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Abstract
Neural text-to-speech (TTS) can provide quality close to natural
speech if an adequate amount of high-quality speech material is
available for training. However, acquiring speech data for TTS
training is costly and time-consuming, especially if the goal is
to generate different speaking styles. In this work, we show
that we can transfer speaking style across speakers and im-
prove the quality of synthetic speech by training a multi-speaker
multi-style (MSMS) model with long-form recordings, in addi-
tion to regular TTS recordings. In particular, we show that 1)
multi-speaker modeling improves the overall TTS quality, 2) the
proposed MSMS approach outperforms pre-training and fine-
tuning approach when utilizing additional multi-speaker data,
and 3) long-form speaking style is highly rated regardless of the
target text domain.
Index Terms: Speaking style modeling, multi-speaker model-
ing, long-form data, neural TTS

1. Introduction
Neural text-to-speech (TTS) [1–3] can provide quality close to
natural speech if an adequate amount of high-quality speech
material is available for training. However, conventional TTS
recordings usually consist of a single style, or the style variation
is subtle. There is an increasing demand to generate speech with
various speaking styles to provide better listening experience
for various scenarios and content. The conventional approach
of recording more speech data with desired speaking styles can
provide a solution, yet such recordings are costly and time con-
suming, or sometimes infeasible if the speaker cannot perform a
specific style or the speaker is not available for such recordings.
A preferable and more scalable approach is to learn the styles
from voices where such styles already exist, and then transfer
the styles to target voices.

A speech utterance can be defined as the result of three
main components: 1) the linguistic content, 2) speaker identity,
and 3) prosody or speaking style. Here we define the speaking
style as the remaining aspects after the linguistic content and
the effect of speaker have been accounted for. The style covers
various prosodic aspects such as speaking rate, pitch, loudness,
and voice quality. In this work, we are interested in high-level
speaking styles rather than individual prosodic features or their
fine-grained structure. Speaking style implies how speech is ex-
pressed related to, for example, content and context, such as in
long-form reading or conversational speaking style, emotional
state of the speaker, such as happy or sad, or environment, such
as in Lombard speech. The contribution of content, speaker, and
speaking style to the speech signal are inherently entangled, and
the main goal of style modeling is to disentangle these factors.

Various methods have been proposed to model speaking

style in neural TTS. Some methods aim for fine-grained prosody
transfer using a reference utterance with matching text [4, 5].
These methods are mostly applicable for offline tuning of indi-
vidual sentences. Some methods learn a prosodic space using
acoustic features that can be used to vary and change speak-
ing styles [6–9], however, these methods are often inflexible to
provide a general solution to style modeling. Many speaking
style modeling methods learn a latent embedding space, de-
rived from a reference acoustic representation containing the
prosody [10–13]. This enables speaking style transfer by using
a prosody embedding extracted from a reference utterance, or
alternatively using self-supervised learning to cluster the em-
bedding space into different styles. The downsides of these
methods are that either they require a reference utterance (albeit
matching text is not required), in which case there may be con-
tent or speaker leakage to the target utterance, or in the case of
learned style embeddings, they may not correspond to desired
styles by human listeners and may contain an undesired mix of
styles and other acoustic factors. Overall, the disentanglement
between content, speaker, and style is a difficult problem with-
out large amounts of labeled speech data.

In this work, we investigate simple supervised speaking
style modeling that relies on multi-speaker multi-style (MSMS)
modeling using explicit speaker and style labels. The assump-
tions behind the proposed method are that 1) there exists speech
recordings with at least two distinct speaking styles, 2) there are
at least two speakers for each speaking style, 3) parallel speak-
ing style data is not required for any speaker.

We investigate two distinct styles in this study: 1) a style
aimed for general TTS and voice assistant purposes, and 2)
long-form speaking style that is suitable for listening to audio-
books, webpages, and other long-form content. We utilize mul-
tiple speakers from each style and investigate if we can repro-
duce the styles with a speaker that has no recordings of that par-
ticular style. We perform extensive subjective experiments to
measure the quality of the proposed MSMS method with differ-
ent styles, and compare it to multi-speaker, pre-train fine-tune,
and single-speaker based systems. We also measure the speak-
ing style similarity between systems to assess the style transfer
capability of the proposed method.

1.1. Relation to prior work

Speaking style modeling and transfer is a widely researched
topic [10–27]. Our aims in this work are similar to the ones
in [23–26] that use multi-speaker multi-style modeling, except
that our approach uses fully supervised methods for disentan-
gling the content, speaker, and style. Our work is also related
to the studies using multi-speaker TTS that show quality im-
provements on multi-speaker datasets [5, 28–33]. In addition,
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Figure 1: Neural TTS architecture with the proposed speaker
and style modeling (dashed line) over the baseline model (solid
line).

our work is related to the studies that aim for better long-form
reading style [26, 27, 33].

Our contribution in this work is 3-fold. First, we show that
we can improve neural TTS quality by using long-form content
and multi-speaker multi-style modeling, and second, we show
that multi-speaker multi-style modeling is the preferred way to
leverage such data in Transformer-based TTS, over more con-
ventional methods, such as pre-training and fine-tuning [34].
Although multi-speaker or multi-style modeling using super-
vised speaker and style labels are not novel as such, we demon-
strate that we can achieve substantial quality gains using such
methods. Third, we observe that long-form speaking style is
highly rated even in non-long-form text domain, being similar
or even preferred in comparison to a more traditional speaking
style specifically aimed for TTS.

2. Multi-speaker multi-style modeling
We propose a simple but effective method for supervised si-
multaneous speaker and style modeling. The proposed method
is based on combining knowledge from various speakers and
styles without requiring parallel style data from any speaker.
We condition the neural TTS model with 1-hot encodings of
speaker and style, which enables switching the speaker and style
at inference time. We call our method multi-speaker multi-style
(MSMS) modeling.

2.1. Neural TTS architecture

Our neural TTS system, shown in Fig. 1, consists of a
Transformer-based non-autoregressive acoustic model similar
to FastSpeech 2 [3], and an autoregressive vocoder similar to
WaveRNN [35]. The input to the acoustic model is a phoneme
sequence with punctuation and word boundaries, and the output
is a Mel-spectrogram. The model is based on a feed-forward
Transformer (FFT) [3, 36] encoder and dilated convolution de-
coder. The encoder consists of an embedding layer that converts
the phoneme sequence to phoneme embeddings followed by a
series of FFT blocks that take in the phoneme embeddings with
positional encodings and output the phoneme encodings. Each
FFT block consists of a self-attention layer [36] and 1-D convo-
lution layers along with layer normalization and dropout. The
phoneme encodings are then fed to the variance adaptors that
predict phone-wise duration, pitch, and energy. The variance
adaptors consist of 1-D convolution layers along with layer nor-
malization and dropout similar to [3]. Instead of using pitch
spectrograms as in [3], we use continuous pitch, quantization,

Table 1: Speech data.

Voice Style Dur. Mdn. pitch Ave. sent. len.
Voice 1 TTS 37 h 188 Hz 3.48 s
Voice 2 TTS 23 h 112 Hz 3.29 s
Voice 3 TTS 13 h 148 Hz 3.30 s
Voice 4 TTS 11 h 119 Hz 2.42 s
Voice 5 TTS 12 h 145 Hz 3.19 s
Voice 6 Long-form 40 h 159 Hz 2.81 s
Voice 7 Long-form 24 h 84 Hz 2.33 s
7 voices 2 styles 160 h 143 Hz 2.94 s

and finally projection to an embedding. The predicted phone-
wise pitch and energy features are then added to the phoneme
encodings, after which they are upsampled according to the pre-
dicted phone-wise durations. The decoder consists of a series
of dilated convolution stacks instead of the original FFT blocks
in [3], which improves model inference speed as well as saving
runtime memory compared with the original design. Finally,
the decoder converts the adapted encoder sequence into a Mel-
spectrogram sequence in parallel.

To generate speech samples from the Mel-spectrogram, we
use an autoregressive recurrent neural network (RNN) based
vocoder, similar to WaveRNN [35]. The model consists of a
single RNN layer with 512 hidden units, conditioned on Mel-
spectrogram, followed by two fully-connected layers (512 ×
256, 256 × 256), with single soft-max sampling at the output.
The model is trained with pre-emphasized speech sampled at
24 kHz and µ-law quantized to 8 bits for efficiency. More in-
formation about the implementation can be found in [37].

2.2. Proposed system

On top of the baseline model, we add speaker and style con-
ditioning for the variance adaptors and the decoder. We form
a single combined embedding for the speaker and style as fol-
lows. We form 1-hot vectors of speaker and style (each size of
64), and then concatenate these together. We tile the embed-
ding to each frame in time and feed through a dense layer to
project to the corresponding output size, after which we add the
resulting embedding to the input of the variance adaptors and
the decoder. At inference time, we can generate speech with
any speaker and any style, regardless of whether the combina-
tion was seen in the training data.

3. Experiments
3.1. Data

We use proprietary speech data from a total of seven Amer-
ican English speakers to train our models. The speech data
for five speakers (voices 1–5) is recorded aimed at voice as-
sistant purposes, consisting of assistant dialog, navigation, but
also some material from books and Wikipedia, for example. We
refer this style as TTS style. The speech data from the remain-
ing two speakers (voices 6–7) are long-form recordings of var-
ious fictional books. The most notable difference between the
two styles investigated here is that the TTS style is recorded
solely for TTS development purposes, emphasizing clarity and
pronunciation, while the long-form style is recorded for audio-
book purposes, emphasizing narration. More details about the
speech data are presented in Table 1, including total duration of
each dataset, median pitch of the voices, and average sentence
lengths. For testing our models, we synthesize speech using 300
sentences, consisting of 75 sentences of 4 types: 1) books, 2)
knowledge, 3) navigation, and 4) dialog. Specifically, the books
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Figure 2: Overall MOS results with 95% confidence intervals.

category consists of long-form fiction book content, knowledge
category consists of short answers to factual questions, naviga-
tion category consists of navigation guidance sentences, and the
dialog category consists of digital assistant dialog sentences.

3.2. Model training

We use the following systems in our evaluation:
1. MSMS long-form style: Proposed system conditioned on

speaker and style, inference with long-form speaking style.
2. MSMS TTS style: Proposed system conditioned on

speaker and style, inference with TTS style.
3. Multi-speaker: Proposed system conditioned only on

speaker, style conditioning kept constant.
4. Pre-train fine-tune: Pre-training with all data and fine-

tuning with target speaker, no speaker or style condition-
ing.

5. Single-speaker: Training with target speaker data, no
speaker or style conditioning.
We trained all the models for 140k steps using 16 GPUs

and a batch size of 512, except for the pre-train fine-tune model
where we first pre-trained the model for 200k steps with 16
GPUs and then fine-tuned the model for 10k steps using a sin-
gle GPU and target speaker’s data. No model architecture or
size changes were made between the systems 1–5 other than
the ones mentioned in Sec. 2.2 to add speaker and style condi-
tioning. The WaveRNN models [37] to generate speech from
the Mel-spectrograms were trained separately for each speaker.

We use phone-wise duration, pitch, and energy as the fine-
grained features. 80-dimensional Mel-spectrograms are com-
puted from pre-emphasized speech using STFT with 25 ms
frame length and 10 ms shift. The encoder has 4 feed-forward
Transformer layers each with a self-attention layer having 2 at-
tention heads and 256 hidden units, and two 1-D convolution
layers each having a kernel size of 9 and 1024 filters. The de-
coder has 2 dilated convolution blocks with six 1-D convolution
layers with dilation rates of 1, 2, 4, 8, 16, and 32, respectively,
kernel size of 3, and 256 filters. The feature predictors have two
1-D convolution layers with kernel size of 3 and 256 filters. We
use dropout rate of 0.2 and layer normalization with ε = 10−6.

3.3. Quality

We evaluated naturalness using a 5-point mean opinion score
(MOS) test. We conducted 7 separate listening tests, one for
each voice, to keep the listening task manageable. We synthe-
sized 300 utterances for each system and voice, consisting of
75 sentences of 4 types (books, knowledge, navigation, dialog).
After the synthesis, the average durations of the utterances were
4.67, 8.03, 3.49, and 3.06 seconds for the books, knowledge,
navigation, dialog categories, respectively. The average dura-
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Figure 3: MOS results per voice and system with 95% confi-
dence intervals.
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Figure 4: MOS results per sentence type and system with 95%
confidence intervals.

tion of all evaluation utterances was 4.81 seconds. Overall, 651
American English native speakers participated in the tests using
headphones (54.4 %) or loudspeakers (45.6 %), and gave a total
of 157,500 ratings, consisting of 7 voices × 5 systems × 300
utterances × 15 ratings.

The overall MOS results per system are depicted in Fig. 2,
showing that MSMS long-form style and multi-speaker systems
have the highest overall ratings. The results per voice and sys-
tem are shown in Fig. 3, showing that there are voice-dependent
differences in the results, especially for voice 7 where MSMS
TTS style and pre-train fine-tune systems were rated lower. The
results per sentence type are shown in Fig. 4, showing that nav-
igation domain is rated the highest overall, but still showing
the general trend in the overall performance of the systems, re-
gardless of the sentence type. The score distributions per sys-
tem are shown in Fig. 5, showing a higher proportion of 5’s
for the MSMS long-form style and multi-speaker systems. The
detailed results are shown in Fig. 6.

Linear mixed models with fixed effects of sentence type,
voice, and speaking style and random effects of listener, item,
and listening device were constructed. A likelihood ratio test
showed that the model with a three-way interaction between
speaking style, sentence type, and voice was a significantly bet-
ter fit than a model with two-way interactions of the fixed ef-
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Figure 5: MOS distribution per system.
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Figure 7: Results of the ABX speaking style similarity test be-
tween MSMS long-form style and Multi-speaker systems, where
the reference style is natural long-form samples. Statistically
significant results (p ≤ 0.05) are marked with bold p-values.

fects (χ2 = 153.76, p < 0.0001). The effect of speaking style
on listener rating depended on the sentence type and the voice.
Pairwise comparisons showed that a) multi-speaker was always
rated higher than single-speaker across voice and sentence type,
in nearly all cases significantly, b) multi-speaker was always
rated higher than pre-train fine-tune across voice and sentence
type, in most cases significantly, c) MSMS long-form was rated
higher than pre-train fine-tune in most cases across voice and
sentence type, in most cases significantly, d) MSMS long-form
style was rated significantly higher than MSMS TTS style for
some but not all voices across sentence type, with no case of
significant preference for MSMS TTS style in any sentence
type, e) pre-train fine-tune was largely not significantly different
from single-speaker, with the exception of voice 7 where single-
speaker was rated significantly higher than pre-train fine-tune.

3.4. Speaker and style similarity

The aim of the proposed approach is to retain speaker similar-
ity of the original speaker while reproducing the desired styles.
In order to assess speaker similarity between the systems, we
calculated 256-dimensional speaker embeddings [38] of each of
the 300 synthesized utterances for each system and speaker, and
then calculated the mean squared error (MSE) and cosine simi-
larity of the sentences between the systems. The single-speaker
system is used as the reference as it uses data only from the
target speaker. The results, depicted in Table 2, show that the
MSMS long-form style is closest to the single-speaker system.

Assessing the style of speech can be challenging. Using
informal listening, the long-form speaking style was confirmed
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Figure 8: Results of the ABX speaking style similarity test be-
tween MSMS long-form style and MSMS TTS style systems,
where the reference style is natural long-form samples. Sta-
tistically significant results (p ≤ 0.05) are marked with bold
p-values.

to be reproduced and transferred to the target voices 1–5 in the
MSMS long-form style system (to a varying degree), while the
speaking style of the Multi-speaker system was perceived to be
closer to the original speaking style of the voices, as is expected
without style conditioning. In order to further investigate the
speaking style, we performed ABX speaking style similarity
tests, where listeners heard three samples, A, B, and X, and
their task was to choose the sample, A or B, that is more similar
in speaking style to the reference sample X.

We conducted two ABX comparisons: 1) MSMS long-
form style vs. Multi-speaker, and 2) MSMS long-form style vs.
MSMS TTS style. The aim of the first speaking style similar-
ity ABX test was to find out if the speaking style of the MSMS
long-form style, that aimed to learn the style from the long-form
material, is more similar to the long-form speaking style than
with the Multi-speaker system that has not specifically learned
the long-form style. The aim of the second ABX test was to

Table 2: Speaker similarity of the systems in comparison to the
single speaker system measured by MSE and cosine similarity
of the speaker embeddings.

System MSE ↓ Cosine sim. ↑
Single-speaker (reference) 0.00 1.000
MSMS long-form style 8.20 · 10−3 0.961
Fine-tune pre-train 9.73 · 10−3 0.947
Multi-speaker 9.84 · 10−3 0.946
MSMS TTS style 9.91 · 10−3 0.946
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parison to natural speech.

confirm that the MSMS long-form style system reflects the in-
tended long-form style more than the MSMS TTS style system.

We used 3,000 sample pairs (A/B) for each of the voices 1–
5. As the reference samples X, we randomly assigned a natural
recording of a long-form style sample from voices 6–7. Over-
all, 53 and 58 American English native speakers participated in
the two tests, respectively, and gave a total of 30,000 ratings,
consisting of 5 voices × 3,000 utterances × 2 ABX tests. The
results of the first speaking style similarity ABX test are de-
picted in Fig. 7. Two-sided binomial test shows that the speak-
ing style of the MSMS long-form style system is assessed to be
more similar to the natural long-form samples than the Multi-
speaker system for voices 1 and 2 (p ≤ 0.05), while for other
voices there are no statistically significant differences. The re-
sults of the second ABX test are depicted in Fig. 8, showing
that the speaking style of the MSMS long-form style system is
assessed to be more similar to the natural long-form samples
than the MSMS TTS style system for voices 1, 3, and 5 (p ≤
0.05), while for other voices there are no statistically significant
differences.

Assessing the similarity of speaking style or prosody is a
difficult task, and there is no agreed standard for assessment.
One example can be found in [39] where the speaking style
was assessed within the same speaker. In the current study,
the speaking style similarity had to be assessed across speak-
ers, which made the task even harder. Despite the difficulty
of evaluating speaking style similarity across voices, the ABX
test results indicate successful speaking style transfer for some
voices, and especially for the voice 1 that was originally very
dissimilar to the long-form reading style.

To further investigate the effects of style, we calculated the
distributions of pitch for each voice and system. The results, de-
picted in Fig. 9, show that the pitch distributions mostly follow
the original data, while there are also some interesting differ-
ences. For example, MSMS long-form style for voice 1 shows
a lower pitch distribution, which is also perceived as calmer
and closer to the long-form style in contrast to the original TTS
style. Several voices also show large differences in pitch distri-
bution for the MSMS TTS style, such as voices 4–7, which are

perceived less similar to the original speaking style. The rea-
son for this may be due to the varied style data of the TTS style
recordings (see Sec. 3.1), which makes it harder for the model
to learn a consistent style.

4. Discussion
The results indicate that including long-form content and us-
ing multi-speaker modeling, either with or without style mod-
eling, improves the overall quality. This is shown by the im-
proved MOS ratings for the MSMS long-form style and multi-
speaker systems that were rated better than the single-speaker
system. The finding is not surprising as adding more data with
multi-speaker modeling has been shown to improve TTS qual-
ity [30, 31, 33]. The results also indicate that MSMS modeling
can be a better way to utilize additional multi-speaker speech
content in improving TTS quality over the pre-train and fine-
tune method [34]. This makes sense as pre-training and fine-
tuning has a tendency for catastrophic forgetting [40], while
MSMS modeling does not have such a problem. The study also
shows that long-form style is highly rated regardless of the text
domain. The long-form style seems to be rated equal or better
in comparison to the traditional TTS style, even in dialog and
navigation domains although the TTS style is specifically tar-
geted for those domains. This is a somewhat surprising finding
that may have implications for future TTS recordings.

In future work, we aim to expand the investigation by
adding more speakers and styles to confirm the generalizability
of the approach. Finally, the surprising results regarding high
quality of the long-form style for general TTS, regardless of the
domain, deserves further investigation. The current subjective
evaluations were performed without the real-life context for the
sentences, and we aim to investigate if the positive results still
exist in actual applications.

5. Conclusions
We proposed a simple supervised multi-speaker multi-style
(MSMS) TTS modeling framework that enables speaking style
transfer across speakers, and demonstrated that we can improve
the quality of existing TTS voices by using long-form record-
ings from new speakers. In particular, we showed in extensive
evaluations that 1) multi-speaker modeling improves the over-
all TTS quality, 2) the proposed MSMS approach outperforms
pre-training and fine-tuning approach when utilizing additional
multi-speaker data, and 3) long-form speaking style is highly
rated regardless of the target text domain.
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