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ABSTRACT

Despite the significant progress made in code generation with large language mod-
els, challenges persist, especially with hardware description languages such as
Verilog. This paper first presents an analysis of fine-tuned LLMs on Verilog cod-
ing, with synthetic data from prior methods. We identify two main issues: dif-
ficulties in handling non-textual representations (Karnaugh maps, state-transition
diagrams and waveforms) and significant variability during training with models
randomly making “minor” mistakes. To address these limitations, we enhance
data curation by creating correct-by-construction data targeting non-textual rep-
resentations. Additionally, we introduce an automated framework that generates
error reports from various model checkpoints and injects these errors into open-
source code to create targeted code repair data. Our fine-tuned Starcoder2-15B
outperforms prior state-of-the-art results by 3.8%, 10.9%, 6.6% for pass@1 on
VerilogEval-Machine, VerilogEval-Human, and RTLLM.

1 INTRODUCTION

Large Language Models (LLMs) have achieved significant success across various natural language
processing tasks and have extended their capabilities to code generation, leading to the development
of specialized models targeting code generation. The effectiveness of these models is largely in-
fluenced by the size and quality of their training datasets, as highlighted by scaling laws (Achiam
et al., 2023; Zhang et al., 2024a). Prominent code LLMs have set new benchmarks records by uti-
lizing extensive, synthetically generated datasets through methods like Self-Instruct (Wang et al.,
2022; Chaudhary, 2023), Evol-Instruct (Xu et al., 2023), and OSS-Instruct (Wei et al., 2023). These
synthetic data generation techniques allow code LLMs to generate a wide range of complex code
examples, enhancing their training and performance in real-world coding scenarios.

While most code LLMs concentrate on software programming languages, there is increasing interest
in developing models for hardware description languages (HDLs), which are essential for chip de-
sign and hardware verification. Despite efforts to collect and synthesize more diverse Verilog code
to enhance specialized code LLMs (Liu et al., 2023c; Pei et al., 2024; Cui et al., 2024; Zhao et al.,
2024), HDLs still face challenges akin to those encountered in low-resource languages (Cassano
et al., 2022). These challenges are mainly due to the limited availability of high-quality instruction-
following data and the constrained capability of existing LLMs to generate RTL code, which affects
the models’ performance and their ability to generalize across programming languages.

Developing high-quality synthetic Verilog code for training code large language models (LLMs)
faces significant challenges due to two primary factors. Firstly, Verilog is considered a low-resource
language (Cassano et al., 2022), meaning there is a scarcity of available training data compared to
high-resource software programming languages like Python. This limited data availability restricts
the models’ ability to learn diverse and complex coding patterns effectively. Secondly, verifying
the correctness of hardware description language (HDL) code, such as Verilog, is inherently more
complex than verifying software code. While software code correctness can often be assessed using
random test cases and automated unit tests (Chen et al., 2022), hardware code requires comprehen-
sive testbenches and rigorous verification planning and methodologies. This additional complexity
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makes it challenging to ensure that synthetic Verilog code is functionally accurate (Bhandari et al.,
2024; Qiu et al., 2024), posing a barrier to improving model performance.

In this paper, we start with a thorough analysis of fine-tuned large language models (LLMs) applied
to Verilog code, using synthetic data techniques from previous works. Our analysis reveals two key
issues: (1) models have difficulty handling non-textual elements in problem statements, indicating
challenges in interpreting complex or unconventional inputs; and (2) there is notable variability in
the models’ pass rates across different benchmark problems and training checkpoints, exposing in-
consistencies in learning outcomes, often due to the models making “minor” programming mistakes.

Given the limitations identified in our analysis of relying solely on LLMs for generating synthetic
data, we shift our focus to improving data curation to address these issues. Current LLMs fre-
quently struggle with interpreting and processing non-textual representations and are insufficient in
generating effective testbenches for evaluating solution quality. Therefore, instead of depending ex-
clusively on LLMs to address data quality concerns, we develop targeted fine-tuning data to better
mitigate these problems. Experimental results demonstrate that our models achieve state-of-the-art
(SOTA) results on VerilogEval (Liu et al., 2023b) and RTLLM v1.1 (Lu et al., 2024) benchmarks,
outperforming prior works by large margins on problems with human-level description. The major
contributions of this paper are as follows:

• We perform a thorough analysis of fine-tuned LLMs on Verilog code using previously
established synthetic data generation methods, uncovering challenges with non-textual el-
ements and notable variability in performance across benchmark problems during training.

• We create correct-by-construction data to ensure solution correctness, incorporating Kar-
naugh Maps, state-transition diagrams, and waveforms, which significantly enhance the
model’s ability to handle non-textual representations.

• We develop an automated framework that utilizes LLMs to generate error reports from
benchmark problems at various checkpoints, which are then injected into open-source code
to create a fine-tuning dataset targeted at correcting the model’s specific “minor” mistakes.

• We rigorously evaluate the latest foundational and frontier code models. We note that
recent advanced models like GPT-4o already reached competitive performance compared
to previous efforts targeting Verilog code generation.

• Experimental results demonstrate that models fine-tuned with our data achieve state-of-the-
art performance on Verilog coding. Specifically, our fine-tuned model based on Starcoder2-
15B (Lozhkov et al., 2024) outperforms prior SOTA results by 3.8%, 10.9%, 6.6% for
pass@1 on VerilogEval-Machine, VerilogEval-Human, and RTLLM, respectively.

2 EXAMINING FINE-TUNED LLMS USING SYNTHETIC GENERATED DATA
ON VERILOG CODING

In this section, we start with a thorough analysis of fine-tuned large language models (LLMs) applied
to Verilog code. We adapt previous approaches for generating synthetic data for general coding to
focus on Verilog code. For our pilot study, we only present results based on fine-tuning StarCoder2-
15B (Lozhkov et al., 2024). Details on experimental settings are the same as in Section 4. We
assess model performance in Verilog code completion and identify two main issues. First, the mod-
els demonstrate notably poor performance when dealing with non-textual elements in the problem
statements. Second, the variability in the models’ pass rates across different benchmark problems
and training checkpoints suggests inconsistencies in learning outcomes and model variability.

2.1 SYNTHETIC DATA GENERATION FOR VERILOG CODING

We build on previous methods for synthetic data generation by applying Self-Instruct (Wang et al.,
2022) and OSS-Instruct (Wei et al., 2023) with custom prompt templates tailored for Verilog coding.
To enhance data coverage and diversity, we supplement these techniques with additional context
from Wikipedia and textbooks. We also prompt models to generate problem descriptions to include
non-textual representations.
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Table 1: Data quantity SDG.

Method Quantity

Self-Instruct 24.7k

OSS-Instruct 28.4k

Docu-Instruct 12.0k

Non-textual 15.0k

SDG Total 80.1k

We use nemotron-4-340b-instruct (Nvidia et al., 2024) selected for
its open license that allows commercial use. Our process includes
deduplication and a decontamination procedure akin to that out-
lined by Li et al. (2023). Additionally, we conduct syntax checks
to eliminate coding problems containing docstrings or solutions
from Verilog benchmarks. To ensure further data quality, we dis-
card code solutions that fail these syntax checks and apply self-
verification (Weng et al., 2023) to remove entries where the LLM
identifies errors in the solution. Table 1 shows the quantity of our
synthetic data generation (denoted as SDG) after deduplication and
filtering, yielding a total of 80.1k fine-tuning examples.

Self-Instruct We follow the approach outlined in Wang et al. (2022) to generate synthetic Verilog
coding problems. Initially, we randomly generate from the LLM and curate 50 questions that request
Verilog coding problems without any in-context examples. From these, we then randomly choose 1
to 5 seed questions to use as in-context examples.

OSS-Instruct We begin by processing pretraining code data to extract our seed code from The
Stack v2 (Lozhkov et al., 2024), focusing on Verilog and SystemVerilog. Following the approach
in Liu et al. (2023b), we post-process this data by selecting self-contained Verilog code that passes
syntax checks using Pyverilog (Takamaeda-Yamazaki, 2015). With the refined seed code data, we
then prompt large language models (LLMs) to use this code as inspiration for generating Verilog
coding problems similar to Wei et al. (2023).

Docu-Instruct Drawing inspiration from Nvidia et al. (2024) and Sudalairaj et al. (2024), we
utilize document sources from Wikipedia and textbooks for instruction generation. We begin by
filtering Wikipedia entries, prompting the LLM to classify whether the content pertains to hardware
design or Verilog coding concepts. Additionally, we manually selected approximately relevant 100
textbooks. These textbooks are then segmented into chunks of paragraphs or sentences, ensuring
each chunk contains fewer than 2k tokens.

Non-textual Representations VerilogEval-Human (Liu et al., 2023b) includes benchmark prob-
lems involving non-textual representations. For example, Boolean logic tables and Karnaugh maps
are presented in tabular formats, state-transition diagrams for finite state machines are depicted as
edge lists and sequential waveforms are described in tables with signal outputs recorded at various
time steps. To incorporate such representations, we encouraged LLMs to generate problems from
open-source code, with instructions to utilize these tabular data structures.

2.2 CHALLENGES WITH NON-TEXTUAL REPRESENTATIONS

Table 2: pass@1 results on VerilogEval sam-
pled with temperature of 0.8.

Model Machine Human NonText

GPT-4o 63.7 55.4 27.0

Starcoder2 57.7 29.1 10.3

Starcoder2-SDG 73.7 47.4 22.2

We observe that models underperform on bench-
mark problems involving non-textual input formats,
such as Karnaugh Maps, state-transition diagrams,
and waveforms. Table 2 shows the pass@1 results
for the VerilogEval (Liu et al., 2023b). Addition-
ally, we have identified a subset of 45 questions
within VerilogEval-Human that include non-textual
representations, termed VerilogEval-NonText. It ap-
pears that models like GPT-4o and Starcoder2 strug-
gle with these non-textual formats, likely due to insufficient representation of such data during both
pretraining and fine-tuning. Despite our efforts to generate such questions during synthetic data cre-
ation, our fine-tuned models still lag in these areas. This outcome is not entirely surprising, given
that the LLMs used were also ineffective at generating problems with these representations, compli-
cating the validation of fine-tuning data. These results suggest that merely including non-textual data
is insufficient; ensuring the quality and correctness of the data, particularly that the code solutions
accurately align with these representations, is crucial.
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Unsolvable

Solved

0.33

Unsolvable

Solved

0.33

0.67

Pearson Corr Coeff: 0.638

(a) Starcoder2-15B on SDG.

Unsolvable

Solved

0.33

0.67

Pearson Corr Coeff: 0.782

(b) Starcoder2-15B on SDG-CC-Repair.

Figure 1: Our methods reduce pass rate variability during training: SDG (left) shows high volatility
with significant degradation on many problems, while SDG-CC-Repair (right) stabilizes learning
outcomes on solvable problems (details in Appendix A.10).

2.3 VARIABILITY ON PASS RATES DURING TRAINING

During our training, we observed significant variability in the model’s pass rate on specific bench-
mark problems across different checkpoints. We note such variance is different from training insta-
bility (Wortsman et al., 2023) as we observe a stable decrease in the training loss. This variability
persists even in the later stages of training, despite using a low learning rate. We illustrate this vari-
ability in Figure 1a. The scatter plot tracks the pass rate for each problem in VerilogEval-Human,
with each point representing the pass rate for the same problem across two checkpoints. The size of
each point indicates the number of problems with the same pass rates for the two model checkpoints.
We further categorize the region into areas where the checkpoints agree on problem difficulty and
areas where they do not.

Alarmingly, we find that nearly 15% of the problems show significant discrepancies between these
two checkpoints, with an equal number of problems demonstrating improvement and degradation.
Our detailed analysis of the sampled code completions for such problems when pass rate degrades
suggests that the model is generally on the right track but makes “minor” errors that are small,
detailed, and seemingly trivial. While it is possible that LLMs experience catastrophic forgetting
during fine-tuning (Luo et al., 2024a), we do not anticipate this being a major factor due to the low
learning rate and the small number of gradient updates (64 steps with 16k data samples). Instead, we
believe the primary issue is our inability to ensure the quality of our data, particularly in verifying
whether the sampled code solutions correctly solve the code problems.

3 IMPROVING VERILOG CODING WITH CORRECT-BY-CONSTRUCTION
NON-TEXTUAL REPRESENTATIONS AND TARGETED CODE REPAIR

Based on our detailed analysis of the limitations of relying solely on LLMs for generating syn-
thetic data, we focus our data curation efforts to address these shortcomings. Our goal is to enhance
data quality and ensure the correctness of solutions for the generated problems. We have found
that current LLMs often lack the capability to understand and process non-textual representations
effectively and are unable to generate satisfactory testbenches for assessing solution quality. Con-
sequently, rather than depending entirely on LLMs to resolve data quality issues, we instead create
targeted fine-tuning data to mitigate these problems.

3.1 ENSURING QUALITY THROUGH CORRECT-BY-CONSTRUCTION

We generate Verilog code problems and solutions that are correct-by-construction. Our focus is
on creating problems and solutions for non-textual representations. Table 3 shows the quantity of
our correct-by-construction generation data (referred to as CC). To prevent data contamination, we
exclude entries that duplicate the data representations of benchmark problems.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 3: Data quantity CC.

Method Quantity

KMap 12.5k

FSM 8.0k

Waveforms 8.0k

CC Total 28.5k

Karnaugh Maps and Truth Tables (KMap) We start by sam-
pling random configurations, which include selecting the number
of variables and their names. After determining the number of vari-
ables, we randomly choose valid minterms and don’t-cares. For
n variables, there are 2n possible states, and each state can be as-
signed one of three values (0, 1, or x), leading to 32

n

possible com-
binations of minterms and don’t-cares. From these minterms, we
derive the sum-of-products (SOP) form to represent the Boolean
logic. We then create Truth Tables and Karnaugh Maps based on
the chosen minterms and don’t-cares. In the KMap, Gray encoding is used as default for the row
and column sequences to ensure that only a single bit changes between adjacent cells. Additionally,
we apply modifications by transposing the map and randomly swapping adjacent rows or columns.
We randomly sample from n = {3, 4} variables.

State Transition Graphs and Tables (FSM) We construct problems for finite-state machines
(FSMs) with state-transition representations with a similar approach to KMaps. We begin by sam-
pling random configurations, including the number of states (e.g., 4, 6, or 10) and the bit width
of the input (e.g., 1 or 2). We then create the transition graph, ensuring that it is both meaningful
and legally defined. We generate state-transition graphs for both Moore and Mealy state machines.
From these graphs, we produce edge-list and transition table representations. Finally, we construct
the Verilog code to implement the logic for state transitions and output assignments.

Algorithm 1 Generate transition graph for Moore FSM.

Input: Number of states n, bit width of input w
Output: FSM graph with transitions and states
Initialize the number of states n and bit width of input w
Randomly generate a tree with n nodes
Define the root of the tree as the reset state
for each node in the tree do

Assign a unique state to the node
Assign an output to the node

end for
for each node in the tree do

Add additional transition edges to form a graph
Ensure that each node has an out-degree of 2w

end for

Algorithm 1 outlines the process
for generating a Moore FSM with
random transitions. State reacha-
bility is ensured by first construct-
ing a tree. Legality for state tran-
sition is ensured by ensuring each
node has an out-degree of 2w with
the input bit width of w. The re-
sult is an FSM where transitions
between states are randomly as-
signed but conform to the speci-
fied input bit width. The algorithm
can be easily modified for a Mealy
FSM by assigning the output to the
edges rather than nodes.

reset A/0

C/1

B/0

D/1

1

0

1

0

1 0

0

1

out-edge focused:
case(state)
      B: next_state = in ? C : D
... 
endcase

in-edge focused:
next_state[B] = (state[A] &
in) | (state[C] & ~in)
...

Figure 2: State transition logic.

Figure 2 illustrates our approach for generating state
transition logic in Verilog from a state-transition
graph. Our method predominantly employs an out-
edge focused strategy for state transitions. Addi-
tionally, we incorporate in-edge focused transition
logic to address specific challenges encountered in
benchmark problems. These benchmarks often in-
volve states represented using one-hot encoding and
require rigorous testing of non-default states.

Waveforms We utilize correct-by-construction code solutions for both KMaps and FSMs. Be-
cause these codes are generated using similar templates, designing corresponding testbenches is
straightforward. We simulate the generated code to produce waveform Value Change Dump (VCD)
files. These VCD files are then parsed and converted into waveform representations. Our approach
covers KMaps as combinational circuits and FSMs as sequential circuit waveforms.

3.2 MITIGATING “MINOR” ERRORS WITH TARGETED CODE REPAIR

Our analysis revealed that the models were generally on the right track to correct solutions but
were making minor errors—small, detailed, and seemingly trivial. Unlike complex, unsolvable
problems, these minor errors could be easily corrected by language models. This insight led us
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❌ Error Code  ✅ Correct Code

assign output_vector =
{input_vector, 1'b1, 1'b1};

assign output_vector = 
{1'b1, 1'b1, input_vector};

Volatile Training Trajectory

Here is an Verilog spec:

[PROBLEM]
Here is an erroneous implementation:
[ERROR CODE]
Here is an correct implementation:
[CORRECT CODE]

Now, generate a detail error report. 

 📄 Prompt for Error Analysis
LLM Generated Error Report

Error Type: Incorrect vector concatenation and splitting

Category: Combinatorial: wiring

Description: the output vectors are assigned in the wrong order. Two 1
bits should be in the LSB (least significant bit) positions not in the MSB
(most significant bit) positions.

Steps to Repair the Erroneous Implementation:
1. Concatenating the two 1 bits at the beginning of the concatenated
vector.
2. Assign the output vectors from the concatenated vector in the correct
order and bit ranges.

Your goal is to create an error-fixing Verilog
practice problem for programmers. 
[ERROR REPORT]
[CODE SNIPPET]
Inject the commonly made error into the above
module and create an error repair problem.

 📄 Prompt for Error Injection

Problem Description
You are given a Verilog module that demonstrates the use of bit
slicing and concatenation in a loop....

Erroneous Implementation
...

Hints for Fixing
Ensure explicit bit-slicing access the register correctly without
reversing the bit order.

Correct Code Solution
...

Targeted Code Repair Training Data
Re-generate Error Report

💡 Open-Source Code Snippet
module block;
    reg [31:0] data;
    int i;
    initial begin
    data = 32'hFACE_CAFE;  
    ....

Validated Error Report

Fix error code
with error report

Self-Consistency Check

Figure 3: Overview of our approach for generating targeted code repair data: (1) prompting the
LLM to generate detailed error reports from correct and erroneous code, (2) validating error report
quality by ensuring the LLM can debug the errors based on the report, and (3) leveraging the LLM
to inject similar errors into open-source code, creating a diverse training dataset.

to develop a new strategy centered on targeted error code repair. Our approach includes creating
detailed error reports on benchmark problems, re-creating these errors on correct open-source code,
and conducting rigorous validation to ensure quality. We use nemotron-4-340b-instruct as the LLM
to construct our targeted Repair data. We generated 847 error reports across the three benchmarks
and produced 2,736 data samples. After filtering, this resulted in a final set of 1,406 targeted code
repair data points.

Error Report Construction To systematically address the issue, we first created a comprehen-
sive Error Report for benchmark problems using LLMs, targeting those with significant pass rate
fluctuations across training checkpoints for models on SDG data. We prompt the LLM to examine
the nature of the mistakes by comparing correct and erroneous code completions for each problem,
categorizing the errors into common error types (details in Appendix A.9). This detailed report not
only categorizes the errors but also highlights areas where the model consistently underperforms.

Targeted Code Repair Dataset Building on the error report, we further develop a targeted code
repair dataset to address these common errors. This dataset is constructed using two main sources:
the errors identified in the Error Report and correct code snippets gathered from open-source repos-
itories. We introduced the identified errors into correct code snippets to create repair problems,
which include a problem description, erroneous code implementation, and hints about the nature of
the error and how to fix it. This targeted strategy enables the model to learn how to avoid common
errors and generate improved code completions, thereby enhancing model accuracy.

Quality Assurance with LLM Validation To ensure the reliability of the error report and the code
repair dataset, we implemented a two-phase validation process with LLMs. In the first phase, we
conducted a self-consistency check of the Error Report by having the language model attempt to the
fix error code based on the report’s hints. This step verifies the accuracy of the report by confirming
that the model can resolve the errors using the provided guidance, whereas directly prompting the
LLM without detailed error reports could resolve only 13% of the errors. In the second phase,
during the generation of the code repair dataset, we apply self-verification, including deduplication,
syntax filtering, and benchmark decontamination. These measures ensure the dataset’s quality and
uniqueness, preventing overlap with evaluation benchmarks.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

Training Data Our fine-tuning training data is comprised of 80.1k LLM synthetic generated data
using various prompting methods as described in Section 2.1, 28.5k data samples generated correct-
by-construction aimed at non-textual representations detailed in Section 3.1, and 1.4k carefully fil-
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Table 4: We compare our models with various baseline models on VerilogEval (Liu et al., 2023b).
We update the results from Zhao et al. (2024) with the latest foundational and frontier code models.
The best results are highlighted in bold.

Type Model Size
VerilogEval (Liu et al., 2023b)

Machine (%) Human (%)
pass@1 pass@5 pass@10 pass@1 pass@5 pass@10

Foundational
Models

Llama-3.1 8B 48.7 67.3 74.1 26.9 37.8 44.2
Llama-3.1 405B 67.3 75.1 76.9 53.8 61.0 62.8

Nemotron-4 340B 53.0 60.3 62.2 43.1 48.3 50.0
GPT-3.5-turbo - 58.0 74.0 77.6 31.2 44.1 47.4

GPT-4o - 65.9 71.4 72.7 57.1 63.9 66.7

Code
Models

CodeLlama 7B 43.1 47.1 47.7 18.2 22.7 24.3
CodeQwen 7B 46.5 54.9 56.4 22.5 26.1 28.0
Starcoder2 15B 68.7 82.3 88.5 37.7 50.6 57.2

DeepSeek-Coder 6.7B 52.2 55.4 56.8 30.2 33.9 34.9
DeepSeek-Coder-V2 16B 67.4 78.3 81.8 46.9 55.9 58.9
DeepSeek-Coder-V2 236B 68.2 74.1 76.2 56.4 62.2 66.0

RTLCoder
(Liu et al., 2023c)

Mistral 7B 62.5 72.2 76.6 36.7 45.5 49.2
DeepSeek-Coder 7B 61.2 76.5 81.8 41.6 50.1 53.4

BetterV
(Pei et al., 2024)

CodeLlama 7B 64.2 75.4 79.1 40.9 50.0 53.3
DeepSeek-Coder 6.7B 67.8 79.1 84.0 45.9 53.3 57.6

CodeQwen 7B 68.1 79.4 84.5 46.1 53.7 58.2

CodeV
(Zhao et al., 2024)

CodeLlama 7B 78.1 86.0 88.5 45.2 59.5 63.8
DeepSeek-Coder 6.7B 77.9 88.6 90.7 52.7 62.5 67.3

CodeQwen 7B 77.6 88.2 90.7 53.2 65.1 68.5
OriGen (Cui et al., 2024) DeepSeek-Coder 6.7B 74.1 82.4 85.7 54.4 60.1 64.2

Ours
SDG-CC-Repair

CodeLlama 7B 78.1 85.5 87.8 63.1 67.8 69.7
DeepSeek-Coder 6.7B 77.8 85.5 88.1 65.4 70.0 72.1

Starcoder2 15B 81.9 86.9 88.1 68.0 72.4 74.6

tered data for targeted code repair as outlined in Section 3.2. We refer to each data set as SDG, CC,
and Repair, respectively.

Pretrained Models Following prior work, we use CodeLlama-7b-Instruct (Roziere et al., 2023)
and Deepseek-Coder-6.7b-Instruct (Guo et al., 2024) as the base model, formatting our data accord-
ing to their default chat prompt templates. Additionally, we explore the Starcoder2-15B (Lozhkov
et al., 2024) model in our experiments.

Model Training Training is conducted with 32 NVIDIA A100-80GB GPUs through the Dis-
tributed Data Parallel (DDP) module from PyTorch. We set the learning rate at 5e-5 for CodeLlama
and DeepSeek-Coder, and 1e-5 for Starcoder2. We use Adam (Kingma & Ba, 2017) as our opti-
mizer with full parameter updates and truncate sequence lengths longer than 4096 tokens. We used
a batch size of 256 samples. We fine-tune models for 1 epoch using a standard cross entropy loss on
the response tokens (while masking loss on prompt tokens).

Model Inference We use vLLM (Kwon et al., 2023) where the inference engine is set up with
bf16 dtype, tensor parallel size of 8, and a maximum token limit of 4096. We sample each problem
20 times. We report the best results from two different temperatures 0.2 and 0.8, as consistent with
prior work (Liu et al., 2023c; Zhao et al., 2024).

4.2 EVALUATION METRIC AND BENCHMARK

Evaluation Metric Following prior work (Chen et al., 2021; Liu et al., 2023a), for each experiment
we use the unbiased pass@k metric to measure the Verilog generation accuracy. The pass@k metric
estimates the proportion of problems that can be solved at least once in k attempts:

pass@k := EProblems

[
1−

(
n−c
k

)(
n
k

) ]
, (1)

where n ≥ k represents the total number of trials for each problem, and c represents the number of
trials that pass the functional check.

VerilogEval (Liu et al., 2023b) contains two subsets of problems, where VerilogEval-Human con-
tains manually converted problem descriptions from the original HDLBits website, and VerilogEval-
Machine with GPT-3.5 generated problem descriptions.
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Table 5: Evaluations on RTLLM v1.1 (Lu et al., 2024) using unbiased pass@k metrics. The best
results are highlighted in bold. We re-evaluate all models (see Appendix A for details).

Type Model Size
RTLLM v1.1 (Lu et al., 2024)

Syntax (%) Func. (%)
pass@1 pass@5 pass@10 pass@1 pass@5 pass@10

Foundational
Models

Llama-3.1 8B 40.7 60.6 65.5 19.3 34.7 37.9
Llama-3.1 405B 56.5 64.4 72.4 38.9 45.8 51.7

Nemotron-4 340B 41.7 47.2 48.3 18.9 20.7 20.7
GPT-3.5-turbo - 50.3 61.2 65.5 28.3 36.9 41.4

GPT-4o - 50.3 59.9 62.1 33.8 44.4 48.3

Code
Models

CodeLlama 7B 46.6 62.6 68.9 17.9 29.9 34.5
CodeQwen 7B 45.8 65.8 72.4 24.1 34.0 37.9
Starcoder2 15B 38.3 81.0 94.7 15.5 37.6 45.7

DeepSeek-Coder 6.7B 51.4 64.4 68.9 23.1 29.3 34.5
DeepSeek-Coder-V2 16B 51.4 57.8 58.6 33.1 37.1 37.9
DeepSeek-Coder-V2 236B 63.4 78.1 79.3 34.5 50.2 55.1

RTLCoder
(Liu et al., 2023c)

Mistral 7B 64.6 73.7 78.3 24.5 37.3 42.3
DeepSeek-Coder 6.7B 73.4 83.9 86.2 35.8 40.3 43.1

CodeV
(Zhao et al., 2024)

CodeLlama 7B 79.0 89.2 89.9 39.4 50.3 53.1
DeepSeek-Coder 6.7B 78.3 87.4 89.1 42.4 51.5 53.2

CodeQwen 7B 78.8 89.5 92.4 36.6 53.3 61.3
OriGen (Cui et al., 2024) DeepSeek-Coder 6.7B - - - - 65.5 -

Ours
SDG-CC-Repair

CodeLlama 7B 85.7 93.9 94.8 42.6 52.9 58.2
DeepSeek-Coder 6.7B 84.3 92.9 95.4 53.1 58.8 62.6

Starcoder2 15B 79.8 93.9 96.2 49.0 65.8 74.5

RTLLM (Lu et al., 2024) is an open-source benchmark designed for generating Register Transfer
Level (RTL) code from natural language instructions. It evaluates models on syntax correctness,
functional correctness, and design quality, offering a thorough analysis of model outputs.

4.3 RESULTS

Main Results Table 4 and Table 5 compare our models with baselines on VerilogEval and
RTLLM. We mainly source baseline results from Zhao et al. (2024). For RTLLM we found a
large variance with biased pass@5, thus we re-evalaute all models and report unbiased pass@k
metric. We further rigorously evaluate the latest foundational and frontier code models, including
Llama-3.1 (Dubey et al., 2024), DeepSeek-Coder-V2 (DeepSeek-AI et al., 2024), and GPT-4o. Re-
cent foundational and frontier code models already reached competitive performance compared to
previous efforts targeting Verilog code generation.

Compared to previous approaches like CodeV (Zhao et al., 2024), our models achieve compara-
ble performance on VerilogEval-Machine and show significant improvements on benchmarks with
human-like descriptions. Machine descriptions often provide detailed, line-by-line coding instruc-
tions, whereas human descriptions are high-level, integrating problem-solving skills and a deeper
understanding of the hardware module’s functionality. Enhancing the model’s ability to handle
human-like descriptions is crucial, as these more accurately reflect how designers interact with the
models and set expectations for Verilog generation. Our fine-tuned Starcoder2-15B surpasses previ-
ous state-of-the-art results by 3.8%, 10.9%, and 6.6% in pass@1 metrics on VerilogEval-Machine,
VerilogEval-Human, and RTLLM, respectively.

Table 6: Ablation study on training data.
Data quantity indicated in parentheses.

Model
VerilogEval RTLLM v1.1

Machine Human Func
pass@1 (%) pass@5 (%)

Starcoder2-15B 68.7 37.7 37.6
SDG (80.1k) 75.2 54.7 62.1

SDG-CC (108.6k) 73.9 62.0 62.8
SDG-CC-Repair (110.0k) 81.9 68.0 65.8

Table 6 highlights the effectiveness of our generated
data fine-tuned on Starcoder2-15B. Our CC data en-
hances the model’s ability to handle non-textual repre-
sentations, leading to improved scores on VerilogEval-
Human. Our targeted code Repair data boosts per-
formance across all benchmarks, suggesting that the
model has learned to generalize from code repair tasks
and reduce similar errors during code completion.

Improved Variability During Training Figure 1b displays the pass rates for two consecutive
checkpoints of Starcoder2-SDG-CC-Repair on VerilogEval-Human problems, sampled with a tem-
perature of 0.8. Compared to Figure 1a, the updated model shows significant improvements by (1)
moving previously unsolved problems into the solved category, including those with non-textual
representations addressed by our correct-by-construction CC data, and (2) reducing the number of
problems with large pass rate discrepancies, particularly where performance had degraded. The tar-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

geted repair data has effectively mitigated the model’s tendency to repeat common mistakes found
in our Repair dataset, despite the noise inherent in synthetically generated SDG data.
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Figure 4: pass@1 on non-textual problems
with total number of CC data with tempera-
ture 0.8.

Scaling Data for Non-textual Representa-
tions Figure 4 illustrates the scaling of correct-
by-construction (CC) data and the fine-tuned
Starcoder2-15B pass rate on problems involving
non-textual representations. We expanded our test-
ing to include strictly in-distribution test set, with
each category containing around 50 problems. The
results show that the model can quickly learn and
comprehend these non-textual representations with
as few as 4k training data samples, with the pass
rate steadily improving as more data is provided.
Additionally, the model demonstrates the ability
to generalize to VerilogEval-NonText benchmark
problems. While our models achieve near-perfect
scores on KMap and FSM problems, they perform
less effectively on Waveforms, suggesting that
reverse engineering circuits from waveforms pose a
greater challenge.

Table 7: Ablation study on Repair data qual-
ity with Starcoder2-15B.

Model
VerilogEval RTLLM v1.1

Machine Human Func
pass@1 (%) pass@5 (%)

SDG-CC 73.9 62.0 62.8
SDG-CC-Repair 81.9 68.0 65.8

w/o self-consistency 75.3 63.3 63.7
w/o error report 76.9 59.6 59.4

Ensuring Quality for Targeted Code Repair
The quality control mechanisms integrated into the
data generation pipeline are crucial for improving
model performance, particularly in correcting minor
errors through targeted code repair. To evaluate the
impact of these quality controls, we conducted an
ablation study in Table 7, where we systematically
removed each component of the targeted code repair
generation pipeline and assessed the resulting model
performance. Specifically, we eliminated the self-consistency checks that validate whether the gen-
erated error report effectively guides the LLMs in correcting mistakes. Additionally, we tested the
removal of the error report entirely, substituting it with random errors injected into the open-source
code by the LLMs. The benchmark results indicate a significant performance drop when these vali-
dation processes are excluded. These findings highlight the essential role of both the self-consistency
checks and the targeted error report in improving the model’s ability to correct errors.

5 RELATED WORK

Synthetic Data Generation for Model Fine-tuning. The performance of large language models
(LLMs) hinge on the quality and diversity of their training data. To address the limitations of manual
datasets, synthetic data generation methods (Wang et al., 2022; Xu et al., 2023) have been developed
to automatically create instruction-following examples from LLMs, reducing reliance on human an-
notations. Various techniques enhance data quality: Wang et al. (2022) generates multiple reasoning
traces and selects the most frequent output to improve robustness, while other approaches (Light-
man et al., 2023; Zhang et al., 2024b) assess response quality based on these traces. Self-training
methods utilize synthetic data for iterative fine-tuning, boosting reasoning capabilities (Singh et al.,
2023; Feng et al., 2023). These advancements show how synthetic data can effectively scale and
optimize models through iterative feedback.

Large Language Models for Code Generation. Recent breakthroughs in large language models
(LLMs) have greatly enhanced their capability to tackle complex code generation tasks. Much of
the research focuses on developing LLMs specialized for code by continuing their pretraining on
code data (Guo et al., 2024; Bai et al., 2023; Roziere et al., 2023; DeepSeek-AI et al., 2024) from
open-source repositories like GitHub (Kocetkov et al., 2022; Lozhkov et al., 2024) and commit
histories (Muennighoff et al., 2023). Further improvements to these models come from reinforce-
ment learning (Le et al., 2022) and more often instruction fine-tuning, which involves techniques
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to address more complex coding problems (Luo et al., 2024b), increasing diversity with unlabeled
open-source code (Wei et al., 2023; Yu et al., 2024; Wu et al., 2024), ensuring solution correctness
through self-written tests (Chen et al., 2022), and validating and debugging code execution through
interactions with LLM agents (Lei et al., 2024).

Large Language Models for Verilog Coding. While most code LLMs target software languages,
there is increasing interest in models for hardware description languages like Verilog, essential for
chip design and verification (Liu et al., 2024). Previous work has addressed the challenge of limited
data through various methods, including synthetic data generation (Liu et al., 2023c), multi-level
summarization of open-source Verilog code (Zhao et al., 2024), and enhanced code augmentation
with self-reflection based on compiler feedback (Tsai et al., 2023; Cui et al., 2024). Other ap-
proaches focus on improving functional correctness and circuit performance through Monte Carlo
Tree Search (DeLorenzo et al., 2024) and discriminator-guided sampling (Pei et al., 2024).

6 DISCUSSIONS

In this work, we refer to synthetic data generation as methods of using large language mod-
els (LLMs) in data generation. While our approach—ensuring correctness through correct-by-
construction—could also be considered “synthetic” and resembles methods explored in works like
AlphaGeometry (Trinh et al., 2024), our problems are much simpler and on a smaller scale. Our
observations about the variability of models on specific problems align with the findings of Meta AI
(2024), where “the model knows how to produce the right answer, but it does not know how to se-
lect it.” Instead of striving for absolute data correctness, preference learning (Rafailov et al., 2024;
Ethayarajh et al., 2024) or reinforcement learning (Bai et al., 2022; Le et al., 2022), we generate
targeted repair data by analyzing errors and re-create such scenarios by injecting similar errors into
open-source code, somewhat analogous to how humans consolidate memories during sleep by inte-
grating new information with past experiences (Walker & Stickgold, 2004; Stickgold, 2005). Further
discussions on the generalizability and broader impact of our work are provided in Appendix B.

7 CONCLUSION

This paper addresses key challenges in Verilog code generation with correct-by-construction data
generation and targeted code repair data strategies. We identified significant issues with synthetic
data generation, including difficulties with non-textual representations and variability in perfor-
mance during training across benchmarks. To address these challenges, we generated data that
is correct-by-construction and create targeted repair data by injecting errors to open-source code.
Our approach led to substantial improvements, with models fine-tuned using our methods achieving
state-of-the-art results on VerilogEval and RTLLM benchmarks. These advancements highlight the
effectiveness of our strategies in enhancing model performance in Verilog code generation.

Reproducibility Statement We provide the following details: evaluation benchmarks in Ap-
pendix A.3, examples of the process for generating targeted code repair data in Appendix C, and
data examples from correct-by-construction targeting non-textual representations in Appendix D.
Additionally, we include prompt templates used for data generation in Appendix E. To enhance re-
producibility, we are committed to release the source code of our data generation pipeline, including
synthetic data generation methods (Section 2.1), correct-by-construction data targeting non-textual
representations (Section 3.1), and targeted code repair (Section 3.2). However, for this submission,
we chose not to include source code, as we are unable to provide an appropriate license in compli-
ance with the double-blind review policy.
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A DETAILED RESULTS

A.1 OUR MODELS

We present our models’ results on Verilog benchmarks tested with temperatures 0.2 and 0.8. We
ablate across different data blends, with SDG indicating using LLM synthetic generated data in Sec-
tion 2.1, CC indicating correct-by-construction data targeting non-textual representations in Sec-
tion 3.1, and Repair representing our targeted code repair dataset in Section 3.2.

Our results for RTLLM use the open-source Icarus Verilog simulator1 to check syntax and functional
pass rates. This might lead to lower pass rate scores compared to previous work that used Synopsys
VCS, as Icarus Verilog does not support all syntax.

Table 8: Results for our models, across different dataset and temperature on VerilogEval.

Model Dataset Temperature
VerilogEval (Liu et al., 2023b)

Machine (%) Human (%)
pass@1 pass@5 pass@10 pass@1 pass@5 pass@10

Starcoder2-15b

SDG
0.2 75.2 79.2 80.1 54.7 60.1 61.2
0.8 73.7 84.0 86.1 47.4 61.9 64.8

SDG-CC
0.2 73.9 78.1 79.5 62.0 65.6 67.0
0.8 72.9 84.1 87.1 58.5 70.3 73.7

SDG-CC-Repair
0.2 81.9 84.2 85.0 68.0 71.7 72.0
0.8 78.1 86.9 88.1 64.1 72.4 74.6

DeepSeek-6.7b-Instruct

SDG
0.2 73.4 77.8 78.9 48.3 53.2 54.5
0.8 71.4 82.5 85.4 44.0 58.1 62.3

SDG-CC
0.2 72.6 78.2 79.3 58.5 62.6 63.5
0.8 70.2 83.1 85.4 56.3 67.0 70.7

SDG-CC-Repair
0.2 77.8 82.7 83.4 65.4 67.7 68.2
0.8 75.2 85.5 88.1 61.6 70.0 72.1

CodeLlama-7b-Instruct

SDG
0.2 74.5 77.9 78.8 45.3 50.3 51.5
0.8 71.2 82.6 85.1 42.6 55.6 59.0

SDG-CC
0.2 74.2 77.4 78.1 55.1 61.0 62.4
0.8 70.0 81.2 83.7 51.6 64.4 67.7

SDG-CC-Repair
0.2 78.1 81.5 81.7 63.1 66.2 66.8
0.8 73.7 85.5 87.8 58.1 67.8 69.7

Table 9: Results for our models, across different dataset and temperature on RTLLM.

Model Dataset Temperature
RTLLM v1.1 Lu et al. (2024)

Syntax (%) Func. (%)
pass@1 pass@5 pass@10 pass@1 pass@5 pass@10

Starcoder2-15b

SDG
0.2 78.1 86.5 90.1 49.0 60.4 66.3
0.8 77.1 89.0 94.1 43.8 62.1 68.0

SDG-CC
0.2 78.3 89.3 92.7 45.5 58.3 62.0
0.8 76.9 92.6 95.5 38.4 62.8 70.4

SDG-CC-Repair
0.2 79.8 87.9 90.5 49.0 59.1 62.6
0.8 79.3 93.9 96.2 45.3 65.8 74.5

DeepSeek-6.7b-Instruct

SDG
0.2 79.3 86.8 90.5 40.3 45.9 49.6
0.8 76.6 92.5 96.2 40.0 53.8 63.6

SDG-CC
0.2 73.6 84.5 86.0 44.3 52.2 54.3
0.8 76.7 90.5 93.8 39.5 56.4 63.1

SDG-CC-Repair
0.2 84.3 92.2 93.0 53.1 58.8 60.3
0.8 80.0 92.9 95.4 45.5 57.9 62.6

CodeLlama-7b-Instruct

SDG
0.2 74.0 82.5 86.8 30.0 33.9 35.8
0.8 70.9 89.1 94.5 34.0 47.2 52.8

SDG-CC
0.2 75.0 90.2 94.6 39.7 44.4 47.2
0.8 76.4 93.9 96.3 35.5 47.6 52.7

SDG-CC-Repair
0.2 85.7 93.9 94.8 42.6 49.4 51.2
0.8 80.3 93.9 94.8 36.9 52.9 58.2

1https://github.com/steveicarus/iverilog
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A.2 FOUNDATIONAL AND FRONTIER CODE MODELS

We present detailed results on recent foundational and frontier code models. We also re-evaluate all
models on RTLLM using unbiased pass@k metric.

Table 10: Results on foundational and code models on VerilogEval.

Type Model Size Temp
VerilogEval (Liu et al., 2023b)

Machine (%) Human (%)
pass@1 pass@5 pass@10 pass@1 pass@5 pass@10

Foundational
Models

Llama-3.1 8B
0.2 48.7 66.2 70.6 26.9 36.9 40.4
0.8 42.1 67.3 74.1 23.0 37.8 44.2

Llama-3.1 70B
0.2 66.7 73.8 76.9 48.7 53.6 55.1
0.8 64.5 77.7 80.4 48.0 57.0 60.9

Llama-3.1 405B
0.2 67.3 72.8 74.1 51.9 57.0 58.9
0.8 66.4 75.1 76.9 53.8 61.0 62.8

Nemotron-4 340B
0.2 53.0 59.1 61.5 43.1 43.9 44.9
0.8 50.8 60.3 62.2 40.8 48.3 50.0

GPT-3.5-turbo
- 0.2 58.0 66.4 68.5 31.2 39.4 41.7

0.8 56.6 74.0 77.6 28.9 44.1 47.4

GPT-4
- 0.2 53.2 63.7 66.4 36.1 43.5 46.2

0.8 35.3 53.4 58.9 35.2 53.4 58.9

GPT-4-turbo
- 0.2 57.8 66.7 70.6 54.1 61.2 62.8

0.8 56.9 69.5 73.4 53.6 63.6 66.7

GPT-4o
- 0.2 65.9 68.9 69.2 57.1 61.3 62.2

0.8 62.9 71.4 72.7 55.4 63.9 66.7

Code
Models

Starcoder2 15B
0.2 68.7 76.7 78.6 37.7 48.3 51.1
0.8 57.7 82.3 88.5 29.1 50.6 57.2

DeepSeek-Coder-V2 16B
0.2 67.4 74.6 76.2 46.9 53.3 54.5
0.8 65.6 78.3 81.8 46.3 55.9 58.9

DeepSeek-Coder-V2 236B
0.2 68.2 72.7 75.0 56.4 60.7 64.3
0.8 66.5 74.1 76.2 54.8 62.2 66.0

Table 11: Results on foundational and code models on RTLLM.

Type Model Size Temp
RTLLM v1.1 (Lu et al., 2024)

Syntax (%) Func. (%)
pass@1 pass@5 pass@10 pass@1 pass@5 pass@10

Foundational
Models

Llama-3.1 8B
0.2 39.7 53.1 55.2 19.3 25.8 27.6
0.8 40.7 60.6 65.5 17.6 34.7 37.9

Llama-3.1 70B
0.2 47.9 51.7 55.2 34.1 34.5 34.5
0.8 48.9 57.6 58.6 29.6 31.0 31.0

Llama-3.1 405B
0.2 56.5 63.9 65.5 38.9 45.0 48.3
0.8 52.1 64.4 72.4 35.8 45.8 51.7

Nemotron-4 340B
0.2 41.7 47.2 48.3 14.1 15.5 17.2
0.8 41.7 46.3 48.3 18.9 20.7 20.7

GPT-3.5-turbo -
0.2 50.3 58.2 58.6 28.3 36.9 41.4
0.8 48.2 61.2 65.5 24.1 36.9 41.4

GPT-4 -
0.2 49.3 65.9 68.9 30.0 44.4 48.3
0.8 42.8 61.2 65.5 25.9 40.0 44.8

GPT-4-turbo -
0.2 38.9 44.8 48.3 27.2 35.1 37.9
0.8 40.3 48.8 51.7 27.5 40.2 44.8

GPT-4o -
0.2 50.3 59.9 62.1 33.8 44.4 48.3
0.8 47.5 63.2 66.7 31.3 44.1 48.3

Code
Models

CodeLlama 7B
0.2 46.6 62.6 68.9 17.9 29.9 34.5
0.8 34.8 59.7 68.9 13.4 25.9 31.0

CodeQwen 7B
0.2 45.8 55.8 58.6 24.1 33.1 37.9
0.8 45.5 65.7 72.4 22.4 34.0 37.9

Starcoder2 15B
0.2 38.3 77.5 86.3 15.5 37.6 44.6
0.8 31.6 81.0 94.7 11.0 34.2 45.7

DeepSeek-Coder 6.7B
0.2 51.4 62.6 65.5 23.1 26.8 27.6
0.8 49.7 64.4 68.9 21.0 29.3 34.5

DeepSeek-Coder-V2 16B
0.2 51.4 51.7 51.7 33.1 34.5 34.5
0.8 51.4 57.8 58.6 30.0 37.1 37.9

DeepSeek-Coder-V2 236B
0.2 63.4 73.0 79.3 34.5 44.9 52.9
0.8 61.8 78.1 79.3 32.9 50.2 55.1
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A.3 DETAILS ON EVALUATIONS

We format the prompt input as follows for VerilogEval, where the detail_description is the problem
description (Machine or Human) and prompt field is the problem module header. We include module
headers to avoid confusion on the signals naming.

prompt = f"{task[’detail_description’].strip()}\n\n{task[’prompt’].strip()}"

An example of mux2to1 in VerilogEval-Human:

Create a 2−1 multiplexer. When sel=0, choose a. When sel=1, choose b.

module top_module (
input a,
input b,
input sel,
output out

);

We use similar templates for RTLLM v1.1, where we extract the top module header from the refer-
ence solution and provide it as input. Below is an example of adder_8bit:

Please act as a professional verilog designer.

Implement a module of an 8−bit adder with multiple bit−level adders in combinational
logic.

Module name:
adder_8bit

Input ports:
a[7:0]: 8−bit input operand A.
b[7:0]: 8−bit input operand B.
cin: Carry−in input.

Output ports:
sum[7:0]: 8−bit output representing the sum of A and B.
cout: Carry−out output.

Implementation:
The module utilizes a series of bit−level adders (full adders) to perform the addition

operation.

Give me the complete code.

module adder_8bit(
input [7:0] a, b,
input cin,
output [7:0] sum,
output cout);

We use default chat templates and default system prompts for open-source models tested. For GPT
models from OpenAI, we use the following system prompt:

Please act as a professional verilog designer.

We post-process model responses to extract code. We extract content enclosed by triple backticks
and remove the language identifier (Verilog). We then extract code enclosed in module and endmodule
keywords with response.find(’module’) and response.rfind(’endmodule’). If the extracted code
does not include a module header, the reference solution’s module header will be prepended. The
code is then tested with the provided testbenches with the Icarus Verilog (iverilog) simulator to
evaluate for syntax and functional correctness. This might lead to lower pass rate scores for RTLLM
compared to previous work that used Synopsys VCS, as Icarus Verilog does not support all syntax.
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A.4 VERILOGEVAL-NONTEXT

We select the following 45 problems from VerilogEval-Human that consists of non-textual represen-
tations in their problem descriptions:

2012_q1g, 2012_q2b, 2012_q2fsm, 2013_q2afsm, 2014_q3bfsm, 2014_q3c, always_nolatches,
circuit1, circuit10, circuit2, circuit3, circuit4, circuit5, circuit6, circuit7, circuit8, cir-
cuit9, ece241_2013_q7, ece241_2014_q3, ece241_2014_q5b, fsm1, fsm1s, fsm2, fsm2s, fsm3,
fsm3comb, fsm3onehot, fsm3s, fsm_onehot, fsm_ps2data, kmap1, kmap2, kmap3, kmap4,
m2014_q3, m2014_q6, m2014_q6b, m2014_q6c, mt2015_q4, mt2015_q4a, mt2015_q4b, re-
view2015_fsmonehot, rule110, rule90, truthtable1

A.5 TEMPLATE PROBLEMS FOR CORRECT-BY-CONSTRUCTION DATA

When generating correct-by-construction CC data, we select 11 problems from VerilogEval-
NonText to use as representative templates for constructing our prompts. To prevent contamination,
we ensure that benchmark problems are excluded from our data. While our prompts will resem-
ble those of the selected problems, the non-textual representations and solutions will differ. Addi-
tionally, to prevent overfitting to specific prompt templates, we use LLMs to rewrite the problem
instructions for 20% of our data. Furthermore, we create validation test problems that are strictly
in-distribution, based on the chosen problems.

Karnaugh Maps and Truth Tables: kmap1, m2014_q3, truthtable1.

State Transition Graphs and Tables: 2012_q2b, 2014_q3c, ece241_2014_q5b, fsm3comb,
fsm3onehot, fsm_onehot, m2014_q6b, m2014_q6c.

Waveforms: We do not base our data on any benchmark problems specifically.

A.6 SCALING REPAIR DATA

Table 12: Scaling Repair data.

Model
VerilogEval RTLLM v1.1

Machine Human Func
pass@1 (%) pass@5 (%)

SDG-CC 73.9 62.0 62.8
SDG-CC-Repair 1k 81.9 68.0 65.8
SDG-CC-Repair 7k 82.2 67.4 64.5

As shown in Table 12, a carefully filtered dataset of
1.4k samples achieves comparable performance to a
7.8k dataset. This suggests that merely increasing
the dataset size by injecting the same types of er-
rors does not contribute meaningfully to improving
model performance.

A.7 ITERATIVE CODE REPAIR

Table 13: Iterative code repair.

Model
VerilogEval RTLLM v1.1

Machine Human Func
pass@1 (%) pass@5 (%)

SDG-CC 73.9 62.0 62.8
SDG-CC-Repair Iter 1 81.9 68.0 65.8
SDG-CC-Repair Iter 2 81.3 68.1 65.6

We conduct a second iteration by generating 2.7k
repair data for the model based on the Repair data
from the first iteration. As shown in Table 13, per-
formance mostly saturates after this initial iteration.
We suspect that the remaining issues are likely due
to significant errors that are challenging to correct.

A.8 DIVERSITY OF GENERATED CODE

We assess the diversity of the code generated by our models. We measure this diversity using
BLEU score, Jaccard similarity, and abstract tree edit distance (TSED) in Song et al. (2024). The
VerilogEval-Human problems are categorized into NonText and Text, as described in Appendix A.4.
For each problem, we compute the average code diversity score across sampled codes for the same
problem and report the mean score for all problems. For TSED, we use PyVerilog (Takamaeda-
Yamazaki, 2015) to extract the abstract syntax tree, and codes that fail syntax checks are excluded
from the analysis.

Table 14 presents the results on code diversity. We sample 20 solutions with temperature of 0.8 for
each model. We observe that fine-tuned models generally show a decrease in code diversity for both
Text and NonText problems. This reduction is expected, as BLEU and Jaccard metrics account for
both correct and incorrect code solutions, and there are often multiple ways to implement a correct
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solution. When comparing our fine-tuned models with GPT-4o, code diversity is similar for Text
problems, but our models exhibit poor diversity for NonText problems. This is anticipated, given
that the CC training dataset for NonText problems is generated using correct-by-construction meth-
ods and follows similar templates for Verilog code. However, our models demonstrate comparable
diversity to GPT-4o for Text problems, particularly in TSED metric.

Table 14: Diversity of generated code solutions on VerilogEval-Human sampled with temperature
of 0.8. Lower scores indicate higher diversity.

Type Models
Text NonText

Jaccard BLEU TSED Jaccard BLEU TSED

Pretrained
Models

CodeLlama 0.5330 0.3808 0.4255 0.4707 0.2507 0.3521
DeepSeek-Coder 0.6606 0.5454 0.5956 0.6548 0.3797 0.3847

Starcoder2 0.7724 0.5084 0.5520 0.7212 0.3607 0.4020
GPT-4o 0.6798 0.6633 0.6906 0.7390 0.6376 0.6137

Ours
SDG-CC-Repair

CodeLlama 0.6848 0.5992 0.6354 0.8583 0.7242 0.7158
DeepSeek-Coder 0.6828 0.6040 0.6319 0.8308 0.6866 0.6598

Starcoder2 0.7018 0.6381 0.6721 0.8799 0.7750 0.7740

Type Models
VerilogEval-Human (Overall)
Jaccard BLEU TSED

Pretrained
Models

CodeLlama 0.5155 0.3441 0.4156
DeepSeek-Coder 0.6590 0.4987 0.5505

Starcoder2 0.7580 0.4667 0.5198
GPT-4o 0.6965 0.6561 0.6802

Ours
SDG-CC-Repair

CodeLlama 0.7333 0.6345 0.6515
DeepSeek-Coder 0.7246 0.6273 0.6379

Starcoder2 0.7512 0.6767 0.6942

A.9 ERROR TYPES OF LLM GENERATED ERROR REPORTS

Table 15: Error types of LLM generated error reports.

Error Type #Errors One-line Description

Vector Concatenation 15.3% Errors during vector concatenation or bit slicing.

Incorrect Initialization 13.1% Missing or faulty initialization of registers or signals.

Boolean Logic Flaws 12.4% Logical inconsistencies or errors in combinational logic expressions.

Shift Operation Faults 10.2% Misaligned or unintended behavior during shift operations.

Timing Violations 10.2% Errors where signal propagation violates timing requirements.

KMap Misinterpretation 8.8% Incorrect derivation of Boolean expressions from Karnaugh maps.

Latch Hazards 6.5% Unintended latches caused by missing or faulty conditions.

Bit Manipulation Bugs 7.3% Errors in operations like masking, flipping, or extracting specific bits.

Casez Priority Conflicts 4.4% Ambiguities or conflicts in casez or case statements.

Nested Loop Design Flaws 3.7% Incorrect or inefficient nested loop designs.

Others 8.1% Miscellaneous errors not covered above.

Table 15 shows the distribution of common error types in LLM-generated error reports, along with
brief one-line descriptions. Most of these “minor” errors occur in solvable problems and stem from
hardware-specific concepts (e.g., shift operations, timing violations) and Verilog related issues un-
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common in software languages (e.g., latch hazards, casez priority conflicts). When generating tar-
geted repair training data, we randomly sample detailed error reports and open-source code snippets,
ensuring the error type distribution in training aligns with their natural occurrences.

A.10 DETAILS ON FIGURE 1

Table 16: Checkpoints of Figure 1.

Model checkpoint1 checkpoint2
Steps Epoch Steps Epoch

SDG 256 0.82 320 1.0
SDG-CC-Repair 386 0.86 448 1.0

In Section 2.3 we discussed our findings on training
variability in learning outcomes for specific bench-
mark problems. To analyze this, we saved check-
points every 64 gradient steps during training and
tracked the pass rates of specific benchmarks. Our
training process is limited to a single epoch, as fur-
ther training was found to be not helpful. We classify problems with pass rates exceeding 67% as
solvable, and those below 33% as unsolvable. For the visualizations in Figure 1 we selected the
final two saved checkpoints, detailed in Table 16. The ideal outcome is not merely reduced variabil-
ity but also less degradations and improved accuracy: specifically, most problems in checkpoint2
should show higher pass rates than checkpoint1, assuming that training on additional data enhances
model performance. However, as shown in Figure 1a training on SDG data results in a significant
degradation of pass rates for many problems between checkpoint1 and checkpoint2. In contrast Fig-
ure 1b demonstrates reduced degradation and improvement in more problems. We further elaborate
such findings in Table 17, where we display pass rates for selected benchmark problems with high
volatility from VerilogEval-Human throughout the training progression.

Table 17: We displays pass rates for selected benchmark problems from VerilogEval-Human
throughout the training progression. Each entry shows the pass rate for SDG-CC-Repair (SDG),
with SDG results in parentheses.

Problem Step 64 Step 128 Step 256 Step 320 Step 386 Step 448
m2014_q4h 1.0 (1.0) 1.0 (0.9) 1.0 (0.967) 1.0 (0.875) 1.0 (-) 1.0 (-)

always_nolatches 1.0 (0.867) 1.0 (0.9) 1.0 (0.6) 1.0 (0.833) 1.0 (-) 1.0 (-)
vectorr 1.0 (0.633) 1.0 (0.925) 1.0 (0.467) 0.95 (0.925) 1.0 (-) 1.0 (-)
fsm2s 1.0 (0.8) 1.0 (0.8334) 0.8 (0.775) 1.0 (0.967) 1.0 (-) 1.0 (-)

fsm3comb 1.0 (0.0) 0.95 (1.0) 0.5 (0.533) 1.0 (0.233) 1.0 (-) 1.0 (-)

We believe such volatility primarily is due to noise in SDG data where we can not verify solution
correctness. Because of the difficulties of verifying coding solutions in hardware descriptive lan-
guages, we instead generate targeted repair data for LLMs to learn to mitigate common errors which
have shown to generalize to writing correct code during completion. To the best of our knowledge,
we are the first work to describe such findings and provide an effective solution.

B FURTHER DISCUSSIONS AND BROADER IMPACTS

In this section, we provide further discussions to address concerns regarding the novelty, generaliz-
ability, and significance of our proposed methods. We offer clarifications to highlight the relevance
and broader impact of our work, underscoring its value to the broad research community.

B.1 GENERALIZABILITY OF CORRECT-BY-CONSTRUCTION DATA GENERATION

Our approach to curating correct-by-construction data is largely inspired by Trinh et al. (2024),
who introduced a mathematically rigorous method utilizing symbolic deduction engines to con-
struct synthetic training data, significantly improving LLM capabilities in solving Olympiad geom-
etry problems. Similarly, our method ensures the correctness of problems and solutions through a
custom-designed data generation pipeline, leveraging custom-designed solvers to generate accurate
solutions to their corresponding problems. In contrast to methods distilling LLM responses like
Self-Instruct (Wang et al., 2022), our correct-by-construction approach ensures data quality and so-
lution accuracy without relying on strong LLM performance on downstream tasks. We hope that
our mathematically rigorous approach to generating synthetic data can further inspire future work
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on improving LLMs general capabilities in areas such as math, coding, and symbolic reasoning.
Moreover, we recognize that adapting these methods to other domains may require human tuning
to identify the best data generation method, and we note that automating this process for scalability
could be a promising future research direction.

B.2 NOVELTY AND GENERALIZABILITY OF TARGETED CODE REPAIR

Our analysis show that LLMs frequently make “minor” errors in Verilog coding, often correctable
within few lines of code. We attribute this primarily to the LLMs’ insufficient training in com-
prehending problem descriptions and instructions alongside their correct solutions. Prior research
has tackled this challenge by improving data quality. For instance, Chen et al. (2022) filters incor-
rect code using tests generated by LLMs, while Zhang et al. (2024c) creates preference learning
datasets by ranking code through self-validation. Lei et al. (2024) focus on generating fine-tuning
data through code completion, test validation, and debugging with LLM agents, while Le et al.
(2022) trained reward models based on compilation and unit test outcomes to enhance LLM perfor-
mance via reinforcement learning. However, low-resource languages face additional obstacles due
to limited data availability, making it particularly difficult to synthesize unit tests directly in these
languages. To address this issue, Cassano et al. (2024) introduced lightweight compilers to translate
test cases from source to target languages.

Verilog coding encounters challenges typical of low-resource languages, compounded additional
domain-specific challenges as a hardware description language rather than a conventional program-
ming language. Its unique characteristics pose significant barriers to knowledge transfer from
high-resource languages, as highlighted in studies on execution performance in parallel program-
ming (Nichols et al., 2024) and high-performance computing extensions (TehraniJamsaz et al.,
2024). To address these challenges, we propose a novel pipeline for generating targeted code re-
pair data. While automatic code repair has been extensively studied, most existing methods focus
on widely-used programming languages (Xia et al., 2023), relying on data of buggy code and fixes
from open-source repositories (Tufano et al., 2019; Just et al., 2014). In contrast, our pipeline utilizes
a small set of well-curated benchmarks and testbench to automate the generation of error reports,
quality assurance, and augmentation of training datasets by injecting similar errors into open-source
code. Our results highlight the effectiveness of this approach, which is language agnostic and can
be adapted to other low-resource and domain-specific programming languages.

B.3 SIGNIFICANCE OF NON-TEXTUAL DATA REPRESENTATIONS IN HARDWARE DESIGN

In this work, we emphasize the significance of non-textual data representations, specifically Kar-
naugh maps, state-transition diagrams, and waveforms, for accurately capturing hardware function-
ality. These representations are widely utilized by hardware designers to mitigate the ambiguity
and verbosity inherent in natural language descriptions. While they may be specific to hardware
design, they are not limited to Verilog and can be applied to various domain-specific languages
(DSLs) for hardware design. This is supported by Batten et al. (2024), who leveraged similar non-
textual representations from VerilogEval-Human to evaluate the performance of LLMs on several
Python-embedded hardware design DSLs.

In this study, we focus exclusively on limited representations, which constitute a significant portion
(45 problems, approximately 30%) of all problems in the VerilogEval-Human benchmark (details in
Appendix A.4). We exclude other types of non-textual representations due to the lack of a suitable
benchmark for evaluating LLMs in Verilog coding. Chang et al. (2024) emphasize the importance
of non-textual representations, particularly visual representations, in describing hardware designs.
While their work targets visual-language models and is therefore beyond the scope of this study, we
recognize that similar methodologies of our work such as correct-by-construction methods could be
employed to generate training data for visual representations, such as circuit schematics, data flow
diagrams, and state transition graphs.
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C EXAMPLES OF TARGETED CODE REPAIR DATA

Problem description: vector3 from VerilogEval-Machine

The top module contains 6 ports that are fed into a concatenation which outputs 4 ports.
The first input "a" is fed into the first port in the concatenation, the second input "b" is fed into the
second port of the concatenation, the third input "c" is fed into the third port of the concatenation, the
fourth input "d" is fed into the fourth port of the concatenation, the fifth input "e" is fed into the fifth
port of the concatenation, the sixth input "f" is fed into the sixth port of the concatenation. The last
bit of the concatenation is 2’b11. This value is fed in to the last port of the concatenation.

module top_module (
input [4:0] a,
input [4:0] b,
input [4:0] c,
input [4:0] d,
input [4:0] e,
input [4:0] f,
output [7:0] w,
output [7:0] x,
output [7:0] y,
output [7:0] z

);

assign {w, x, y, z} = {a, b, c, d, e, f
, 2’b11};

endmodule

Correct Code

// Concatenate the inputs with the last
bit as 2’b11

assign {w, x, y, z} = {2’b11, a, b, c,
d, e, f};

endmodule

Error Code

LLM generated Error Report

Error Type: Incorrect vector concatenation and splitting

Category: Combinatorial: wiring

Description: Steps to repair the erroneous implementation:

1. Concatenating the two 1 bits at the beginning of the concatenated vector.
2. Assign the output vectors from the concatenated vector in the correct order and bit ranges

For example:

assign {w, x, y, z} = {2’b11, a, b, c, d, e, f};

To correct the implementation, you should concatenate the last bit as ‘2’b11’ on the right, as shown
in the correct implementation:

assign {w, x, y, z} = {a, b, c, d, e, f, 2’b11};

LLM constructed Repair data from open-source code

Input:

#### 1. Problem Description
You are given a Verilog module that demonstrates the use of bit slicing and concatenation in a loop.
The goal is to correctly display specific portions of a 32-bit register using a for-loop and explicit slic-
ing. However, there is a commonly made error in the concatenation and bit slicing order that causes
incorrect results to be displayed. Your task is to identify and fix the error in the code.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

#### 2. Erroneous Implementation

module block;
reg [31:0] data;
int i;

initial begin
data = 32’hFACE_CAFE;

// Loop to display 8−bit segments of the data register
for (i = 0; i < 4; i++) begin

// Incorrectly reversing the bit order in the concatenation
$display ("data[8*%0d +: 8] = 0x%0h", i, data[8*(3−i) +: 8]);

end

// Incorrect slicing order, placing higher bits in lower indexes
$display ("data[7:0] = 0x%0h", data[31:24]);
$display ("data[15:8] = 0x%0h", data[23:16]);
$display ("data[23:16] = 0x%0h", data[15:8]);
$display ("data[31:24] = 0x%0h", data[7:0]);

end
endmodule

In this erroneous implementation:
- The loop erroneously reverses the order of the 8-bit slices.
- The explicit bit-slicing outside of the loop has the slices ordered incorrectly, assigning the MSB to
the least significant part and vice versa.

#### 3. Hints for Fixing
1. **Correct the loop:**
The loop currently reverses the order of the 8-bit slices. Instead of accessing ‘data[8*(3-i) +: 8]’, you
should access ‘data[8*i +: 8]’ to display the correct slices of the register.
2. **Fix the slicing outside of the loop:**
Ensure that the LSB (‘data[7:0]’) corresponds to the lower bits of the ‘data’ register, and the MSB
(‘data[31:24]’) corresponds to the higher bits. Correct the slicing order for accurate display.

The corrected implementation should ensure that both the loop and explicit bit-slicing access the reg-
ister correctly, without reversing the bit order.

Output:

module block;
reg [31:0] data;
int i;
initial begin

data = 32’hFACE_CAFE;
for (i = 0; i < 4; i++) begin

$display ("data[8*%0d +: 8] = 0x%0h", i, data[8*i +: 8]);
end
$display ("data[7:0] = 0x%0h", data[7:0]);
$display ("data[15:8] = 0x%0h", data[15:8]);
$display ("data[23:16] = 0x%0h", data[23:16]);
$display ("data[31:24] = 0x%0h", data[31:24]);

end
endmodule

Figure 5: An example demonstrating the process for targeted code repair. In this example, training
checkpoints during training would have the model sometimes generated correct and error solutions.
We use LLMs to first summarize the errors for a detailed Error Report and then inject the errors to
open-source code to construct Repair data.
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Problem description: shift4 from VerilogEval-Human

Build a 4-bit shift register (right shift), with asynchronous positive edge triggered areset, synchronous
active high signals load, and enable.
// (1) areset: Resets shift register to zero.
// (2) load: Loads shift register with data[3:0] instead of shifting.
// (3) ena: Shift right (q[3] becomes zero, q[0] is shifted out and disappears).
// (4) q: The contents of the shift register. If both the load and ena inputs are asserted (1), the load
input has higher priority.

module top_module(
input clk,
input areset,
input load,
input ena,
input [3:0] data,
output reg [3:0] q);

always @(posedge clk or posedge
areset) begin

if (areset) begin
// Asynchronous positive edge

triggered areset
q <= 4’b0000;

end else if (load) begin
// Synchronous active high

signals load
q <= data;

end else if (ena) begin
// Shift right
q <= {1’b0, q[3:1]};

end
end

endmodule

Correct Code

always @(posedge clk or posedge
areset) begin
if (areset) begin
// Asynchronous positive edge

triggered areset
q <= 4’b0;

end else if (load) begin
// Synchronous active high signals

load
q <= data;

end else if (ena) begin
// Shift right
q <= {q[2:0], 1’b0};

end
end

endmodule

Error Code

LLM generated Error Report

Error Type: shifting operation

Category: Sequential: shift registers

Description:
The error in the erroneous implementation is related to the shifting operation in the shift register.

q <= {q[2:0], 1’b0};

This line is intended to shift the bits in the register to the right, but it incorrectly connects the least
significant bit (q[0]) to the most significant bit (q[3]) instead of connecting a zero to the most signifi-
cant bit. This results in a circular shift instead of a right shift.

To correct this error, the line should be changed to:

q <= {1’b0, q[3:1]};

Here are the steps to repair the erroneous implementation
1. Identify the line of code that performs the shifting operation
2. Notice that the least significant bit (q[0]) is connected to the most significant bit (q[3]) instead of
a zero.
3. Change the line of code to connect a zero to the most significant bit and shift the remaining bits
to the right
4. Test the implementation to ensure that it behaves as expected.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

LLM constructed Repair data from open-source code

Input:

You are provided with a Verilog module that implements a shift register. However, the implementa-
tion contains a common error related to shifting operations. Your task is to identify the error, which
involves a mistake in the way bits are shifted within the register. Specifically, the problem results in
an incorrect circular shift rather than the intended right shift operation. You need to fix the error to
ensure that the register shifts correctly.

Erroneous Implementation:

module shift_registers_0 (clk, clken, SI, SO);
parameter WIDTH = 32;
input clk, clken, SI;
output SO;
reg [WIDTH−1:0] shreg;
always @(posedge clk)
begin

if (clken)
// Erroneous shifting operation: circular shift instead of right shift
shreg = {shreg[WIDTH−2:0], shreg[WIDTH−1]};

end
assign SO = shreg[WIDTH−1];

endmodule

In this erroneous implementation:
- The shift register incorrectly shifts the most significant bit (MSB) into the least significant bit
(LSB), creating a circular shift.
- The correct behavior should be shifting in the new input bit (‘SI’) while moving existing bits to the
right.

Hints for Fixing:
1. **Identify the shifting operation error:**
The line ‘shreg = {shreg[WIDTH-2:0], shreg[WIDTH-1]};’ causes a circular shift because the MSB is
incorrectly fed back into the LSB position.
2. **Fix the shifting logic:**
Replace the erroneous MSB assignment with the correct new input bit (‘SI’). The correct line should
be ‘shreg = {shreg[WIDTH-2:0], SI};’ to shift in the new input bit from the ‘SI‘ input and ensure the
bits shift to the right.
By fixing the shifting operation, the register will now shift correctly, with the new input bit filling the
LSB and the existing bits shifting to the right.

Output:

module shift_registers_0 (clk, clken, SI, SO);
parameter WIDTH = 32;
input clk, clken, SI;
output SO;
reg [WIDTH−1:0] shreg;
always @(posedge clk)
begin
if (clken)

shreg = {shreg[WIDTH−2:0], SI};
end
assign SO = shreg[WIDTH−1];

endmodule

Figure 6: Another example based on shift4 from VerilogEval-Human.
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Problem description: multi_booth_8bit from RTLLM

Please act as a professional verilog designer.

Implement an 8-bit Radix-4 booth multiplier that performs the multiplication of two 8-bit inputs (a and b) using the Booth
algorithm. It utilizes a clock signal (clk), and a reset signal (reset), and provides the product output (p) and a ready signal
(rdy). The ready signal (rdy) is set to 1 to indicate the completion of the multiplication process.

Module name:
multi_booth_8bit

Input ports:
clk: Clock signal used for synchronous operation.
reset: Reset signal used to initialize the multiplier module.
a: 8-bit input representing the multiplicand.
b: 8-bit input representing the multiplier.

Output ports:
p: 16-bit output representing the product of the multiplication.
rdy: Ready signal indicating the completion of the multiplication operation.

Implementation:
On the positive edge of the clock signal (clk) or the positive edge of the reset signal (reset), the module performs the

multiplication process.
If the reset signal (reset) is high, two 16-bit registers multiplier <= 8a[7], a and multiplicand <= 8b[7], b.
If the reset signal (reset) is low, indicating normal operation, the module checks if the counter (5bit ctr) is less than 16.
If the counter (ctr) is less than 16, the multiplicand register (multiplicand) is left-shifted by 1 to simulate the Booth

algorithm’s shifting operation.
If the current bit of the multiplier register (multiplier[ctr]) is 1, indicating a positive Booth encoding, the product register

(p) accumulates the value of the multiplicand register (multiplicand).
The counter (ctr) is incremented by 1. Once the counter (ctr) reaches 16, indicating the completion of the multiplication

process, the ready signal (rdy) is set to 1.

Give me the complete code.

module multi_booth_8bit (p, rdy, clk, reset, a, b);
input clk, reset;
input [7:0] a, b;
output reg [15:0] p;
output reg rdy;
reg [15:0] multiplicand, multiplier;
reg [4:0] ctr;
always @(posedge clk or posedge reset) begin

if (reset) begin
multiplier <= {{8{a[7]}}, a};
multiplicand <= {{8{b[7]}}, b};
p <= 0;
ctr <= 0;
rdy <= 0;

end else begin
if (ctr < 16) begin

multiplicand <= multiplicand << 1;
if (multiplier[ctr]) begin

p <= p + multiplicand;
end
ctr <= ctr + 1;

end else begin
rdy <= 1;

end
end

end
endmodule

Correct Code

module multi_booth_8bit (p, rdy, clk, reset, a, b);
input clk, reset;
input [7:0] a, b;
output reg [15:0] p;
output reg rdy;
reg [15:0] multiplier, multiplicand;
reg [4:0] ctr;
always @(posedge clk or posedge reset) begin
if (reset) begin
multiplier <= {{8{a[7]}}, a};
multiplicand <= {{8{b[7]}}, b};
ctr <= 0;
rdy <= 0;

end else begin
if (ctr < 16) begin
multiplicand <= multiplicand << 1;
if (multiplier[ctr])
p <= p + multiplicand;

ctr <= ctr + 1;
end else begin
rdy <= 1;

end
end

end

endmodule

Error Code

LLM generated Error Report

Error Type: Incorrect initialization
Category: Sequential: counters
Description:
In the erroneous implementation, the p register is not initialized to zero during reset. This can lead to incorrect multiplication
results, as the initial value of p is unknown and may contain random values. The correct implementation initializes the p
register to zero during reset, ensuring that the multiplication result is accurate.

To repair the erroneous implementation, follow these steps:
1. Locate the always block that handles the reset and clock edge. In this case, it’s the block that starts with always
@(posedge clk or posedge reset).
2. Within the if (reset) block, add a line to initialize the p register to zero: p <= 0;.
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LLM constructed Repair data from open-source code

Input:
Problem Description:
You are given a Verilog module that implements a 4-bit up counter. The counter should reset to zero when the reset signal is
active and increment with each positive clock edge. However, there is a common error in this implementation: the counter_up
register is not correctly initialized during reset, which may lead to unpredictable behavior after reset. Your task is to identify
and fix this initialization error. Erroneous Implementation:

module up_counter(
input clk,
input reset,
output [3:0] counter
);
reg [3:0] counter_up;
// up counter
always @(posedge clk or posedge reset)
begin

if (reset)
counter_up <= 4’d3; // Incorrect initialization value

else
counter_up <= counter_up + 4’d1;

end
assign counter = counter_up;

endmodule

In this erroneous implementation:
* The counter_up register is incorrectly initialized to 4’d3 during reset, instead of being reset to zero (4’d0), which can cause
incorrect counter behavior when reset is activated.

Hints for Fixing:
1. Identify the initialization issue: The counter should reset to zero, but currently, it is being set to 4’d3 during reset. This
causes incorrect counting behavior after a reset.
2. Fix the reset logic: Modify the if (reset) block in the always block to properly initialize the counter to zero. Change
counter_up <= 4’d3; to counter_up <= 4’d0;.
3. Ensure proper reset behavior: After fixing the initialization, the counter will correctly reset to zero when the reset signal is
active and increment correctly on each clock cycle thereafter.

Output:

module up_counter(
input clk,
input reset,
output[3:0] counter
);
reg [3:0] counter_up;
// up counter
always @(posedge clk or posedge reset)
begin

if(reset)
counter_up <= 4’d0;

else
counter_up <= counter_up + 4’d1;

end
assign counter = counter_up;

endmodule

Figure 7: Another example based on multi_booth_8bit from RTLLM.
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D EXAMPLES OF CORRECT-BY-CONSTRUCTION DATA FOR NON-TEXTUAL
REPRESENTATIONS

D.1 KARNAUGH MAPS AND TRUTH TABLES

Problem

Implement the circuit described by the Karnaugh map below.
// c
// ab 0 1
// 00 | 1 | 0
// 01 | 0 | 0
// 11 | 0 | 0
// 10 | 0 | 0

module top_module(
input a,
input b,
input c,
output out

);

Solution

The input variables are: [’a’, ’b’, ’c’].
Based on the Karnaugh map, I can transform in to the following truth table:
a | b | c | f
0 | 0 | 0 | 1
0 | 0 | 1 | 0
0 | 1 | 0 | 0
0 | 1 | 1 | 0
1 | 0 | 0 | 0
1 | 0 | 1 | 0
1 | 1 | 0 | 0
1 | 1 | 1 | 0

The minterms (when output is 1) are:
(0,0,0) => (~a & ~b & ~c)
This corresponds to the following minterms logic:
‘(~a & ~b & ~c)‘

Finally, based on the above logic equation, I can now write the Verilog code that
could be described by the Karnaugh map:

‘‘‘
module top_module(

input a,
input b,
input c,
output out

);
assign out = (~a & ~b & ~c);

endmodule
‘‘‘

Figure 8: Example of a generated problem with Karnaugh Map representation in the problem de-
scription. We include detailed step-by-step analysis for reaching the correct solution.
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D.2 STATE TRANSITION GRAPHS AND TABLES

Problem

Given the state−assigned table shown below, implement the logic functions Y[0] and
z.

// Present state y[2:0] | Next state Y[2:0] x=0, Next state Y[2:0] x=1 | Output z
// 000 | 010, 011 | 1
// 001 | 100, 010 | 0
// 010 | 001, 100 | 1
// 011 | 011, 100 | 0
// 100 | 100, 001 | 0

Solution

The state transition is as follows:
// state | Next state in=0, Next state in=1 | Output
// A | C, D | 1
// B | E, C | 0
// C | B, E | 1
// D | D, E | 0
// E | E, B | 0

The transition logic is then:
A: next = x ? D : C;
B: next = x ? C : E;
C: next = x ? E : B;
D: next = x ? E : D;
E: next = x ? B : E;

The output is 1 for states: A, C.
Thus the output logic is: assign z = ( y == A || y == C );
Y0 corresponds to 001 (A), 011 (D).

Finally, below is the Verilog code for the finite state machine:
‘‘‘
module top_module (
input clk,
input x,
input [2:0] y,
output reg Y0,
output reg z
);

reg [2:0] next_state;
parameter A=0, B=1, C=2, D=3, E=4;
always_comb begin

case(y)

A: next_state = x ? D : C;
B: next_state = x ? C : E;
C: next_state = x ? E : B;
D: next_state = x ? E : D;
E: next_state = x ? B : E;
default: next_state = ’x;

endcase
end
assign z = ( y == A || y == C );
assign Y0 = ( next_state == B || next_state == D );

endmodule
‘‘‘

Figure 9: Example of problem with state transition tables.
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Problem

This is a Moore state machine with four states, four inputs, and one output.
Implement this state machine in Verilog. Reset is an active−high synchronous
reset to state D.

// D (out=0) −−in0=1−−> D
// D (out=0) −−in0=0−−> A
// C (out=0) −−in1=1−−> D
// C (out=0) −−in1=0−−> B
// B (out=1) −−in2=1−−> D
// B (out=1) −−in2=0−−> B
// A (out=0) −−in3=1−−> B
// A (out=0) −−in3=0−−> C

Solution

The finite state machine has four inputs, and the state transition logic is as
follows:

D: next = in0 ? D : A;
C: next = in1 ? D : B;
B: next = in2 ? D : B;
A: next = in3 ? B : C;

The output is 1 for states: B.
Thus the output logic is: ‘assign out = ( state == B );‘.

Finally, below is the Verilog code for the finite state machine:
‘‘‘
module top_module (
input clk,
input reset,
input in0,
input in1,
input in2,
input in3,
output out
);

parameter D=0, C=1, B=2, A=3;
reg state;
reg next;
always_comb begin

case(state)
D: next = in0 ? D : A;
C: next = in1 ? D : B;
B: next = in2 ? D : B;
A: next = in3 ? B : C;
default: next = ’x;

endcase
end
always @(posedge clk) begin

if (reset) state <= D;
else state <= next;

end
assign out = ( state == B );

endmodule
‘‘‘

Figure 10: Example of problem with Moore FSM.
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Problem

The following diagram is a Mealy machine. Implement in Verilog using one−hot
encoding. Resets into state A and reset is asynchronous active−high.

// A −−x=0 (z=0)−−> D
// A −−x=1 (z=1)−−> C
// B −−x=0 (z=1)−−> C
// B −−x=1 (z=0)−−> B
// C −−x=0 (z=0)−−> C
// C −−x=1 (z=0)−−> D
// D −−x=0 (z=1)−−> C
// D −−x=1 (z=0)−−> B

Solution

From the transition diagram, we have the following transition logic:
// state | next state in=0, next state in=1
// A | D, C
// B | C, B
// C | C, D
// D | C, B
Thus the state transition logic is as follows:
A: next = x ? C : D;
B: next = x ? B : C;
C: next = x ? D : C;
D: next = x ? B : C;
The output is 1 for states: (A, x), (B, ~x), (D, ~x).
Thus the output logic is: ‘assign z = ( ( state == A & x ) || ( state == B & ~x )

|| ( state == D & ~x ) );‘.

Finally, below is the Verilog code for the finite state machine:
‘‘‘
module top_module (

input clk,
input areset,
input x,
output z

);
parameter A=2’b00, B=2’b01, C=2’b10, D=2’b11;
reg [1:0] state;
reg [1:0] next_state;
always_comb begin

case(state)

A: next_state = x ? C : D;
B: next_state = x ? B : C;
C: next_state = x ? D : C;
D: next_state = x ? B : C;
default: next_state = ’x;

endcase
end
always @(posedge clk, posedge areset) begin

if (areset) state <= A;
else state <= next_state;

end
assign z = ( ( state == A & x ) || ( state == B & ~x ) || ( state == D & ~x

) );
endmodule
‘‘‘

Figure 11: Example of problem with Mealy FSM.
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Problem

The following is the state transition table for a Moore state machine with one
input, one output, and four states. Use the following one−hot state encoding: A
=4’b0001, B=4’b0010, C=4’b0100, D=4’b1000. Derive state transition and output
logic equations by inspection assuming a one−hot encoding. Implement only the
state transition logic and output logic (the combinational logic portion) for
this state machine.

// state | Next state in=0, Next state in=1 | Output
// A | B, A | 0
// B | B, C | 1
// C | D, A | 1
// D | B, C | 0

Solution

Based on the state transition table, we can obtain the next state from observing
the row (previous state) and column (input).

Next state is A on the following (row, column): (A, in=1) (C, in=1). This
correspond to the following logic: ‘state[A] & in || state[C] & in‘.

Next state is B on the following (row, column): (A, in=0) (B, in=0) (D, in=0). This
correspond to the following logic: ‘state[A] & ~in || state[B] & ~in || state[
D] & ~in‘.

Next state is C on the following (row, column): (B, in=1) (D, in=1). This
correspond to the following logic: ‘state[B] & in || state[D] & in‘.

Next state is D on the following (row, column): (C, in=0). This correspond to the
following logic: ‘state[C] & ~in‘.

The output is 1 for states: B, C.
Thus the output logic is: ‘assign out = ( state[B] || state[C] );‘.

Finally, below is the Verilog code for the finite state machine:
‘‘‘
module top_module (
input in,
input [3:0] state,
output reg [3:0] next_state,
output out
);

parameter A=0, B=1, C=2, D=3;

assign next_state[A] = state[A] & in || state[C] & in;
assign next_state[B] = state[A] & ~in || state[B] & ~in || state[D] & ~in;
assign next_state[C] = state[B] & in || state[D] & in;
assign next_state[D] = state[C] & ~in;

assign out = ( state[B] || state[C] );

endmodule
‘‘‘

Figure 12: Example of problem with in-edge focused solution shown in Figure 2.
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D.3 WAVEFORMS

Problem

This is a combinational circuit. Read the simulation waveforms to determine what
the circuit does, then implement it.

// time a b c d q
// 0ns 0 0 0 0 0
// 5ns 0 0 0 0 0
// 10ns 0 0 0 0 0
// 15ns 0 0 0 0 0
// 20ns 0 0 0 1 0
// 25ns 0 0 1 0 0
// 30ns 0 0 1 1 0
// 35ns 0 1 0 0 0
// 40ns 0 1 0 1 0
// 45ns 0 1 1 0 0
// 50ns 0 1 1 1 0
// 55ns 1 0 0 0 1
// 60ns 1 0 0 1 1
// 65ns 1 0 1 0 0
// 70ns 1 0 1 1 1
// 75ns 1 1 0 0 0
// 80ns 1 1 0 1 1
// 85ns 1 1 1 0 0
// 90ns 1 1 1 1 0

Solution

Based on the simulation waveform, I can transform in to the following truth table:
a | b | c | d | f
0 | 0 | 0 | 0 | 0
0 | 0 | 0 | 1 | 0
0 | 0 | 1 | 0 | 0
0 | 0 | 1 | 1 | 0
0 | 1 | 0 | 0 | 0
0 | 1 | 0 | 1 | 0
0 | 1 | 1 | 0 | 0
0 | 1 | 1 | 1 | 0
1 | 0 | 0 | 0 | 1
1 | 0 | 0 | 1 | 1
1 | 0 | 1 | 0 | 0
1 | 0 | 1 | 1 | 1
1 | 1 | 0 | 0 | 0
1 | 1 | 0 | 1 | 1
1 | 1 | 1 | 0 | 0
1 | 1 | 1 | 1 | 0

The minterms (when output is 1) are:
(1,0,0,0) => (a & ~b & ~c & ~d)
(1,0,0,1) => (a & ~b & ~c & d)
(1,0,1,1) => (a & ~b & c & d)
(1,1,0,1) => (a & b & ~c & d)
This corresponds to the following minterms logic:
‘(a & ~b & ~c & ~d) | (a & ~b & ~c & d) | (a & ~b & c & d) | (a & b & ~c & d)‘

Finally, based on the above logic equation, I can now write the Verilog code:
‘‘‘
module top_module(

input a,
input b,
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input c,
input d,
output q

);
assign q = (a & ~b & ~c & ~d) | (a & ~b & ~c & d) | (a & ~b & c & d) | (a &

b & ~c & d);
endmodule
‘‘‘

Figure 13: Example of a waveform problem for combinational circuits.

Problem

This is a sequential circuit. Read the simulation waveforms to determine what the
circuit does, then implement it.

// time clk reset in out
// 0ns 0 1 0 x
// 5ns 1 1 0 1
// 10ns 0 1 0 1
// 15ns 1 0 0 1
// 20ns 0 0 0 1
// 25ns 1 0 1 0
// 30ns 0 0 1 0
// 35ns 1 0 0 1
// 40ns 0 0 0 1
// 45ns 1 0 0 0
// 50ns 0 0 0 0
// 55ns 1 0 0 1
// 60ns 0 0 0 1
// 65ns 1 0 1 0
// 70ns 0 0 1 0
// 75ns 1 0 1 1
// 80ns 0 0 1 1
// 85ns 1 0 0 1
// 90ns 0 0 1 1

... Simulation waveform redacted ...

Solution

From the waveform, we have the following transition logic and output logic:
// state | Next state in=0, Next state in=1 | Output
// D | C, B | 1
// C | B, D | 0
// B | D, A | 1
// A | C, B | 0

Thus the state transition logic is as follows:
D: next = in ? B : C;
C: next = in ? D : B;
B: next = in ? A : D;
A: next = in ? B : C;

The output is 1 for states: D, B.
Thus the output logic is: ‘assign out = ( state == D || state == B );‘.

Finally, below is the Verilog code for the finite state machine:
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‘‘‘
module top_module (
input clk,
input in,
input reset,
output out
);

parameter D=0, C=1, B=2, A=3;
reg state;
reg next;

always_comb begin
case(state)

D: next = in ? B : C;
C: next = in ? D : B;
B: next = in ? A : D;
A: next = in ? B : C;
default: next = ’x;

endcase
end

always @(posedge clk) begin
if (reset) state <= D;
else state <= next;

end

assign out = ( state == D || state == B );

endmodule
‘‘‘

Figure 14: Example of a waveform problem for sequential circuits.
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E PROMPT TEMPLATES

E.1 SYNTHETIC DATA GENERATION

E.1.1 SELF-INSTRUCT

Your goal is to create a high-quality Verilog problem.

* Guidelines for designing the problem description:

1. This should be **completely self-contained**, providing all the contextual information one needs
to understand and solve the problem.
2. Assume common verilog knowledge, but ensure that any specific context, variables, or code snip-
pets pertinent to this problem are explicitly included.
3. Do not include the code snippet in the problem.
4. The problem should be desinged for the programmers to solve it with one verilog module.
5. The problem description section should be enclosed within <PROBLEM> </PROBLEM> tags.

Now, Please use your creativity to create a brand new high-quality Verilog problem.

Figure 15: Prompt used to generate initial 50 seed problems for Self-Instruct.

Your goal is to create a high-quality Verilog problem.

* Guidelines for designing the problem description:

1. This should be **completely self-contained**, providing all the contextual information one needs
to understand and solve the problem.
2. Assume common verilog knowledge, but ensure that any specific context, variables, or code snip-
pets pertinent to this problem are explicitly included.
3. Do not include the code snippet in the problem.
4. The problem should be desinged for the programmers to solve it with one verilog module.
5. The problem description section should be enclosed within <PROBLEM> </PROBLEM> tags.

Below shows some examples:

<PROBLEM>
{seed problems}
</PROBLEM>

Now, Please use your creativity to create a brand new high-quality Verilog problem.

Figure 16: Prompt used for Self-Instruct.
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E.1.2 OSS-INSTRUCT

Your goal is to create a high-quality Verilog problem.

* Guidelines for designing the problem description:

1. This should be **completely self-contained**, providing all the contextual information one needs
to understand and solve the problem.
2. Assume common verilog knowledge, but ensure that any specific context, variables, or code snip-
pets pertinent to this problem are explicitly included.
3. Do not include the code snippet in the problem.
4. The problem should be designed for the programmers to solve it with one Verilog module.

* Guidelines for the problem description format: The problem description section should be enclosed
within <PROBLEM> </PROBLEM> tags.

Please increase the difficulty of the given programming test question a bit. You can increase the diffi-
culty using, but not limited to, the following methods:

1. Your new problem should not be directly solved by the original code snippet.
2. You can also change the bit-width requiremnt, how to reset internal signals (if applicable), and
whether the solution needs a clock signal (combinatorial versus sequential logic). If you do have a
reset method that is synchronous to a clock, make sure to add the clock signal to the problem module
input.
3. Add new constraints and requirements to the original problem, adding approximately 10 additional
words.
4. Replace a commonly used requirement in the programming task with a less common and more
specific one.
5. If the original problem can be solved with only a few logical steps, please add more reasoning
steps.

Now, Please gain inspiration from the following random code snippet to create a high-quality Verilog
problem.

Code snippet for inspiration:
‘‘‘
{code snippet}
‘‘‘

Output:

Figure 17: Prompt used for OSS-Instruct. We also include prompts inspired from Evol-
Instruct (Luo et al., 2024b) to increase problem difficulty.
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E.1.3 DOCU-INSTRUCT

Your goal is to create a high-quality Verilog problem.

* Guidelines for designing the problem description:

1. This should be **completely self-contained**, providing all the contextual information one needs
to understand and solve the problem.
2. Assume common verilog knowledge, but ensure that any specific context, variables, or code snip-
pets pertinent to this problem are explicitly included.
3. Do not include the code snippet in the problem.
4. The problem should be designed for the programmers to solve it with one Verilog module.

* Guidelines for the problem description format: The problem description section should be enclosed
within <PROBLEM> </PROBLEM> tags.

Now, Please gain inspiration from the following textbook or wikipedia snippet to create a high-quality
Verilog problem. The information might not be directly related to Verilog, but try to be make the
problem as relevant as possible to the textbook issue discussed.

Textbook snippet for inspiration:
‘‘‘
{document snippet}
‘‘‘

Output:

Figure 18: Prompt used for Docu-Instruct with Wikipedia and textbooks.

I am going to give you a concept and some descriptions about that concept. Based on the descrip-
tions and concept name, determine if the concept belongs to one of the following categories:

- Hardware description and modeling in Verilog.
- Fundamental constructs such as modules, ports, and wires specific to Verilog.
- Synthesis and optimization techniques employed in hardware design using Verilog.
- Simulation tools and methodologies for verifying Verilog-based hardware designs.
- Common design patterns and best practices in Verilog for efficient hardware implementation.
- Programming concepts like loops, functions related to Verilog.
- Hardware related concepts such as finite state machines that could be implemented in Verilog.
- Algorithms that could be implemented in hardware, such as Fourier Transforms.

Concept: {Wikipedia title}
Description: {Wikipedia content}

Do not make assumptions and only respond “Yes” if you are certain that the {Wikipedia title} is re-
lated to hardware design or Verilog coding language.

Your answer should start with “Yes” or “No”.

Figure 19: Prompt used to filter Verilog related Wikipedia pages.
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E.1.4 NON-TEXTUAL REPRESENTATIONS

Your goal is to create a high-quality Verilog problem. Specifically, we would like to test the skills of
understanding Karnaugh maps and state transition diagrams. The problem description section should
be enclosed within <PROBLEM> </PROBLEM> tags.

Now, please gain inspiration from the following random code snippet to create a high-quality Ver-
ilog problem. Remember that the problem you generated must include Karnaugh maps in the format
above. The random code snippet MUST be related to the solution. Your problem statement should
be short and succinct (no more than 5 sentences) and you MUST generate a Karnaugh map in the
problem description. Your problem description should not describe the Karnaugh map in words and
should assume that the student need to decipher the Karnaugh map to solve the problem.

Code snippet for inspiration:
‘‘‘
{code snippet}
‘‘‘

Below are two examples on how to represent Karnaugh map related questions in purely textual for-
mat. You should NOT use the following to generate the problem but only consider the style.

<PROBLEM>
Given the state−assigned table shown below, implement the finite−state machine.

Reset should synchronous active high reset the FSM to state 000.
// Present state y[2:0] | Next state y[2:0] x=0, Next state y[2:0] x=1, Output z
// 000 | 000, 001 | 0
// 001 | 001, 100 | 0
// 010 | 010, 001 | 0
// 011 | 001, 010 | 1
// 100 | 011, 100 | 1
</PROBLEM>
<PROBLEM>
Implement the circuit described by the Karnaugh map below.
// a
// bc 0 1
// 00 | 0 | 1 |
// 01 | 1 | 1 |
// 11 | 1 | 1 |
// 10 | 1 | 1 |

</PROBLEM>

Figure 20: An prompt example to encourage LLMs to generate questions with Karnaugh Maps.
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E.1.5 PROMPTS FOR SAMPLING SOLUTIONS WITH LLM GENERATED PROBLEMS

Your goal is to solve a Verilog problem by completing one verilog module.

* Guidelines for writing the solution (verilog module) and formatting:
1. The module should be **completely self-contained**, fulfilling all the requirements needed to
solve the problem.
2. Ensure the correctness of the syntax and functionality.
3. The module name must be “top_module”.
4. Do not add blackslash in front of underscore symbol.
5. The solution must be valid Verilog code.
6. The solution section should be enclosed within <SOLUTION> </SOLUTION> tags.
7. The reasoning section should be enclosed within <REASON> </REASON> tags.
8. Write comments in the solution section. Try to embed the reasoning in comments. Always try to
write the corresponding comments before the code.
9. The module should be **completely self-contained**, do not include or import outside the module
and define everything inside the module.

Below shows an example:

Problem description:

Build a counter that counts from 0 to 999, inclusive, with a period of 1000 cycles.
The reset input is active high synchronous, and should reset the counter to 0.
Solve the problem by completing the following module.

Output:

<REASON>
To solve the problem of building a counter that counts from 0 to 999 with a reset

input that is active high synchronous, you will need a 10−bit register (since
2^10=1024 and 999 < 1024). The counter should increment on each clock cycle and
wrap around back to 0 when it reaches 1000. The reset input, when active,
should reset the counter to 0 on the next clock edge.

</REASON>

Here is the Verilog code for the module:
<SOLUTION>
module top_module(

input clk,
input reset,
output reg [9:0] q);

// This block executes on the positive edge of the clock signal.
always @(posedge clk) begin

// Checks if the reset is active. This is synchronous with the clock.
if (reset) begin

// Reset the counter to 0 when reset is active
q <= 0;

// If the counter has reached 999, it needs to wrap around to 0 on the next
cycle.

end else if (q == 999) begin
// Reset to 0 after reaching 999
q <= 0;

// In all other cases, just increment the counter.
end else begin

// Increment the counter
q <= q + 1;

end
end

endmodule
</SOLUTION>
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Now, please solve the following Verilog problem. I will also attach a reference code snippet which
was used as an inspiration to generate the problem. The provided code may not directly solve the
problem so you should use it only as a reference.

Reference code:
‘‘‘
{code snippet}
‘‘‘

Problem description:
‘‘‘
{in context examples}
‘‘‘
Output:

Figure 21: Prompt used for sampling solutions for synthetic data generation. We include a in context
example to encourage models to include reasoning traces. Prompts in blue are only included for
problems generated from a code snippet.

E.1.6 PROMPTS FOR VERIFYING SOLUTIONS

Check if the given Verilog module is a valid solution to the problem. The output should be in
“True” or “False” and be enclosed within <VALID> </VALID> tags and the explanation in <REA-
SON></REASON> tags.

Now check the following:

<PROBLEM>
{problem}
<PROBLEM>

<SOLUTION>
{solution}
</SOLUTION>

Figure 22: Prompt used for verifying solutions.
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E.2 PROMPTS FOR TARGETED CODE REPAIR

E.2.1 ERROR REPORT

Here is a Verilog problem description:
‘‘‘
{problem description}
‘‘‘

Here is an erroneous implementation:
‘‘‘
{error code}
‘‘‘

Here is a correct implementation:
‘‘‘
{correct code}
‘‘‘

Generate a detail error report.
The error report should describe the common error type and output the code category. The error re-
port should also be detailed enough to let beginners to repair the erroneous implementation step by
step.

Output:

Figure 23: Prompt for Error Report generation.

Here is a Verilog problem description:
‘‘‘
{problem description}
‘‘‘

Here is an erroneous implementation:
‘‘‘
{error code}
‘‘‘

Here is the error report:
‘‘‘
{error report}
‘‘‘

Now fix the erroneous implementation and give me the correct code.

Output:

Figure 24: Prompt for Error Report self-consistency validation. The generated code fix will be
evaluated for functional correctness. Error reports whose code fixes do not pass will be filtered.
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E.2.2 ERROR INJECTION

Your goal is to create an error-fixing Verilog practice problem for programmers. You will demonstrate
a type of error that is commonly made by programmers.
Create an error repair practice problem with three components:
1. Problem description
2. Erroneous implementation
3. Hints for fixing

Here is an example:

<EXAMPLE>
The following Verilog module is intended to implement the specification below. However, there is
a bug in the code which causes incorrect results. Please fix the bug to make the module work as
intended.

Erroneous Implementation:

// Verilog code with the injected error
module example_module (

input wire clk,
input wire reset,
output reg [3:0] counter

);

// Intended functionality:
// This module should count from 0 to 15 and then wrap around.

always @(posedge clk or posedge reset) begin
if (reset) begin

counter <= 4’b0000;
end else begin

counter <= counter + 1’b1; // Error injected: Should be 4’b1
end

end

endmodule

Hints for Fixing:
1. Verify the bit-width of the counter and the increment operation.
2. Check the initialization and wrapping condition of the counter.
3. Ensure that the addition operation correctly handles the 4-bit counter.

</EXAMPLE>

Now, here is the commonly made error:

‘‘‘
{error report}
‘‘‘

Inject the above error into the following module and create an error repair practice problem. Check if
it is possible to inject the error. If not, create the problem with the given error alone and ignore the
module in the code snippet.

‘‘‘
{code snippet}
‘‘‘

Output:

Figure 25: Prompt used to inject targeted errors to open-source code in code Repair data. We also
prompt the LLM to self-verify if the error could be injected to the code snippet.
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Karnaugh Maps and
Truth Tables

Step1. Sample
Configurations

Sample random minterms
variables=['a','b','c'], minterms=[1, 2, 5], don't_cares=[7]
SOP form: (~a & ~b & c) | (~a & b & ~c) | (a & ~b & c)

Truth table
 a | b | c | f
 0 | 0 | 0 | 0
 0 | 0 | 1 | 1
 0 | 1 | 0 | 1
 0 | 1 | 1 | 0
 1 | 0 | 0 | 0
 1 | 0 | 1 | 1
 1 | 1 | 0 | 0
 1 | 1 | 1 | x

Karnaugh map
    bc
 a 00  01 11 10
 0 | 0 | 1 | 0 | 1
 1 | 0 | 1 | x | 0

Step2. Construct
Representations
and Problems

Step3. Construct
Solution

module top_module(

        input a, 
        input b,
        input c,
        output f
);
        assign f = (~a & ~b & c) | (~a
& b & ~c) | (a & ~b & c)
endmodule

Figure 26: Correct-by-construction for Karnaugh
maps and truth tables.

State Transition Graphs
and Tables

Step1. Sample
Configurations

Step2. Construct
Representations
and Problems

Step3. Construct
Solution

reset A/0

C/1

B/0

D/1

1

0

1

0

1 0

0

1

Construct random legal transition graphs

State transition table.

// state | in=0, in=1 | Output
// A | C, B | 0
// B | D, C | 0
// C | B, C | 1
// D | D, C | 1

State transition graph.

// A (out=0) --in=0--> C
// A (out=0) --in=1--> B
// B (out=0) --in=0--> D
// B (out=0) --in=1--> C
// C (out=1) --in=0--> B
// C (out=1) --in=1--> C
// D (out=1) --in=0--> D
// D (out=1) --in=1--> C

    always_comb begin
                case (state)
                        A: next = in ? B : C;
                        B: next = in ? C : D;

C: next = in ? C : B;
                        D: next = in ? C : D;
                endcase
    end
    
        assign out = (state==C) | (state==D);

Figure 27: Correct-by-construction for finite-
state machines.

Waveforms

Step 1. Obtain
Previous Solutions

Step 2. Simulate with
Template Test Bench

Step 3. Construct
Waveform Problems

    always_comb begin
                case (state)
                        A: next = in ? B : C;
                        B: next = in ? C : D;

C: next = in ? C : B;
                        D: next = in ? C : D;
                endcase
    end
    
        assign out = (state==C) | (state==D);

module top_module(

        input a, 
        input b,
        input c,
        output f
);
        assign f = (~a & ~b & c) | (~a
& b & ~c) | (a & ~b & c)
endmodule

Code + Testbench Waveform VCD FileVerilog Simulator

Combinatorial circuit.
// time  a   b   c   f
// 0ns   0   0   0  0
// 5ns   0   0   1  1
// 10ns 0   1   0  1
// 15ns 0   1   1  0
...

Sequential circuit.
// time  clk  reset  in   out 
// 0ns   0    1        0     0
// 5ns   1    1        0     0
// 10ns 0    0        0     0
// 15ns 0    0        1     0
...

Figure 28: Correct-by-construction for waveforms.
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