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Abstract

Unwanted and often harmful social biases are becoming ever more salient in NLP
research, affecting both models and datasets. In this work, we conceptualize
fairness as robustness to demographic differences in text input. We explore the
robustness of language models (LMs) to demographic changes using a perturber
model and ask whether training on demographically perturbed data leads to fairer
language models. We find that (i) language models (LMs) pre-trained on demo-
graphically perturbed corpora are typically more fair, and (ii) LMs finetuned on
perturbed GLUE datasets exhibit more robustness (meaning less demographic bias)
on downstream tasks, and (iii) increased robustness and fairness improvements do
not come at the expense of performance on downstream tasks. We hope that this
exploration of neural demographic perturbation will help drive more improvement
towards fairer NLP.

1 Introduction

There is increasing evidence that models can instantiate social biases (Buolamwini and Gebru, 2018;
Stock and Cissé, 2018; Fan et al., 2019; Merullo et al., 2019; Prates et al., 2020), often replicating or
amplifying harmful statistical associations in their training data (Caliskan et al., 2017; Chang et al.,
2019). Training models on data with representational issues can lead to unfair or poor treatment
of particular demographic groups Barocas et al. (2017); Mehrabi et al. (2021), a problem that is
particularly egregious for historically marginalized groups, including people of color (Field et al.,
2021), and women (Hendricks et al., 2018).

In this work, we explore the efficacy of a dataset alteration technique that rewrites demographic
references in text, such as changing “women like shopping” to “men like shopping”. Similar
demographic perturbation approaches have been fruitfully used to measure and often lessen the
severity of social bias in text data (Prabhakaran et al., 2019; Zmigrod et al., 2019; Dinan et al., 2020;
Webster et al., 2020; Ma et al., 2021; Smith and Williams, 2021; Renduchintala and Williams, 2022).
Most approaches for perturbing demographic references, however, rely on rule-based systems, which
unfortunately tend to be rigid and error prone, resulting in noisy and unnatural perturbations (see
section 1.1). While some have suggested that a neural demographic perturbation model may generate
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higher quality text rewrites, there are currently no annotated datasets large enough for training neural
models (Sun et al., 2021).

We train a perturber model on the Perturbation Augmentation NLP DAtaset (PANDA)', a novel
dataset of 98K human-generated demographic text perturbations. The perturber takes in (i) a
source text snippet, (ii) a word in the snippet referring to a demographic group, and (iii) a new target
demographic attribute, and generates a perturbed snippet that refers to the target demographic attribute,
while preserving overall meaning. We find that the perturber generates high quality perturbations,
outperforming heuristic alternatives. We use our neural perturber to augment existing training data
with demographically altered examples, weakening unwanted demographic associations.

We explore the effect of demographic perturbation on language model training both during pretraining
and finetuning stages. We pretrain FairBERTa, the first large language model trained on demographi-
cally perturbed corpora, and show that its fairness is improved, without degrading performance on
downstream tasks.

We also investigate the effect of fairtuning, i.e. finetuning models on perturbation augmented
datasets, on model fairness. We find that fairtuned models perform well on a variety of natural
language understanding (NLU) tasks while also being fairer on average than models finetuned on the
original, unperturbed datasets.

Finally, we propose fairscore, an extrinsic fairness metric that uses the perturber to measure fair-
ness as robustness to demographic perturbation. Given an NLU classification task, we define the
fairscore as the change in model predictions between the original evaluation dataset and the perturba-
tion augmented version. Prior approaches to measuring fairness in classifiers often rely on “challenge
datasets” to measure how predictions differ in response to demographic changes in inputs (Zhao
et al., 2018; Rudinger et al., 2018; De-Arteaga et al., 2019; Parrish et al., 2021). However, collecting
human annotations can be costly, and task specific evaluation sets do not always generalize across
NLU tasks. The fairscore is a versatile, complementary method to challenge datasets that can be
easily applied to any NLP dataset. We see significant improvements in the fairscore from fairtuning
on a range of GLUE tasks.

Our main contributions are summarized in Figure 1. Using a neural perturber to demographically
augment model training data is a promising direction for lessening bias in large language models.
To enable more exploration and improvement upon the present work, we will release PANDA, our
controllable perturber, FairBERTa, and all other trained models and code artifacts under a permissive
license.

"For more details on how PANDA was collected, see the full paper to appear in EMNLP proceedings 2022.



1.1 Training the Demographic Perturber

We frame training a demographic perturber as a conditional sequence-to-sequence task. Given input
snippet s, perturbable word w and target attribute a;, we seek to learn P(5|s, w, a;), where w and
ay are discrete control variables that we prepend to perturber inputs. The perturber inputs take the
form [perturbable word] [target attribute] <PERT_SEP> [input]. The perturber is a
finetuned BART model (Lewis et al., 2020) with 24 layers, 1024 hidden size, 406M parameters, and
16 attention heads. To train the perturber, we finetune BART on PANDA using the ParlAl library?
(Miller et al., 2017), with training parameters provided in Table 5. We achieve a BLEU score of
88.0 (measured against the source) on the validation set, and perplexity of 1.06, which is likely low
because perturbation preserves the majority of tokens.

Perturbing large ML training datasets is an important application of perturbation augmentation.
Therefore, it is crucial that generation is fast and scalable to large text corpora. We experimented
with different architectures and generation techniques to optimize for both quality and efficiency.
Notably, TS (Raffel et al., 2020) performed slightly better on certain NLP metrics (such as BLEU-4),
but used much more memory during training and inference, resulting in /6x slower generations in a
distributed setting. We also explored different ways of decoding, and surprisingly, found that greedy
decoding performs as well as beam search in our setting. We therefore use greedy decoding in our
perturbation augmentation applications, which is also memory efficient.

Comparison to Heuristics. Is it necessary to train a perturber, or can we just use heuristics?
Previous approaches relied on word lists (Zhao et al., 2019) or designing handcrafted grammars to
generate perturbations (Zmigrod et al., 2019; Ma et al., 2021; Renduchintala and Williams, 2022;
Papakipos and Bitton, 2022). However, word list approaches are necessarily limited (Dinan et al.,
2020) and which words are included can really matter (Sedoc and Ungar, 2019). For instance,
attributes are often excluded for being hard to automate: e.g., Black, white have been excluded
because they often denote colors in general (Ma et al., 2021). Grammar-based approaches also require
ad hoc solutions for phonological alternations (@ banana v. an apple), and struggle with one-to-many-
mappings for pronouns (Sun et al., 2021), often incompletely handling pronoun coreference chains.
We find that a neural perturber trained on high quality human annotations can correctly identify
perturbable words and their coreference chains, and then generate rewritten text that is grammatical,
fluent and preserves overall meaning.

1.2 Results

We present results showing that using the perturber leads to fairer models during pretraining (subsec-
tion 1.3) and to fairer models during finetuning without sacrificing accuracy (subsection 1.4).

1.3 FairBERTa: Perturbation Augmented Pretraining

Setting: We train FairBERTa with the RoBERTag , g architecture (Liu et al., 2019) using 256
32GB V100 GPUs for 500k steps. To generate training data for FairBERTa, we apply the perturber to
the RoBERTa training corpus (Liu et al., 2019) to help balance the representation of underrepresented
groups and thereby reduce the prevalence and severity of unwanted demographic associations. During
perturbation augmentation, we sample contiguous sequences of 256 tokens and select a demographic
word and target attribute with uniform probability, which are provided as inputs to the perturber.
Although it would be in principle straightforward to upsample the training data size appreciably,
keeping data size fixed allows us to make a direct comparison between FairBERTa and RoBERTa on
a variety of fairness metrics and downstream tasks. We train FairBERTa and RoBERTa on the full
RoBERTa training corpus (160GB) and the BookWiki subset (16GB), and show that our observations
on fairness and accuracy are consistent.

Fairness Evaluations: 'We compare FairBERTa to RoBERTa trained with the same settings accord-
ing to their performance on three fairness evaluation datasets. For CrowS-Pairs (Nangia et al., 2020),
we report the percentage of examples for which a model assigns a higher (pseudo-)likelihood to the
stereotyping sentence over the less stereotyping sentence. For the template-based Word Embedding
Association Test (WEAT, Caliskan et al. 2017) and Sentence Encoder Association Test (SEAT, May
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RoBERTa FairBERTa RoBERTa' FairBERTa

16GB of training data 160GB of training data
gender 36.1 19.9 40.6 35.7
HolisticBias  race 27.3 23.8 28.4 27.6
age 42.9 38.9 36.4 41.7
WEAT/SEAT % sig. tests 53.5 40.0 60.0 36.7
gender 523 51.9 55.0 51.5
CrowS-Pairs  race 55.0 55.0 53.9 57.6
age 50.6 63.2 66.7 63.2

Table 1: Results of FairBERTa and RoBERTa on 3 fairness metrics across varying training dataset
sizes. Numbers are percentages of metric tests revealing bias. ROBERTa' refers to the model from
liu-etal-2019-roberta; all other models were trained from scratch. For CrowS-Pairs, closer to 50
means a more fair model; for WEAT/SEAT & HolisticBias, lower means more fair. See subsection 1.3
for more details.

Model Tuning Size CoLA SST-2 STS-B QQpP RTE QNLI Avg.
FairBERTa orig. 16GB 62.81 92.66 88.37 91.22 72.75 92.13 83.32
RoBERTa orig. 16GB 59.81 93.92 89.87 91.17 72.92 91.89 83.26
FairBERTa orig. 160GB 61.57 94.61 90.40 91.42 76.90 92.99 84.65
ROBERTa" orig. 160GB 61.36 93.50 90.90 91.77 75.50 92.70 84.29
FairBERTa fair 16GB 61.37 92.20 87.64 90.93 70.03 92.13 82.38
RoBERTa fair 16GB 58.09 93.58 88.66 91.04 71.12 91.73 82.37
FairBERTa fair 160GB 60.60 94.95 89.63 91.49 75.09 92.77 84.09
RoBERTa' fair 160GB 59.71 93.50 90.20 91.56 75.80 92.70 83.91

Table 2: FairBERTa matches ROBERTa in Downstream Task Accuracy (GLUE Benchmark). Tuning
refers to whether models are finetuned on original datasets or “fairtuned” on perturbed ones (denoted
with ‘fair’). RoBERTa and FairBERTa models report similar accuracy regardless of training size and
tuning approach. We report Matthew’s correlation for CoL A, Pearson’s correlation for STS-B, and
accuracy for all other tasks. Results are the median of 5 seeded runs. A dagger marks the Liu et al.
model.

et al. 2019), we report the percentage of statistically significant tests and their average effect size.
Lastly, for HolisticBias (HB, Smith et al. 2022), we measure the percentage of pairs of descriptors by
axis for which the distribution of pseudo-log-likelihoods (Nangia et al., 2020) in templated sentences
significantly differs.

FairBERTa is more fair: Overall, FairBERTa shows improvements in fairness scores over training-
size-matched RoBERTa models across our evaluations, and across two training dataset sizes (see
Table 1). FairBERTa models show reduced demographic associations overall across HB templates,
and have notably fewer statistically significant associations on WEAT/SEAT. CrowS-Pairs is more
equivocal: e.g., FairBERTa (16GB) is closer than ROBERTA (16GB) to the desired score of 50%
(demographic parity) for gender, but not for age. Worse performance on the age category is possibly
due to the varied ways in which age is conveyed in language, e.g., I was born 25 years ago vs. I am a
child. While the perturber is capable of perturbing phrases with numbers such as eleven years old,
general issues with numerical reasoning (Dua et al., 2019; Geva et al., 2020; Lin et al., 2020) may
still be present.

We find that fairness metrics sometimes report conflicting results, corroborating other recent findings
(Delobelle et al., 2021; Goldfarb-Tarrant et al., 2021). While WEAT/SEAT tests and HB evaluation
find FairBERTa (160GB) to be more fair along the race axis, CrowS-Pairs reported a better score for
RoBERTa (160GB). Inconsistencies may be partly explained by data noise in CrowS-Pairs Blodgett
et al. (2021), but we believe that the agreement (or lack thereof) of different NLP bias measurements
warrants further exploration, and closer examinations of fairness evaluation datasets.



FairBERTa has no Fairness-Accuracy Tradeoff: Previously, a fairer model often meant accepting
lower task performance (Zliobaite, 2015; Menon and Williamson, 2018) or seeking a Pareto optimal
solution (Berk et al., 2017; Zhao and Gordon, 2019). To determine whether there is a tradeoff between
downstream task accuracy and fairness in our setting, we evaluate on 6 GLUE benchmark tasks Wang
et al. (2018): sentence acceptability (Warstadt et al., 2019, CoLLA), sentiment analysis (Socher
et al., 2013, SST-2), text similarity (Cer et al., 2017, STS-B), textual entailment (Dagan et al.,
2005; Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009, RTE), and question
answering (Rajpurkar et al., 2016) recast to textual entailment (QNLI).?

FairBERTa models match the performance of RoOBERTa models trained under the same setting to
within 0.40% accuracy on average (see top half of Table 2). For some tasks (CoLA, SST-2, RTE
and QNLI), FairBERTa (160GB) also slightly outperforms RoBERTa (160GB) and averages 0.75%
higher overall accuracy on these tasks.

Model Tuning Size CoLA SST2 QQP RTE QNLI Avg.

FairBERTa  orig. 16GB 546 204 561 645 1.70 4.25
FairBERTa fair 16GB 420 102 334 645 1.94  3.39

FairBERTa  orig. 160GB 5.88 1.02 556 3.23 2.17 3.57
FairBERTa fair 160GB 441 051 286 6.45 1.70 3.19

RoBERTa orig. 16GB 6.51 1.02 6.89 645 2.88 4.5
RoBERTa fair 16GB 546 306 343 6.86 1.58 4.08

RoBERTaf orig. 160GB 693 255 7.60 4.03 2.17 4.66
RoBERTaf fair 160GB 378  1.02 322 645 1.67 3.23

Table 3: The fairscore for fairtuned models is lower in general. A lower fairscore, i.e., the percentage
of classifier predictions that change during inference for a single model between the original evaluation
set and the same evaluation set after perturbation augmentation, corresponds to a fairer model. The
lowest fairscore for each task and setting is bolded. RoBERTa' is the model from liu-etal-2019-
roberta.

1.4 Fairtuning: Finetuning on Perturbed Data

Setting: In addition to comparing downstream performance in a traditional finetuning setting,
we also compare performance and fairness during fairtuning, where models are finetuned on
demographically perturbed downstream datasets. The number of perturbable examples and the
proportions of demographic axes varies across fairtuning data by task (see statistics in Table §, and
examples in Table 9).

Fairtuning does not degrade downstream task accuracy: Fairtuned models match their finetuned
counterparts in accuracy on the original (unperturbed) GLUE validation sets (compare the top half of
Table 2 to the bottom). Surprisingly, for some tasks (SST-2, QQP and RTE), fairtuning resulted in
slightly higher original validation set performance than finetuning does for some model configurations.
The largest drop in performance from fairtuning occurs for RTE, where FairBERTa trained on
BookWiki (16GB) shows a decrease of 2.72% in accuracy. Swings on RTE may be due to its
smaller size (see Table 8), as we observe more variance across finetuning runs as well. Finetuning or
fairtuning from an existing NLI checkpoint, as in Liu et al. 2019, might result in more stability.

1.5 Measuring Fairness with the Fairscore

Setting: Finally, we compute the fairscore as an extrinsic fairness evaluation metric. Recall that,
given a classifier and evaluation set, the fairscore of the classifier is the percentage of predictions that
change when the input is demographically altered with the perturber.

3We exclude several GLUE tasks for which the number of demographically perturbable examples was too
low to draw meaningful conclusions. We follow liu-etal-2019-roberta’s training procedure, conducting a limited
hyperparameter sweep for each task varying only learning rate and batch size. For each task, we finetune for 10
epochs and report the median development set results from five random initializations.



Fairscore is best for Fairtuned Models: Fairtuned models have lower (i.e., better) fairscores on
average?, meaning that their predictions change the least from perturbation (see Table 3). On average,
fairtuned models saw a 0.84 point reduction in the fairscore as compared to models finetuned on
unperturbed data; this is true for both RoOBERTa and FairBERTa and across training data sizes. We
also find that FairBERTa models are more robust to demographic perturbation on downstream tasks,
even when finetuned on the original datasets (Table 3). FairBERTa models have lower fairscores than
RoBERTa models pretrained on similar sized datasets.

We also observe an additive effect where models that are both pretrained and finetuned on de-
mographically perturbed data show more robustness to demographic perturbation on downstream
tasks. Notably, the fairtuned versions of FairBERTa (16BG) and FairBERTa (160GB) have better
average fairscores in general. The fairtuned FairBERTa (160GB) model reports the lowest aver-
age fairscore across all tasks (3.19). In our setting, we do not observe any relationship between
demographic bias and data size in downstream tasks, suggesting that models of any size can learn
demographic biases.

Overall, we find that perturbation augmentation can mitigate demographic bias during classification
without any serious degradation to task performance for most tasks on the GLUE benchmark (see
Table 2). While we do observe an interesting additive effect where LMs are more robust to demo-
graphic differences when they are pretrained on demographically altered datasets then fairtuned, we
believe that further work is needed to better understand exactly how bias is learned and propagated
during different stages of language model training.

2 Conclusion

As language models become more powerful and more popular, more attention should be paid to the
demographic biases that they can exhibit. Models trained on datasets with imbalanced demographic
representation can learn stereotypes such as women like shopping. While recent works have exposed
the biases of LMs using a variety of techniques, the path to mitigating bias in large scale training
datasets is not always clear. Many approaches to correct imbalances in the dataset have used heuristic
rules to identify and swap demographic terms. We propose a novel method that perturbs text by
changing the demographic identity of a highlighted word, while keeping the rest of the text the same.
We find that our perturber model creates more fluent and humanlike rewrites than heuristics-based
alternatives. We also show that training on demographically perturbed data results in more fair
language models, in both pretrained language models and in downstream measurements, without
affecting accuracy on NLP benchmarks. We hope our contributions will help drive exciting future
research directions in fairer NLP.
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A Appendix

A Problems with Perturbation Augmentation

While heuristic approaches have been widely used, they suffer from quality issues, which in turn
result in particular demographic attributes being excluded in general. Three axis-attributes are most
affected, and we will point to them as exemplars of the general issue: non-binary/underspecified,
race/ethnicity-african-american, race/ethnicity-white.

To take an obvious example, English language heuristic demographic perturbation systems have to
somehow handle the linguistic fact that gendered pronouns have different forms for each grammatical
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role in so-called “standard” English: both the feminine and the masculine pronouns use the same
form for two grammatical functions, but not for the same two: she, her, her, hers v. he, him, his,
his. Tt is not straightforward for a heuristic system given her to determine whether to replace it with
his or him. Put simply, a heuristic system that always maps her — him would fail for an example
with a possessive (unfortunately for her, I recently changed her schedule — unfortunately for him,
I recently changed him schedule) and one that maps her — his would fail for an example with an
accusative (unfortunately for her, I recently changed her schedule — unfortunately for his, I recently
changed his schedule). One might hope that a random selection of mappings could help, but since
pronouns are highly frequent in natural language, even that sort of noisy approach would lead to a lot
of ungrammatical examples.

The pronoun situation becomes even more complicated when including non-binary gender, since
the most frequent pronoun for non-binary gender affects the verb form as well. For example, if we
wanted to replace he— they in the following example, the owner came to our table and told us he
already is thinking about starting a Turkish breakfast, this would result in another grammatically
incorrect sentence, the owner came to our table and told us they already is thinking about starting
a Turkish breakfast. One might hope that one could just add bigrams to the word lists containing
pronouns and all verb forms, but that doesn’t straightforwardly work, as other words (sometimes
several of them) can appear between the pronoun and the verb, and thus not be caught by a heuristic
system. Although this particular issue only occurs (in English) in the context of singular they, it
would be counter to the goals of a responsible Al work such as this one to accept higher noise for
underserved identities like non-binary that are often ignored or overlooked in NLP tasks (Sun et al.,
2021; Lauscher et al., 2022).

As if the situation with pronouns weren’t complicated enough, often context is needed to determine
whether particular words should be perturbed at all. For example, “Black™ and “white” are polysemous
adjectives that can be used not only as demographic terms but also as color terms. Despite the fact that
these references aren’t demographic, they would get perturbed by nearly every heuristic demographic
perturbation system (the person was wearing a white shirt — the person was wearing an Asian shirt
or the white pawn attacked the black bishop — the black pawn attacked the black bishop), altering
the meaning significantly. If a heuristic system like this were used to measure model robustness
to demographic perturbation say in an NLU classification task like natural language inference, it
would be hard to determine whether the model failed to be robust to demographic changes (and hence
should be deemed unfair) or if the textual changes had altered the meaning too much and that affected
the label.

B Perturber Human Evaluation

We conduct a human evaluation of the perturber outputs. We randomly selected 200 examples from
the PANDA validation set to be perturbed by the perturber. The perturber outputs are annotated by 2
expert annotators; each example was annotated by both experts to calculate interannotator agreement.
We use the same categorization of errors for perturber outputs as we did for the PANDA audit. We
will release anonymized annotations along with the other artifacts from this work. The results of the
perturber human evaluation are reported in Table 4.

Compared to the PANDA audit, the perturber human evaluation shows lower incidence of factuality
change, fewer incomplete/incorrect perturbations, and fewer typos and unnatural examples. On
the other hand, the perturber evaluation found higher occurrence of stage 1 errors and incorrectly
unperturbed examples. From inspection, we observe that the perturber often fixes typos and grammat-
ical issues in the input, likely an artifact of BART pretraining. The perturber is also successful at
identifying complex coreference entity chains, even in long passages, resulting in fewer instances of
incomplete perturbations. However, the perturber leaves more examples unperturbed, which may
also reflect in the lower incidence of factuality issues. Interannotator agreement is similar to the
PANDA audit.

We aim to be transparent about limitations of the perturber to inform downstream applications of
the perturber, such as training data augmentation or model evaluation. While we found that most
perturber outputs that are flagged under our annotation scheme are useable and inoffensive, our
analysis is constrained to a small sample of PANDA. We encourage researchers to examine the
perturber in other domains, and to make informed decisions around using the perturber.
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Tag % occurrence % agreement

factuality change 28.5 71.5
incomplete/incorrect 20.0 84.5
Stage 1 errors 24.5 91.0
typos and naturalness 11.5 91.5
incorrectly unperturbed 19.5 84.0

Table 4: Perturber quality audit. Under each tag, we report the rate at which it occurs, as well as
how often two annotators agreed. If either annotator included a tag for an example, that tag was
aggregated as % occurrence.

C Perturber Training Parameters

In this section, we describe hyperparameters for training the perturber. Table 5 describes the
hyperparameters for finetuning BART-Large (Lewis et al., 2020) on PANDA, with 24 layers, 1024
hidden size, 16 attention heads and 406M parameters. Validation patience refers to the number
of epochs where validation loss does not improve, used for early stopping. All perturber training
and evaluation runs are conducted using the ParlAl library (Miller et al., 2017).> We trained the
perturber using 8 x 16GB Nvidia V100 GPUs for approximately 4 hours.

Hyperparam PANDA
Learning Rate le-5
Batch Size 64
Weight Decay 0.01
Validation Patience 10
Learning Rate Decay 0.01
Warmup Updates 1200
Adam € le-8
Adam [ 0.9
Adam f2 0.999
Gradient Clipping 0.1
Decoding Strategy greedy

Table 5: Hyperparameters for training the perturber by finetuning BART on PANDA.

D FairBERTa Training Parameters

Table 6 contains hyperparameters for pretraining FairBERTa. FairBERTa is trained with the
RoBERTag g Liu et al. (2019) architecture on 32GB Nvidia V100 GPUs with mixed preci-
sion using the Fairseq library Ott et al. (2019). We pretrain FairBERTa on 160GB perturbed data
using 256 V100 GPUs for approximately three days. For RoOBERTa and FairBERTa models trained
on the 16GB BookWiki corpus (and perturbed BookWiki corpus), we use the same training settings,
but use 100K max steps.

E Downstream Task Training Parameters

Table 7 describes hyperparameters for finetuning and fairtuning ROBERTa and FairBERTa on GLUE
tasks and the RACE (Lai et al., 2017) reading comprehension dataset. We conducted a basic hyperpa-
rameter exploration sweeping over learning rate and batch size, and select the best hyperparameter
values based on the median validation accuracy of 3 runs for each task. Configurations for individual
models, tuning approach and GLUE task will be released in our GitHub repository. Training runs
on downstream tasks are done using HuggingFace. Models are trained on 8 x 32GB Nvidia V100
machines, with runtime ranging from 5 minutes for the smallest dataset (RTE) to 45 minutes for the
largest dataset (QQP).

“https://parl.ai
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Hyperparam FairBERTa
# Layers 12
Hidden Size 768
FFN inner Hidden Size 3072
# Attention Heads 12
Attention Head Size 64
Hidden Dropout 0.1
Attention Dropout 0.1
# Warmup Steps 24k
Peak Learning Rate 6e-4
Batch Size 8k
Weight Decay 0.01
Sequence Length 512
Max Steps 500k
Learning Rate Decay Linear
Adam € le-8
Adam (3 0.9
Adam f2 0.999
Gradient Clipping 0.0

Table 6: Hyperparameters for pretraining FairBERTa.

Hyperparam GLUE RACE
Learning Rate {1e-5, 2e-5, 3e-5} le-5
Batch Size {16, 32} 16
Weight Decay 0.1 0.1
Max # Epochs 10 3
Learning Rate Decay Linear  Linear
Warmup Ratio 0.06 0.06

Table 7: Hyperparameters for finetuning RoOBERTa and FairBERTa on GLUE and RACE.

F Additional GLUE Statistics

We provide the percentage of examples in the validation set (used for reporting accuracy as test sets
are hidden) that were perturbed across six tasks from the GLUE benchmark in Table 8. CoLA and
RTE had the highest percentage of perturbable examples, followed by QNLI and STS-B, with SST-2
having the fewest.

CoLA SST-2 STS-B QQP RTE QNLI

age 9.2 7.5 12.2 64 132 6.5

width= gender 32.3 9.9 20.2 83 329 18.4
race 4.1 5.2 4.5 5.8 0.8 6.3

total 45.6 22.5 36.9 20.5 47 31.2

Table 8: The percentage of examples perturbed by demographic axis for each fairtuning task.

G Preserving Classification Labels After Perturbation

We have assumed for the purposes of the fairscore that perturbing word axes and attributes should
not affect the gold classification label. In general, this is a reasonable assumption, but there are edge
cases, in particular, for examples that rely on human-denoting references as part of their meaning.
Consider for example the hypothetical textual entailment example {P: John saw his aunt, H: John
saw his uncle, gold-label: not-entailment}. If aunt is the chosen word, and the target attribute
is gender :man, we have an issue: the new example will be {P: John saw his uncle, H: John saw
his uncle, gold-label: entailment}. The entailment label will have changed, because the original
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Dataset  Input Label

Perturbed

RTE premise: Swansea striker Lee Trundle has negotiated a lucrative image-rights  entailment
deal with the League One club. hypothesis: Lee Trundle is in business with the
League One club.

No

RTE premise: Swansea striker Lisa Trundle has negotiated a lucrative image-rights  entailment Yes
deal with the League One club. hypothesis: Lisa Trundle is in business with the
League One club.

SST-2 his healthy sense of satire is light and fun ... positive No

SST-2 their healthy sense of satire is light and fun ... positive Yes

QNLI question: How many people lived in Warsaw in 1939? sentence: Unfortunately — not entailment  No
this belief still lives on in Poland (although not as much as it used to be)

QNLI question: How many women lived in Warsaw in 1939? sentence: Unfortunately — not entailment  Yes
this belief still lives on in Poland (although not as much as it used to be)

QQP question 1: Do women cheat more than men? question 2: Do more women  not duplicate No
cheat than men?

QQP question 1: Do middle-aged women cheat more than men? question 2: Do more  not duplicate Yes
middle-aged women cheat than men?

CoLA  John arranged for himself to get the prize. acceptable No

CoLA Joanne arranged for herself to get the prize. acceptable Yes

STSB sentence 1: Senate confirms Janet Yellen as chair of US Federal Reserve sen- 4.2 No
tence 2: US Senate Confirms Janet Yellen as New Central Bank Chief

STSB sentence 1: Senate confirms John Yellen as chair of US Federal Reserve sentence 4.2 Yes

2: US Senate Confirms John Yellen as New Central Bank Chief

Table 9: Original and perturbed examples from the GLUE tasks.

example relied on the contrast of aunt and uncle, and even though we concatenated the premise and
the hypothesis so coreference across them would be clear, the perturbation still changed the gold
label in this hypothetical example.

To get an estimate of how much perturbation actually altered the ground truth classification for our
investigated tasks, we ran a pilot hand-validation of a subset of perturber perturbed examples from
RTE, CoLA, SST-2, QNLI, QQP.° We enlisted one expert annotator and instructed them to label,
or validate 25 randomly selected perturbed examples per task, for a total of 125 examples. See
Table 9 for examples. The validator labels agreed with the original gold labels for the majority of
the examples: 25/25 RTE examples, 25/25 CoLLA examples, 25/25 SST-2 examples, 21/25 QNLI
examples, and 20/25 QQP examples.

Generally, when the validator label didn’t agree with the gold, there was noise in the source data. For
example, in QNLI, In which year did Alexander Dyce bequeathed his books to the museum? was
listed as entailing These were bequeathed with over 18,000 books to the museum in 1876 by John
Forster., although the bequeather of the books differs across the two sentences in the source (the
perturber only changed “John” to “Jay”). QQP was somewhat of an outlier in our pilot validation,
because it has a unexpectedly high proportion of explicit sexual content, which resulted in more
drastic semantic changes for the 5 examples the validator disagreed on.

In short, the methodological assumption that demographic perturbation shouldn’t alter the gold label
seems largely warranted, although we might take the QQP results with a grain of salt. A more
in-depth validation round could be performed to confirm our pilot findings.

STS-B was excluded because it is on a 5 point Likert scale that was averaged over several annotators such
that many examples have fractional scores. We found it hard with only a single pilot annotation to determine
how close was close enough to count as gold label agreement.

14



	Introduction
	Training the Demographic Perturber
	Results
	FairBERTa: Perturbation Augmented Pretraining
	Fairtuning: Finetuning on Perturbed Data
	Measuring Fairness with the Fairscore

	Conclusion
	Appendix
	Problems with Perturbation Augmentation
	Perturber Human Evaluation
	Perturber Training Parameters
	FairBERTa Training Parameters
	Downstream Task Training Parameters
	Additional GLUE Statistics
	Preserving Classification Labels After Perturbation

