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Abstract

Speculative decoding accelerates inference in001
large language models (LLMs) by generat-002
ing draft tokens for target model verification.003
Current approaches for obtaining draft tokens004
rely on lightweight draft models or additional005
model structures to generate draft tokens and re-006
trieve context from databases. Due to the draft007
model’s small size and limited training data,008
model-based speculative decoding frequently009
becomes less effective in out-of-domain sce-010
narios. Additionally, the time cost of the draft-011
ing phase results in a low upper limit on ac-012
ceptance length during the verification step,013
limiting overall efficiency. This paper pro-014
poses RASD (Retrieval-Augmented Specula-015
tive Decoding), which adopts retrieval methods016
to enhance model-based speculative decoding.017
We introduce tree pruning and tree fusion to018
achieve this. Specifically, we develop a prun-019
ing method based on the draft model’s proba-020
bility distribution to construct the optimal re-021
trieval tree. Second, we employ the longest022
prefix matching algorithm to merge the tree023
generated by the draft model with the retrieval024
tree, resulting in a unified tree for verification.025
Experimental results demonstrate that RASD026
achieves state-of-the-art inference acceleration027
across tasks such as DocQA, Summary, Code,028
and In-Domain QA. Moreover, RASD exhibits029
strong scalability, seamlessly integrating with030
various speculative decoding approaches, in-031
cluding both generation-based and retrieval-032
based methods.033

1 Introduction034

Transformer-based Large Language Models035

(LLMs) (Vaswani et al., 2017; Brown et al., 2020)036

exhibit remarkable capabilities and are extensively037

applied across diverse domains. However, au-038

toregressive generation in LLMs produces tokens039

sequentially, resulting in slow inference speeds. To040

address this issue, an innovative approach called041

Speculative Decoding has been introduced (Chen042
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Figure 1: Speedup Performance of EAGLE2 vs. RASD
with PLD and REST Retrieval Methods on Qwen2.5-
14B.

et al., 2023; Miao et al., 2023). Speculative de- 043

coding modifies the inference process by dividing 044

the LLM’s task into two phases: a cost-efficient 045

draft phase and a parallel verification phase. This 046

strategy significantly improves computational 047

parallelism in LLM inference. By enabling LLMs 048

to generate multiple tokens simultaneously and 049

minimizing the time spent in the drafting and 050

verification phases, speculative decoding reduces 051

the overall inference time (Leviathan et al., 2023). 052

In speculative decoding, if the majority of draft 053

tokens are correct, the overall decoding steps can be 054

significantly reduced. Therefore, obtaining draft to- 055

kens with a high acceptance rate is essential. Some 056

researchers employ small draft models to predict 057

draft tokens (Leviathan et al., 2023; Chen et al., 058

2023; Li et al., 2024b,a). These draft models are 059

trained to match the distribution of the target model 060

and then generate draft tokens. Other researchers 061

have proposed using a parameter-efficient model 062

structure to generate the next k candidate tokens 063

in a single forward pass of the target model (Cai 064

et al., 2024; Xiao et al., 2024). This approach also 065

requires training the additional structure. An al- 066

ternative approach is retrieval-based speculative 067
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decoding, which is a train-free method (Saxena,068

2023; He et al., 2024). Here, a retrieval library069

pre-defines tokens to follow the suffix of the cur-070

rent content as draft tokens. This approach is fast071

and eliminates the need for additional model train-072

ing. Although it is generally less effective than073

generation-based methods, it performs well in spe-074

cific knowledge-intensive scenarios.075

In draft model-based speculative decoding, the076

acceptance rate of draft tokens hinges on the draft077

model’s capabilities. However, these models typi-078

cally have simple structures with limited parame-079

ters, which restricts their ability to effectively retain080

training data. Typically, a draft model is trained081

on a general dataset to perform well in common082

scenarios, such as the ShareGPT dataset. As a re-083

sult, in specific scenarios, the draft model’s token084

acceptance rate tends to be low. This issue arises085

because the draft model lacks capabilities for out-086

of-domain scenarios. There has been work on087

improving the generalizability of the draft model088

through feature-level supervision, which closes the089

representation gap between the draft model and the090

target model without requiring large amounts of091

data (Li et al., 2024b; Du et al., 2024). However,092

we have evaluated these methods on our domain093

datasets and discover that the draft model still does094

not perform well in the specific downstream do-095

main after our test of business data. Moreover,096

generating the draft token sequence requires multi-097

ple forward passes through the draft model, making098

the process time-intensive. Consequently, previous099

methods limit the length of candidate draft tokens.100

This restriction leads to a low upper limit on the101

acceptance length during a single verification step.102

In this paper, we propose the RASD (Retrieval-103

Augmented Speculative Decoding) method to ad-104

dress the draft model’s shortcomings mentioned105

above. First, we design an algorithm to select suit-106

able retrieval results and then combine the draft107

tokens using a tree-fusion approach. This enables108

the generation of draft tokens that incorporate in-109

formation from the language model and retrieval.110

Finally, the target model verifies the draft tokens to111

achieve acceleration.112

We tested two retrieval methods PLD (Saxena,113

2023) and REST (He et al., 2024) to enhance114

model-based speculative decoding. As shown in115

Figure 1, the PLD method performs well in tasks116

where the output includes input content. There-117

fore, we conducted comprehensive experiments118

using RASD (PLD) on datasets with these charac-119

teristics across four tasks: code generation, doc- 120

ument question answering, summarization, and 121

retrieval-augmented generation. We have con- 122

ducted experiments on HumanEval (Chen et al., 123

2021), CNN/Daily Mail (Nallapati et al., 2016), 124

MFQA (Bai et al., 2024), and DPR (Karpukhin 125

et al., 2020). RASD (PLD) achieved the best re- 126

sults in all four tasks. 127

To extend the applicability of the RASD method, 128

we also tested the REST retrieval method. REST 129

is theoretically beneficial for any dataset when the 130

database’s data distribution closely matches the 131

test set, excelling in knowledge-intensive tasks. 132

We experimented with RASD (REST) on three 133

tasks: HumanEval, MedQA 1, and NL2SQL. The 134

results demonstrate that RASD (REST) effectively 135

improves the acceleration ratio of speculative de- 136

coding. 137

2 Related Work 138

2.1 EAGLE 139

Model-based speculative decoding is widely re- 140

garded as the most effective approach for achieving 141

acceleration. As the current state-of-the-art method, 142

the EAGLE series method (Li et al., 2024b,a; Gao 143

et al., 2024) is designed to provide feature super- 144

vision signals. The core structure of the EAGLE 145

draft model includes one layer of the target model, 146

sharing parameters with the embedding layer and 147

the language model head. During training, only the 148

parameters of this layer are updated, while the em- 149

bedding layer and the language model head remain 150

frozen. 151

Before training, EAGLE processes the training 152

data through the target model to extract the output 153

features from its last layer. During draft model 154

training, EAGLE combines the current embedding 155

input with the previous output features of the target 156

model to form a new input. It introduces a loss 157

function based on the output features of the last 158

layer, aiming to closely align the draft model’s 159

output features with those of the target model. 160

EAGLE-2 (Li et al., 2024a) follows the same 161

design but replaces the static tree structure with dy- 162

namic drafting structures during decoding to gener- 163

ate higher-quality candidate trees. 164

In RASD, we employ EAGLE-2 as the model- 165

based speculative decoding method. Any specula- 166

tive decoding approach that utilizes tree attention in 167

1https://huggingface.co/datasets/lavita/medical-qa-
datasets
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drafting and verifying can be enhanced with RASD,168

as we do not change the method itself.169

Before training, EAGLE processes the training170

data through the target model to extract the output171

features from its last layer. During draft model172

training, EAGLE combines the current embedding173

input with the previous output features of the target174

model to form a new input. It introduces a loss func-175

tion based on the output features of the last layer,176

aiming to closely align the draft model’s output177

features with those of the target model. EAGLE-2178

(Li et al., 2024a) follows the same design but re-179

places the static tree structure with dynamic draft-180

ing structures during decoding to generate higher-181

quality candidate trees. In RASD, we employ182

EAGLE-2 as the model-based speculative decoding183

method. Any speculative decoding approach that184

utilizes tree attention in drafting and verifying can185

be enhanced with RASD, as we do not change the186

method itself.187

2.2 PLD188

Retrieval-based speculative sampling methods per-189

form well in knowledge-intensive scenarios. PLD190

(Prompt Lookup Decoding) is a simple and low-191

cost method for retrieving sequences from the input.192

However, it cannot predict new tokens or their com-193

binations. It relies on the last n tokens of the input194

for n-gram matching. The original implementa-195

tion2 terminates at the first match. In our version,196

we return the first k matching results instead.197

2.3 REST198

REST is a novel algorithm that leverages retrieval199

to generate draft tokens. Unlike PLD, which re-200

trieves directly from the input, REST retrieves from201

a pre-defined context database. It utilizes existing202

knowledge, fetching relevant tokens based on the203

current context without relying on draft models.204

REST converts existing corpora into a retrieval li-205

brary and organizes the results into a draft tree for206

verification by the target model. As a plug-and-207

play speculative sampling method, REST does not208

require additional draft model structures. While209

user-friendly, it is less effective compared to draft210

model-based methods.211

We employ REST as the retrieval method to212

demonstrate the excellent scalability of RASD.213

All speculative decoding methods with external214

retrieval can be integrated into RASD.215

2https://github.com/apoorvumang/
prompt-lookup-decoding/

3 Retrieval-Augmented Speculative 216

Decoding 217

In this section, we first present the background of 218

speculative decoding and then introduce our pro- 219

posed RASD framework. 220

3.1 Background: Speculative Decoding 221

Speculative decoding with the draft model com- 222

bines drafting and verification processes. In a sin- 223

gle step of drafting, we use s to denote the input, 224

which contains n tokens, including those from user 225

input and tokens generated by previous speculative 226

decoding processes: 227

s = (x1, . . . , xn−1, xn). (1) 228

The target model generates the first token y0 based 229

on the target model probability distribution com- 230

puted by s: 231

y0 ∼ P (x | s; θtarget), (2) 232

where θtarget represents the parameters of the target 233

model. If the current step is not the first step of 234

speculative decoding, the token y0 will will be gen- 235

erated together with other tokens in the verification 236

phase. 237

The draft model concatenates y0 to s to get the 238

input s′. 239

s′ = (x1, . . . , xn−1, xn, y0). (3) 240

Given the input, the draft model generates multi- 241

ple candidate tokens by autoregressive decoding. 242

Assuming the m-th token is the last token of the 243

current draft phase: 244

p̂m = P (x | s′, ŷ1, . . . , ŷm−1; θdraft), (4) 245

246
ŷm ∼ p̂m, (5) 247

248
ŝ′ = (s′, ŷ1, . . . , ŷm), (6) 249

where p̂m represents the probability distribution of 250

the m-th draft token, ŷm represents the m-th draft 251

token. ŝ′ represents the output of the draft model 252

in this step, and θdraft represents the parameters of 253

the draft model. 254

In the verification process, the target model veri- 255

fies ŝ′ in a single forward pass. The target model 256

probability of the k-th token is pk. The draft token 257

ŷk has an acceptance probability min
(
1, pkp̂k

)
. If 258

the draft token ŷk is rejected, all subsequent tokens 259

are discarded, and this token is resampled from a 260
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distribution ∥max(0, pk − p̂k)∥. If ŷk is accepted,261

ŷk is transferred to yk and the target model con-262

tinues to verify the next token ŷk+1 until the last263

token. Finally, the accepted sequence and the re-264

sampled token compose s′ for the next speculative265

decoding step. The probability distribution gen-266

erated by the verification method is equivalent to267

sampling directly from the target model (Leviathan268

et al., 2023).269

We employ tree attention for the simultaneous270

verification of multiple candidates. Traditional271

causal attention masks are designed for linear se-272

quences, where each token attends to all previous273

tokens, limiting speculative decoding to verify only274

one sequence at a time. Tree attention alters the275

attention mask to compress multiple sequences into276

a single merged sequence while preserving a tree277

structure. Each child node attends only to its parent278

nodes. In summary, speculative decoding, through279

guess-and-verify and tree attention, robustly and280

efficiently improves inference latency compared to281

autoregressive decoding. RASD relies on tree at-282

tention to achieve retrieval-augmented speculative283

decoding.284

3.2 Our Approach: RASD285

Our method RASD consists of three main steps:286

retrieval process, retrieval tree construction, and287

tree fusion. An overview of these steps is shown in288

Figure 2.289

3.2.1 Retrieval Process290

In RASD, retrieval is employed to enhance the qual-291

ity of candidate draft tokens by leveraging knowl-292

edge sources. We evaluate two retrieval settings:293

PLD and REST. To optimize retrieval efficiency294

and accuracy, an exact-match approach, inspired295

by PLD, is utilized to identify continuation candi-296

dates.297

Given the context s′, we retrieve context-298

continuation pairs from the datastore D, generating299

a set of continuation candidates S:300

S = Retrieve(D, s′), (7)301

where Retrieve(D, s′) is a retrieve method based302

on suffix matching, which returns a set of retrieval303

results using s′ as the query to find contexts in D304

that match the longest suffix of s′. We illustrate a305

detailed process in Algorithm 1. After this process,306

we obtain the candidate sequences.307

For PLD, the retrieval process is designed to308

be iterative. If no results are initially found, we309

Algorithm 1 Retrieve Method of Suffix Match
Require: xn is the n-th token of the draft model

input, and y0 is the first token generated by
the target model. Datastore D, result set S,
suffix length limits nmax and nmin, number of
candidates n, and length of candidates l.

1: for i = nmax downto nmin do
2: if len(S) ≥ n then
3: break
4: end if
5: suffix← (xn−i+1, . . . , xn, y0)
6: for each i_gram in D do
7: if i_gram == suffix then
8: c← next l tokens after i_gram in D
9: if c not in S then

10: Add c to S
11: end if
12: if len(S) ≥ n then
13: break
14: end if
15: end if
16: end for
17: end for

recursively select the top-k tokens generated by 310

the draft model and append them to the context 311

s′. This process continues until retrieval results 312

are successfully obtained. This iterative approach 313

improves the success rate of retrieval, even when 314

the initial query fails to yield matches. 315

For REST, the retrieval process is limited to a 316

single execution within each draft phase. This re- 317

striction is imposed due to the method’s higher time 318

overhead. This approach balances the richness of 319

retrieved candidates with the practical constraints 320

of runtime performance. 321

3.2.2 Retrieval Tree Pruning 322

We then construct the retrieval tree using the set of 323

candidates S. For PLD, each candidate ti can be 324

treated as a linked list. We merge nodes in S that 325

share the same prefix, transforming these linked 326

lists into one or more trees. The last token y0 of 327

input s′ is used as the root node to merge these 328

trees, resulting in the retrieval tree Tr. For REST, 329

the number of retrieval results can be substantial. 330

To manage this, we construct the retrieval tree Tr 331

by prioritizing candidates ti using high-frequency 332

prefixes as filters, following the same approach as 333

REST. 334

Next, we propose a method to prune the retrieval 335
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Figure 2: An overview of RASD. We obtain the draft token tree and retrieval results through the draft model
generation and retrieval methods, respectively. In the next step, we construct and prune the retrieval tree. Then, we
fuse the two trees, resulting in the retrieval-augmented draft token tree. Finally, the retrieval-augmented draft token
tree is verified recursively. In the figure, green tokens denote y0 in the current turn, and red tokens are accepted by
the target model.

tree using the draft model’s output distribution.336

There is a strong positive correlation between the337

draft model’s confidence score and the token ac-338

ceptance rate. We leverage this confidence score to339

prune the retrieval tree.340

In the first layer of target model output, the prob-341

ability distribution is P1:342

P1 = P (x | s′; θdraft). (8)343

We hypothesize that the first token of a high-344

quality retrieval result should have a high probabil-345

ity of appearing in P1. We reject the search results346

whose first token is not in the top-k of P1.347

3.2.3 Tree Fusion348

Thus far, we have obtained both the retrieval tree349

and the tree generated by the draft model. To pro-350

duce the final output tree, we combine the draft351

model’s generation tree with the retrieval tree.352

Given that the forward propagation time of a353

large language model theoretically scales quadrati-354

cally with input length, tree fusion can significantly355

reduce this time by eliminating redundant input to-356

kens. Specifically, we perform a simple longest pre-357

fix match on each branch of both trees. Branches358

with identical prefixes in the two trees are merged,359

using the last node of the shared prefix as the par- 360

ent node. This classic algorithm can be efficiently 361

implemented using a trie tree. 362

After fusing the two trees, the attention matrix 363

and position embeddings for the nodes of the new 364

tree must be updated accordingly. The final com- 365

bined tree integrates information from both the 366

draft language model and knowledge base retrieval. 367

Knowledge-based retrieval effectively addresses 368

the out-of-domain problem and increases the upper 369

limit of the length of candidate draft sequences. 370

3.2.4 Draft Tree Verification 371

We adopt a recursive verification strategy to ac- 372

commodate tree attention. Utilizing tree attention, 373

the target LLM calculates the probability of each 374

token in the tree-structured draft within a single 375

forward pass. Each node of the tree is arranged in 376

one dimension, following the order of level-order 377

traversal. The position embedding and attention 378

matrices respectively represent the current node’s 379

level in the tree and its relationship with the parent 380

node. 381

At each node of the draft tree, we recursively 382

apply speculative decoding algorithms to sample 383

or adjust the probability distribution, in line with 384
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HumanEval CNN/DM MultiFieldQA Qasper DPR
model method SR τ SR τ SR τ SR τ SR τ

Temperature = 0

Q 14B
PLD 1.49 0.55 1.59 0.70 1.98 1.60 1.62 1.58 1.57 0.70
EAGLE2 2.84 3.10 2.23 2.41 1.65 1.73 1.48 1.83 2.39 2.60
RASD(PLD) 2.98 3.44 2.31 2.68 2.10 2.78 1.66 2.58 2.43 2.92

L 8B
PLD 1.38 0.51 1.34 0.53 1.90 1.39 1.46 1.04 1.55 0.75
EAGLE2 2.76 3.37 2.15 2.51 1.68 2.28 1.52 2.36 2.37 2.97
RASD(PLD) 2.79 3.55 2.21 2.72 1.98 2.86 1.59 2.84 2.44 3.38

Temperature = 1

Q 14B
PLD 1.53 0.58 1.42 0.49 1.72 1.25 1.54 1.53 1.74 0.59
EAGLE2 2.73 3.09 1.95 2.03 1.56 1.61 1.39 1.76 2.40 2.36
RASD(PLD) 3.00 3.39 1.98 2.17 1.93 2.29 1.60 2.48 2.49 2.63

L 8B
PLD 1.32 0.45 1.37 0.43 1.81 1.45 1.53 0.95 1.42 0.65
EAGLE2 2.57 3.38 2.04 2.26 1.60 2.35 1.53 2.61 2.19 2.76
RASD(PLD) 2.59 3.48 2.13 2.42 1.82 2.88 1.66 3.16 2.24 3.11

Table 1: The speedup performance of our proposed RASD with PLD retrieval method and baselines in different
datasets. We test on Qwen2.5-14B and LLaMA3-instruct-8B with temperatures of generation 0 and 1. The best
results among all methods are in bolded.

the approach of SpecInfer (Miao et al., 2023).385

4 Experiments386

4.1 Models and Tasks387

To evaluate the effectiveness of RASD in accel-388

erating large language models, we use EAGLE2389

as our draft model and conduct a series of experi-390

ments with two different target models across var-391

ious tasks. We tested RASD on the LLaMA3-392

Instruct-8B (Dubey et al., 2024) and Qwen2.5-393

Instruct-14B (Yang et al., 2024) models to assess394

its acceleration capabilities. The RASD (PLD) re-395

trieval enhancement method is anticipated to per-396

form well on tasks where the input contains poten-397

tial output n-grams, such as in RAG (Karpukhin398

et al., 2020), DocQA, Summary, and Code tasks.399

Therefore, we selected the HumanEval, CNN/Daily400

Mail, MultiFieldQA, Qasper, and DPR datasets for401

our experiments. To push the boundaries of the402

RASD method, we utilize the REST-based retrieval403

method RASD (REST) to enhance tasks in more404

scenarios, choosing the HumanEval, NL2SQL, and405

Med-QA datasets for RASD (REST).406

Both greedy sampling and non-greedy sampling407

are considered in all experiments to comprehen-408

sively evaluate speculative decoding performance.409

All evaluations are conducted on an NVIDIA A100410

80G GPU.411

4.2 Metrics 412

In our experiments, we adopt two primary metrics: 413

average acceptance length τ and speedup ratio (SR). 414

The average acceptance length τ evaluates the av- 415

erage number of tokens accepted per forward pass 416

by the target large language models, excluding any 417

overhead associated with retrieving or constructing 418

draft tokens. This metric indicates the maximum 419

possible acceleration. The second metric, speedup 420

ratio (SR), measures the relative improvement in 421

decoding speed compared to vanilla auto-regressive 422

decoding. 423

4.3 Baseline 424

In this study, we focus solely on lossless specula- 425

tive decoding approaches for LLMs. Among the 426

methods that do not rely on draft models, we ex- 427

amine Prompt Lookup Decoding (PLD) (Saxena, 428

2023), REST (He et al., 2024), and EAGLE-2 (Li 429

et al., 2024a), the latter being regarded as the state- 430

of-the-art method for lossless speculative decoding 431

tasks. Collectively, these baseline methods provide 432

a robust framework for evaluating the efficiency of 433

RASD in the LLM decoding process. 434

4.4 Training 435

We use the SharedGPT dataset, which comprises 436

68,000 dialogues from the Vicuna (Chiang et al., 437

2023) series models’ supervised fine-tuning dataset, 438

as our training corpus. Given the substantial 439

6



HumanEval NL2SQL MedQA
model method SR τ SR τ SR τ

Temperature = 0

Q 14B
REST 1.69 0.86 2.36 2.39 1.66 0.84
EAGLE2 2.72 3.10 2.05 2.36 2.46 2.57
RASD(REST) 2.86 3.46 2.56 2.45 2.57 2.94

L 8B
REST 1.70 0.84 3.59 1.51 1.85 0.89
EAGLE2 2.76 3.36 3.78 2.76 3.13 2.76
RASD(REST) 2.86 3.75 4.07 3.41 3.26 3.00

Temperature = 1

Q 14B
REST 1.76 0.83 2.32 2.19 1.42 0.50
EAGLE2 2.73 3.09 2.07 2.35 2.24 2.06
RASD(REST) 2.90 3.48 2.40 3.30 2.35 2.36

L 8B
REST 1.53 0.85 3.58 1.14 1.30 0.51
EAGLE2 2.57 3.38 4.05 2.77 2.24 2.47
RASD(REST) 2.59 3.44 4.24 3.26 2.35 2.75

Table 2: The speedup performance of our proposed RASD with REST retrieval method and baselines in different
datasets. We test on Qwen2.5-14B and LLaMA3-instruct-8B with temperatures of generation 0 and 1. The best
results among all methods are in bolded.

time and computational resources required, we440

choose not to regenerate responses for each di-441

alogue turn using the target LLMs. Conducting442

training without re-generated data across all com-443

parative methods remains equitable, although pre-444

vious work (Li et al., 2024b) suggests that such an445

approach could slightly enhance the performance446

of the draft model. The learning rate is set to 5e-447

5, with (β1 = 0.9, β2 = 0.95 ) for the AdamW448

(Loshchilov and Hutter, 2019) optimizer, and we449

implement gradient clipping at 0.5. We utilized450

eight NVIDIA A100 80G GPUs for the training451

process.452

4.5 Experimental Results453

Table 1 shows the performance of RASD (PLD)454

compared to other methods. RASD (PLD) con-455

sistently achieves the highest speedup across all456

tasks and models. Unlike the PLD method, RASD457

can generate draft tokens that reflect the language458

model distribution. Compared to EAGLE2, RASD459

retrieves more accurate draft tokens. When the460

PLD score is high, the improvement with RASD461

(PLD) is more significant. RASD (PLD) shows the462

most improvement in DocQA tasks (MultiFieldQA463

and Qasper) because these tasks usually contain re-464

peated paragraphs in the input. In tasks with fewer465

repeated input segments, such as code and sum-466

mary tasks, the improvement with RASD (PLD) is467

less pronounced.468

Table 2 shows the performance of RASD (REST) 469

against other methods. RASD (REST) outperforms 470

in terms of speedup across all tasks and models. 471

Compared with PLD, REST has a larger retrieval 472

space and applies to more scenarios. Therefore, the 473

improvement of RASD (REST) verifies RASD’s 474

compatibility with more retrieval methods. For 475

tasks in the field of medical question answering, 476

RASD can also achieve better results. We consider 477

that for most knowledge-dependent tasks, RASD 478

can effectively improve the speed of speculative 479

decoding by building a contextual database in the 480

domain. 481

5 Ablation Study 482

Method SR τ

EAGLE2 2.73 3.09
RASD(REST) w/o p 2.82 3.62
RASD(REST) w/o tf 2.87 3.48
RASD(REST) 2.90 3.48

Table 3: The impact of pruning and tree fusion oper-
ations in RASD on the speedup performance in Hu-
manEval.

5.1 Pruning and Tree Fusion 483

We investigated how retrieval tree pruning and tree 484

fusion impact the results of RASD experiments. 485
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Figure 3: RASD performance with different lengths of
retrieval candidates compared with the baselines

We conducted experiments on the qwen2.5-14b486

model using the HumanEval dataset with the REST487

method. As shown in Table 3, both methods en-488

hance the speedup ratio, with RASD incorporating489

pruning yielding a more pronounced effect. Prun-490

ing reduces the average acceptance length by elim-491

inating unnecessary retrieval results early, thereby492

saving time required for the target model’s forward493

pass. Tree fusion has a relatively smaller impact. It494

does not alter the average acceptance length but re-495

duces redundant draft tokens, consequently saving496

time for the target model’s forward pass.497

5.2 Length of Retrieval Candidates498

In the retrieval phase, the length of retrieval can-499

didates l is a crucial variable. If l is small, the500

advantage of retrieval may not be significant, and501

if l is large, the verification phase will require502

more time. We construct experiments on qwen2.5-503

14b, MultiFieldQA dataset used RASD(PLD) and504

qwen2.5-14b, MedQA dataset used RASD(REST)505

with different length of retrieval candidates l. As506

shown in 3, On the left, since PLD is suitable507

for DocQA tasks, it can be seen that when only508

the PLD method is used, as l increases, it can be509

inferred that the acceptance length of PLD is in-510

creasing. When l > 0, the performance exceeds511

EAGLE2. However, when l continues to increase,512

the increase in verification time cost will limit the513

effect. RASD (PLD) also shows the same trend.514

When l is only 2, the performance decreases com-515

pared to EAGLE2. This is because PLD requires516

additional time cost and does not bring enough517

length of retrieval candidates. On the right, since518

Medqa’s database is relatively small, the search519

results using only REST are not as good as those520

of EAGLE2. However, RASD (REST) can still521

surpass EAGLE2 with the help of REST. RASD522

achieves the best results when l is 8.523

5.3 Effect of Datastore size 524

Method Size Time SR τ

EAGLE2 - - 2.73 3.09
RASD(REST) 0.9 GB 0.2 ms 2.76 3.22
RASD(REST) 8.7 GB 0.6 ms 2.85 3.40
RASD(REST) 27 GB 0.7 ms 2.90 3.48

Table 4: The speedup with different datastore sizes in
RASD(REST).

We explored how datastore size affects RASD per- 525

formance in REST. Increasing the datastore size 526

improves the accuracy of retrieved draft tokens, 527

which significantly boosts generation speed. As 528

shown in Table 4, both average acceptance length 529

and speedup ratio improve with larger datastore 530

sizes. However, the speedup growth is less pro- 531

nounced than the increase in mean generated length. 532

This difference may be due to the overhead of re- 533

trieving draft tokens. We assume that in industrial 534

applications, there will be enough disk storage to 535

build large data stores and enough CPU cores for 536

fast retrieval. Therefore, there is still potential to 537

achieve even faster speeds with a larger datastore. 538

6 Conclusion 539

In this work, we propose RASD: Retrieval- 540

Augmented Speculative Decoding. We use retrieval 541

methods to improve the quality of candidate se- 542

quences from draft models. Concretely, RASD 543

improves the speedup of speculative sampling on 544

the out-of-domain datasets that are difficult for the 545

draft model to handle and improves the maximum 546

output length of draft models. We develop a prun- 547

ing method to select appropriate retrieval sequences 548

and we fuse the sequence tree from the draft model 549

with the retrieval tree, creating a final combined 550

tree for verification. Experiments have proven that 551

our method is effective and exhibits strong scala- 552

bility. 553

7 Limitations 554

Based on our experiments and conclusions, we 555

conclude some limitations of our work as follows: 556

• In our experiments, we only performed the 557

draft model generation and retrieval process 558

serially. parallelism of the two processes is 559

not considered, which will result in the ac- 560

celeration ratio not reaching the theoretical 561

maximum value. 562
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• We only consider pruning the retrieval tree by563

controlling hyperparameters, which is not au-564

tomatic and using the same hyperparameters565

for different conversation types is not the best566

choice.567
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