In Conference on Learning Theory, pages 3858–3904. PMLR, 2022.

[106] H. Zhao, J. He, D. Zhou, T. Zhang, and Q. Gu. Variance-dependent regret bounds for linear
bandits and reinforcement learning: Adaptivity and computational efficiency. In The Thirty
Sixth Annual Conference on Learning Theory, pages 4977–5020. PMLR, 2023.

[107] R. Zhou, Z. Zihan, and S. S. Du. Sharp variance-dependent bounds in reinforcement learning:
Best of both worlds in stochastic and deterministic environments. In International Conference
on Machine Learning, pages 42878–42914. PMLR, 2023.

[108] Z. Zhuang, Z. Fu, J. Wang, C. Atkeson, S. Schwertfeger, C. Finn, and H. Zhao. Robot parkour
learning. arXiv preprint arXiv:2309.05665, 2023.

[109] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse reinforce-
ment learning. In Aaai, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.

16

Contents of Appendix
A Omitted Tables 18

B Additional Related Work 18
B.1 Theory of Imitation Learning and Reinforcement Learning 18
B.2 Empirical Research on Imitation Learning . 19
B.3 Autoregressive Language Modeling . 20

C Experiments 20
C.1 Experimental Setup . 20
C.2 Results . 23

D Technical Tools 25
D.1 Tail Bounds . 25
D.2 Information Theory . 26
D.3 Reinforcement Learning . 26
D.4 Maximum Likelihood Estimation . 27

I Proofs and Supporting Results 28

E Examples and Supporting Results from Section 2 and Section 3 28
E.1 General Guarantees and Examples for Log-Loss Behavior Cloning 28
E.2 Online IL Framework and Sample Complexity Bounds for Log-Loss Dagger 31

F Proofs from Section 2 34
F.1 Proof of Theorem 2.1 . 34
F.2 Proof of Theorem 2.2 . 36

G Proofs from Section 3 37
G.1 Proof of Theorem 3.1 . 37
G.2 Formal Statement and Proof of Theorem G.1 . 44
G.3 Additional Proofs . 46

II Additional Results 47

H Additional Lower Bounds 47
H.1 Lower Bounds for Online Imitation Learning in Active Interaction Model 47
H.2 An Instance-Dependent Lower Bound for Stochastic Experts 49
H.3 Tightness of the Hellinger Distance Reduction . 51

I Benefits of Online Interaction 53
I.1 The Role of Misspecification . 53
I.2 Representational Benefits . 53
I.3 Benefits of Value-Based Feedback . 54
I.4 Benefits from Exploration . 55
I.5 Proofs . 55

17

A Omitted Tables

Worst-case Low-noise µ̃-recoverable
Sparse

Rewards Õ

(
R
√

log(|Π|)
n

)
Õ

(√
σ2
π⋆ log(|Π|)

n
+ R log(|Π|)

n

)
N/A

Dense
Rewards Õ

(
H
√

log(|Π|)
n

)
Õ

(√
σ2
π⋆ log(|Π|)

n
+ H log(|Π|)

n

)
Õ

(
µ̃
√

H log(|Π|)
n

+ H log(|Π|)
n

)
Table 2: Summary of upper bounds for stochastic experts (Corollary 3.1). Each cell denotes the
expected regret of a policy learned with LogLossBC; lower bounds are more nuanced and discussed
in Section 3. Here Π is the policy class, R is the cumulative reward range, H is the horizon, n
is the number of expert trajectories, σ2

π⋆ is the variance of the expert policy , and µ̃ is the signed
recoverability parameter ; see Section 3 for definitions.10

B Additional Related Work
B.1 Theory of Imitation Learning and Reinforcement Learning
Classical theoretical works in imitation learning, beginning from the work of Ross and Bagnell [70]
observes that behavior cloning (for the specific indicator loss in Section 1.1) can incur quadratic
dependence on horizon, and shows that online interaction, via algorithms like Dagger and Aggrevate,
can obtain improved sample complexity under recoverability-type conditions [70, 72, 71, 78]. Further
works along this line include Cheng and Boots [22], Cheng et al. [24, 23], Yan et al. [99], Spencer
et al. [77].

These papers can be thought of as supervised learning reduction, in the sense that—in the vein
of Eq. (1)—they guarantee that the imitation learning performance is controlled by an appropriate
notion of supervised learning performance. Notably, this holds for any policy π̂, which means that in
practice, the rollout performance is good whenever supervised learning succeeds, even if we do not
necessarily have a provable guarantee for the generalization of π̂ (e.g., for neural networks, where
understanding generalization is an active area of research). However, as noted throughout this paper
and elsewhere [67–69], these works typically state regret guarantees in terms of different, often
incomparable notions of supervised learning performance, and avoid giving concrete, end-to-end
guarantees for specific policy classes of interest. This can make it challenging to objectively evaluate
optimality, and to understand whether limitations of specific algorithms are due to suboptimal design
choices versus information-theoretic limitations. For example, Li and Zhang [56] show that in some
cases, supervised learning oracles that satisfy assumptions required by prior work do not actually
exist.

Minimax sample complexity of imitation learning. More recently, a line of work beginning
with Rajaraman et al. [67] revisits the minimax sample complexity of imitation learning, aiming
to provide end-to-end sample complexity guarantees and lower bounds, but primarily focused on
tabular MDPs and policies [67–69, 80]. Notably, Rajaraman et al. [67] show that when Π is the set
of all non-stationary policies in a tabular MDP and R = H , online IL methods can achieve O(µH)
sample complexity, while offline IL methods must pay Ω(H2); this is consistent with our findings
in Section 2, as log|Π| = Ω(H) for this setting. Other interesting findings from this line of work
include the observation that when the MDP dynamics are known, the sample complexity for offline
IL with non-stationary tabular policies can be brought down to O(H3/2). As noted in Section 2,
Rajaraman et al. [68] show that offline IL methods can obtain O(H) sample complexity for linearly
parameterized policies under parameter sharing; our analysis of LogLossBC for the special case of
deterministic policies shows that it can be viewed as implicitly minimizing the objective they consider.

Xu et al. [98] also consider the problem of horizon independence in IL. Their work focuses on tabular
MDPs and policies, and shows with knowledge of the dynamics, it is possible to achieve horizon
dependence for a restricted class of MDPs termed RBAS-MDPs. In contrast, our work achieves
horizon independence for general MDPs, without knowledge of dynamics.

Compared to the works above, we focus on general finite classes Π. Various works on theoretical
reinforcement learning [2, 33] have observed that finite classes are a useful test case for general
function approximation, because they are arguably the simplest type of policy class from a generaliza-

18

tion perspective, yet do not have any additional structure (e.g., linearity) that could lead to spurious
conclusions that do not extend to rich function classes like neural networks.

Recent work of Tiapkin et al. [84] provides generalization guarantees for behavior cloning with
the logarithmic loss, but their results scale linearly with the horizon, and thus cannot give tight
guarantees for policy classes with parameter sharing. In addition, their results are stated in terms of
KL-divergence and, as a consequence, require a lower bound on the action densities for the policy
class under consideration. We expect that both of these limitations are inherent to KL divergence.
Tiapkin et al. [84] also give variance-dependent bounds on rollout performance similar to Theorem 3.1,
but their results require a bound on KL divergence (which is stronger than a bound on Hellinger
distance), and thus are unlikely to meaningfully capture optimal horizon dependence. These bounds
on rollout performance also do not recover the notion of variance in Theorem 3.1.

We also mention in passing Sekhari et al. [75], who consider active imitation learning algorithms,
and focus on obtaining improved sample complexity with respect to dependence on the accuracy ε
(as opposed to H), under strong distributional assumptions in the vein of active learning [40].

Inverse reinforcement learning. A long line of research on inverse reinforcement learning and
related techniques considers a setting in which either a) the dynamics of the MDP M⋆ are known, or
b) it is possible to interact with M⋆ online (without expert feedback), with empirical [1, 109] and
theoretical results [81, 83, 82, 16, 20]. This setting encompasses generative adversarial imitation
learning and related moment matching methods [42, 57, 49, 79]. A detailed discussion is out of
scope for the present work, but we believe this framework can improve over the sample complexity
of offline IL in some but not all situations (e.g., Rajaraman et al. [67]).

Benefits of logarithmic loss. Our work draws inspiration from Foster and Krishnamurthy [32],
who observed that the logarithmic loss can have benefits over square loss when outcomes are
heteroskedastic, and used this observation to derive first-order regret bounds for contextual bandits.
Subsequent works have extended their analysis technicals to derive first-order regret bounds in
various reinforcement learning settings [92, 93, 3].11 To the best of our knowledge, our work is the
first to uncover a decision making setting in which switching to the logarithmic loss is beneficial
even in a minimax sense. We emphasize that while our analysis uses the information-theoretic
machinery introduced in Foster and Krishnamurthy [32] and related work [34, 35], our results are
quite specialized to structure of the imitation learning setting, and cannot directly be derived from
any of the results in Foster and Krishnamurthy [32], Wang et al. [92, 93], Ayoub et al. [3].

Horizon-free reinforcement learning. Our results also take inspiration from the line of research on
horizon-independent sample complexity bounds for reinforcement learning [47, 101, 94, 104, 105],
as well as a closely related line of research on variance-dependent regret bounds [107, 106, 93].12

These papers provide sample complexity bounds for reinforcement learning that have little or no
explicit dependence on horizon whenever rewards are normalized such that

∑H
h=1 rh ∈ [0, 1]. We

consider a simpler setting (imitation learning), but provide guarantees that hold under general function
approximation, while the works above are restricted to either tabular MDPs or MDPs with linear/low-
rank structure. Nonetheless, our proof of Theorem 3.1 makes use of concentration arguments inspired
by Zhang et al. [104, 105].

B.2 Empirical Research on Imitation Learning
Many empirical works have observed compounding error in behavior cloning. Outside of online
imitation learning, mitigations include noise injection at data collection time [54, 50] or inverse RL
methods that assume knowledge of system dynamics [109]. Other works take a control-theoretic
perspective [88, 41, 61, 14], and augment behavior cloning with techniques designed to ensure
incremental stability (or other control-theoretic notions of stability) of system.

Online imitation learning. Many empirical works have noted benefits of online imitation learning
methods like Dagger over classical behavior cloning [73, 52, 38, 6, 26, 51, 7, 108, 59]. These results
are not in contradiction to our findings, as they typically do not ablate the effect of the loss function

11We also mention in passing the work of Farebrother et al. [29], which observes that switching to the log-loss
is beneficial empirically for approximate value iteration methods in offline reinforcement learning.

12Compared to variance-dependent bounds for RL in Zhou et al. [107], Zhao et al. [106], Wang et al. [93]
an interesting feature of Theorem 3.1 is that it only depends on variance for π⋆, whereas these works typically
depend on worst-case variance over all policies or similar quantities.

19

(e.g., [70] uses the squared hinge loss, Ross et al. [72] uses the hinge loss, and Ross et al. [73] uses
the square loss). It is also possible that the perceived benefits arise from factors beyond horizon (e.g.,
representational benefits), as discussed in Appendix I.

B.3 Autoregressive Language Modeling
Autoregressive language modeling with the standard next-token prediction objective [64] can be
viewed as an instance of behavior cloning with the logarithmic loss. In this setting, M⋆ corresponds
to a token-level MDP. Here A is a space or vocabulary of tokens The initial state is x1 = z ∼ P0,
where z is a prompt or context. Given the prompt, for each h = 1, . . . ,H the action ah ∈ A is a
new token, which is concatenated to the state via the deterministic dynamics xh+1 ← (z, a1:h). Via
Bayes’ rule, an expert policy

π⋆(a1:H | z) =
H∏

h=1

π⋆
h(ah | z, a1:h−1) =

H∏
h=1

π⋆
h(ah | xh)

can represent an arbitrary conditional distribution over sequences, from which a training setD = {oi}
with oi = (zi, ai

1, . . . , a
i

H) is generated. With this setup, log-loss behavior cloning

π̂ = argmax
π∈Π

n∑
i=1

H∑
h=1

log(πh(a
i

h | zi, ai

1:h−1))

is equivalent to the standard next-token prediction objective for unsupervised language model pre-
training [64], with the class Π parameterized by a transformer or a similar neural net architecture. In
this context, long-range error amplification arising from the next-token prediction objective (often
referred to as exposure bias) has been widely observed by prior work [43, 17, 13], and in some cases
speculated to be a fundamental limitation [55, 5].

Applying our results. To apply our results, consider a fixed reward function r = {rh}Hh=1, which
might measure performance for a particular task of interest (e.g., question answering or commonsense
reasoning). Then, for a model π, J(π) corresponds to rollout performance at the task for an
autoregressively generated sequence (i.e., given z ∼ P0, we sample ah ∼ πh(· | z, a1:h−1) for all
h ∈ [H]). For this setting, Theorem 3.1 states that

J(π⋆)− J(π̂) ≤ Õ

(√
σ2
π⋆ ·D2

H

(
Pπ̂,Pπ⋆

)
+R ·D2

H

(
Pπ̂,Pπ⋆))

, (9)

where σ2
π⋆ =

∑H
h=1 E

π⋆[
(Qπ⋆

h (z, a1:h)− V π⋆

h (z, a1:h−1))
2
]
. In particular, as long as the cumula-

tive reward for the task is bounded by R = O(1) (e.g., if we receive an episode-level reward rH = 1
if a question is answered correctly, and receive zero reward otherwise), the rollout performance has no
explicit dependence on the sequence length, except through the generalization error D2

H

(
Pπ̂,Pπ⋆)

. In
light of this result, we expect that error amplification observed in practice may arise from challenges
in minimizing the generalization error D2

H

(
Pπ̂,Pπ⋆)

itself (e.g., architecture, data generation process,
optimization [17, 13]), rather than fundamental limits of next-token prediction.

C Experiments
In this section, we validate our theoretical results empirically. We first provide a detailed overview of
our experimental setup, including the control and natural language tasks we consider, then present
empirical results for each task individually. We ran all of our experiments on NVidia V100 GPUs.
Training time for each experiment varied by environment, but all were less than 6 hours.

C.1 Experimental Setup
We evaluate the effect of horizon on the performance of LogLossBC in three environments. We
begin by describing our training and evaluation protocol (which is agnostic to the environment under
consideration), then provide details for each environment.

In each experiment, we begin with an expert policy π⋆ (which is always a neural network; details
below) and construct an offline dataset by rolling out with it n times for H timesteps per episode.
To train the imitator policy π̂, we use the same architecture as the expert, but randomly initialize
the weights and use stochastic gradient descent with the Adam optimizer to minimize the LogLossBC

20

200 400 600
Horizon

−0.10

−0.05

0.00

0.05

0.10

E
xp

ec
te

d
R

eg
re

t 5 trajectories

10 trajectories

20 trajectories

50 trajectories

100 trajectories

500 trajectories

MuJoCo

(a)

100 200 300
Horizon

0.05

0.10

0.15

0.20

0.25

0.30

E
xp

ec
te

d
R

eg
re

t

5 trajectories

10 trajectories

50 trajectories

100 trajectories

200 trajectories

Atari

(b)

Figure 2: Dependence of expected regret on the horizon for multiple choices for the number of
imitator trajectories n. (a) Continuous control environment Walker2d-v4. (b) Discrete Atari environ-
ment BeamriderNoFrameskip-v4. For both environments, increasing the horizon does not lead to a
significant increase in regret, as predicted by our theory.

objective for the offline dataset; this setup ensures that the realizability assumption used by our main
results (Assumption 1.1) is satisfied. We repeat this entire process for varying values of H .

To evaluate the regret J(π⋆)− J(π̂) after training, we approximate the average reward of the imitator
policy π̂ by selecting new random seeds and collecting n trajectories of length H by rolling out with
π̂; we approximate the average reward of the expert π⋆ in the same fashion, and we also compute
several auxiliary performance measures (details below) that aim to capture the distance between
π̂ and π⋆. In all environments, we normalize rewards so that the average reward of the expert is at
most 1, in order to bring us to the sparse reward setting in Section 1.1 and keep the range of the
possible rewards constant as a function of the (varying) horizon.

We consider four diverse environments, with the aim of evaluating LogLossBC in qualitatively
different domains: (i) Walker2d, a classical continuous control task from MuJoCo [86, 85] where
the learner attempts to make a stick figure-like agent walk to the right by controlling its joints; (ii)
Beamrider, a standard discrete-action RL task from the Atari suite [9], where the learner attempts to
play the game of Beamrider; (iii) Car, a top-down discrete car racing environment where the car has
to avoid obstacles to reach a goal, and (iv) Dyck, an autoregressive language generation task where
the agent is given a sequence of brackets in {{, }, [,], (,)} and has to close all open brackets in the
correct order.

We emphasize diversity in task selection in order to demonstrate the generality of our results, covering
discrete and continuous actions spaces, as well as both control and language generation. For some
of the environment (Walker2d, Beamrider), the task is intended to be “stateless”, in the sense that
varying the horizon H does not change the difficulty of the task itself (e.g., complexity of the expert
policy π⋆), allowing for an honest evaluation of the difficulty of the learning problem as we vary
the horizon H . For other domains, such as Dyck, horizon dependence is more nuanced, as here the
capacity required to represent the expert grows as the horizon increases; this manifests itself in our
theoretical results through the realizability condition (Assumption 1.1), which necessitates a more
complex function class Π as H increases.

We now provide details for our experimental setup for each environment.

Walker2d. We use the Gymnasium [86] environment Walker2d-v4, which has continuous state and
action spaces of dimensions 17 and 6 respectively. The agent is rewarded for moving to the right and
staying alive as well as being penalized for excessively forceful actions; because we vary the horizon
H , in order to make the comparison fair, we normalize the rewards so that our trained expert always
has average reward 1. Our expert is a depth-2 MLP with width 64. We use the Stable-Baselines3
[66] implementation of the Proximal Policy Optimization (PPO) algorithm [74] with default settings
to train the expert for 500K steps. The policy’s action distribution is Gaussian, with the mean and
covariance determined by the MLP; we use this for computation of the logarithmic loss. For data
collection, we enforce a deterministic expert by always playing the mean of the Gaussian distribution
produced by their policy. Our imitator policy uses the same architecture as the expert policy, with the

21

2000 4000 6000 8000 10000
Number of Trajectories

0.0

0.2

0.4

0.6

0.8

1.0

E
xp

ec
te

d
R

eg
re

t

Dyck Language

horizon 10

horizon 20

horizon 30

horizon 40

(a)

10 20 30 40
Horizon

0.9

1.0

1.1

1.2

1.3

L
og

P
ro

d
N

or
m

Log Prod Norm

Car

Dyck

(b)

Figure 3: (a) Relationship between the number of expert trajectories and expected regret for the
Dyck environment multiple choices of horizon H . The expert is trained to produce valid Dyck words
of length H , and the imitator’s ability to generate a valid word is evaluated. We find that regret
increases as a function of H . (b) Logarithm of the product of weight matrix norms for the expert
policy network as a function of H , for Dyck and Car environments. The log-product-norm acts as a
proxy for complexity for the class Π; we rescale such that log-product-norm at H = 10 is 1.0 for
both domains. For Dyck, we find that as H increases, the complexity of Π required to represent the
expert policy (as measured by the log-product-norm) also increases, explaining the increasing regret
in (a). However, the gain in log-product-norm for the Car domain is much lower, which is in line
with the fact that the regret for the Car domain exhibits only mild scaling with horizon.

weights re-initialized randomly. We train the imitator using the logarithmic loss by default, but as an
ablation, we also evaluate the effect of training with the mean-squared-error loss on the Euclidean
norm over the actions. We train using the Adam optimizer [53] with a learning rate of 10−3 and a
batch size of 128. We stop training early based on the validation loss on a held out set of expert
trajectories. Note that the expert and imitator policies above are both stationary policies.

Beamrider. We use the Gymnasium environment BeamRiderNoFrameskip-v4, which has 9 discrete
actions and a 210x160x3 image as the state; the rewards are computed as a function of how many
enemies are destroyed. As in the case of the previous setup, we account for the varying of H by
normalizing expert rewards to be 1. Here we do not train our expert ourselves, but instead use
the trained PPO agent provided by Raffin [65], which is a convolutional neural network. We use
the same architecture for our imitator policy, with the weights re-initialized randomly. Here, the
expert (and imitator) policies map the observation to a point on the probability simplex over actions,
and so logarithmic loss computation is immediate. Similar to the case of Walker2d, we enforce a
deterministic expert for collecting trajectories by taking the action with maximal probability. We
then train our imitators using the same setup as in the Walker2d environment. As with Walker2d, the
expert and imitator here are both stationary policies.

Car. We introduce a simple top-down navigation task where the agent is a “car” that always moves
forward by one step, but can take actions to move left, right, or remain in its lane to avoid obstacles
and reach the desired destination. There are M possible lanes. At timestep h ∈ [H + 1], if the agent
is in lane i ∈ [M], then the agent’s state is (i, h). We view the state space as a M × (H + 1) grid; a
given point (i, j) in the grid can be empty, or contain an obstacle, or contain the agent. The agent’s
action space consists of 3 possible actions: stay in the current lane ((i, h) 7→ (i, h+ 1)), move one
step left ((i, h) 7→ (i − 1, h + 1)), or move one step right ((i, h) 7→ (i + 1, h + 1)). If the agent’s
action causes it to collide with an obstacle or the boundary of the grid, it is sent to an absorbing state.
The agent gets a reward of 1 for reaching the goal state for the first time, and a reward of 0 otherwise.
When the agent occupies a state (i, h), it observes an image-based observation xh showing the state
of all lanes for V steps ahead where V is the size of the viewing field. At the start of each episode,
we randomly sample obstacles positions, the start position, and the goal position. The goal can be
reached after H actions, and it is always possible to reach the goal.

Dyck. In addition to the RL environments above, we evaluate LogLossBC for autoregressive lan-
guage generation with transformers (cf. Appendix B.3), where the goal of the “agent” is to complete
a valid word of a given length in a Dyck language; this has emerged as a popular sandbox for

22

5000 10000 15000 20000
Number of Trajectories

0.00

0.05

0.10

0.15

0.20

0.25

0.30

E
xp

ec
te

d
R

eg
re

t

Car (Log Loss)

horizon 10

horizon 20

horizon 30

horizon 40

(a)

5000 10000 15000 20000
Number of Trajectories

0.00

0.05

0.10

0.15

0.20

0.25

0.30

E
xp

ec
te

d
R

eg
re

t

Car (MSE Loss)

horizon 10

horizon 20

horizon 30

horizon 40

(b)

Figure 4: Dependence of expected regret on the number of expert trajectories for Car environment
under varying values for horizon H for log-loss (a) and mean-squared loss (b). The expert policy
network is trained on a set of 2× 104 episodes generated by an optimal policy via behavior cloning.
We use LogLossBC to train imitator policy for varying values of the horizon H and number of
trajectories n. For both losses, we find that the expected regret goes down as the number of expert
trajectories increases, but degrades slightly as a function of H .

understanding the nuances of autoregressive text generation in theory [100, 39, 12] and empirically
[58, 95]. We recall that a Dyck language Dyckk consists of 2k matched symbols thought of as open
and closed parentheses, with concatenations being valid words if the parentheses are closed in the
correct order. For example, if we define the space of characters as ‘()’, ‘[]’, and ‘{}’, then ‘([()]){}’
is a valid word, whereas ‘([)]’ and ‘((({}’ are not.

Our experiments use the Dyck language Dyck3. For our expert, we train an instance of GPT-2
small [64] with 6 layers, 3 heads, and 96 hidden dimensions from scratch to produce valid Dyck
words. In particular, the training dataset consists of random Dyck prefixes that require exactly H
actions (symbols) to complete. To imitate this expert, we train a GPT-2 small model with the same
architecture, but with randomly initialized weights on an offline dataset of sequences generated by
the expert. We assign a reward 1 to each trajectory if the generated word is valid, and assign reward
0 otherwise. We use Adam optimization for training, with our experts trained for 40K iterations
in order to ensure their quality. Note that in this environment, the expert and imitator policies are
non-stationary, but use parameter sharing via the transformer architecture.

C.2 Results
We summarize our main findings below.

Effect of horizon on regret. Figures 1 and 2 plot the relationship between expected regret and
the number of expert trajectories for the Walker2d (MuJoCo), and BeamriderNoFrameskip (Atari)
environments, as the horizon H is varied from 50 to 500. For both environments, we find regret
is largely independent of the horizon, consistent with our theoretical results. In fact, in the case of
BeamriderNoFrameskip, we find that increasing the horizon leads to better regret. To understand this,
note that our theory provides horizon-agnostic upper bounds independent of the environment. Our
lower bounds are constructed for specific worst-case environments, and not rule out the possibility
of improved performance with longer horizons environments with favorable structure. We conjecture
that this phenomenon is related to the fact that longer horizons yield fundamentally more data, as
the total number of state-action pairs in the expert dataset is equal to nH .13

Figure 3(a) plots our findings for the Dyck environment. Here, we see that with the number of
trajectories n fixed, regret does increase with H , which might appear to contradict our theory at first
glance. However, we note that the policy class itself must become larger as H increases, as the task
itself becomes more difficult (equivalently, the supervised learning error D2

H

(
Pπ⋆

,Pπ̂
)

must grow
with H). As a result, the regret is not expected to be independent of H for this environment, in spit
of parameter sharing. To verify whether supervised learning error is indeed the cause for horizon

13For example, if we repeat a fixed contextual bandit instance H times across the horizon and train a stationary
policy, it is clear that regret should decrease with H under sparse rewards. Less trivial instances where increasing
horizon provably leads to better performance are known in some special cases [87].

23

0 200 400
Number of Trajectories

−0.10

−0.05

0.00

0.05

0.10

E
xp

ec
te

d
R

eg
re

t

Log Loss

0 200 400
Number of Trajectories

−0.10

−0.05

0.00

0.05

0.10

E
xp

ec
te

d
R

eg
re

t

MSE Loss

horizon 50

horizon 100

horizon 200

horizon 300

horizon 400

horizon 500

Figure 5: Dependence of expected regret on the number of expert trajectories for continuous control
environment Walker2d-v4 under varying choices for horizon H . (Left) Behavior cloning with
logarithmic loss (LogLossBC); (Right) Behavior cloning with mean squared error (MSE) Loss.
Both losses lead to similar performance for this environment, possibly due to Gaussian policy
parameterization.

dependence for Dyck, Figure 3(b) plots the logarithm of the product of the Frobenius norms of the
weight matrices of the expert for varying values of H , as a proxy for supervised learning performance
[8, 37].14 We find that the log-product-norms do in fact grow with H , consistent with the fact that the
regret grows with H in this case.

For the Car environment, we observe similar behavior to the Dyck environment, visualized in
Figure 4. We find that performance degrades slightly as a function of the horizon H , but that this
increase in regret can be explained by an increase in the log-product-norm (Figure 3(b)). However,
the effect is mild compared to Dyck.

Comparison between log loss and square loss. As an ablation, Figures 4 and 5 compare
LogLossBC to the original behavior cloning objective of Pomerleau [63], which uses the mean
squared error (MSE) to regress expert actions to observations in the offline dataset. Focusing on the
Walker2d environment (Figure 5) and Car environment (Figure 4) (other environments presented
difficulties in training15), we find that performance with the MSE loss is comparable to that of the log-
arithmic loss. For Walker2d, a possible explanation is that under the Gaussian policy parameterization
we use, the MSE loss is the same as the logarithmic loss up to state-dependent heteroskedasticity.16

Another possible explanation is that this is an instance of the phenomenon described in ??.

Relationship between regret and Hellinger distance to expert. Finally, we directly evaluate
the quality of (i) Hellinger distance D2

H

(
Pπ⋆

,Pπ̂
)
, and (ii) validation loss as proxies for rollout

performance. We estimate the Hellinger distance using sample trajectories. Figure 6 displays our
findings for Walker2d with H = n = 500, where we observe that both metrics, particularly the
Hellinger distance, are well correlated with rollout performance, as measured by average reward. In
Figure 6a, we see that under LogLossBC, Hellinger distance and validation loss are highly correlated
with each other, and negatively correlated with expected reward, thereby acting as excellent proxies
for rollout performance. Meanwhile, in Figure 6b, we find that under behavior cloning with the MSE
loss, validation error is less well correlated with the expected reward of the imitator policy, as evinced
by the cluster in the upper left corner, where there are policies with roughly the same validation loss,
but variable expected reward. On the other hand, the Hellinger distance D2

H still appears to predict
the performance of the policy well, as is consistent with our theoretical results.

14We only include log-product-norm plots for Dyck and Car because for the other environments (Walker2d
and BeamriderNoFrameskip), we do not change the expert as a function of H .

15In particular, we attempted a similar result in the Atari environment, using MSE loss being between vectors
on the probability simplex over |A| actions. For MSE loss, we found that the imitator did not train, in the sense
that even with 500 expert trajectories, the performance of the cloner did not improve. We suspect this was due to
numerical instability in optimization for the MSE loss in this setup or a failure of hyperparameter optimization.

16In theory, the MSE loss can still underperform the logarithmic loss when the heteroskedasticity is severe
[32], but this may not manifest for this environment.

24

0.2 0.4
D2
H to Expert

1200

1300

1400

1500

E
xp

ec
te

d
R

ew
ar

d

−5 0
Validation Loss

MuJoCo (Log Loss)

(a)

0.2 0.4
D2
H to Expert

800

1000

1200

1400

E
xp

ec
te

d
R

ew
ar

d

0.01 0.02 0.03
Validation Loss

MuJoCo (MSE Loss)

(b)

Figure 6: Evaluation of the quality of (i) Hellinger distance D2
H

(
Pπ⋆

,Pπ̂
)
, and (ii) validation loss

as a proxy for rollout reward. We plot Hellinger distance and validation loss against mean reward
for a over a single training run for Walker2d environment with H = 500 and n = 500. (a) Results
for LogLossBC, where the validation loss and Hellinger distance D2

H are highly correlated, and serve
as good proxies for the expected reward of the policy. (b) Results for MSE loss, where the validation
loss is less well correlated with the expected reward (note the cluster in the upper left hand corner),
but the Hellinger distance D2

H remains a good proxy.

D Technical Tools
D.1 Tail Bounds

Lemma D.1 (e.g., Foster et al. [34]). For any sequence of real-valued random variables (Xt)t≤T

adapted to a filtration (Ft)t≤T , it holds that with probability at least 1− δ, for all T ′ ≤ T ,
T ′∑
t=1

− log
(
Et−1

[
e−Xt

])
≤

T ′∑
t=1

Xt + log(δ−1).

Lemma D.2 (Time-uniform Freedman-type inequality). Let (Xt)t≤T be a real-valued martingale
difference sequence adapted to a filtration (Ft)t≤T . If |Xt| ≤ R almost surely, then for any
η ∈ (0, 1/R), with probability at least 1− δ, for all T ′ ≤ T .

T ′∑
t=1

Xt ≤ η

T ′∑
t=1

Et−1

[
X2

t

]
+

log(δ−1)

η
.

Proof of Lemma D.2. Let St =
∑t

s=1 Xt and Vt =
∑t

s=1 Et=1

[
X2

t

]
. Let Zt = exp(ηSt − η2Vt).

As shown in Beygelzimer et al. [11] (see proof of Theorem 1), as long as η ≤ 1/R,

Et−1[exp(ηXt)] ≤ exp(η2 Et−1

[
X2

t

]
),

and so
Et−1[Zt] = Et−1

[
exp
(
ηXt − η2 Et−1

[
X2

t

])]
· Zt−1 ≤ Zt−1.

It follows that (Zt) is a non-negative supermartingale. Hence, by Ville’s inequality, for any η ∈
(0, 1/R), we have that for any τ > 0,

P[∃t : St − ηVt ≥ τ] = P[∃t : Zt ≥ eητ] ≤ e−ητ E[ZT] ≤ e−ητ .

We conclude by setting τ = log(δ−1)/η.

The following result is a standard consequence of Lemma D.2.

Lemma D.3. Let (Xt)t≤T be a sequence of random variables adapted to a filtration (Ft)t≤T . If
0 ≤ Xt ≤ R almost surely, then with probability at least 1− δ, for all T ′ ≤ T ,

T ′∑
t=1

Xt ≤
3

2

T ′∑
t=1

Et−1[Xt] + 4R log(2δ−1),

and
T ′∑
t=1

Et−1[Xt] ≤ 2

T ′∑
t=1

Xt + 8R log(2δ−1).

25

D.2 Information Theory
For a pair of probability measures P and Q, we define the total variation distance as DTV(P,Q) =
1
2

∫
|dP − dQ|, and define the χ2-divergence by Dχ2(P ∥ Q) =

∫ (dQ−dQ)2

dQ if P ≪ Q and
Dχ2(P ∥ Q) = +∞ otherwise. We define KL divergence by DKL(P ∥Q) =

∫
dP log

(
dP
dQ
)

if
P≪ Q and DKL(P ∥Q) = +∞ otherwise.

The following lemma states some basic inequalities between divergences.

Lemma D.4 (e.g., [62]). The following inequalities hold:

• D2
TV(P,Q) ≤ D2

H(P,Q) ≤ 2DTV(P,Q).

• 1
6D

2
H(P,Q) ≤ Dχ2

(
P ∥ 1

2 (P+Q)
)
≤ D2

H(P,Q).

D.3 Reinforcement Learning
The following lemma is a somewhat standard result; see, e.g., Lemma 15 in Zanette and Brunskill
[101]. We include a proof for completeness.

Lemma D.5 (Law of total variance). For any (potentially stochastic) policy π, we have

Varπ

[
H∑

h=1

rh

]
= Eπ

[
H∑

h=0

Varπ
[
rh + V π

h+1(xh+1) | xh

]]
,

with the convention that x0 is a deterministic dummy state (so that P0(x1 = · | x0, a = ·) is the
initial state distribution) and r0 = 0.

Proof of Lemma D.5. Let h ∈ {0, . . . ,H} be fixed. We can expand

Varπ

[
H∑

ℓ=h

rℓ | xh

]
= Eπ

(H∑
ℓ=h

rℓ − V π
h (xh)

)2

| xh


= Eπ

(H∑
ℓ=h+1

rℓ − V π
h+1(xh+1) + (rh + V π

h+1(xh+1)− V π
h (xh))

)2

| xh


= Eπ

(H∑
ℓ=h+1

rℓ − V π
h+1(xh+1)

)2

| xh

+ Eπ
[
(rh + V π

h+1(xh+1)− V π
h (xh))

2 | xh

]
+ 2Eπ

[(
H∑

ℓ=h+1

rℓ − V π
h+1(xh+1)

)(
rh + V π

h+1(xh+1)− V π
h (xh)

)
| xh

]

= Eπ

(H∑
ℓ=h+1

rℓ − V π
h+1(xh+1)

)2

| xh

+ Eπ
[
(rh + V π

h+1(xh+1)− V π
h (xh))

2 | xh

]
= Eπ

[
Varπ

[
H∑

ℓ=h+1

rℓ | xh+1

]
| xh

]
+Varπ

[
(rh + V π

h+1(xh+1) | xh

]
.

We conclude inductively that for all h ∈ {0, . . . ,H},

Varπ

[
H∑

ℓ=h

rℓ | xh

]
=

H∑
ℓ=h

Eπ
[
Varπ

[
(rℓ + V π

ℓ+1(xℓ+1) | xℓ

]
| xh

]
.

To obtain the final expression, we note that

Varπ

[
H∑

h=1

rh

]
= Varπ

[
H∑

h=0

rh | x0

]
,

under the convention that x0 is a deterministic dummy state (so that P1(x1 = · | x0, a) is the initial
state distribution) and r0 = 0.

26

D.4 Maximum Likelihood Estimation
This section presents a self-contained analysis of the maximum likelihood estimator (MLE) for
density estimation. The results are somewhat standard (e.g., Wong and Shen [97], van de Geer
[89], Zhang [102]), but we include proofs for completeness.

Consider a setting where we receive {zi}ni=1 i.i.d. from z ∼ g⋆, where g⋆ ∈ ∆(Z). We have a class
G ⊆ ∆(Z) that may or may not contain g⋆. We analyze the following maximum likelihood estimator:

ĝ = argmax
g∈G

n∑
i=1

log(g(zi)). (10)

To provide sample complexity guarantees that support infinite classes, we appeal to the following
notion of covering number (e.g., Wong and Shen [97]), which tailored to the log-loss.

Definition D.1 (Covering number). For a class G ⊂ ∆(Z), we set that a class G′ ⊂ ∆(Z) is an
ε-cover if for all g ∈ G, there exists g′ ∈ G′ such that for all z ∈ Z , log(g(z)/g′(z)) ≤ ε. We denote
the size of the smallest such cover by Nlog(G, ε).
We also allow for optimization errors, and concretely assume that ĝ satisfies

n∑
i=1

log(ĝ(zi)) ≥ max
g∈G

n∑
i=1

log(g(zi))− εopt · n

for a parameter εopt ≥ 0; the case εopt = 0 coincides with Eq. (10). Our main guarantee for MLE is
as follows.

Proposition D.1. The maximum likelihood estimator in Eq. (10) has that with probability at least
1− δ,

D2
H(ĝ, g

⋆) ≤ inf
ε>0

{
6 log(2Nlog(G, ε)/δ−1)

n
+ 4ε

}
+ 2 inf

g∈G
log(1 +Dχ2(g⋆ ∥ g)) + 2εopt.

In particular, if G is finite, the maximum likelihood estimator satisfies

D2
H(ĝ, g

⋆) ≤ 6 log(2|G|/δ−1)

n
+ 2 inf

g∈G
log(1 +Dχ2(g⋆ ∥ g)) + 2εopt.

Note that the term infg∈G log(1 +Dχ2(g⋆ ∥ g)) corresponds to misspecification error, and is zero if
g⋆ ∈ G.

Proof of Proposition D.1. Let Gε denote a minimal ε-cover for G, and let g̃ ∈ Gε denote any element
that covers ĝ in the sense of Definition D.1. Going forward, we will use that g̃ satisfies

D2
H(g

⋆, g̃) ≤ DKL(g
⋆ ∥ g̃) ≤ ε. (11)

Let ℓi(g) = − log(g(zi)), and set L̂(g) = −∑n
i=1 log(g(z

i)). Set Xi(g) =
1
2 (ℓ

i(g)− ℓi(g⋆)). By
applying Lemma D.1 with the sequence (Xi(g))

n
i=1 for each g ∈ Gε and taking a union bound, we

have that with probability at least 1− δ, for all g ∈ Gε

−n · log
(
Ez∼g⋆

[
e

1
2 log(g(z)/g⋆(z))

])
≤ 1

2

(
L̂(g)− L̂(g⋆)

)
+ log(|Gε|δ−1).

Using a standard argument [102], we have that

− log
(
Ez∼g⋆

[
e

1
2 log(g(z)/g⋆(z))

])
= − log

(
1− 1

2
D2

H(g, g
⋆)

)
≥ 1

2
D2

H(g, g
⋆).

In particular, this implies that

D2
H(g̃, g

⋆) ≤ 2 log(|G|/δ−1)

n
+

1

n

(
L̂(g̃)− L̂(g⋆)

)
,

and so

D2
H(ĝ, g

⋆) ≤ 2D2
H(ĝ, g̃) + 2D2

H(g̃, g
⋆) ≤ 4 log(|G|/δ−1)

n
+

2

n

(
L̂(g̃)− L̂(g⋆)

)
+ 2ε,

27

by the triangle inequality for Hellinger distance and Eq. (11).

It remains to bound the right-hand-side. Let g ∈ G be arbitrary. We can bound

L̂(g̃)− L̂(g⋆) ≤ L̂(g̃)− L̂(ĝ) + L̂(ĝ)− L̂(g⋆) ≤ L̂(g̃)− L̂(ĝ) + L̂(g)− L̂(g⋆) + εoptn, (12)
by the definition of the maximum likelihood estimator. For the first term in Eq. (12), we observe that

L̂(g̃)− L̂(g⋆) =

n∑
i=1

log(g⋆(zi)/g̃(zi)) ≤ εn,

by Definition D.1.

To bound the second term in Eq. (12), set Yi = −(ℓt(g)− ℓt(g⋆)). Applying Lemma D.1 with the
sequence (Yi)

n
i=1, we have that with probability at least 1− δ,

L̂(g)− L̂(g⋆) ≤ n · log
(
Ez∼g⋆

[
elog(g

⋆(z)/g(z))
])

+ log(δ−1).

Finally, note that

log
(
Ez∼g⋆

[
elog(g

⋆(z)/g(z))
])

= log

(
Ez∼g⋆

[
g⋆(z)

g(z)

])
= log(1 +Dχ2(g⋆ ∥ g)).

The result follows by choosing g ∈ G to minimize this quantity.

Part I

Proofs and Supporting Results
E Examples and Supporting Results from Section 2 and Section 3
This section contains supporting results from Sections 2 and 3:

• Appendix E.1 presents general sample complexity guarantees for log-loss behavior cloning that
support infinite policy classes and misspecification, as well as concrete examples.

• Appendix E.2 formally introduces the online imitation learning framework, and gives sample
complexity guarantees for a log-loss variant of Dagger.

E.1 General Guarantees and Examples for Log-Loss Behavior Cloning
In this section, we give bounds on the generalization error D2

H

(
Pπ̂,Pπ⋆)

for log-loss behavior cloning
for concrete classes Π of interest. To do so, we observe that the log-loss behavior cloning objective

π̂ = argmax
π∈Π

n∑
i=1

H∑
h=1

log(πh(a
i

h | xi

h)).

is equivalent to performing maximum likelihood estimation over the density class P = {Pπ}π∈Π.
Indeed, for any π ∈ Π, we have

n∑
i=1

log(Pπ(oi)) =

n∑
i=1

log

(
P0(x

i

1)

H∏
h=1

Ph(x
i

h+1 | xi

h, a
i

h)πh(a
i

h | xi

h)

)

=

n∑
i=1

H∑
h=1

log(πh(a
i

h | xi

h)) + C(D),

where C(D) is a constant that depends on the dataset D but not on π. It follows that both objectives
have the same maximizer. Consequently, we can prove sample complexity bounds for log-loss
behavior cloning by specializing sample complexity bounds for MLE given in Appendix D.4.

To give guarantees that support infinite policy classes, we appeal to the following notion of covering
number.

28

Definition E.1 (Policy covering number). For a class Π ⊂ {πh : X → ∆(A)}, we set that Π′ ⊂
{πh : X → ∆(A)} is an ε-cover if for all π ∈ Π, there exists π′ ∈ Π′ such that for all x ∈ X ,
a ∈ A, and h ∈ [H], log(πh(a | x)/π′

h(a | x)) ≤ ε. We denote the size of the smallest such cover by
Npol(Π, ε).

In addition, to allow for optimization errors, we replace Eq. (4) with the assumption that π̂ satisfies

n∑
i=1

H∑
h=1

log(π̂h(a
i

h | xi

h)) ≥ max
π∈Π

n∑
i=1

H∑
h=1

log(πh(a
i

h | xi

h))− εopt · n (13)

for a parameter εopt > 0; Eq. (4) is the special case in which εopt = 0. With these definitions,
specializing Proposition D.1 leads to the following result.

Theorem E.1 (Generalization bound for LogLossBC). The LogLossBC policy in Eq. (13) has that
with probability at least 1− δ,

D2
H

(
Pπ̂,Pπ⋆

)
≤ inf

ε>0

{
6 log(2Npol(Π, ε/H)δ−1)

n
+ 4ε

}
+ 2 inf

π∈Π
log
(
1 +Dχ2

(
Pπ⋆ ∥ Pπ

))
+ 2εopt.

In particular, if Π is finite, the log-loss behavior cloning policy satisfies

D2
H

(
Pπ̂,Pπ⋆

)
≤ 6 log(2|Π|δ−1)

n
+ 2 inf

π∈Π
log
(
1 +Dχ2

(
Pπ⋆ ∥ Pπ

))
+ 2εopt.

Let us make two remarks.

• First, the only explicit dependence on the horizon H is through the precision ε/H through which
we evaluate the covering number: Npol(Π, ε/H). As a result, for parametric classes where
Npol(Π, ε) ≍ log(ε−1) (we will give examples in the sequel), the result will scale at most
logarithmically in H , but for nonparametric classes the dependence can be polynomial.

• Second, the remainder term infπ∈Π log(1+Dχ2

(
Pπ⋆ ∥ Pπ

)
) corresponds to misspecification error,

and is zero if π⋆ ∈ Π. We remark that when π⋆ is deterministic, this expression can be simplified
to infπ∈Π log

(
Eπ⋆

[
1∏H

h=1 πh(ah|xh)

])
.

Proof of Theorem E.1. This follows by applying Proposition D.1 with the class {Pπ}π∈Π, and
noting that if π′ covers π in the sense of Definition E.1, then for all o ∈ (X × A)H , we have
log(Pπ(o)/Pπ′

(o)) ≤ εH , meaning that an ε-cover in the sense of Definition E.1 yields an εH-cover
in the sense of Definition D.1.

E.1.1 Example: Tabular Policies
We now instantiate Theorem E.1 to give generalization bounds for specific policy classes of interest.

Consider a tabular MDP in which |X |, |A| <∞ are small and finite. Here, choosing Π to be the set
of all stationary policies leads to a bound independent of H .

Corollary E.1 (Stationary tabular policies). When Π is the set of all deterministic stationary policies,
the log-loss behavior cloning policy Eq. (4) has that with probability at least 1− δ,

D2
H

(
Pπ̂,Pπ⋆) ≤ O

(|X | log(|A|δ−1)

n

)
.

Meanwhile, if Π is the set of all stochastic stationary policies, the log-loss behavior cloning policy
Eq. (4) has that with probability at least 1− δ,

D2
H

(
Pπ̂,Pπ⋆) ≤ Õ

(|X ||A| log(Hnδ−1)

n

)
.

Proof of Corollary E.1. This follows by noting that we have log|Π| ≤ |X | log|A| in the
deterministic case and logNpol(Π, ε) ≤ Õ

(
|X ||A| log(ε−1)

)
in the stochastic case (this follows

29

from a standard discretization argument, e.g., Wainwright [91]).

Naturally, we can also give generalization guarantees for non-stationary tabular policies, though the
sample complexity will scale with H in this case.

Corollary E.2 (Non-stationary tabular policies). When Π is the set of all deterministic non-stationary
policies, the log-loss behavior cloning policy Eq. (4) has that with probability at least 1− δ,

D2
H

(
Pπ̂,Pπ⋆) ≤ O

(
H|X | log(|A|δ−1)

n

)
.

Meanwhile, if Π is the set of all stochastic non-stationary policies, the log-loss behavior cloning
policy Eq. (4) has that with probability at least 1− δ,

D2
H

(
Pπ̂,Pπ⋆) ≤ Õ

(
H|X ||A| log(Hnδ−1)

n

)
.

Proof of Corollary E.2. This follows because we have log|Π| ≤ H|X | log|A| in the deterministic
case and logNpol(Π, ε) ≤ Õ

(
H|X ||A| log(ε−1)

)
in the stochastic case.

E.1.2 Example: Softmax Policies
Next, we give an example of a general family of policy classes based on function approximation for
which the sample complexity is at most polylogarithmic in H .

For a vector v ∈ RA, let σ : RA → ∆(A) be the softmax function, which is given by

σa(v) =
exp(va)∑

a′∈A exp(va′)
.

Let F ⊂ {fh : X ×A → R}Hh=1 be a class of value functions, and define the induced class of
softmax policies via

ΠF = {πf | f ∈ F},
where

πf,h(x) := σa(fh(x, a)).

We give sample complexity guarantees based on covering numbers for the value function class F .

Definition E.2 (Value function covering number). For a class F ⊂ {fh : X ×A → R}, we set that
F ′ ⊂ {fh : X ×A → R} is an ε-cover if for all f ∈ F , there exists f ′ ∈ F ′ such that for all x ∈ X ,
a ∈ A, and h ∈ [H], |fh(x, a) − f ′

h(x, a)| ≤ ε. We denote the size of the smallest such cover by
Nval(Π, ε).

Corollary E.3 (Softmax policies). When Π = ΠF is the softmax policy class for a value function
class F , the log-loss behavior cloning policy Eq. (4) has that with probability at least 1− δ,

D2
H

(
Pπ̂,Pπ⋆

)
≤ O(1) · inf

ε>0

{
log(Nval(F , ε/H)δ−1)

n
+ ε

}
+ 2 inf

π∈ΠF
log
(
1 +Dχ2

(
Pπ⋆ ∥ Pπ

))
.

Proof of Corollary E.3. Consider a pair of functions f, f ′ with |fh(x, a) − f ′
h(x, a)| ≤ ε for all

x ∈ X , a ∈ A, and h ∈ [H]. The induced softmax policies satisfy

log(πf,h(a | x)/πf ′,h(a | x)) = fh(x, a)− f ′
h(x, a) + log

(∑
a′∈A exp(f ′

h(x, a
′))∑

a∈A exp(f ′
h(x, a

′))

)
.

Clearly we have fh(x, a)− f ′
h(x, a) ≤ ε, and we can bound

log

(∑
a′∈A exp(f ′

h(x, a
′))∑

a∈A exp(fh(x, a′))

)
= log

(∑
a′∈A exp(fh(x, a

′)) · exp(f ′
h(x, a

′)− fh(x, a
′))∑

a∈A exp(fh(x, a′))

)
≤ log

(∑
a′∈A exp(fh(x, a

′)) · maxa′′∈A exp(f ′
h(x, a

′′)− fh(x, a
′′))∑

a∈A exp(fh(x, a′))

)
≤ max

a′′∈A
{f ′

h(x, a
′′)− fh(x, a

′′)} ≤ ε.

30

Hence, an ε-cover in the sense of Definition E.2 implies a 2ε-cover in the sense of Definition E.1.

Whenever F is parametric in the sense that logNval(F , ε) ∝ log(ε−1), Corollary E.3 leads to
polylogarithmic dependence on H . The following result gives such an example.

Linear softmax policies. Consider the set of stationary linear softmax policies induced by the
value function class

F = {(x, a, h) 7→ ⟨ϕh(x, a), θ⟩ | ∥θ∥2 ≤ B},
where ϕh(x, a) ∈ Rd is a known feature map with ∥ϕh(x, a)∥ ≤ B. Here, we have logNval(F , ε) ∝
d log(Bε−1) (e.g., Wainwright [91]), which yields the following generalization guarantee.

Corollary E.4. When Π is the set of stationary linear softmax policies and π⋆ ∈ Π, the log-loss
behavior cloning policy Eq. (4) has that with probability at least 1− δ,

D2
H

(
Pπ̂,Pπ⋆) ≤ O

(
d log(BHnδ−1)

n

)
.

E.2 Online IL Framework and Sample Complexity Bounds for Log-Loss Dagger
In this section, we give sample complexity bounds for a variant of the Dagger algorithm for online IL
[72] that uses the logarithmic loss. The main purpose of including this result is to give end-to-end
sample complexity guarantees for general policy classes, which we use in Sections 2 and 3 to compare
the optimal rates for online and offline IL. For this comparison, we are be mainly interested in the
case of deterministic expert policies, but our analysis supports stochastic policies, which may be of
independent interest.

Online imitation learning framework. In the online imitation learning framework, learning
proceeds in n episodes in which the learner can directly interact with the underlying MDP M⋆

and query the expert advice. Concretely, for each episode i ∈ [n], the learner executes a policy
πi = {πi

h : X → ∆(A)}Hh=1 and receives a trajectory ot = (xi
1, a

i
1, a

⋆,i
1), . . . , (xi

H , ai

H , a⋆,iH), in
which ai

h ∼ πi

h(x
i

h), a
⋆,i
h ∼ π⋆(xt

h), and xi

h+1 ∼ Ph(x
i

h, a
i

h); in other words, the trajectory induced
by the learner’s policy is annotated by the expert’s action a⋆h ∼ π⋆

h(xh) at each state xh encountered.
After all n episodes conclude, they can use all of the data collected to produce a policy π̂ such that
J(π⋆)− J(π̂) is small.

Dagger algorithm. We consider a general version of the Dagger algorithm. The algorithm is
parameterized by an online learning algorithm AlgEst, which attempts to estimate the expert policy
in a sequential fashion based on trajectories.

Set D1 = ∅. For i = 1, . . . , n:

• Query online learning algorithm AlgEst with Di and receive policy π̂.

• Execute π̂ and observe oi = (xi
1, a

i
1, a

⋆,i
1), . . . , (xi

H , ai

H , a⋆,iH).

• Update Di+1 ← Di ∪ {oi}.
At the end, we output π̂ = unif(π1, . . . , πn) as the final policy.

To measure the performance of the estimation oracle, we define the online estimation error as:

EstonH (n) =
1

n

n∑
i=1

H∑
h=1

Eπ̂i[
D2

H(π̂
i

h(xh), π
⋆(xh))

]
.

As we will show in a moment, this notion of estimation error is well-suited for online learning
algorithms that estimate π⋆ using the logarithmic loss.

Our following result gives a general guarantee for Dagger that holds for any choice of online learning
algorithm. To state the result, let Pπ⋆|π denote the law of o = (x1, a1, a

⋆
1), . . . , (xH , aH , a⋆H) when

π⋆ is the expert policy and we execute π. Let

σ2
π⋆|π =

H∑
h=1

Eπ◦hπ
⋆
[
(Qπ⋆

h (xh, ah)− V π⋆

h (xh))
2
]
,

31

so that σ2
π⋆ = σ2

π⋆|π⋆ and define σ2
π⋆ = supπ σ

2
π⋆|π . Note that σ2

π⋆ = 0 whenever π⋆ is deterministic,
but in general, σ2

π⋆ ≥ σ2
π⋆ .

Proposition E.1 (Regret for Dagger). For any MDP M⋆ with signed recoverability parameter µ̃ and
any online learning algorithm AlgEst, Dagger ensures that

J(π⋆)− J(π̂) ≲
√

σ2
π⋆ ·EstonH (n) + µ̃ ·EstonH (n).

Furthermore, whenever π⋆ is deterministic, Dagger ensures that

J(π⋆)− J(π̂) ≲ µ ·EstonH (n). (14)

To instantiate the bound above, we choose AlgEst by applying the exponential weights algorithm
(e.g., Cesa-Bianchi and Lugosi [19]) with the logarithmic loss. Let Πh := {πh | π ∈ Π} denote the
projection of Π onto step h. The algorithm proceeds as follows. At step i ∈ [n], given the dataset Di,
for each layer h ∈ [H] we define a distribution µi

h ∈ ∆(Πh) via

µi

h(π) ∝ exp

∑
j<j

log(πh(a
⋆,j
h | xj

h))

 =
∏
j<j

πh(a
⋆,j
h | xj

h).

We then set

π̂i

h(a | x) = Eπh∼µi
h
[πh(a | x)].

We refer to the resulting algorithm as LogLossDagger. This leads to the following guarantee for
finite classes.

Proposition E.2 (Regret for LogLossDagger). When π⋆ ∈ Π, the log-loss exponential weights
algorithm ensures that with probability at least 1− δ,

EstonH (n) ≤ 2

n

H∑
h=1

log(|Πh|Hδ−1).

Consequently, LogLossDagger ensures that with probability at least 1− δ,

J(π⋆)− J(π̂) ≲

√√√√σ2
π⋆ ·

H∑
h=1

log(|Πh|Hδ−1)

n
+ µ̃ ·

H∑
h=1

log(|Πh|Hδ−1)

n
,

and when π⋆ is deterministic,

J(π⋆)− J(π̂) ≲ µ ·
H∑

h=1

log(|Πh|Hδ−1)

n
.

We note that for many parameter regimes, the sample complexity bound in Proposition E.1 can be
worse than that of LogLossBC in Theorem 3.1 (for stationary policies, Proposition E.1 has spurious
dependence on H , and the variance-like quantity in the leading order term is weaker). It would be
interesting to get the best of both worlds, though this may require changing the algorithm.

Proof of Proposition E.1. Consider an arbitrary policy π̂. Begin by writing

J(π⋆)− J(π̂) =

H∑
h=1

Eπ̂|π̂
[
Qπ⋆

h (xh, π
⋆
h(xh))−Qπ⋆

h (xh, ah)
]
.

Fix a layer h. By Lemma 3.1, we have

Eπ̂|π̂
[
Qπ⋆

h (xh, π
⋆
h(xh))−Qπ⋆

h (xh, ah)
]

≤ Eπ⋆|π̂
[
Qπ⋆

h (xh, π
⋆
h(xh))−Qπ⋆

h (xh, ah)
]

+
√(

Eπ̂|π̂[(Qπ⋆

h (xh, π⋆
h(xh))−Qπ⋆

h (xh, ah))2] + Eπ⋆|π̂[(Qπ⋆

h (xh, π⋆
h(xh))−Qπ⋆

h (xh, ah))2]
)
Eπ̂[D2

H(π̂h(xh), π⋆
h(xh))]

=
√(

Eπ̂|π̂[(Qπ⋆

h (xh, π⋆
h(xh))−Qπ⋆

h (xh, ah))2] + Eπ⋆|π̂[(Qπ⋆

h (xh, π⋆
h(xh))−Qπ⋆

h (xh, ah))2]
)
Eπ̂[D2

H(π̂h(xh), π⋆
h(xh))].

32

Furthermore, using Lemma 3.1, we have

Eπ̂|π̂
[
(Qπ⋆

h (xh, π
⋆
h(xh))−Qπ⋆

h (xh, ah))
2
]

≲
H∑

h=1

Eπ⋆|π̂
[
(Qπ⋆

h (xh, π
⋆
h(xh))−Qπ⋆

h (xh, ah))
2
]
+ µ̃2

H∑
h=1

Eπ̂
[
D2

H(π̂h(xh), π
⋆
h(xh))

]
,

so that

Eπ̂|π̂
[
Qπ⋆

h (xh, π
⋆
h(xh))−Qπ⋆

h (xh, ah)
]

(15)

≲
√

Eπ⋆|π̂[(Qπ⋆

h (xh, π⋆
h(xh))−Qπ⋆

h (xh, ah))2] · Eπ̂[D2
H(π̂h(xh), π⋆

h(xh))] + µ̃ · Eπ̂
[
D2

H(π̂h(xh), π
⋆
h(xh))

]
.

Recall that the Dagger policy satisfies

J(π⋆)− J(π̂) =
1

n

n∑
i=1

J(π⋆)− J(π̂i).

Applying Eq. (15) to each policy π̂i, summing over all layer h, and applying Cauchy-Schwarz yields

J(π⋆)− J(π̂) ≲

√√√√ 1

n

n∑
i=1

σ2
π⋆|πi ·EstonH (n) + µ̃ ·EstonH (n)

≲
√
σ2
π⋆ ·EstonH (n) + µ̃ ·EstonH (n).

In the deterministic case, we tighten the argument above by applying the following improved change-
of-measure argument based on Lemma 3.1:

Eπ⋆|π̂
[
Qπ⋆

h (xh, π
⋆
h(xh))−Qπ⋆

h (xh, ah)
]

≤ Eπ⋆|π̂
[
(Qπ⋆

h (xh, π
⋆
h(xh))−Qπ⋆

h (xh, ah))+

]
≤ 2Eπ⋆|π̂

[
(Qπ⋆

h (xh, π
⋆
h(xh))−Qπ⋆

h (xh, ah))+

]
+ µ · Eπ̂

[
D2

H(π̂h(xh), π
⋆
h(xh))

]
= µ · Eπ̂

[
D2

H(π̂h(xh), π
⋆
h(xh))

]
,

This leads to Eq. (14).

Proof of Proposition E.2. Since π⋆ ∈ Π, a standard guarantee for exponential weights with the
log-loss (e.g., Cesa-Bianchi and Lugosi [19]) ensures that for all h ∈ [H], the following bound holds
almost surely:

n∑
i=1

log(1/π̂i

h(a
⋆,i
h | xi

h)) ≤
n∑

i=1

log(1/π⋆
h(a

⋆,i
h | xi

h)) + log|Πh|.

From here, for each h ∈ [H], Lemma A.14 of Foster et al. [34] implies that with probability at least
1− δ,

n∑
i=1

Eπ̂i[
D2

H(π̂
i

h(xh), π
⋆(xh))

]
≤ log|Πh|+ 2 log(δ−1).

The result now follows by taking a union bound.

33

F Proofs from Section 2
F.1 Proof of Theorem 2.1
Proof of Theorem 2.1. We begin by defining the following trajectory-wise semi-metric between
policies. For a pair of potentially stochastic policies π and π′, define

ρ(π ∥ π′) := Eπ Ea′
1:H∼π′(x1:H)[I{∃h : ah ̸= a′h}],

where we use the shorthand a′1:H ∼ π′(x1:H) to indicate that a′1 ∼ π′
1(x1), . . . , a

′
H ∼ π′

H(xH).
Despite being defined in an asymmetric fashion, the following lemma shows that the trajectory-wise
distance ρ(· ∥ ·) is symmetric, from which it follows that it is indeed a semi-metric.

Lemma F.1. For all (potentially stochastic) policies π and π′, it holds that

ρ(π ∥ π′) = ρ(π′ ∥ π).

Next, we show that it is possible to bound the difference in reward for any pair of policies in terms of
the trajectory-wise distance ρ(· ∥ ·).
Lemma F.2. For all (potentially stochastic) policies π and π′, it holds that

J(π)− J(π′) ≤ R · ρ(π ∥ π′).

Finally, using Lemma F.1, we show that when one of the policies is deterministic, the trajectory-wise
distance is equivalent to Hellinger distance up to an absolute constant.

Lemma F.3. Let π⋆ be a deterministic policy and π be an arbitrary stochastic policy. Then we have
that

1

4
· ρ(π⋆ ∥ π) ≤ D2

H

(
Pπ,Pπ⋆

)
≤ 2 · ρ(π⋆ ∥ π).

Combining Lemmas F.2 and F.3, we conclude that for any deterministic policy π⋆ and stochastic
policy π̂,

J(π⋆)− J(π̂) ≤ 4R ·D2
H

(
Pπ̂,Pπ⋆)

.

Proof of Lemma F.1. This follows by noting that we can write

ρ(π ∥ π′) = 1− Eπ Ea′
1:H∼π′(x1:H)[I{ah = a′h ∀h}]

= 1−
∑

x1:H ,a1:H ,a′
1:H

P0(x1)

H∏
h=1

Ph(xh+1 | xh, ah)πh(ah | xh)π
′
h(a

′
h | xh)I{ah = a′h}

= 1−
∑

x1:H ,a1:H ,a′
1:H

P0(x1)

H∏
h=1

Ph(xh+1 | xh, a
′
h)πh(ah | xh)π

′
h(a

′
h | xh)I{ah = a′h}

= 1− Eπ′
Ea′

1:H∼π(x1:H)[I{ah = a′h ∀h}] = ρ(π′ ∥ π).

Proof of Lemma F.2. Observe that since
∑H

h=1 rh ∈ [0, R], we can bound the reward for π as

J(π) ≤ Eπ

[(
H∑

h=1

rh

)
Ea′

1:H∼π′(x1:H)[I{a′h = ah ∀h}]
]
+R · Eπ Ea′

1:H∼π′(x1:H)[I{∃h : a′h ̸= ah}]

= Eπ

[(
H∑

h=1

rh

)
Ea′

1:H∼π′(x1:H)[I{a′h = ah ∀h}]
]
+R · ρ(π ∥ π′).

34

We can bound the first term as

Eπ

[(
H∑

h=1

rh

)
Ea′

1:H∼π′(x1:H)[I{a′h = ah ∀h}]
]

= Eπ
[
f(x1:H , a1:H)Ea′

1:H∼π′(x1:H)[I{a′h = ah ∀h}]
]
,

where f(x1:H , a1:H) :=
∑H

h=1 E[rh | xh, ah]. We now observe that for any function f ,

Eπ
[
f(x1:H , a1:H)Ea′

1:H∼π′(x1:H)[I{a′h = ah ∀h}]
]

=
∑

x1:H ,a1:H ,a′
1:H

f(x1:H , a1:H) · P0(x1)

H∏
h=1

Ph(xh+1 | xh, ah)πh(ah | xh)π
′
h(a

′
h | xh)I{ah = a′h}

=
∑

x1:H ,a1:H ,a′
1:H

f(x1:H , a′1:H) · P0(x1)

H∏
h=1

Ph(xh+1 | xh, a
′
h)πh(ah | xh)π

′
h(a

′
h | xh)I{ah = a′h}

≤
∑

x1:H ,a′
1:H

f(x1:H , a′1:H) · P0(x1)

H∏
h=1

Ph(xh+1 | xh, a
′
h)π

′
h(a

′
h | xh)

= Eπ′
[f(x1:H , a1:H)].

We conclude that

Eπ

[(
H∑

h=1

rh

)
Ea′

1:H∼π′(x1:H)[I{a′h = ah ∀h}]
]
≤ J(π′),

so that
J(π)− J(π′) ≤ R · ρ(π ∥ π′).

Proof of Lemma F.3. Define the triangular discrimination via D∆(P,Q) :=
∫ (dP−dQ)2

dP+dQ , and recall
that 1

2D∆(P,Q) ≤ D2
H(P,Q) ≤ D∆(P,Q) (e.g., Foster and Krishnamurthy [32]). Next, define the

shorthand P (x1:H | a1:H) :=
∏H−1

h=0 P (xh+1 | xh, ah) and Pπ(a1:H | x1:H) :=
∏H

h=1 πh(ah | xh)
(these quantities do not have an interpretation as conditional probability measures in the way the
notation might suggest, but this will not be relevant to the proof). For any deterministic policy π⋆, we
can write

D∆

(
Pπ,Pπ⋆

)
=
∑
x1:H

∑
a1:H

P (x1:H | a1:H−1) ·
(Pπ(a1:H | x1:H)− Pπ⋆

(a1:H | x1:H))2

Pπ(a1:H | x1:H) + Pπ⋆(a1:H | x1:H)

=
∑
x1:H

∑
a1:H=π⋆(x1:H)

P (x1:H | a1:H−1) ·
(Pπ(a1:H | x1:H)− Pπ⋆

(a1:H | x1:H))2

Pπ(a1:H | x1:H) + Pπ⋆(a1:H | x1:H)

+
∑
x1:H

∑
a1:H ̸=π⋆(x1:H)

P (x1:H | a1:H−1) ·
(Pπ(a1:H | x1:H)− Pπ⋆

(a1:H | x1:H))2

Pπ(a1:H | x1:H) + Pπ⋆(a1:H | x1:H)
.

Since π⋆ is deterministic, Pπ⋆

(a1:H | x1:H) = 1 if a1:H = π⋆(x1:H), and is Pπ⋆

(a1:H | x1:H) = 0
otherwise. Using this, we can write the second term above as∑

x1:H

∑
a1:H ̸=π⋆(x1:H)

P (x1:H | a1:H−1) ·
(Pπ(a1:H | x1:H)− 0)2

Pπ(a1:H | x1:H) + 0

=
∑
x1:H

∑
a1:H ̸=π⋆(x1:H)

P (x1:H | a1:H−1)P
π(a1:H | x1:H)

= Pπ[∃h : ah ̸= π⋆(xH)] = ρ(π ∥ π⋆).

35

This proves that D∆

(
Pπ,Pπ⋆) ≥ ρ(π ∥ π⋆). For the upper bound, we use that π⋆ is deterministic

once more to write the first term above as∑
x1:H

∑
a1:H=π⋆(x1:H)

P (x1:H | a1:H−1) ·
(Pπ(a1:H | x1:H)− 1)2

Pπ(a1:H | x1:H) + 1

= Eπ⋆

[
(Pπ(a1:H | x1:H)− 1)2

Pπ(a1:H | x1:H) + 1

]
≤ Eπ⋆[

(Pπ(a1:H | x1:H)− 1)2
]
.

We further note that

Eπ⋆[
(Pπ(a1:H | x1:H)− 1)2

]
= Eπ⋆

Ea′
1:H∼π(x1:H)[1 + (Pπ(a′1:H | x1:H)− 2)I{a′1:H = a1:H}]

≤ Eπ⋆

Ea′
1:H∼π(x1:H)[1− I{a′1:H = a1:H}]

= Eπ⋆

Ea′
1:H∼π(x1:H)[I{∃h : a′1:H ̸= a1:H}] = ρ(π⋆ ∥ π).

By Lemma F.1, we conclude that D∆

(
Pπ,Pπ⋆) ≤ ρ(π ∥ π⋆) + ρ(π⋆ ∥ π) = 2ρ(π⋆ ∥ π).

F.2 Proof of Theorem 2.2
Proof of Theorem 2.2. For this proof, we consider a slightly more general online imi-
tation learning model in which the learner is allowed to select ai

h based on the sequence
(xi

1, a
i
1, a

⋆,i
1), . . . , (xi

h−1, a
i

h−1, a
⋆,i
h−1), (x

i

h, a
⋆,i
h) at training time; this subsumes the offline imita-

tion learning model. Let n ∈ N and H ∈ N be fixed. Let ∆ ∈ (0, 1/3) be a parameter whose value
will be chosen later.

We first specify the dynamics for the reward-free MDP M⋆ and the policy class Π. Set X = {x, y}
and A = {a, b}. The initial state distribution sets P0(x) = 1 −∆ and P0(y) = ∆. The transition
dynamics are Ph(x

′ | x, a) = I{x′ = x} for all h; that is, x, y are self-looping terminal states. We set
Π = {πa, πb}, where the expert policies are πa, which sets πa

h(x) = a for all h and x, and πb, which
sets πb

h(x) = a and sets πb

h(y) = b.

Let a problem instance I = (M⋆, r, π⋆) refer to a tuple consisting of the reward-free MDP M⋆,
a reward function r = {rh}Hh=1, and an expert policy π⋆. We consider two problem instances,
Ia = (M⋆, ra, πa) and I b = (M⋆, rb, πb):

• For problem instance Ia, the expert policy is πa. We set ra

h(x, ·) = 0, ra

h(y, a) = I{a = a} for all
h.

• For problem instance I b, the expert policy is πb. We set rb

h(x, ·) = 0, rb

h(y, a) = I{a = b} for all
h.

Note that both of these instances satisfy µ = 1, and that πa and πb are optimal policies for their
respective instances. Let J a denote the expected reward function for instance Ia, and likewise for I b.

Going forward, we fix the online imitation learning algorithm under consideration and let Pa denote
the law of o1, . . . , on when we execute the algorithm on instance a, and likewise for b; let Ea[·] and
Eb[·] denote the corresponding expectations. In addition, for any policy π, let Pπa|π denote the law of
o = (x1, a1, a

⋆
1), . . . , (xH , aH , a⋆H) when we execute π in the online imitation learning framework

and the expert policy is π⋆ = πa, and define Pπb|π analogously.

We first observe that for any policy π̂,

J a(πa)− J a(π̂) = ∆ ·
H∑

h=1

Eah∼π̂h(y)[I{ah ̸= πa

h(y)}],

and that J b(πb) − J b(π̂) = ∆ · ∑H
h=1 Eah∼π̂h(y)[I{ah ̸= πb

h(y)}]. Defining ρ(π, π′) =∑H
h=1 Eah∼πh(y),a′

h∼π′
h(y)

I{ah ̸= a′h} as a metric, we note that ρ(πa, πb) = H , and hence by the
standard Le Cam two-point argument (e.g.,. Wainwright [91]), the algorithm must have

max{Ea[J a(πa)− J a(π̂)],Eb[J b(πb)− J b(π̂)]} ≥ ∆H

4
(1−DTV(Pa,Pb)),

36

where DTV(·, ·) denotes total variation distance. Next, using Lemma D.2 of Foster et al. [36], we can
bound

D2
TV(Pa,Pb) ≤ D2

H(Pa,Pb) ≤ 7Ea

[
n∑

i=1

D2
H

(
Pπa|πi

,Pπb|πi
)]

.

Since, the feedback the learner receives for a given episode i is identical under instances Ia and I b

unless x1 = y (regardless of how πi is chosen), we can bound

D2
H

(
Pπa|πi

,Pπb|πi
)
≤ 2∆,

and hence

D2
TV(Pa,Pb) ≤ 14∆n.

We set ∆ = 1/56n, and conclude that any algorithm must have

max{Ea[J a(πa)− J a(π̂)],Eb[J b(πb)− J b(π̂)]} ≥ ∆H

8
= c · H

n

for an absolute constant c > 0.

G Proofs from Section 3
G.1 Proof of Theorem 3.1
Proof of Theorem 3.1. Assume without loss of generality that R = 1. Let o =
(x1, a1), . . . , (xH , aH), and for each h ∈ [H], define the sum of advantages up to step h via

∆h(o) =

h∑
ℓ=1

(
Qπ⋆

ℓ (xℓ, π
⋆
ℓ (xℓ))−Qπ⋆

ℓ (xℓ, aℓ)
)
,

which has |∆(o)| ≤ H almost surely. Consider the filtration Fh := σ(x1, a1, . . . , xh, ah). Fix a
parameter L ≥ 1 whose value will be chosen later, and define a random variable

H⋆ := min{h | |∆h(o)| > L},
with H⋆ := H + 1 if there is no h such that |∆h(o)| > L; we will adopt the convention that
Qπ⋆

H+1 = V π⋆

H+1 = 0.

Lemma G.1. H⋆ is a stopping time with respect (Fh)h≥1,17 and has |∆H⋆(o)| ≤ L + 1 almost
surely.

The following lemma, which is one of the central technical components of this proof, gives a bound
on regret in terms of the expected advantage at the stopping time H⋆. We use the stopping time to
keep the sum of advantages ∆H⋆ bounded, which facilitates a strong change-of-measure argument in
the sequel.

Lemma G.2 (Regret decomposition for stopped advantages). If rh ≥ 0 and
∑H

h=1 rh ∈ [0, R], then
for all policies π̂, we have that

J(π⋆)− J(π̂) ≤ Eπ̂[∆H⋆(o)] +R · Pπ̂[H⋆ ≤ H]. (16)

Note that even though we assume R = 1 throughout this proof, we state this lemma for general R for
the sake of keeping it self-contained.

We proceed to bound the right-hand-side of Eq. (16) using change-of-measure based on Hellinger
distance (Lemma 3.1). For the second term in Eq. (16), Lemma 3.1 gives

Pπ̂[H⋆ ≤ H] ≤ 2Pπ⋆

[H⋆ ≤ H] +D2
H

(
Pπ̂,Pπ⋆

)
= 2Pπ⋆

[∃h : |∆h(o)| > L] +D2
H

(
Pπ̂,Pπ⋆

)
.

17That is, for all h, I{h = H⋆} is a measurable function of (x1, a1), . . . , (xh, ah).

37

For the first term in Eq. (16), Lemma 3.1, gives that

Eπ̂[∆H⋆(o)] ≤ Eπ⋆

[∆H⋆(o)] +

√
1
2

(
Eπ̂[∆2

H⋆(o)] + Eπ⋆

[∆2
H⋆(o)]

)
·D2

H(Pπ̂,Pπ⋆).

To bound the first moment and second moment of ∆H⋆(o) under π⋆, we use the following lemma,
which follows from elementary properties of stopped martingale difference sequences.

Lemma G.3. We have that

Eπ⋆

[∆H⋆(o)] ≤ 0, and Eπ⋆[
∆2

H⋆(o)
]
≤ 4σ2

π⋆ .

It remains to bound the second moment under π̂. Here, since |∆H⋆(o)| ≤ L+ 1 almost surely by
Lemma G.1, we note that Lemma 3.1 gives

Eπ̂
[
∆2

H⋆(o)
]
≤ 2Eπ⋆[

∆2
H⋆(o)

]
+ (L+ 1)2D2

H

(
Pπ̂,Pπ⋆

)
.

Combining these developments, we have that

Eπ̂[∆H⋆(o)] ≤
√

3
2 E

π⋆

[∆2
H⋆(o)] ·D2

H(Pπ̂,Pπ⋆) + (L+ 1)D2
H

(
Pπ̂,Pπ⋆

)
≤
√
6σ2

π⋆ ·D2
H(Pπ̂,Pπ⋆) + (L+ 1)D2

H

(
Pπ̂,Pπ⋆

)
,

and thus

J(π⋆)− J(π̂) ≤
√

6σ2
π⋆ ·D2

H(Pπ̂,Pπ⋆) + (L+ 2)D2
H

(
Pπ̂,Pπ⋆

)
+ 2Pπ⋆

[∃h : |∆h(o)| > L].

To wrap up, we appeal to the second of our main technical lemmas, Lemma G.4.

Lemma G.4 (Concentration for advantages). Assume that rh ≥ 0 and
∑H

h=1 rh ∈ [0, R] almost
surely for some R > 0. Then for any (potentially stochastic) policy π, it holds that for all δ ∈ (0, e−1),

Pπ

∃H ′ :

∣∣∣∣∣∣
H′∑
h=1

Qπ
h(xh, ah)− V π

h (xh)

∣∣∣∣∣∣ ≥ c ·R log(δ−1)

 ≤ δ,

for an absolute constant c > 0.

Let ε ∈ (0, e−1) be fixed. If we define

L = c · log(ε−1),

where c > 1 is a sufficiently large absolute constant, then by Lemma G.4, we have that

Pπ⋆

[∃h : |∆h(o)| > L] ≤ ε.

This proves the result.

Proof of Lemma G.1. To prove that H⋆ is a stopping time, we observe that for all h ≤ H , we have

I{h = H⋆} = I{|∆h(o)| > L, |∆h′(o)| ≤ L ∀h′ < h},
and ∆h(o) is a measurable function of (x1, a1), . . . , (xh, ah). Likewise, we have

I{h = H⋆ + 1} = I{|∆h(o)| ≤ L ∀h ≤ H},
which is a measurable function of (x1, a1), . . . , (xH , aH).

For the second claim, we observe that

|∆H⋆(o)| ≤ |∆H⋆−1(o)|+
∣∣∣Qπ⋆

H⋆(xH⋆ , π⋆
H⋆(xH⋆))−Qπ⋆

H⋆(xH⋆ , aH⋆)
∣∣∣

≤ L+ 1

almost surely.

38

Proof of Lemma G.3. Define Xh := Qπ⋆

h (xh, π
⋆
h(xh)) − Qπ⋆

h (xh, ah), and Fh =
σ(x1, a1, . . . , xh, ah), with XH+1 := 0. Since H⋆ is a stopping time with respect to (Fh) and
Xh is a martingale difference sequence (under π⋆), the optional stopping theorem (e.g., [96]) implies
that18

Eπ⋆

[∆H⋆(o)] = Eπ⋆

[
H⋆∑
h=1

Xh

]
= 0.

We now bound the second moment. Recall Doob’s maximal inequality (e.g., Williams [96]).

Lemma G.5. If (Sh)h∈[H] is a non-negative submartingale, then

E
[
max
h∈[H]

S2
h

]
≤ 4E

[
S2
H

]
.

We claim that |∆h(o)| is a submartingale, since a convex function of a martingale is a submartingale.19

As a result, Lemma G.5 gives that

E
[
∆2

H⋆(o)
]
≤ E

[
max
h∈[H]

∆2
h(o)

]
≤ 4E

[
∆2

H(o)
]
.

Finally, we note that

Eπ⋆[
∆2

H(o)
]
= Eπ⋆

(H∑
h=1

(
Qπ⋆

h (xh, π
⋆
h(xh))−Qπ⋆

h (xh, ah)
))2


=

H∑
h=1

Eπ⋆
[
(Qπ⋆

h (xh, π
⋆
h(xh))−Qπ⋆

h (xh, ah))
2
]
= σ2

π⋆ ,

where we have once more used that Xh = Qπ⋆

h (xh, π
⋆
h(xh))−Qπ⋆

h (xh, ah) is a martingale difference
sequence.

G.1.1 Proof of Lemma G.2 (Regret Decomposition for Stopped Advantages)
Proof of Lemma G.2. Consider the following non-Markovian policy:

π̃h(· | x1:h, a1:h−1) =

{
π̂h(· | xh) h ≤ H⋆,
π⋆
h(· | xh) h > H⋆.

This is a well-defined policy, since we can write I{h > H⋆} = maxh′<h I{h′ = H⋆}, and
I{h′ = H⋆} is a measurable function of (x1, a1), . . . , (xh′ , ah′) ⊂ (x1, a1), . . . , (xh−1, ah−1) for
h′ < h.

We begin by writing

J(π⋆)− J(π̂) = J(π⋆)− J(π̃) + J(π̃)− J(π̂). (17)

For the second pair of terms in Eq. (17), we use the following lemma.

Lemma G.6. Under the same assumptions as Lemma G.2, it holds that

J(π̃)− J(π̂) ≤ R · Pπ̂[H⋆ ≤ H].

18To give self-contained proof, note that we can write Eπ⋆
[∑H⋆

h=1 Xh

]
= Eπ⋆

[∑H
h=1 XhI{H⋆ ≥ h}

]
We claim that I{H⋆ ≥ h} is a measurable function of Fh−1, since I{H⋆ ≥ h} = 1 − I{H⋆ < h}, and
I{H⋆ = h′} is a measurable function of (x1, a1), . . . , (xh′ , ah′) ⊂ (x1, a1), . . . , (xh−1, ah−1) for h′ < h.
We conclude that Eπ⋆

[XhI{H⋆ ≥ h} | Fh−1] = Eπ⋆

[Xh | Fh−1]I{H⋆ ≥ h} = 0.
19For completeness, note that E[|∆h(o)| | Fh−1] = E[|∆h−1(o) +Xh| | Fh−1] ≥

|∆h−1(o) + E[Xh | Fh−1]| = |∆h−1(o)|.

39

For the first pair of terms in Eq. (17), using the performance difference lemma, we can write20

J(π⋆)− J(π̃) = Eπ̃

[
H∑

h=1

Qπ⋆

h (xh, π
⋆
h(xh))−Qπ⋆

h (xh, ah)

]

= Eπ̃

[
H∑

h=1

Eh−1

[
Qπ⋆

h (xh, π
⋆
h(xh))−Qπ⋆

h (xh, ah)
]]

= Eπ̃

[
H∑

h=1

Eh−1

[
Qπ⋆

h (xh, π
⋆
h(xh))−Qπ⋆

h (xh, ah)
]
I{h ≤ H⋆}

]

= Eπ̃

[
H∑

h=1

Eh−1

[(
Qπ⋆

h (xh, π
⋆
h(xh))−Qπ⋆

h (xh, ah)
)
I{h ≤ H⋆}

]]

= Eπ̃

[
H⋆∑
h=1

Qπ⋆

h (xh, π
⋆
h(xh))−Qπ⋆

h (xh, ah)

]
= Eπ̃[∆H⋆(o)],

where the third equality uses that π̃h(· | x1:h, a1:h−1) = π⋆
h(· | xh) for h > H⋆, and the fourth

equality uses that I{h ≤ H⋆} is Fh−1-measurable. We now appeal to the following lemma, proven
in the sequel.

Lemma G.7. Under the same assumptions as Lemma G.2, it holds that

Eπ̃[∆H⋆(o)] = Eπ̂[∆H⋆(o)].

Altogether, we conclude that

J(π⋆)− J(π̂) ≤ Eπ̂[∆H⋆(o)] +R · Pπ̂[H⋆ ≤ H].

Proof of Lemma G.6. Let us define f(o) =
∑H

h=1 E[rh | xh, ah] and g(o) = I{H⋆ > H}; note
that g(o) is indeed a measurable function of o = (x1, a1), . . . , (xH , aH), since I{H⋆ > H} =
1 − I{H⋆ ≤ H}, {H⋆ ≤ H} = ∪h≤H{H⋆ = h}, and {H⋆ = h} is a measurable function of
(x1, a1), . . . , (xh, ah). We can write

J(π̃) ≤ Eπ̃

[(
H∑

h=1

rh

)
I{H⋆ > H}

]
+R · Pπ̃[H⋆ ≤ H]. (18)

Let us adopt the shorthand P (x1:H | a1:H−1) :=
∏H−1

h=0 Ph(xh+1 | xh, ah). We can bound the first
term in Eq. (18) via

Eπ̃

[(
H∑

h=1

rh

)
I{H⋆ > H}

]
=

∑
o=x1:H ,a1:H

f(o)g(o)P (x1:H | a1:H−1)

H∏
h=1

π̃h(ah | x1:h, a1:h−1)

=
∑

o=x1:H ,a1:H

f(o)g(o)P (x1:H | a1:H−1)

H∏
h=1

π̂h(ah | xh)

≤
∑

o=x1:H ,a1:H

f(o)P (x1:H | a1:H−1)

H∏
h=1

π̂h(ah | xh)

= Eπ̂

[
H∑

h=1

rh

]
= J(π̂),

20Since π̃ is non-Markovian, we need to expand the state space to x′
h = x1:h, a1:h−1 to apply the performance

difference lemma, but since π⋆ itself is Markovian, this results in the claimed expression.

40

where the second equality uses that π̃(· | x1:h, a1:h−1) = π̂(· | xh) for all h ∈ [H] whenever
g(o) = 1.

To bound the second term in Eq. (18), we can write

Pπ̃[H⋆ ≤ H] =

H∑
h=1

Pπ̃[H⋆ = h].

For each h, let oh := (x1, a1), . . . , (xh, ah) and gh(oh) := I{H⋆ = h} (recall that I{H⋆ = h}
is a measurable function of (x1, a1), . . . , (xh, ah)). Note that for each h, if we define P (x1:h |
a1:h−1) :=

∏h−1
h=0 Pℓ(xℓ+1 | xℓ, aℓ), then

Pπ̃[H⋆ = h] =
∑

oh=x1:h,a1:h

gh(oh)P (x1:h | a1:h−1)

h∏
ℓ=1

π̃ℓ(aℓ | x1:ℓ, a1:ℓ−1)

=
∑

oh=x1:h,a1:h

gh(oh)P (x1:h | a1:h−1)

h∏
ℓ=1

π̂ℓ(aℓ | xℓ)

= Pπ̂[H⋆ = h],

where the second inequality uses that π̃(· | x1:ℓ, a1:ℓ−1) = π̂(· | xℓ) whenever ℓ ≤ H⋆.

Proof of Lemma G.7. We start by writing

Eπ̃[∆H⋆(o)] =

H+1∑
h=1

Eπ̃[I{H⋆ = h}∆h(o)].

For each h ≤ H + 1, let oh := (x1, a1), . . . , (xh, ah) and gh(oh) := I{H⋆ = h} (recall that
I{H⋆ = h} is a measurable function of (x1, a1), . . . , (xh, ah)). For each h ≤ H + 1, if we define
P (x1:h | a1:h−1) :=

∏h−1
h=0 Pℓ(xℓ+1 | xℓ, aℓ), then

Eπ̃[I{H⋆ = h}∆h(o)] =
∑

oh=x1:h,a1:h

gh(oh)∆h(oh)P (x1:h | a1:h−1)

h∏
ℓ=1

π̃ℓ(aℓ | x1:ℓ, a1:ℓ−1)

=
∑

oh=x1:h,a1:h

gh(oh)∆h(oh)P (x1:h | a1:h−1)

h∏
ℓ=1

π̂ℓ(aℓ | xℓ)

= Eπ̂[I{H⋆ = h}∆h(o)],

where the second inequality uses that π̃(· | x1:ℓ, a1:ℓ−1) = π̂(· | xℓ) whenever ℓ ≤ H⋆.

G.1.2 Proof of Lemma G.4 (Concentration for Advantages)
Lemma G.4 is proven using arguments similar to those in Zhang et al. [104, 105], but requires
non-trivial modifications to accommodate the fact that π is an arbitrary, potentially suboptimal policy.

Proof of Lemma G.4. Let us abbreviate Q = Qπ and V = V π . Assume without loss of generality
that R = 1, and note that this implies that rh ∈ [0, 1] and Qh, Vh ∈ [0, 1], which we will use
throughout the proof.

Define a filtration Fh−1 := σ((x1, a1, r1), . . . , (xh−1, ah−1, rh−1), xh). Since

Eh−1[Qh(xh, ah)− Vh(xh)] = 0,

two applications of Lemma D.2 and a union bound imply that with probability at least 1− δ, for all
H ′ ∈ [H]∣∣∣∣∣∣

H′∑
h=1

Qh(xh, ah)− Vh(xh)

∣∣∣∣∣∣ ≤
H′∑
h=1

Eπ
[
(Qh(xh, ah)− Vh(xh))

2 | xh

]
+ log(2δ−1).

41

Since Eπ[Qh(xh, ah) | xh] = Vh(xh), we can write
H′∑
h=1

Eπ
[
(Qh(xh, ah)− Vh(xh))

2 | xh

]
=

H′∑
h=1

Eπ
[
(Q2

h(xh, ah) | xh

]
− V 2

h (xh)

=

H′∑
h=1

(
Eπ
[
(Q2

h(xh, ah) | xh

]
− V 2

h+1(xh+1)
)
+ V 2

H′+1(xH′+1)− V 2
1 (x1)

≤
H′∑
h=1

(
Eπ
[
(Q2

h(xh, ah) | xh

]
− V 2

h+1(xh+1)
)
+ 1.

Observe that by Jensen’s inequality, we have
Eπ
[
(Q2

h(xh, ah) | xh

]
≤ Eπ

[
(rh + Vh+1(xh+1))

2 | xh

]
= Eπ

[
V 2
h+1(xh+1) | xh

]
+ Eπ

[
r2h | xh

]
+ 2Eπ[rhVh+1(xh+1) | xh]

≤ Eπ
[
V 2
h+1(xh+1) | xh

]
+ 3Eπ[rh | xh],

so that
H′∑
h=1

Eπ
[
(Qh(xh, ah)− Vh(xh))

2 | xh

]
≤

H′∑
h=1

Eπ
[
V 2
h+1(xh+1) | xh

]
− V 2

h+1(xh+1) + 3
H′∑
h=1

Eπ[rh | xh] + 1.

By Lemma D.3, we have that with probability at least 1− δ, for all H ′ ∈ [H],
H′∑
h=1

Eπ[rh | xh] ≤
3

2

H′∑
h=1

rh + 4 log(2δ−1)

≤ 3

2
+ 4 log(2δ−1).

Likewise, by Lemma D.2, we have that with probability at least 1− δ, for all H ′ ∈ [H],
H′∑
h=1

Eπ
[
V 2
h+1(xh+1) | xh

]
− V 2

h+1(xh+1) ≤
H′∑
h=1

Eπ
[(
V 2
h+1(xh+1)− Eπ

[
V 2
h+1(xh+1) | xh

])2 | xh

]
+ log(δ−1)

=

H′∑
h=1

Varπ
[
V 2
h+1(xh+1) | xh

]
+ log(δ−1)

≤ 4

H′∑
h=1

Varπ[Vh+1(xh+1) | xh] + log(δ−1),

where the last line uses the following lemma, proven in the sequel.

Lemma G.8. If X is a random variable with |X| ≤ 1, then

Var(X2) ≤ 4Var(X).

We now appeal to the following lemma, also proven in the sequel.

Lemma G.9. Under the same setting as Lemma G.4, we have that for any δ ∈ (0, 1), with probability
at least 1− 2δ, for all H ′ ∈ [H],

H′∑
h=1

Varπ
[
V π
h+1(xh+1) | xh

]
≤ 8 + 32 log(2δ−1).

Putting together all of the developments so far, we have that with probability at least 1− 5δ, for all
H ′ ∈ [H],∣∣∣∣∣∣

H′∑
h=1

Qh(xh, ah)− Vh(xh)

∣∣∣∣∣∣ ≤ 4

H′∑
h=1

Varπ[Vh+1(xh+1) | xh] + 6 + 14 log(2δ−1)

≤ 38 + 142 log(2δ−1).

42

Proof of Lemma G.8. Note that we have

Var(X2) = E
[
(X2 − E

[
X2
]
)2
]
≤ E

[
(X2 − E[X]

2
)2
]
≤ 4E

[
(X − E[X])2

]
,

where the last line uses that
∣∣a2 − b2

∣∣ ≤ 2|a− b| for a, b ∈ [−1, 1].

Proof of Lemma G.9. Abbreviate V ≡ V π . By telescoping, we can write

ZH′ :=

H′∑
h=1

Varπ[Vh+1(xh+1) | xh]

=

H′∑
h=1

Eπ
[
V 2
h+1(xh+1) | xh

]
− (Eπ[Vh+1(xh+1) | xh])

2

=

H′∑
h=1

Eπ
[
V 2
h+1(xh+1) | xh

]
− V 2

h+1(xh+1) +

H′∑
h=1

V 2
h (xh)− (Eπ[Vh+1(xh+1) | xh])

2
+ V 2

H′+1(xH′+1)− V 2
1 (x1)

≤
H′∑
h=1

Eπ
[
V 2
h+1(xh+1) | xh

]
− V 2

h+1(xh+1) +

H′∑
h=1

V 2
h (xh)− (Eπ[Vh+1(xh+1) | xh])

2
+ 1.

For the latter term, since
∣∣a2 − b2

∣∣ ≤ 2|a− b| for a, b ∈ [0, 1], we have that

H′∑
h=1

V 2
h (xh)− (Eπ[Vh+1(xh+1) | xh])

2 ≤ 2

H′∑
h=1

|Vh(xh)− Eπ[Vh+1(xh+1) | xh]|

= 2

H′∑
h=1

|Eπ[rh | xh]| ≤ 2

H′∑
h=1

Eπ[rh | xh],

By Lemma D.3, we have that with probability at least 1− δ, for all H ′ ∈ [H],

H′∑
h=1

Eπ[rh | xh] ≤
3

2

H′∑
h=1

rh + 4 log(2δ−1) ≤ 3

2
+ 4 log(2δ−1).

For the first term, by Lemma D.2, we have that for all η ∈ (0, 1), with probability at least 1− δ, for
all H ′ ∈ [H],

H′∑
h=1

Eπ
[
V 2
h+1(xh+1) | xh

]
− Vh+1(xh+1) ≤ η

H′∑
h=1

Eπ
[(
V 2
h+1(xh+1)− Eπ

[
V 2
h+1(xh+1) | xh

])2 | xh

]
+ η−1 log(δ−1)

= η

H′∑
h=1

Varπ
[
V 2
h+1(xh+1) | xh

]
+ η−1 log(δ−1)

≤ 4η

H′∑
h=1

Varπ[Vh+1(xh+1) | xh] + η−1 log(δ−1)

= 4ηZH′ + η−1 log(δ−1),

where the last inequality uses Lemma G.8. Putting everything together and setting η = 1/8, we
conclude that with probability at least 1− 2δ, for all H ′ ∈ [H]

ZH′ ≤ 1

2
ZH′ + 16 log(2δ−1) + 4,

which yields the result after rearranging.

43

G.2 Formal Statement and Proof of Theorem G.1
The following result shows that the dependence on the variance in Corollary 2.1 cannot be improved
in general, which implies that the horizon-dependence in this regime is tight.

Theorem G.1 (Lower bound for stochastic experts). Consider the dense reward setting where
rh ∈ [0, 1] and R = H . For any n ∈ N, H ∈ N and σ2 ∈ [H,H2], there exists a reward-free
MDP M⋆ with |X | = 3 and |A| = 2, a class of reward functions R with |R| = 2, and a class of
policies Π with |Π| = 2 with the following property. For any (online or offline) imitation learning
algorithm, there exists a deterministic reward function r = {rh}Hh=1 and expert policy π⋆ ∈ Π such
that σ2

π⋆ ≤ σ2 and µ̃ ≤ σ2/H , and for which

P

(
J(π⋆)− J(π̂) ≥ c ·

√
σ2

n

)
≥ 1

8

for an absolute constant c ≥ 1.

Beyond showing that a slow 1/
√
n rate is required for stochastic policies,21

Proof of Theorem G.1. For this proof, we consider a slightly more general online im-
itation learning model in which the learner is allowed to select ai

h based on the sequence
(xi

1, a
i
1, a

⋆,i
1), . . . , (xi

h−1, a
i

h−1, a
⋆,i
h−1), (x

i

h, a
⋆,i
h) at training time; this subsumes the offline imita-

tion learning model. Let H ∈ N, n ∈ N, and σ2 ∈ [H,H2] be given. Fix a parameter K ∈ N such
that H/K is an integer and a parameter ∆ ∈ (0, 1/2) be fixed; both parameters will be chosen at the
end of the proof.

We first specify the dynamics for the reward-free MDP M⋆ and the policy class Π. Let A = {a, b},
and let X = {s, a, b}. We consider the following (deterministic) dynamics. For h ∈ H :=
[1,K + 1, 2K + 1, . . .], always the state is always xh = s. For such a step h ∈ H, choosing ah = a
sets xh = a for the next K − 1 steps until returning to s at time h+K, and choosing ah = b sets
xh = b until returning to s at time h+K (that is, the action has no effect for h /∈ H).

We consider a class Π = {πa, πb} consisting of two experts πa and πb. πa sets πa

h(a | s) = 1
2 +∆

for h ∈ H and sets πh(x) = a for all h /∈ H and x ∈ X . Meanwhile, πb sets πb(b | s) = 1
2 +∆ for

h ∈ H and sets πh(x) = a for all h /∈ H and x ∈ X .

We consider two choices of reward function, ra and rb. ra sets ra

h(s, a) = 1 and ra

h(s, b) = 0 for
h ∈ H, and sets ra

h(a, ·) = 1 and ra

h(b, ·) = 0 for h /∈ H. Meanwhile, rb sets rb

h(s, b) = 1 and
rb

h(s, a) = 0 for h ∈ H and sets rb

h(a, ·) = 0 and rb

h(b, ·) = 1 for h /∈ H.

Let a problem instance I = (M⋆, r, π⋆) refer to a tuple consisting of the reward-free MDP M⋆,
a reward function r = {rh}Hh=1, and an expert policy π⋆. We consider four problem instances
altogether: (M⋆, ra, πa), (M⋆, rb, πa), (M⋆, ra, πb), and (M⋆, rb, πb).

Let Pa denote the law of o1, . . . , on when a when we execute the algorithm on the underlying instance,
and likewise for b (recall that the law does not depend on the choice of reward function, since this is
not observed); let Ea[·] and Eb[·] denote the corresponding expectations. In addition, for any policy
π, let Pπa|π denote the law of o = (x1, a1, a

⋆
1), . . . , (xH , aH , a⋆H) when we execute π in the online

imitation learning framework and the expert policy is π⋆ = πa, and define Pπb|π analogously.

We begin by lower bounding the regret. Consider a fixed policy π̂ = {π̂h : X → ∆(X)}, and let
π(a) := 1

|H|
∑

h∈H π̂h(a | s). Observe that for instance (M⋆, ra, πa), we have

Jra(π
a)− Jra(π̂) =

(
1

2
+ ∆

)
H −K

∑
h∈H

π̂h(a | s) =
(
1

2
+ ∆

)
H −Hπ(a)

21Rajaraman et al. [67] show that for the tabular setting, it is possible to achieve a 1/n-type rate in-expectation
for stochastic policies. Their result critically exploits the assumption that |X | and |A| are small and finite to
argue that it is possible to build an unbiased estimator for π⋆. Theorem G.1 shows that such a result cannot hold
with even constant probability for the same setting. We believe the fact that a 1/n-type rate is even possible in
expectation to be an artifact of the tabular setting, and unlikely to hold for general policy classes.

44

and for instance (M⋆, rb, πa),

Jrb(π
a)− Jrb(π̂) =

(
1

2
−∆

)
H −K

∑
h∈H

π̂h(b | s) = Hπ(a)−
(
1

2
+ ∆

)
H.

Likewise, for instance (M⋆, rb, πb), we have

Jrb(π
b)− Jrb(π̂) =

(
1

2
+ ∆

)
H −K

∑
h∈H

π̂h(b | s) = π(a)H −
(
1

2
−∆

)
H

and for instance (M⋆, ra, πb),

Jra(π
b)− Jra(π̂) =

(
1

2
−∆

)
H −K

∑
h∈H

π̂h(a | s) =
(
1

2
−∆

)
H − π(a)H.

We conclude that for any ε > 0, since the law of the dataset is independent of the choice of the reward
function,

max{Pa[Jra(π
a)− Jra(π̂) ≥ εH],Pa[Jrb(π

a)− Jrb(π̂) ≥ εH],Pb[Jrb(π
b)− Jrb(π̂) ≥ εH],Pb[Jra(π

b)− Jra(π̂) ≥ εH]}

≥ max


Pa

[(
1

2
+ ∆

)
H − π(a)H ≥ εH

]
,Pa

[
π(a)H −

(
1

2
+ ∆

)
H ≥ εH

]
,

Pb

[
π(a)H −

(
1

2
−∆

)
H ≥ εH

]
,Pb

[(
1

2
−∆

)
H − π(a)H ≥ εH

]


≥ 1

2
max

{
Pa

[∣∣∣∣(1

2
+ ∆

)
− π(a)

∣∣∣∣H ≥ εH

]
,Pb

[∣∣∣∣π(a)− (1

2
−∆

)∣∣∣∣H ≥ εH

]}
=

1

2
max

{
Pa

[∣∣∣∣(1

2
+ ∆

)
− π(a)

∣∣∣∣ ≥ ε

]
,Pb

[∣∣∣∣π(a)− (1

2
−∆

)∣∣∣∣ ≥ ε

]}
≥ 1

4

(
Pa

[∣∣∣∣(1

2
+ ∆

)
− π(a)

∣∣∣∣ ≥ ε

]
+ Pb

[∣∣∣∣π(a)− (1

2
−∆

)∣∣∣∣ ≥ ε

])
≥ 1

4

(
1− Pa

[∣∣∣∣(1

2
+ ∆

)
− π(a)

∣∣∣∣ ≤ ε

]
+ Pb

[∣∣∣∣π(a)− (1

2
−∆

)∣∣∣∣ ≥ ε

])
≥ 1

4

(
1− Pa

[∣∣∣∣(1

2
−∆

)
− π(a)

∣∣∣∣ ≥ ε

]
+ Pb

[∣∣∣∣π(a)− (1

2
−∆

)∣∣∣∣ ≥ ε

])
≥ 1

4
(1−DTV(Pa,Pb)),

where the second inequality uses the union bound (i.e. P[|x| ≥ ε] = P[x ≥ ε ∪ −x ≥ ε] ≤ P[x ≥
ε] + P[−x ≥ ε]), and the second-to-last inequality holds as long as ε < ∆. In particular, this implies
that

max


Pa

[
Jra(π

a)− Jra(π̂) ≥
∆H

2

]
,Pa

[
Jrb(π

a)− Jrb(π̂) ≥
∆H

2

]
,

Pb

[
Jrb(π

b)− Jrb(π̂) ≥
∆H

2

]
,Pb

[
Jra(π

b)− Jra(π̂) ≥
∆H

2

]
 ≥

1

4
(1−DTV(Pa,Pb)).

Next, using Lemma D.2 of Foster et al. [36], we can bound

D2
TV(Pa,Pb) ≤ D2

H(Pa,Pb) ≤ 7Ea

[
n∑

i=1

D2
H

(
Pπa|πi

,Pπb|πi
)]

.

Observe that for a given episode i, regardless of how the policy πi is selected:

• The feedback for steps h /∈ H is identical under Pa and Pb.

• The feedback at step h ∈ H differs only in the distribution of a⋆h ∼ πa(s) versus a⋆h ∼ πb(s). This
is equivalently to Ber(1/2 +∆) feedback versus Ber(1/2−∆) feedback.

45

As a result, using Lemma D.2 of Foster et al. [36] once more, we have

D2
H

(
Pπa|πi

,Pπb|πi
)
≤ 7

∑
h∈H

D2
H(Ber(1/2 +∆),Ber(1/2−∆))

Since ∆ ∈ (0, 1/2), we have D2
H(Ber(1/2 +∆),Ber(1/2−∆)) ≤ O(∆2) (e.g., Foster et al. [34,

Lemma A.7]). We conclude that

D2
TV(Pa,Pb) ≤ O

(
n · |H| ·∆2

)
= O

(
n · H

K
·∆2

)
We set ∆2 = c · K

Hn for c > 0 sufficiently small so that D2
TV(Pa,Pb) ≤ 1/2, and conclude that on at

least one of the four problem instances, the algorithm must have

J(π⋆)− J(π̂) ≥ Ω(∆H) = Ω

(√
HK

n

)
with probability at least 1/8.

Finally, we compute the variance and choose the parameter K. Observe that for all of the choices of
expert policy and reward function described above, we have Qπ⋆

h (xh, π
⋆(xh))−Qπ⋆

h (xh, a) = 0 for
h /∈ H, while ∣∣∣Qπ⋆

h (xh, π
⋆(xh))−Qπ⋆

h (xh, a)
∣∣∣ ≤ K

for h ∈ H, so we can take µ̃ ≤ K. Consequently, we have

σ2
π⋆ =

H∑
h=1

Eπ⋆
[
(Qπ⋆

h (xh, π
⋆(xh))−Qπ⋆

h (xh, ah))
2
]
≤
∑
h∈H

Eπ⋆
[
(Qπ⋆

h (s, π⋆(s))−Qπ⋆

h (s, ah))
2
]

≤ H

K
·K2 = HK.

We conclude by setting K = σ2/H , which is admissible for σ2 ∈
[
H,H2

]
(up to a loss in absolute

constants, we can assume that σ2/H is an integer without loss of generality).

G.3 Additional Proofs
Proof of Proposition 3.1. We have

σ2
π⋆ =

H∑
h=1

Eπ⋆
[
(Qπ⋆

h (xh, ah)− V π⋆

h (xh))
2
]
.

Note that Qπ⋆

h (xh, ah) = E
[
rh + V π⋆

h (xh+1) | xh, ah
]
. Hence, by Jensen’s inequality we can bound

Eπ⋆
[
(Qπ⋆

h (xh, ah)− V π⋆

h (xh))
2
]
≤ Eπ⋆

[
E
[
(rh + V π⋆

h+1(xh+1)− V π⋆

h (xh))
2 | xh, ah

]]
= Eπ⋆

[
Eπ⋆

[
(rh + V π⋆

h+1(xh+1)− V π⋆

h (xh))
2 | xh

]]
= Eπ⋆

[
Varπ

⋆
[
rh + V π⋆

h+1(xh+1) | xh

]]
,

so that

σ2
π⋆ ≤ Eπ⋆

[
H∑

h=1

Varπ
⋆
[
rh + V π⋆

h+1(xh+1) | xh

]]

≤ Eπ⋆

[
H∑

h=0

Varπ
⋆
[
rh + V π⋆

h+1(xh+1) | xh

]]
= Varπ

⋆

[
H∑

h=1

rh

]
≤ R2,

where the second to last inequality follows from Lemma D.5.

46

Part II

Additional Results

H Additional Lower Bounds
This section contains additional lower bounds that complement the results in Sections 2 and 3:

• Appendix H.1 shows that the conclusion of Theorem H.1 continues to hold even for online imitation
learning in an active sample complexity framework.

• Appendix H.2 presents an instance-dependent lower bound for stochastic experts, complementing
the minimax lower bound in Theorem G.1.

• Appendix H.3 investigates the extent to which Theorems 2.1 and 3.1 are tight on a per-policy basis.

H.1 Lower Bounds for Online Imitation Learning in Active Interaction Model
For the online imitation learning setting introduced in Section 1.1, we measure sample complexity
in terms of the total number of episodes of online interaction, and expert feedback is available
in every episode. In this section, we consider a more permissive sample complexity framework
inspired by active learning [40, 75]. Here, as in Section 1.1, the learner interacts with the underlying
MDP M⋆ through multiple episodes. At each episode i ∈ [n] the learner executes a policy πi =

{πi

h : X → ∆(A)}Hh=1, and at any step h in the episode, they can decide whether to query the expert
for an action a⋆h ∼ π⋆

h(xh) at the current state xh. We set M i = 1 if the learner queries the expert
at any point during episode i and set M i = 0 otherwise, and define the active sample complexity
M :=

∑n
i=1 M

i as the total number of queries.

It is clear that the active sample complexity satisfies m ≤ n, and in some cases we might hope
for it to be much smaller than the total number of episodes, at least for a well-designed algorithm.
While this can indeed be the case for MDPs that satisfies (fairly strong) distributional assumptions
[75], we will show that the lower bound in Theorem 2.2 continues to hold in this framework (up
to a logarithmic factor), meaning that online interaction in the active sample complexity framework
cannot improve over LogLossBC in general.

Theorem H.1 (Lower bound for deterministic experts in active sample complexity framework). For
any m ∈ N and H ∈ N, there exists a reward-free MDP M⋆ with |X | = |A| = m + 1, a class of
reward functionsR with |R| = m+ 1, and a class of deterministic policies Π with log|Π| = log(m)
with the following property. For any online imitation learning algorithm in the active sample
complexity framework that has sample complexity E[M] ≤ c ·m for an absolute constant c > 0,
there exists a deterministic reward function r = {rh}Hh=1 with rh ∈ [0, 1] and (optimal) expert policy
π⋆ ∈ Π with µ = 1 such that the expected suboptimality is lower bounded as

E[J(π⋆)− J(π̂)] ≥ c · H
m

for an absolute constant c > 0. In addition, the dynamics, rewards, and expert policies are all
stationary.

Since this example has log|Π| = log(M), it follows that the sample complexity bound for LogLossBC
in Theorem 2.1 (which uses M = n) can be improved by no more than a log(n) factor through
online interaction in the active framework.

Proof of Theorem H.1. Let m ∈ N and H ∈ N be fixed. We first specify the dynamics for the
reward-free MDP M⋆. Set X = {x1, . . . , xm} and A = {a, b}. The initial state distribution is
P0 = unif(x1, . . . , xm). The transition dynamics are Ph(x

′ | x, a) = I{x′ = x} for all h; that is,
x1, . . . , xm are all self-looping terminal states.

47

Let a problem instance I = (M⋆, r, π⋆) refer to a tuple consisting of the reward-free MDP M⋆,
a reward function r = {rh}Hh=1, and an expert policy π⋆. We consider m + 1 problem instances
I0, . . . , Im parameterized by a collection of policies Π = {π0, . . . , πm} and reward functions
R = {r0, . . . , rm}.
• For problem instance I0 = (M⋆, r0, π0), the expert policy is π0, which sets π0

h(x) = a for all
x ∈ X and h ∈ [H]. The reward function r0 sets rh(x, a) = I{a = a} for all x ∈ X and h ∈ [H].

• For each problem instance Ij = (M⋆, rj, πj), the expert policy is πj , which for all h ∈ [H]
sets πj

h(x) = a for x ̸= xj and sets πh(xj) = b. The reward function rj sets rh(x, a) =
I{a = a, x ̸= xj}+ I{a = b, x = xj} for all h ∈ [H].

Let J j denote the expected reward under instance j. Note that all instances satisfy µ = 1, and that πj

is an optimal policy for each instance j.

Going forward, we fix the online imitation learning algorithm under consideration and let Pj denote
the law of o1, . . . , on when a when we execute the algorithm on instance Ij; let Ej[·] denote
the corresponding expectation. In addition, for any policy π, let Pπj |π denote the law of o =
(x1, a1, a

⋆
1), . . . , (xH , aH , a⋆H) when we execute π in the online imitation learning framework when

the underlying instance is Ij , with the convention that a⋆h =⊥ if the learner does not query the expert
in episode j.

Our aim is to lower bound

max
j∈{0,...,m}

Ej[J j(πj)− J j(π̂)]

To this end, define ρj(π, π′) =
∑H

h=1 Eah∼πh(xj),a′
h∼π′

h(xj)
I{ah ̸= a′h} and ρ(π, π′) = 1

mρj(π, π
′),

and observe that

E0[J0(π0)− J0(π̂)] = E0

 1

m

m∑
j=1

H∑
h=1

Eah∼π̂h(xj)[I{ah ̸= π0

h(xj)}]


= E0[ρ(π̂, π0)] ≥ H

2m
· P0

[
ρ(π̂, π0) ≥ H

2m

]
.

Next, note that for any i ∈ [m], if ρ(π̂, π0) < H
2m , then ρj(π̂, π

0) < H
2 , which means that ρj(π̂, πj) ≥

H
2 . It follows that

Ej[J j(πj)− J j(π̂)] = Ej

[
1

m
ρj(π̂, π

j)

]
≥ H

2m
Pj

[
ρ(π̂, π0) <

H

2m

]
,

and if we define P = Ej∼unif([m]) Pj , then

Ej∼unif([m]) Ej[J j(πj)− J j(π̂)] ≥ H

2m
P
[
ρ(π̂, π0) <

H

2m

]
.

Combining these observations, we find that

max
i∈{0,...,m}

Ej[J j(πj)− J j(π̂)] ≥ H

4m

(
P0

[
ρ(π̂, π0) ≥ H

2m

]
+ P

[
ρ(π̂, π0) <

H

2m

])
≥ H

4m
(1−DTV

(
P0,P

)
).

It remains to bound the total variation distance. Next, using Lemma D.2 of Foster et al. [36], we can
bound

D2
TV

(
P0,P

)
≤ D2

H

(
P0,P

)
≤ Ej∼unif[m]

[
D2

H(P0,Pj)
]
≤ 7Ej∼unif[m] E0

[
n∑

t=1

D2
H

(
Pπ0|πt

,Pπj |πt
)]

.

Since the feedback the learner receives for a given episode t is identical under instances I0 and Ij is
identical unless i) x1 = xj , and ii) the learner decides to query the expert for feedback (i.e., M t = 1),
we can bound

D2
H

(
Pπ0|πt

,Pπj |π0
)
≤ 2Pπ0|πt

[xt

1 = xj ,M
t = 1]

48

and hence

Ej∼unif[m] E0

[
n∑

t=1

D2
H

(
Pπ0|πt

,Pπj |πt
)]
≤ 2Ej∼unif[m] E0

[
n∑

t=1

Pπ0|πt

[xt

1 = xj ,M
t = 1]

]

=
2

m
E0

 n∑
t=1

m∑
j=1

Pπ0|πt

[xt

1 = xj ,M
t = 1]


=

2

m
E0

[
n∑

t=1

Pπ0|πt

[M t = 1]

]

=
2

m
E0[M].

It follows that if E0[M] ≤ m/56, then DTV

(
P0,P

)
≤ 1/2, so that the algorithm must have

max
i∈{0,...,m}

Ej[J j(πj)− J j(π̂)] ≥ H

8m
.

H.2 An Instance-Dependent Lower Bound for Stochastic Experts
In this section, we further investigate the optimality of LogLossBC for stochastic experts (Theo-
rem 3.1). Recall that when log|Π| = O(1) the leading-order term in Theorem 3.1 scales as roughly√
σ2
π⋆/n, where the salient quantity is the variance

σ2
π⋆ :=

H∑
h=1

Eπ⋆
[
(Qπ⋆

h (xh, π
⋆(xh))−Qπ⋆

h (xh, ah))
2
]

for the expert policy π⋆. Theorem G.1 shows that this is optimal qualitatively, in the sense that for
any value σ2, there exists a class of MDPs where the σ2

π⋆ ≤ σ2, and where the minimax rate is at
least

√
σ2/n.

In what follows, we will prove that for the special case of autoregressive MDPs (that is, the special case
of the imitation learning problem in which the state takes the form xh = a1:h−1; cf. Appendix B.3),
Theorem G.1 is optimal on a per-policy basis. Concretely, we prove a local minimax lower bound [28]
which states that for any policy π⋆ and any reward function r⋆, there exists a difficult “alternative”
policy π̃, such that in worst case over rewards r ∈ {−r⋆,+r⋆} and expert policies π ∈ {π⋆, π̃}, any
algorithm must have regret at least

√
σ2/n.

Theorem H.2. Consider the offline imitation learning setting, and let M⋆ be an autoregressive MDP.
Let a reward function r⋆ with

∑H
h=1 r

⋆
h ∈ [0, R] almost surely be fixed, and let an expert policy π⋆

be given. For any n ∈ N, there exists an alternative policy π̃ such that

min
Alg

max
π∈{π⋆,π̃}

max
r∈{r⋆,−r⋆}

P

[
J(π)− J(π̂) ≥ c ·

√
σ2
π⋆

n

]
≥ 1

4

for all n ≥ c′ · R2

σ2
π⋆

, where c, c′ > 0 are absolute constants.

Theorem H.2 suggests that the leading term in Theorem 3.1 cannot be improved substantially without
additional assumptions, on a (nearly) per-instance basis. The restriction to n ≥ c′· R2

σ2
π⋆

in Theorem H.2

is somewhat natural, as this corresponds to the regime in which the
√
σ2
π⋆/n term in Theorem 3.1

dominates the lower-order term.

Proof of Theorem H.2. We begin by observing that for any ∆ > 0,

min
Alg

max
π∈{π⋆,π̃}

max
r∈{r⋆,−r⋆}

P[Jr(π)− Jr(π̂) ≥ ∆] ≥ min
Alg

max
π∈{π⋆,π̃}

P[|Jr⋆(π)− Jr⋆(π̂)| ≥ ∆].

49

with the convention that Jr(π) denotes the expected reward under r; we abbreviate J(π) ≡ Jr⋆(π)
going forward. Let Pπ

n denote the law of the offline imitation learning dataset under π. If we set
∆ = |J(π⋆)− J(π̃)|/2, then by the standard Le Cam two-point argument, we have that

max
{
Pπ⋆

n [|J(π⋆)− J(π̂)| ≥ ∆],Pπ̃
n[|J(π̃)− J(π̂)| ≥ ∆]

}
≥ 1

2

(
1− Pπ⋆

n [|J(π⋆)− J(π̂)| < ∆] + Pπ̃
n[|J(π̃)− J(π̂)| ≥ ∆]

)
≥ 1

2

(
1− Pπ⋆

n [|J(π̃)− J(π̂)| ≥ ∆] + Pπ̃
n[|J(π̃)− J(π̂)| ≥ ∆]

)
≥ 1

2

(
1−DTV

(
Pπ⋆

n ,Pπ̃
n

))
≥ 1

2

(
1−

√
n ·D2

H(Pπ⋆ ,Pπ̃)

)
,

where the final inequality uses the standard tensorization property for Hellinger distance (e.g.,
Wainwright [91]).

We will proceed by showing that

ωπ⋆(ε) := sup
π

{
|J(π)− J(π⋆)| | D2

H

(
Pπ⋆

,Pπ
)
≤ ε2

}
≥ Ω(1) ·

√
σ2
π⋆ · ε2, (19)

for any ε > 0 sufficiently small, from which the result will follow by setting ε2 ∝ 1/n and

π̃ = argmax
π

{
|J(π)− J(π⋆)| | D2

H

(
Pπ⋆

,Pπ
)
≤ ε2

}
≥ Ω(1) ·

√
σ2
π⋆ · ε2.

To prove this, we will appeal to the following technical lemma.

Lemma H.1. For any distribution Q and function h with |h| ≤ R almost surely, it holds that for all
0 ≤ ε2 ≤ VarQ[h]

4R2 , there exists a distribution P such that

1. EP[h]− EQ[h] ≥ 2−3
√
VarQ[h] · ε2

2. DKL(Q ∥P) ≤ ε2.

Since stochastic policies π in the autoregressive MDP M⋆ are equivalent to arbitrary joint laws over
the sequence a1:H (via Bayes’ rule) and J(π) = Eπ

[∑H
h=1 r

⋆
h

]
, Lemma H.1 implies that for any

ε2 ≤ Varπ
⋆
[∑H

h=1 r
⋆
h

]
/4R2, there exists a policy π̃ such that (i) D2

H

(
Pπ⋆

,Pπ̃
)
≤ DKL

(
Pπ⋆ ∥Pπ̃

)
≤

ε2, and (ii)

J(π̃)− J(π⋆) ≥ 2−3

√√√√Varπ
⋆

[
H∑

h=1

r⋆h

]
· ε2.

This establishes Eq. (19). The result now follows by setting ε2 = c
n for an absolute constant c > 0 so

that
√
n ·D2

H(Pπ⋆ ,Pπ̃) ≤ 1/2, which is admissible whenever n ≥ c′ · R2

σ2
π⋆

. Finally, we observe that
for any deterministic MDP, by Lemma D.5,

Varπ
⋆

[
H∑

h=1

rh

]
= Eπ⋆

[
H∑

h=1

Varπ
⋆
[
rh + V π⋆

h+1(xh+1) | xh

]]
= Eπ⋆

[
H∑

h=1

(Qπ⋆

h (xh, ah)− V π⋆

h (xh))
2

]
= σ2

π⋆ ,

since deterministic MDPs satisfy

Qπ⋆

h (xh, ah) = rh(xh, ah) + V π⋆

h+1(xh+1)

almost surely, and since Eπ⋆[
Qπ⋆

h (xh, ah) | xh

]
= V π⋆

h (xh).

Proof of Lemma H.1. Recall that we assume the domain is countable, so that Q admits a probability
mass function q. We will define P via the probability mass function

p(x) =
q(x)eηh(x)∑
x′ q(x′)eηh(x′)

50

for a parameter η > 0. We begin by observing that

DKL(Q ∥P) = log
(
EQ
[
eηh
])
− η EQ[h] = log

(
EQ

[
eη(h−EQ[h])

])
.

We now use the following lemma.

Lemma H.2. For any random variable X with |X| ≤ R almost surely and any η ∈ (0, (2R)−1),

η2

8
Var[X] ≤ log

(
E
[
eη(X−E[X])

])
≤ η2Var[X].

Hence, as long as η ≤ (2R)−1,

DKL(Q ∥P) ≤ η2VarQ[h].

We set η = min
{√

ε2

VarQ[h]
, 1
2R

}
so that DKL(Q ∥P) ≤ ε2.

Next, we compute that

0 ≤ DKL(P ∥Q) = η EP[h]− log
(
EQ
[
eηh
])
,

so that

EP[h]− EQ[h] ≥ η−1 log
(
EQ
[
eηh
])
− EQ[h] = η−1 log

(
EQ

[
eη(h−EQ[h])

])
.

Since η ≤ (2R)−1, Lemma H.2 yields

EP[h]− EQ[h] ≥
η

8
VarQ[h] =

1

8

√
VarQ[h] · ε2

as long as ε2 ≤ VarQ[h]
4R2 .

Proof of Lemma H.2. Note that ex ≤ 1 + x + (e − 2)x2 ≤ 1 + x + x2 whenever |x| ≤ 1, and
similarly ex ≥ 1 + x+ x2

4 for |x| ≤ 1. It follows that if η ≤ (2R)−1,

1 +
η2

4
Var(X) ≤ E

[
eη(X−E[X])

]
≤ 1 + η2Var(X).

We conclude by using that x
2 ≤ log(1 + x) ≤ x for x ∈ [0, 1].

H.3 Tightness of the Hellinger Distance Reduction
Theorem 2.1 and Theorem 3.1 are supervised learning reductions that bound the regret of any policy
π̂ in terms of its Hellinger distance D2

H

(
Pπ̂,Pπ⋆)

to the expert policy π⋆. The following result shows
that these reductions are tight in a fairly strong instance-dependent sense: Namely, for any pair
of policies π̂ and π⋆, and for any reward-free MDP M⋆, it is possible to design a reward function
r = {rh}Hh=1 for which each term in Eq. (9) of Theorem 3.1 is tight, and such that Theorem 2.1 is
tight; the only caveat is that we require the reward function to be non-Markovian, in the sense that rh
depends on the full history x1:h and a1:h.

Theorem H.3 (Converse to Theorems 2.1 and 3.1). Let a reward-free MDP M⋆ and a pair of
(potentially stochastic) policies π̂ and π⋆ be given.

1. For any R > 0, there exists a non-Markovian reward function r = {rh}Hh=1 with
∑H

h=1 rh ∈
[0, R] such that

J(π⋆)− J(π̂) ≥ R

6
·D2

H

(
Pπ̂,Pπ⋆)

. (20)

51

2. For any σ2 > 0, there exists a non-Markovian reward function r = {rh}Hh=1 for which σ2
π⋆ :=∑H

h=1 E
π⋆[

(Qπ⋆

h (x1:h, a1:h)− V π⋆

h (x1:h, a1:h−1))
2
]
≤ σ2, and such that22

J(π⋆)− J(π̂) ≥ 1

9

√
σ2 ·D2

H(Pπ̂,Pπ⋆). (21)

3. For any R > 0 and σ2 > 0, there exists a non-Markovian reward function r = {rh}Hh=1 with∑H
h=1 rh ∈ [0, R] and σ2

π⋆ ≤ σ2 simultaneously such that

J(π⋆)− J(π̂) ≥ 1

9
min

{√
σ2 ·D2

H(Pπ̂,Pπ⋆), R ·D2
H

(
Pπ̂,Pπ⋆)}

.

Eq. (20) shows that there exist reward functions with bounded range for which Theorem 2.1 and
the lower-order term in Eq. (9) of Theorem 3.1 are tight, while Eq. (21) shows that there exist reward
functions with bounded variance (but not necessarily bounded range) for which the leading term
in Eq. (9) or Theorem 3.1 is tight.

Note that for some MDPs, the state xh already contains the full history x1:h−1, a1:h−1, so the
assumption of non-Markovian rewards is without loss of generality. For MDPs that do not have this
property, Theorem H.3 leaves open the possibility that Theorems 2.1 and 3.1 can be improved on a
per-MDP basis.

Proof of Theorem H.3. Consider a pair of measures P and Q, and set P := 1
2 (P+Q). Consider the

function

h = 1− 1

2

Q
P
∈ [0, 1].

Using Lemma D.4, we observe that

EP[h]− EQ[h] = 2
(
EP[h]− EQ[h]

)
= EQ

[
Q
P

]
− EP

[
Q
P

]
= Dχ2

(
Q ∥ P

)
≥ 1

6
D2

H(Q,P). (22)

We also observe that by concavity of variance,

1

2
(VarP[h] + VarQ[h]) ≤ VarP[h] =

1

4
EP

[(
Q
P
− EP

[
Q
P

])]2
= Dχ2

(
Q ∥ P

)
≤ D2

H(Q,P).

(23)

To apply this observation to the theorem at hand, let a parameter B > 0 be given, let P := 1
2 (P

π⋆

+Pπ̂),
and consider the non-Markov reward function r that sets r1, . . . , rh−1 = 0 and

rH(τ) = B ·
(
1− 1

2

Pπ̂

P

)
∈ [0, B].

Then by Eq. (22), we have that

J(π⋆)− J(π̂) ≥ B

6
·D2

H

(
Pπ̂,Pπ⋆

)
.

At the same time, by Eq. (23), we have that

Varπ
⋆

[
H∑

h=1

rh

]
= Varπ

⋆

[rH] ≤ 2B2 ·D2
H

(
Pπ̂,Pπ⋆

)
,

and by Proposition 3.1,

σ2
π⋆ ≤ Varπ

⋆

[
H∑

h=1

rh

]
.

22Note that since the reward function under consideration is non-Markovian, the value functions Qπ⋆

h and
V π⋆

h depend on the full history x1:h, a1:h−1.

52

To conclude, note that if we set B2 = R2, then
∑H

h=1 rh ∈ [0, R] and

J(π⋆)− J(π̂) ≥ R

6
·D2

H

(
Pπ̂,Pπ⋆

)
.

Meanwhile, if we set

B2 =
σ2

2D2
H(Pπ̂,Pπ⋆)

,

then σ2
π⋆ ≤ σ2 and

J(π⋆)− J(π̂) ≥ 1

9

√
σ2 ·D2

H(Pπ̂,Pπ⋆).

Finally, if we set

B2 =
σ2

2D2
H(Pπ̂,Pπ⋆)

∧R2.

Then
∑H

h=1 rh ∈ [0, R], σ2
π⋆ ≤ σ2, and

J(π⋆)− J(π̂) ≥ B

6
·D2

H

(
Pπ̂,Pπ⋆

)
≥ min

{
1

9

√
σ2 ·D2

H(Pπ̂,Pπ⋆),
R

6
·D2

H

(
Pπ̂,Pπ⋆

)}
.

I Benefits of Online Interaction
Our results in Sections 2 and 3 show that the benefits of online interaction in imitation learning—to
the extent that horizon is concerned—are more limited than previously thought. We expect that in
practice, online interaction will likely lead to benefits, but only in a problem-dependent sense. To this
end, we first discuss the role of misspecification and the realizability assumption used by our results,
then highlight several special cases in which online interaction is indeed beneficial, but in a policy
class-dependent fashion not captured by existing theory. In particular, we identify three phenomena
which lead to improved sample complexity: (i) representational benefits; (ii) value-based feedback;
and (iii) exploration. Our results in this section can serve as a starting point toward developing a
more fine-grained understanding of algorithms and sample complexity of imitation learning.

I.1 The Role of Misspecification
This paper (for both deterministic and stochastic experts) focuses on the realizable setting in
which π⋆ ∈ Π. It is natural to ask how the role of horizon in imitation learning changes under
misspecification, and whether online interaction brings greater benefits in this case. This is a subtle
issue, as there are various incomparable notions of misspecification error which can lead to different
forms of horizon dependence. For example, for deterministic experts, if Π is misspecified in the
sense that infπ∈Π Lbc(π) ≤ εapx, the indicator-loss behavior cloning algorithm in ?? achieves

J(π⋆)−J(π̂) ≲ RH ·
(

log(|Π|δ−1)
n + εapx

)
, which is tight in general. In other words, the dependence

on εapx is not horizon-independent. On the other hand, as we show in Appendix E, if we assume
that infπ∈Π Dχ2

(
Pπ⋆ ∥ Pπ

)
≤ εapx, a stronger notion of misspecification error, then LogLossBC

achieves a horizon-independent guarantee of the form J(π⋆)− J(π̂) ≲ R ·
(

log(|Π|δ−1)
n + εapx

)
. We

leave a detailed investigation of tradeoffs between misspecification and horizon (as well as interplay
with online versus offline IL) for future work; by giving the first horizon-independent treatment for
the realizable setting, we hope that our results can serve as a starting point.

I.2 Representational Benefits
The classical intuition behind algorithms like Dagger and Aggrevate (which Definition 1.1 attempts
to quantify) is recoverability: through online access, we can learn to correct the mistakes of an
imperfect policy. Our results in Sections 2 and 3 show that recoverability has limited benefits for
stationary policy classes as far as horizon is concerned. In spite of this, the following proposition
shows that recoverability can have pronounced benefits for representational reasons, even with
constant horizon.

53

Proposition I.1 (Representational benefits of online IL). For any N ∈ N, there exists a classM of
MDPs with H = 2 and a policy class Π with log|Π| = O(N) such that

• There is an online imitation learning algorithm that achieves J(π⋆)− J(π̂) = 0 with probability
at least 1− δ using O(log(δ−1)) episodes for any MDP M⋆ ∈M and expert policy π⋆ ∈ Π. In
particular, this can be achieved by Dagger.

• Any proper offline imitation learning algorithm requires n = Ω(N) trajectories to learn a non-
trivial policy with J(π⋆)− J(π̂) ≤ c for an absolute constant c > 0.23

The idea behind this construction is as follows: The behavior of the (stochastic) expert policy at
step h = 1 is very complex, and learning to imitate it well in distribution (e.g., with respect to total
variation or Hellinger distance) is a difficult representation learning problem (in the language of
Section 2, e.g., Theorem 2.1, we must take log|Π1| very large in order to realize π⋆

1). For offline
imitation learning, we have no choice but to imitate π⋆

1 well at h = 1, leading to the lower bound in
Proposition I.1. With online access though, we can give up on learning π⋆

1 well, and instead learn
to correct our mistake at step h = 2. For the construction in Proposition I.1, this a much easier
representation learning problem, and requires very low sample complexity (i.e., we can realize π⋆

2
with a class Π2 for which log|Π2| is small. We conclude that Dagger can indeed lead to substantial
benefits over offline IL, but for representational reasons unrelated to horizon, and not captured by
existing theory. While this example is somewhat contrived, it suggests that potential to develop a
deeper understanding of representational benefits in imitation learning, which we leave as a promising
direction for future work.

I.3 Benefits of Value-Based Feedback
Beginning with the work of Ross and Bagnell [71] on Aggrevate, many works (e.g., Sun et al. [78])
consider a value-based feedback variant of the online IL framework (Section 1.1) where in addition
to (or instead of) observing a⋆h, the learner observes the expert’s advantage function Aπ⋆

h (xh, ·) :=
Qπ⋆

h (xh, π
⋆
h(xh))−Qπ⋆

h (xh, ·) or value function Qπ⋆

h (xh, ·) at every state visited by the learner (see
Appendix I.5.2 for details, which are deferred to the appendix for space). While such feedback
intuitively seems useful, existing theoretical guarantees—to the best of our knowledge—[71, 78]
only show that algorithms like Aggrevate are no worse than non-value based methods like Dagger,
and do not quantify situations in which value-based feedback actually leads to improvement.24

The following result shows that i) value-based feedback can lead to arbitrarily large improvement
over non-value based feedback for representational reasons similar to Proposition I.1 (that is for a
complicated stochastic expert, learning to optimize a fixed value function can be much easier than
learning to imitate the expert well in TV distance), but ii) it is only possible to exploit value-based
feedback in this fashion under online interaction (that is, even if we annotate the trajectories for
offline imitation learning with Aπ⋆

h (xh, ·) for the visited states, this cannot lead to improvement in
sample complexity).

Proposition I.2 (Benefits of value-based feedback (informal)). For any N ∈ N, there is a class of
MDPsM with H = 2 and a policy class Π with log|Π| = O(N) such that

• There is an online imitation learning algorithm with value-based feedback that achieves J(π⋆)−
J(π̂) = 0 with probability at least 1 − δ using O(log(δ−1)) episodes for every MDP M⋆ ∈ M
and expert π⋆ ∈ Π. In particular, this can be achieved by Aggrevate.

• Any proper offline imitation learning algorithm (with value-based feedback) or proper online
imitation learning algorithm (without valued-based feedback) requires n = Ω(N) trajectories
to learn a non-trivial policy with J(π⋆)− J(π̂) ≤ c for an absolute constant c > 0.25

As with Proposition I.1, this example calls for a fine-grained policy class-dependent theory, which we
hope to explore more deeply in future work.

23We expect that this result extends to improper offline IL algorithms for which π̂ /∈ Π, but a more complicated
construction is required; we leave this for the next version of the paper.

24These results are reductions which bound regret in terms of different notions of supervised learning
performance, which makes it somewhat difficult to compare them or derive concrete end-to-end guarantees.

25As with Proposition I.1, we expect that this lower bound can be extended to improper learners, but a more
complicated construction is required.

54

I.4 Benefits from Exploration
A final potential benefit of online interaction arises in exploration. One might hope that with online
access, we can directly guide the MDP to informative states that will help to identify the optimal
policy faster. The following proposition gives an example in which deliberate exploration can lead to
arbitrarily large improvement over offline imitation learning, as well as over naive online imitation
learning algorithms like Dagger that do not deliberately explore.

Proposition I.3 (Benefits of exploration for online IL). For any n ∈ N and H ∈ N, there exists an
MDP M⋆ and a class of deterministic policies Π with |Π| = 2 with the following properties.

1. There exists an online imitation learning algorithm that returns a policy π̂ such that
J(π⋆)− J(π̂) = 0 with probability at least 1− δ using O(log(δ−1)) episodes, for all possible
reward functions (i.e., even if µ = H).

2. For any offline imitation learning algorithm, there exists a deterministic reward function
r = {rh}Hh=1 and expert policy π⋆ ∈ Π with µ = 1 such that any algorithm must have
E[J(π⋆)− J(π̂)] ≥ Ω(1) · Hn . In addition, Dagger has regret E[J(π⋆)− J(π̂)] ≥ Ω(1) · Hn .

The idea behind this construction is simple: We take the lower bound construction from Theorem 2.2
and augment it with a “revealing” which directly reveals the identity of the underlying expert. The true
expert never visits this state, so offline imitation learning algorithms cannot exploit it (standard online
IL algorithms like Dagger and relatives do not exploit the revealing state for the same reason),26 but
a well-designed online IL algorithm that deliberately navigates to the revealing state can use it to
identify π⋆ extremely quickly.

As with the previous examples, this construction is somewhat contrived, but it suggests that directly
maximizing information acquisition may be a useful algorithm design paradigm for online IL, and
we hope to explore this more deeply in future work.

I.5 Proofs
I.5.1 Proof of Proposition I.1
Proof of Proposition I.1. Let N ∈ N be given. We set X = {x, y, z}, A = [N] ∪ {a, b}, and
H = 2. We consider a family of problem instances {(M,π⋆, r)} indexed by a subset S ⊂ [N] with
|S| = N/2 and an action a⋆ ∈ {a, b} as follows. For a given pair (S, a⋆):

• The dynamics are as follows. We have x1 = x deterministically. For simplicity, we assume that
only actions in [N] are available at step h = 1. If a1 ∈ S, then x2 = y, otherwise x2 = z.

• The reward at step 1 is r1(·, ·) = 0, and the reward at step 2 is given by r2(y, ·) = 1 and
r2(z, a) = I{a = a⋆}.

• The expert π⋆ sets π⋆(x) = unif(S), π⋆(y) = unif({a, b}), and π⋆(z) = a⋆.

Let us refer to the problem instance above as IS,a⋆ =
{
(MS,a⋆ , π⋆

S,a⋆ , rS,a⋆)
}

, and let JS,a⋆(π)
denote the expected reward under this instance.

Upper bound for online imitation learning. Consider the algorithm that sets π̂i
1 = unif([N]) for

each i ∈ [n]. If we play for n = log2(δ
−1) episodes, we will see x2 = z in at least one episode with

probability at least 1− δ, at which point we will observe a⋆ = π⋆(z), and we can return the policy π̂
that sets π̂1(x) = unif([N]) and π̂2(·) = a⋆; this policy has zero regret.

Note that if we define Π =
{
π⋆
S,a⋆

}
|S|=N/2,a⋆∈{a,b} as the natural policy class for the family of

instances above, then the algorithm above is equivalent to running Dagger with the online learning
algorithm that, at iteration i, sets

π̂i

h = unif
({

π ∈ Πh | π2(z) = a⋆,j2 ∀j < i : xj

2 = z
})

,

and choosing the final policy as π̂ = π̂i for any iteration i after x2 = z is encountered.

26This phenomenon is also distinct from “active” online imitation learning algorithms [75] which can obtain
improved sampling complexity under strong distributional assumptions in the vein of active learning [40], but
still do not deliberately explore.

55

Lower bound for offline imitation learning. Consider the offline imitation learning setting. When
the underlying instance is IS,a⋆ , we observe a dataset D consisting of n trajectories generated by
executing π⋆

S,a⋆ in MS,a⋆ . The trajectories never visit the state z, so a⋆ is not identifiable, and we
can do no better than guessing a⋆ uniformly in this state. Letting ES,a⋆ denote the law of D under
instance IS,a⋆ , we have JS,a⋆(π̂) = π̂1(S | x) + π̂1(S

c | x)π̂2(a
⋆ | z). It follows that for any S,

since the law of D does not depend on a⋆,
max

a⋆∈{a,b}
ES,a⋆

[
JS,a⋆(π⋆

S,a⋆)− JS,a⋆(π̂)
]
≥ ES,a[1− π̂1(S | x)− π̂1(S

c | x)/2]

=
1

2
ES,a[1− π̂1(S | x)].

Note that if π̂ is proper in the sense that π̂1(·x) = unif(Ŝ) for some Ŝ ⊂ [N] with |Ŝ| = N/2, we
have 1− π̂1(S | x) = 1− 2

N |Ŝ ∪S|. We conclude that if ES,a⋆

[
JS,a⋆(π⋆

S,a⋆)− JS,a⋆(π̂)
]
≤ 1

8 , then
ES,a⋆

[
|Ŝ ∩ S|

]
≥ 3

8N . From here, it follows from standard lower bounds for discrete distribution
estimation (e.g., Canonne [18]) that any such estimator Ŝ requires n = Ω(N) samples for a
worst-case choice of S.

I.5.2 Background and Proof for Proposition I.2
Before proving Proposition I.2, we first formally introduce the value-based feedback model we
consider.

Background on value-based feedback. We can consider two models for imitation learning with
value-based feedback, inspired by Ross and Bagnell [71], Sun et al. [78].

• Offline setting. In the offline setting, we receive n trajectories (x1, a1), . . . , (xH , aH) generated
by executing π⋆ in M⋆. For each state in each such trajectory, we observe Aπ⋆

h (xh, ·), where
Aπ⋆

h (x, a) = Qπ⋆

h (x, π⋆(x))−Qπ⋆

h (x, a) is the advantage function for π⋆.27

• Online setting. The online setting is as follows. There are n at episodes. For each episode i,
we execute a policy π̂i, and receive a “trajectory” oi = (xi

1, a
i
1, a

⋆,i
1), . . . , (xi

H , ai

H , a⋆,iH), where
ai

h ∼ π̂i(xi

h) and a⋆,ih ∼ π⋆(xi

h). In addition, for each state in the trajectory, we observe Aπ⋆

h (xh, ·).
After the n episodes conclude, we output a final policy π̂ on which performance is evaluated.

Proof of Proposition I.2. We only sketch the proof, as it is quite similar to Proposition I.1. Let
N ∈ N be given. We set S = {x, y, z}, A = [N], and H = 2. We consider a class of problem
instances {(M,π⋆, r)} indexed by sets S1, S2 ⊂ [N] with |S1| = |S2| = N/2 defined as follows.
For a given pair (S1, S2):

• The dynamics are as follows. We have x1 = x deterministically. If a1 ∈ S1, then x2 = y, otherwise
x2 = z.

• The reward function sets r1(x, ·) = 0, r2(y, ·) = 1, and r2(z, a) = I{a ∈ S2}.
• The expert π⋆ sets π⋆(x) = unif(S1), π⋆(z) = unif(S2), and π⋆(y) = unif([N])

We refer to the problem instance above as IS1,S2 = (MS1,S2 , π
⋆
S1,S2

, rS1,S2), and let JS1,S2(π)
denote the expected reward under this instance.

Upper bound for online imitation learning with value-based feedback. Consider an algorithm
that sets π̂i

1 = unif([N]) for each i ∈ [n]. If we play for n = log2(δ
−1) episodes, we will see x2 = z

in at least one episode with probability at least 1− δ, at which point we will observe Aπ⋆

2 (z, ·). We
can pick an arbitrary action with Aπ⋆

2 (z, ·) = 0 and return the policy π̂ that sets π̂1(x) = unif([N])
and π̂2(·) = a; this policy has zero regret.

Note that if we define Π =
{
π⋆
S1,S2

}
|S1|=|S2|=N/2

as the natural policy class for the family of
instances above, then the algorithm above is equivalent to running Aggrevate with the online
learning algorithm that, at iteration i, sets

π̂i

h = unif
({

π ∈ Πh | π2(z) ∈ argmax
a

Aπ⋆

2 (xj

2, a) ∀j < i : xj

2 = z
})

,

27Our results are not sensitive to whether the learner observes the advantage function or the value function
itself; we choose this formulation for concreteness.

56

and choosing the final policy as π̂ = π̂i for any iteration i after x2 = z is encountered.

Lower bound for offline imitation learning. Consider the offline imitation learning setting. When
the underlying instance is IS1,S1

, we observe a dataset D consisting of n trajectories generated by
executing π⋆

S1,S2
in MS1,S2

. The trajectories never visit the state z, so S2 is not identifiable, and we
can do no better than guessing uniformly in this state. Letting ES1,S2 denote the law of D under
instance IS1,S2

, we have JS1,S2
(π̂) = π̂1(S1 | x) + π̂1(S

c
1 | x)π̂2(S2 | z). It follows that for any

(S1, S2), since the law of D does not depend on S2,

max
S2:|S2|=N/2

ES1,S2

[
JS1,S2

(π⋆
S1,S2

)− JS1,S2
(π̂)
]
≥ ES1

[1− π̂1(S1 | x)− π̂1(S
c
1 | x)/2]

=
1

2
ES1 [1− π̂1(S1 | x)],

with the convention that ES1
denotes the law of D for an arbitrary choice of S2. If π̂ is proper in the

sense that π̂1(·x) = unif(Ŝ1) for some Ŝ1 ⊂ [N] with |Ŝ1| = N/2, we have 1− π̂1(S1 | x) = 1−
2
N |Ŝ1 ∪ S1|. We conclude that if ES1,S2

[
JS1,S2(π

⋆
S1,S2

)− JS1,S2(π̂)
]
≤ 1

8 , then ES1,

[
|Ŝ1 ∩ S1|

]
≥

3
8N . From here, it follows from standard lower bounds for discrete distribution estimation (e.g.,
Canonne [18]) that any such estimator Ŝ requires n = Ω(N) samples for a worst-case choice of S.

Lower bound for online imitation learning without value-based-feedback. Consider an online
imitation learning algorithm that does not receive value-based feedback. We claim, via an argument
similar to the one above, that if the algorithm that ensures

ES1,S2

[
JS1,S2(π

⋆
S1,S2

)− JS1,S2(π̂)
]
≤ c

on all instances for a sufficiently small absolute constant c, then it can be used to produce estimators
Ŝ1, Ŝ2 ⊂ [N] such that with constant probability, either

∣∣Ŝ1 ∩ S1

∣∣ ≥ 3
8N or

∣∣Ŝ2 ∩ S2

∣∣ ≥ 3
8N . From

here, it should follow from standard arguments that this requires n = Ω(N) samples for a worst-case
choice of S1 and S2.

I.5.3 Proof of Proposition I.3
Proof of Proposition I.3. We consider a slight variant of the construction from Theorem 2.2. Let
n and H be given, and let ∆ ∈ (0, 1/3) be a parameter whose value will be chosen later. We first
specify the dynamics for M⋆. Set X = {x, y, z} and A = {a, b, c}. The initial state distribution sets
P0(x) = 1−∆ and P0(y) = ∆. The transition dynamics are:

• Ph(x
′ = · | x = x, a) = Ix · I{a ∈ {a, b}}+ Iz · I{a = c}.

• Ph(x
′ | x, a) = I{x′ = x} for x ∈ {y, z}.

In other words, y and z are terminal states. For state x, actions a and b are self-loops, but action c
transitions to z.

The expert policies are πa, which sets πa

h(x) = a for all h and x ∈ X , and πb, which sets πb

h(x) = a
and sets πb

h(y) = πb

h(z) = b. We have Π = {πa, πb}.
We consider two problem instances for the lower bound, Ia = (M⋆, πa, ra), and I b = (M⋆, πb, rb).
For problem instance Ia, the expert policy is πa. We set ra

h(x, ·) = ra

h(z, ·) = 0, ra

h(y, a) = I{a = a}
for all h. On the other hand, for problem instance I b, the expert policy is πb. We set
rb

h(x, ·) = rb

h(z, ·) = 0, rb

h(y, a) = I{a = b} for all h. Note that both of these choices for the reward
function satisfy µ = 1, and that πa and πb are optimal policies for the respective instances. Let J a

denote the expected reward function for instance a, and likewise for b.

Upper bound on online sample complexity. We consider the following online algorithm. For
episodes t = 1, . . . ,:

• If x1 ̸= x, proceed to the next episode.

• If x1 = x, take action c, and observe a2 = π⋆(z). If a2 = a, return π̂ = πa, and if a2 = b, return
π̂ = πb.

57

For any ∆ ≤ e−1, this algorithm will terminate after log(1/δ) episodes with probability at least 1− δ,
and whenever the algorithm terminates, it is clear that π̂ = π⋆. In particular, this leads to zero regret
for any choice of reward function.

Lower bound on offline sample complexity. By setting ∆ ∝ 1
n , an argument essentially identical

to the proof of Theorem 2.2 shows that any offline imitation learning algorithm must have

max{Ea[J a(πa)− J a(π̂)],Eb[J b(πb)− J b(π̂)]} ≳ ∆H ≳
H

n
.

For the sake of avoiding repetition, we omit the details. Finally, we observe that since neither policy
in Π takes the action c, Dagger—when equipped with any online learning algorithm that predicts
from a mixture of policies in Π, such as in Proposition E.2)—will never take the action c, and hence
is subject to the H

n lower bound from Theorem 2.2 as well.

58

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs

59

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if they appear
in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either
be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of

60

closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: This is a primarily theoretical work.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.

61

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

10. Broader Impacts

62

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA]

Justification: This is a primarily theoretical work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification:

63

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Sub-
jects

64

paperswithcode.com/datasets

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

65

	Introduction
	Background: Offline and Online Imitation Learning
	Offline Imitation Learning: Behavior Cloning
	Online Imitation Learning and Recoverability

	Contributions

	Horizon-Independent Analysis of Log-Loss Behavior Cloning
	Log-Loss Behavior Cloning and Supervised Learning Guarantees
	Horizon-Independent Analysis of LogLossBC for Deterministic Experts
	Interpreting the Sample Complexity of LogLossBC
	Optimality and Consequences for Online versus Offline Imitation Learning
	Proving Theorem 2.1: How Does LogLossBC Avoid Error Amplification?

	Horizon-Independent Analysis of LogLossBC for Stochastic Experts
	Horizon-Independence and Optimality for Stochastic Experts

	Discussion and Additional Results
	Omitted Tables
	Additional Related Work
	Theory of Imitation Learning and Reinforcement Learning
	Empirical Research on Imitation Learning
	Autoregressive Language Modeling

	Experiments
	Experimental Setup
	Results

	Technical Tools
	Tail Bounds
	Information Theory
	Reinforcement Learning
	Maximum Likelihood Estimation

	I Proofs and Supporting Results
	Examples and Supporting Results from Section 2 and Section 3
	General Guarantees and Examples for Log-Loss Behavior Cloning
	Online IL Framework and Sample Complexity Bounds for Log-Loss Dagger

	Proofs from Section 2
	Proof of Theorem 2.1
	Proof of Theorem 2.2

	Proofs from Section 3
	Proof of Theorem 3.1
	Formal Statement and Proof of Theorem G.1
	Additional Proofs

	II Additional Results
	Additional Lower Bounds
	Lower Bounds for Online Imitation Learning in Active Interaction Model
	An Instance-Dependent Lower Bound for Stochastic Experts
	Tightness of the Hellinger Distance Reduction

	Benefits of Online Interaction
	The Role of Misspecification
	Representational Benefits
	Benefits of Value-Based Feedback
	Benefits from Exploration
	Proofs

