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Abstract

While language models have demonstrated impressive capabilities across general-1

ized language tasks, their ability to extrapolate in a certain task is highly unknown.2

We first introduce the optimal path planning task in a textualized Gridworld envi-3

ronment as a valid probe for estimating the extrapolability of language models. We4

show that the mere next token prediction inherently fails to extrapolate in solving5

the task. Inspired by human cognition, we claim that language models should6

construct an internal simulation that explores the environment, i.e. cognitive map7

before actually interacting with the given environment. We demonstrate that auto-8

regressive generation of cognitive map and planning sequence can significantly9

enhance the performance of the planning power even in extrapolated environments,10

suggesting the necessity of cognitive map for language models as a path forward.11

1 Introduction12

Language models have recently demonstrated remarkable proficiency in a variety of complex13

tasks (Brown et al., 2020; Touvron et al., 2023; Chowdhery et al., 2023; Chen et al., 2021), from14

natural language understanding to code generation, primarily through the training objective of next15

token prediction. This training paradigm enables language models to excel at general planning tasks16

by leveraging their extensive learned knowledge and pattern recognition capabilities (Ahn et al.,17

2022; Liang et al., 2023; Song et al., 2023). However, language model also falter in scenarios that18

require robust, long-horizon planning tasks (Dziri et al., 2024). It is in contrast that humans naturally19

employ model-based planning, internally construct models to simulate outcomes and guide optimal20

decision-making, as extensively documented in cognitive science literature (Daw et al., 2005). This21

distinction aligns with the dual-process theory of reasoning: System 1 processes are fast, automatic,22

and pattern-based, akin to model-free planning, while System 2 processes are slower, deliberative,23

and involve explicit reasoning (Daniel, 2017).24

The Chain of Thought (CoT) approach (Wei et al., 2023) is a prominent method used by language25

models to emulate the System 2 cognitive process, optimizing the reasoning pathway. While CoT26

has significantly improved reasoning and planning, existing methods focus solely on generating27

intermediate steps from the initial state to the goal (Wei et al., 2023; Nye et al., 2021). This approach28

deviates from the concept of "simulation," which involves analyzing real-world systems and predicting29

outcomes. In contrast, human System 2 cognition typically engages in iterative simulations, refining30

steps until reaching the goal while avoiding dead-end states. After reaching the goal, humans often31

work backward to determine the optimal actions leading to that state. This process, which forms a32

"cognitive map," is controlled by the prefrontal cortex (Daw et al., 2005), allowing for deliberate,33

complex decision-making (Doll et al., 2012).34
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Figure 1: Difference between human cognition and language models: When both humans and
language models are taught to path plan in small Gridworld environments, humans can successfully
extrapolate to larger environments after a few demonstrations. This ability is due to the construction
of a mental map of future states, known as a cognitive map. In contrast, language models struggle
with extrapolation, primarily because they rely solely on the training data. We propose that language
models should develop the capability to internally simulate future states, organized as a decision tree,
to improve performance on tasks requiring extrapolation.

We argue that the lack of a cognitive map in current language models is a primary reason they fail to35

adapt learned behaviors from training into extrapolated environments, as depicted in Figure 1. To36

support this claim, we introduce an optimal path-planning task in a textualized Gridworld environment37

as a benchmark for assessing language model extrapolability. Our results demonstrate that language38

models struggle to extrapolate in such environments when trained purely through imitation learning39

and even with CoT fine-tuning. As a solution, we insist that language models also need human-like40

cognitive maps. To support the idea, we propose training language models using datasets augmented41

with a simple cognitive map(See Figure 2). We find that auto-regressive generation of cognitive maps42

and planning sequences can significantly improve the model’s ability to plan effectively, even in43

unfamiliar, extrapolated environments. These results indicate that integrating cognitive maps into44

language models may be a promising step toward achieving human-like cognition and enhancing45

their capacity to generalize to more composite and unseen environments.46

2 Experimental setup47

2.1 Basic setup48

In this paper, we set textualized Gridworld (Brown, 2015) as the main task. Gridworld is a task49

that involves path planning from the start state to the goal state while avoiding the pit, wall, and50

grids outside the world. Especially, we ensure that there is only one path from start to goal for each51

environment. We prompt a textualized instruction of the Gridworld to the model and set a textworld52

environment that receives an action(either up, down, left, or right) and outputs the corresponding53

transition state(See Appendix B.1 for textualized input instruction).54

We choose Gridworld because of following reasons: First, Gridworld requires minimal knowl-55

edge. We can probe the extrapolability of language models with board game such as Einstein’s56

puzzle (Brainzilla, 2017) or Blocksworld (Valmeekam et al., 2022), but with assessing minimal57

world knowledge in order to probe the pure extrapolability of the model. Gridworld only requires58

4 actions(up, down, right and left) and the transition of each action is simple and explicit, which59

is a good fit. Second, we can generate Gridworld environment of an arbitrary size. After training60

with few demonstrations, we need to find a larger environment which was unseen during the training61

phase in order to test the extrapolability of the model. Gridworld, unlike other planning tasks such62

as coding or math, can always generate a board of a bigger size that was unseen during the training63

phase. This makes train and validation much easier. Last, Gridworld is outside TC0 complexity64

class, making it impossible to solve with mere next token prediction. Existing works implies that65

the task outside TC0 class cannot be solved directly with next token prediction with fixed precision66

transformer architecture (Merrill and Sabharwal, 2023).67
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Figure 2: Optimal path-planning with cognitive map: 1. We initialize the world environment which
the model is going to interact. 2. The textualized input instruction containing information about the
environment(u) is fed into the model. 3. Before interacting with the world, the model constructs a
textualized cognitive map(m). Our construction of m is a tree-structured verbal representation of the
world model, which is represented in a sequential manner. 4. With the constructed map, the agent
interacts with the environment. We analyze the power of cognitive map in generating both the optimal
plan without further observation. We show that the cognitive map deduces optimal plan, and it shows
human-cognitive characteristics such as generalization to extrapolated environments(Section 3).

For each observation, we give the information of the current state along with possible moves that do68

not directly result the deadend state along with its corresponding states. For example, if the current69

state st is (11, 4) and there the possible actions are right or left, the observation ot is "Current:\n(11,70

4)\nPossible:\n(10, 4)\nleft\n(12, 4)\nright".(See Appendix B.2 for details)71

2.2 Baselines72

We name NONE and COT as our baseline experiments representing imitation-based planning. NONE73

implicitly learns how to conduct path planning, while COT learns a verbalized backward trace74

as a Chain of Thought(CoT) demonstration. For example, the COT reasoning of the Figure 1 is75

"(3, 2)up\n(3, 1)\nright\n(2, 1)\nup\n(2, 0)\nright\n(1, 0)\nright\n(0, 0)", while we do not verbalize76

anything for NONE. See Appendix E.1 for the whole construction.77

2.3 Cognitive map design choices78

The design of the cognitive map involves three key processes: Sampling, Propagation, and Back-79

tracking. The model begins by sampling plausible actions at each state and then propagates forward80

by exploring new states that result from these actions. This process of sampling and propagating81

continues until the model reaches the goal. Once the goal is achieved, the model backtracks from the82

goal state to the starting state to refine the optimal path(See Figure 2).83

Our construction of the cognitive map is straightforward; We sample all 4 possible directions("up",84

"down", "right", and "left") as actions, and we propagate each action iteratively starting from the goal85

state until reaching the start state. After reaching the start state, we backtrack until reaching the goal86

state. We comprise these steps as Sampling, Propagation and Backtracking stage. See Appendix C87

for more details. We See Appendix D for ablations of different cognitive map constructions.88

2.4 Experiment scheme89

We observe the capability of the language model when generating the optimal plan without any further90

observations for each experiments, NONE, COT and COGNITIVE MAP. We evaluate the optimality91

of the trajectory generated by a1, a2, . . . , an ∼ πθ(·|u,m) ∈ An(For preliminary notation, see92

Appendix A). The only difference among the experiments is the generation of m. For NONE, we do93

not generate m. For COT, we generate a backward trace from the goal to the start. For COGNITIVE94

MAP, we generate a simulation process from goal to the start.95
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Given the instruction u and generated (action, state) trajectory k, we first define optimal path k∗ as96

an element of argmink∈{k|r(u,k)=success} |k|. Since we ensure there is only one possible k∗, we only97

need to check whether the generated trajectory is k∗. Now we can define R(u, k) as follows:98

• R(u, k) = SUCCESS if k = k∗99

• R(u, k) = FAIL otherwise100

We compute the mean value of R(u, k) across each size of the Gridworld to probe the extrapolability101

of the language model. If we get a high value beyond the training boundary, that means that the102

model has a good extrapolability, otherwise it cannot extrapolate into bigger environments.103

3 Result and Analysis104

3.1 Cognitive map induces extrapolability105

Implicit baseline Explicit baseline Cognitive map

NONE: 19.0% COT: 26.5% COGNITIVE MAP: 76.5%

Table 1: Qualitative comparison of optimal plan generation rate between baselines and our methods.
The degree of the darkness at (x, y) coordinate of each plot denotes the performance of the corre-
sponding model in Gridworld of size x×y. The red box denotes the boundary of the training data. We
provide visualization of all the experiments in Appendix F.

As stated in Section 2.1, we train the model on world sizes of up to 10x10 and test it on world sizes106

of up to 20x20 world to investigate the extrapolation ability. Extrapolation success is defined as the107

ability to succeed in rollouts beyond the 10x10 boundary. As shown in Table 1, the darkness outside108

the boundary of the red box shows that the cognitive map helps in planning on the extrapolated109

data. We also observe a consistent tendency for experiments with ALL inclusion, which have a wider110

coverage of success rate in the extrapolated data. These results align with the result discussed in111

Section 3.1. We analyze ablation results of cognitive map in Appendix F.112

3.2 Why does cognitive map inducde extrapolation?113

A language model can be viewed as a statistical model trained to minimize the KL divergence between114

its predicted logits and the training objective. Given the training data distribution Ptrain, the model115

is optimized to fit this distribution, enabling it to predict interpolated data points. However, the116

model’s ability to extrapolate beyond the training data is less understood and lacks a clear theoretical117

explanation. So it is not surprising for NONE and COT not having extrapolability. But what is the key118

difference of cognitive map that enables such ability? Our current insight is as follows:119

Human demonstrations are often abstract and entangled, with the human policy πhuman being inter-120

twined with the observed replication policy πhuman demo. The replication policy tends to be more121

complex due to hidden variables and factors influencing human demonstrations. We hypothesize122

that the human policy πhuman is relatively simple and can be modeled using a combination of three123

key functions: sampling (S), propagation (T ), and backtracking (T−1). By leveraging these simple,124

well-defined functions, the model can effectively handle path-planning tasks and demonstrate robust125

extrapolative abilities beyond the training data.126
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A Planning task interacting with world model183

Planning task with environment feedback in language model can be formalized as a Markov decision184

process with instruction space U , state space S, action space A, observation space O, metric space185

C, transition function T : S × A → S, and metric function R : U × (S × A)n → C where n is186

the trajectory length. Note that for language model domain, U , A, and O are given as sequences of187

language tokens.188

Given an instruction u ∈ U , the model θ first generates the action a1 ∼ πθ(·|u) ∈ A according to its189

policy πθ. For each state st ∈ S and its observation ot ∈ O, the agent generates the corresponding190

action in the t + 1 step at+1 ∼ πθ(·|u, a1, o1, . . . , at, ot) ∈ A, which concludes to a new state191

st+1 = T (st, at) and its observation ot+1. The interaction loop repeats until the task has terminated192

for some reason(succeeded, failed, number of steps exceeded maximum value, etc.), and the action193

trajectory is denoted as:194

e = (u, a1, o1, . . . , on−1, an, on) ∼ πθ(e|u),

195

πθ(e|u) =
n∏

j=1

πθ(aj |u, a1, o1, . . . , oj),

Finally, we define the (action, state) trajectory k = ((a1, s1), . . . , (an, sn)) accordingly. The final196

reward is computed based on the metric function R(u, k).197

Note that we can apply reasoning before deciding the action with so-called a "thinking" process.198

Namely, we have a thinking space M(of language subset) which generates m ∼ πθ(·|u) ∈ M, then199

generate a1 ∼ πθ(·|u,m) ∈ M upon the generated thought.200

B Experimental Details201

B.1 Input detail202

Table 2 describes a sample input of the model, describing the instruction of the Gridworld and the203

specific world information.204
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Common Prompt human: You are given a rectangular gridworld, where you can move up, down,
left, or right as long as each of your x, y coordinates are within 0 to the
x, y size of the grid. If you move up, your y coordinate increases by 1. If
you move down, your y coordinate decreases by 1. If you move left, your x
coordinate decreases by 1. If you move right, your x coordinate increases by
1.\n\nYou will interact with the gridworld environment to reach the goal state,
while avoiding the pit and the wall. You cannot move through the wall or
move outside the grid. If you fall into the pit, you lose. If you reach the goal,
you win. For each of your turn, you will be given the possible moves.\n\nYou
should respond your move with either one of ’up’, ’down’, ’left’, or ’right’.
gpt: OK
human: Grid is from (0, 0) to (3, 2). Goal: (3, 2)\nCurrent: (0, 0)\nThe pit
is at (3, 0). The wall is at (1, 1), and (2, 2).\nCurrent:\n(0, 0)\nPossible:\n(0,
1)\nup\n(1, 0)\nright

Table 2: The prompt for all cases

B.2 Experimental setup details205

We train the model for 1 epoch with 50K samples of size 10×10 at largest. After training, we test206

the model with 3K samples with each grid being 20×20 at largest. We utilize Llama-3-8B model1207

throughout the whole experiments. In each turn, we set the maximum token length of the model to be208

8192.209

We use one 8 Nvidia A100 node for both training and inference. For the training steps, we use FSDP210

framework (Zhao et al., 2023) and cosine annealing learning rate scheduler (Loshchilov and Hutter,211

2017) for 1 epoch. We utilize bfloat16 floating-point format and a warmup ratio of 0.03. We set the212

weight decay as 0. We set the batch size of 2 for each GPUs, so the effective batch size is 16 per step.213

We train each model for 50000/16 = 3125 steps. For inference, we use VLLM framework (Kwon214

et al., 2023).215

While exploring the pure planning ability of the language model, we did not want the model to refuse216

to explore extrapolated data only because it has never seen the coordinate. To handle the bias, we217

adjust the starting position of the grid using uniform sampling while ensuring that the entire grid,218

with its x and y coordinates, fits within the range of 0 to 19. This method, illustrated in Figure 3,219

minimizes bias related to the unseen x and y coordinates by randomizing the starting point within the220

defined bounds.221

Figure 3: Visualization of configuring Gridworld instance for train(left) and test(right) dataset. To
evaluate the extrapolation ability, we set the size of the grid as X,Y ∼ Unif(2, 10) for train and
X,Y ∼ Unif(2, 20) for test. Also we set the starting point of the grid as ∆x ∼ Unif(0, 20 −
X),∆y ∼ Unif(0, 20− Y ) for both train and test.

1https://llama.meta.com/llama3/
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C Cognitive map for language model222

Our proposed process can be divided into three different stages: sampling, propagation, and backtrack.223

The sampling stage can be defined as the process where the model expects potential actions that can224

be applied for each state. The propagation stage explores potential outcomes of the actions sampled225

from the sampling stage. The backtrack stage is the process of tracing back from the goal state to226

refine and select the optimal path based on the outcomes of the simulation227

C.1 Sampling228

During the sampling stage, the model samples possible actions in S(s) ⊂ A regarding the current229

state s, which leads to a new state that was not propagated before. This sampling process is repeated230

until reaching the desirable goal. This iterative approach enables the cognitive map of the agent to231

explore the various states of the given world model.232

C.2 Propagation233

During the propagation stage, the model expects a transited state T (s, a) ∈ S for each action a234

sampled from the current state s. For example, in the Gridworld, the model simulates different paths235

by considering movements in four directions (up, down, left, right) from each cell. The goal is to236

explore various routes to reach the target cell, considering obstacles and the grid’s boundaries. This237

stage is crucial for understanding the global representation of the world model by expecting the future238

consequences of each action before committing to the actual decision.239

C.3 Backtrack240

Once the sampling and propagation stages have concluded by reaching a desirable goal state, we241

need to backtrack through the simulated paths to determine the most efficient route taken to achieve242

the goal. This involves assessing the propagated paths and identifying the one that reaches the goal.243

Backtrack search identifies T−1(s, a) ∈ S for each state-action pair to ensure that the selected path is244

valid. By refining the decisions made during the simulation stage, backtracking ultimately guides the245

model to make informed, strategic choices based on the simulated outcomes. Since the propagation246

stage deduces only one path with minimal steps, we can guarantee the optimality of the generated247

path.248

C.4 Training how to generate cognitive map249

To sum up, constructing the cognitive map m is a sequential application of sampling(S),250

propagation(T ), and backtrack(T−1). We train the language model θ via supervised learning method251

so that the model can successfully construct the cognitive map without any external interaction, as252

shown in Figure 2.253

D Experiment Ablation254

D.1 Reachable planning analysis: multi-turn setting255

We also investigate whether the cognitive map can deduce a reachable plan(which doesn’t require256

optimal planning) in a multi-turn setting. We evaluate the reachability of the trajectory a1, a2, . . . , an257

generated by at+1 ∼ πθ(·|u,m, a1, o1, . . . , at, ot) ∈ A. There are multiple interactions between258

the model and the environment in a muli-turn setting, so failure cases can be divided into three259

cases(deadend, max step, and invalid). Especially, given the instruction u and generated (action, state)260

trajectory k, we define R(u, k) as follows:261

• R(u, k) = SUCCESS if k[−1][1] = goal262

• R(u, k) = DEADEND if k[−1][1] ∈ P263

• R(u, k) = MAX STEP if |k| > max264

• R(u, k) = INVALID if ∃a ∈ k[:][0] | a /∈ A265
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2 In the paper, we set the maximum steps max = 200 for each environment. We denote P as the set266

of deadend states, i.e. set of pits and walls in the grid, and all the states outside the grid.267

For each observation, we give the information of the current state along with possible moves that do268

not directly result the deadend state along with its corresponding states. For example, if the current269

state st is (11, 4) and there the possible actions are right or left, the observation ot is "Current:\n(11,270

4)\nPossible:\n(10, 4)\nleft\n(12, 4)\nright".271

D.2 Cognitive map design choices272

Our construction of the cognitive map is straightforward; We sample all 4 possible directions("up",273

"down", "right", and "left") as actions, and we propagate each action iteratively until reaching the goal274

state. After reaching the goal, we backtrack until reaching the start state. For ablation experiments, we275

denote ALL as sampling all 4 actions and BACKTRACK as appending backtrack trace after reaching276

the goal. We experiment effects of excluding each component when designing the cognitive map.277

First, we see the effect of excluding the backtrack stage(denoted as "w.o. BACKTRACK"). Also, we278

observe the effect when we only sample possible moves instead of all moves(denoted as "w.o. ALL").279

See Appendix E.1 , E.2 for examples.280

Marking deadend In this paper, we variate two different cognitive maps when marking the deadend281

state. We can either verbalize all samples and mark the actions resulting deadend state with a special282

token(<deadend>)(denoted as "MARKING deadend"), or just verbalize all the actions including the283

deadend states(denoted as "w.o. MARKING"). For example, the verbalized cognitive map at state (0,284

0) in Figure 2 is as follows:285

MARKING deadend: "(0, 1) up (0, -1) <deadend> (1, 0) right (-1, 0) <deadend>"286

w.o. MARKING: (0, 1) up (0, -1) down (1, 0) right (-1, 0) left".287

See Appendix E.1 for the whole construction.288

Backward cognitive map construction: BWD Backward chaining is a powerful approach that289

simplifies complex problems by focusing on the desired outcome and systematically working back to290

the starting point. LAMBADA (Kazemi et al., 2023) shows that backward chaining helps in reasoning291

tasks. We adopt the intuition to see if constructing the cognitive map in a backward manner enhances292

the planning ability of the language model.293

In this paper, we define two types of construction, FWD and BWD. For FWD, the construction from the294

start to the goal is identical to the procedure stated in Appendix C. For BWD, we build the reversed295

cognitive map starting from the goal state to the start state. We have the sampling function identical296

to FWD(S). The main experiments are set to BWD. For the propagation stage, we expect a reverse297

transition state T−1(s, a) ∈ S for a given state s and action a. For the backtracking stage, we298

backtrack the path from start to goal by iteratively searching T (s, a) ∈ S . See Appendix E.2 for the299

example.300

2Although our main analysis consists only of success rate, we provide plots for different types of fails in
AppendixF.3
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E Cognitive map description301

E.1 Cognitive map example: FWD302

Table 3 describes a sample of FWD cognitive map construction for each experiment.303

Design choice Cognitive map example

NONE

COT Thought:\nStep 1:\nStep 2:\nStep 3:\nStep 4:\nStep 5:\nBack-
track:\n(3, 2)up\n(3, 1)\nright\n(2, 1)\nup\n(2, 0)\nright\n(1,
0)\nright\n(0, 0)

w.o. ALL BACKTRACK Thought:\nStep 1:\n(0, 1)\nup\n(1, 0)\nright\nStep 2:\n(0,
2)\nup\n(2, 0)\nright\nStep 3:\n(1, 2)\nright\n(2, 1)\nup\nStep 4:\n(3,
1)\nright\nStep 5:\n(3, 2)\nup

w.o. ALL Thought:\nStep 1:\n(0, 1)\nup\n(1, 0)\nright\nStep 2:\n(0,
2)\nup\n(2, 0)\nright\nStep 3:\n(1, 2)\nright\n(2, 1)\nup\nStep
4:\n(3, 1)\nright\nStep 5:\n(3, 2)\nup\nBacktrack:\n(3, 2)up\n(3,
1)\nright\n(2, 1)\nup\n(2, 0)\nright\n(1, 0)\nright\n(0, 0)

w.o. MARKING BACKTRACK Thought:\nStep 1:\n(0, 1)\nup\n(0, -1)\ndown\n(-1, 0)\nleft\n(1,
0)\nright\nStep 2:\n(0, 2)\nup\n(0, 0)\ndown\n(-1, 1)\nleft\n(1,
1)\nright\n(1, 1)\nup\n(1, -1)\ndown\n(0, 0)\nleft\n(2,
0)\nright\nStep 3:\n(0, 3)\nup\n(0, 1)\ndown\n(-1, 2)\nleft\n(1,
2)\nright\n(2, 1)\nup\n(2, -1)\ndown\n(1, 0)\nleft\n(3,
0)\nright\nStep 4:\n(1, 3)\nup\n(1, 1)\ndown\n(0, 2)\nleft\n(2,
2)\nright\n(2, 2)\nup\n(2, 0)\ndown\n(1, 1)\nleft\n(3, 1)\nright\nStep
5:\n(3, 2)\nup\n(3, 0)\ndown\n(2, 1)\nleft\n(4, 1)\nright

w.o. MARKING Thought:\nStep 1:\n(0, 1)\nup\n(0, -1)\ndown\n(-1,
0)\nleft\n(1, 0)\nright\nStep 2:\n(0, 2)\nup\n(0, 0)\ndown\n(-
1, 1)\nleft\n(1, 1)\nright\n(1, 1)\nup\n(1, -1)\ndown\n(0,
0)\nleft\n(2, 0)\nright\nStep 3:\n(0, 3)\nup\n(0, 1)\ndown\n(-
1, 2)\nleft\n(1, 2)\nright\n(2, 1)\nup\n(2, -1)\ndown\n(1,
0)\nleft\n(3, 0)\nright\nStep 4:\n(1, 3)\nup\n(1, 1)\ndown\n(0,
2)\nleft\n(2, 2)\nright\n(2, 2)\nup\n(2, 0)\ndown\n(1, 1)\nleft\n(3,
1)\nright\nStep 5:\n(3, 2)\nup\n(3, 0)\ndown\n(2, 1)\nleft\n(4,
1)\nright\nBacktrack:\n(3, 2)up\n(3, 1)\nright\n(2, 1)\nup\n(2,
0)\nright\n(1, 0)\nright\n(0, 0)

w.o. BACKTRACK Thought:\nStep 1:\n(0, 1)\nup\n(0, -1)\ncut\n(-1, 0)\ncut\n(1,
0)\nright\nStep 2:\n(0, 2)\nup\n(0, 0)\ncut\n(-1, 1)\ncut\n(1,
1)\ncut\n(1, 1)\ncut\n(1, -1)\ncut\n(0, 0)\ncut\n(2, 0)\nright\nStep
3:\n(0, 3)\ncut\n(0, 1)\ncut\n(-1, 2)\ncut\n(1, 2)\nright\n(2,
1)\nup\n(2, -1)\ncut\n(1, 0)\ncut\n(3, 0)\ncut\nStep 4:\n(1,
3)\ncut\n(1, 1)\ncut\n(0, 2)\ncut\n(2, 2)\ncut\n(2, 2)\ncut\n(2,
0)\ncut\n(1, 1)\ncut\n(3, 1)\nright\nStep 5:\n(3, 2)\nup\n(3,
0)\ncut\n(2, 1)\ncut\n(4, 1)\ncut

MARKING deadend Thought:\nStep 1:\n(0, 1)\nup\n(0, -1)\ncut\n(-1, 0)\ncut\n(1,
0)\nright\nStep 2:\n(0, 2)\nup\n(0, 0)\ncut\n(-1, 1)\ncut\n(1,
1)\ncut\n(1, 1)\ncut\n(1, -1)\ncut\n(0, 0)\ncut\n(2, 0)\nright\nStep
3:\n(0, 3)\ncut\n(0, 1)\ncut\n(-1, 2)\ncut\n(1, 2)\nright\n(2,
1)\nup\n(2, -1)\ncut\n(1, 0)\ncut\n(3, 0)\ncut\nStep 4:\n(1,
3)\ncut\n(1, 1)\ncut\n(0, 2)\ncut\n(2, 2)\ncut\n(2, 2)\ncut\n(2,
0)\ncut\n(1, 1)\ncut\n(3, 1)\nright\nStep 5:\n(3, 2)\nup\n(3,
0)\ncut\n(2, 1)\ncut\n(4, 1)\ncut\nBacktrack:\n(3, 2)up\n(3,
1)\nright\n(2, 1)\nup\n(2, 0)\nright\n(1, 0)\nright\n(0, 0)

Table 3: FWD cognitive map example for each experiment
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E.2 Cognitive map example: BWD304

Table 4 describes a sample of BWD cognitive map construction for each experiment.305

Design choice Cognitive map example

NONE

COT Thought:\nStep 1:\nStep 2:\nStep 3:\nStep 4:\nStep 5:\nBack-
track:\n(0, 0)\nright\n(1, 0)\nright\n(2, 0)\nup\n(2, 1)\nright\n(3,
1)\nup\n(3, 2)

w.o. ALL BACKTRACK Thought:\nStep 1:\n(3, 1)\nup\nStep 2:\n(2, 1)\nright\nStep 3:\n(2,
0)\nup\nStep 4:\n(1, 0)\nright\nStep 5:\n(0, 0)\nright

w.o. ALL Thought:\nStep 1:\n(3, 1)\nup\nStep 2:\n(2, 1)\nright\nStep
3:\n(2, 0)\nup\nStep 4:\n(1, 0)\nright\nStep 5:\n(0,
0)\nright\nBacktrack:\n(0, 0)\nright\n(1, 0)\nright\n(2, 0)\nup\n(2,
1)\nright\n(3, 1)\nup\n(3, 2)

w.o. MARKING BACKTRACK Thought:\nStep 1:\n(3, 3)\ndown\n(3, 1)\nup\n(2, 2)\nright\n(4,
2)\nleft\nStep 2:\n(3, 2)\ndown\n(3, 0)\nup\n(2, 1)\nright\n(4,
1)\nleft\nStep 3:\n(2, 2)\ndown\n(2, 0)\nup\n(1, 1)\nright\n(3,
1)\nleft\nStep 4:\n(2, 1)\ndown\n(2, -1)\nup\n(1, 0)\nright\n(3,
0)\nleft\nStep 5:\n(1, 1)\ndown\n(1, -1)\nup\n(0, 0)\nright\n(2,
0)\nleft

w.o. MARKING Thought:\nStep 1:\n(3, 3)\ndown\n(3, 1)\nup\n(2, 2)\nright\n(4,
2)\nleft\nStep 2:\n(3, 2)\ndown\n(3, 0)\nup\n(2, 1)\nright\n(4,
1)\nleft\nStep 3:\n(2, 2)\ndown\n(2, 0)\nup\n(1, 1)\nright\n(3,
1)\nleft\nStep 4:\n(2, 1)\ndown\n(2, -1)\nup\n(1, 0)\nright\n(3,
0)\nleft\nStep 5:\n(1, 1)\ndown\n(1, -1)\nup\n(0, 0)\nright\n(2,
0)\nleft\nBacktrack:\n(0, 0)\nright\n(1, 0)\nright\n(2, 0)\nup\n(2,
1)\nright\n(3, 1)\nup\n(3, 2)

w.o. BACKTRACK Thought:\nStep 1:\n(3, 3)\ncut\n(3, 1)\nup\n(2, 2)\ncut\n(4,
2)\ncut\nStep 2:\n(3, 2)\ncut\n(3, 0)\ncut\n(2, 1)\nright\n(4,
1)\ncut\nStep 3:\n(2, 2)\ncut\n(2, 0)\nup\n(1, 1)\ncut\n(3,
1)\ncut\nStep 4:\n(2, 1)\ncut\n(2, -1)\ncut\n(1, 0)\nright\n(3,
0)\ncut\nStep 5:\n(1, 1)\ncut\n(1, -1)\ncut\n(0, 0)\nright\n(2, 0)\ncut

MARKING deadend Thought:\nStep 1:\n(3, 3)\ncut\n(3, 1)\nup\n(2, 2)\ncut\n(4,
2)\ncut\nStep 2:\n(3, 2)\ncut\n(3, 0)\ncut\n(2, 1)\nright\n(4,
1)\ncut\nStep 3:\n(2, 2)\ncut\n(2, 0)\nup\n(1, 1)\ncut\n(3,
1)\ncut\nStep 4:\n(2, 1)\ncut\n(2, -1)\ncut\n(1, 0)\nright\n(3,
0)\ncut\nStep 5:\n(1, 1)\ncut\n(1, -1)\ncut\n(0, 0)\nright\n(2,
0)\ncut\nBacktrack:\n(0, 0)\nright\n(1, 0)\nright\n(2, 0)\nup\n(2,
1)\nright\n(3, 1)\nup\n(3, 2)

Table 4: BWD cognitive map example for each experiment
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Implicit baseline Explicit baseline Cognitive map
Optimal NONE COT MARKING deadend w.o. MARKING

BWD 0.190 0.265 0.705 0.765
FWD 0.190 0.252 0.585 0.618

Reachable NONE COT MARKING deadend w.o. MARKING

BWD 0.321 0.287 0.885 0.724

FWD 0.321 0.339 0.854 0.816

Table 5: Optimal and reachable rate of generated plans via single- and multi-turn settings: The first
two columns(NONE and BACKTRACK) are the baselines for imitation-based learning, and the rest are
different design choices of constructing the cognitive map. Also BWD constructs the map starting
from the goal state, while FWD starts from the start state. See Appendix E for actual prompts.

w.o. ALL with ALL

Optimal w.o. ALL BACKTRACK w.o. ALL w.o. MARKING MARKING deadend

BWD 0.296 0.277 0.765 0.705

FWD 0.295 0.290 0.618 0.585

Reachable w.o. ALL BACKTRACK w.o. ALL w.o. MARKING MARKING deadend

BWD 0.394 0.283 0.724 0.885
FWD 0.416 0.345 0.816 0.854

Table 6: Planning performance with ALL exclusion

w.o. BACKTRACK with BACKTRACK

Optimal w.o. MARKING BACKTRACK w.o. BACKTRACK w.o. MARKING MARKING deadend

BWD 0.406 0.423 0.765 0.705

FWD 0.528 0.516 0.618 0.585

Reachable w.o. MARKING BACKTRACK w.o. BACKTRACK w.o. MARKING MARKING deadend

BWD 0.739 0.852 0.724 0.885
FWD 0.672 0.624 0.816 0.854

Table 7: Planning performance with BACKTRACK exclusion
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F Additional results306

F.1 Additional investigations307

Cognitive map compared with baselines Table 5 shows both the optimal and reachable rate308

of plans generated by each experiment. As shown in the table, w.o. MARKING shows the best309

performance among the experiments both for BWD and FWD cognitive map construction in the310

optimal planning. (76.5% and 61.8% for BWD and FWD construction, respectively). Unlike in the311

optimal planning setting, MARKING deadend shows the best performance both for BWD and FWD312

cognitive map construction(88.5% and 85.4% for BWD and FWD construction, respectively). Our313

experiments show that cognitive maps improve performance in the Gridworld path planning314

task. It boosts the optimal planning performance by up to 57.5% and reachable planning by up to315

56.4% with implicit fine-tuning baseline, and enhancing optimal planning by up to 50% and reachable316

planning by up to 54.6% with CoT fine-tuning baseline. We also qualitatively show the planning317

performance in both optimal and reachable settings with respect to the size of the grid in Table 1.318

Cognitive map further enhances reachability A notable observation is the performance gap319

between optimal and reachable planning. Reachable planning experiments show significant improve-320

ments compared to optimal planning across all configurations, except for ALL BACKTRACK in FWD321

cognitive map construction. For instance, w.o. BACKTRACK from FWD map construction more than322

doubled its score (42.3% to 85.2%). This implies that although the cognitive map was designed to323

find the optimal plan, it also substantially enhances reachable planning capability.324

BWD approach enhances the performance of the cognitive map As shown in Table 5, both the325

optimal and reachable planning got the highest performance with BWD cognitive map construction.326

This aligns with the findings in LAMBADA (Kazemi et al., 2023), where they show that backward327

chaining helps in reasoning tasks.328

Effect of ALL inclusion Both cognitive map constructions w.o. ALL (w.o. ALL BACKTRACK:329

29.6% and 29.5% for BWD and FWD construction, respectively; w.o. ALL: 27.7% and 29.0% for330

BWD and FWD construction, respectively) suffer at generating the optimal plan, achieving under 30%331

success rate. However, every cognitive map construction with the inclusion of ALL shows better332

performance, with FWD MARKING deadend being the lowest among them(58.5%).333

We observe a similar trend in the reachable planning test. While both baseline methods w.o. ALL334

performed at best 41.6% (FWD w.o. ALL BACKTRACK), the lowest performance among every335

cognitive map construction was 72.4% (BWD w.o. MARKING). This implies that the inclusion of336

ALL significantly enhances the planning capability, leading to more successful and efficient337

pathfinding.338

Effect of BACKTRACK inclusion Both cognitive map constructions w.o. BACKTRACK (w.o.339

MARKING BACKTRACK: 40.6% and 52.8% for BWD and FWD construction, respectively; w.o.340

BACKTRACK: 42.3% and 51.6% for BWD and FWD construction, respectively) suffer at generating341

the optimal plan. However, every cognitive map construction with the inclusion of BACKTRACK342

shows better performance, with FWD MARKING deadend being the lowest among them(58.5%).343

The analysis in the reachable planning test was slightly blurry, yet there was an obvious trend. For each344

experiment, adding backtracking enhanced the performance of the planning in most settings(except345

BWD construction w.o. MARKING). This implies that the inclusion of BACKTRACK slightly346

enhances the planning capability.347

F.2 Vizualization for optimal planning experiments348

For optimal planning, we have only success or failure cases. Hence we only provide the success rate349

for each experiment.350

FWD construction See Figure 4 for success rate of each experiment.351
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(a) NONE: 19% (b) COT: 25% (c) w.o. ALL BACKTRACK:
29%

(d) w.o. ALL: 29%

(e) w.o. MARKING BACK-
TRACK: 53%

(f) w.o. BACKTRACK: 52% (g) w.o. MARKING: 62% (h) MARKING deadend:
59%

Figure 4: Success rate for optimal planning, FWD construction

BWD construction See Figure 5 for success rate of each experiment.352

(a) NONE: 19% (b) COT: 27% (c) w.o. ALL BACKTRACK:
30%

(d) w.o. ALL: 28%

(e) w.o. MARKING BACK-
TRACK: 41%

(f) w.o. BACKTRACK: 42% (g) w.o. MARKING: 76% (h) MARKING deadend:
71%

Figure 5: Success rate for optimal planning, BWD construction

F.3 Visualization for reachable planning experiments353

For reachable planning, we have one success cases and three different failure cases(deadend, max354

step, and invalid). Hence we provide the visualization of all 4 cases.355
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FWD construction For success rate, see Figure 6. For failure cases, see Figure 7 for deadend,356

Figure 8 for max step, and Figrue 9 for invalid rate.357

(a) NONE: 32% (b) COT: 34% (c) w.o. ALL BACKTRACK:
42%

(d) w.o. ALL: 35%

(e) w.o. MARKING BACK-
TRACK: 67%

(f) w.o. BACKTRACK: 62% (g) w.o. MARKING: 82% (h) MARKING deadend:
85%

Figure 6: Success rate for reachable planning, FWD construction

(a) NONE: 64% (b) COT: 58% (c) w.o. ALL BACKTRACK:
51%

(d) w.o. ALL: 8%

(e) w.o. MARKING BACK-
TRACK: 29%

(f) w.o. BACKTRACK: 10% (g) w.o. MARKING: 12% (h) MARKING deadend:
2%

Figure 7: Deadend rate for reachable planning, FWD construction
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(a) NONE: 0% (b) COT: 8% (c) w.o. ALL BACKTRACK:
5%

(d) w.o. ALL: 15%

(e) w.o. MARKING BACK-
TRACK: 7%

(f) w.o. BACKTRACK: 10% (g) w.o. MARKING: 2% (h) MARKING deadend:
3%

Figure 8: Max step rate for reachable planning, FWD construction

(a) NONE: 3% (b) COT: 0% (c) w.o. ALL BACKTRACK:
3%

(d) w.o. ALL: 43%

(e) w.o. MARKING BACK-
TRACK: 3%

(f) w.o. BACKTRACK: 18% (g) w.o. MARKING: 4% (h) MARKING deadend:
10%

Figure 9: Invalid rate for reachable planning, FWD construction

BWD construction For success rate, see Figure 10. For failure cases, see Figure 11 for deadend,358

Figure 12 for max step, and Figrue 13 for invalid rate.359
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(a) NONE: 32% (b) COT: 29% (c) w.o. ALL BACKTRACK:
40%

(d) w.o. ALL: 28%

(e) w.o. MARKING BACK-
TRACK: 74%

(f) w.o. BACKTRACK: 85% (g) w.o. MARKING: 72% (h) MARKING deadend:
89%

Figure 10: Success rate for reachable planning, BWD construction

(a) NONE: 64% (b) COT: 70% (c) w.o. ALL BACKTRACK:
33%

(d) w.o. ALL: 37%

(e) w.o. MARKING BACK-
TRACK: 19%

(f) w.o. BACKTRACK: 10% (g) w.o. MARKING: 20% (h) MARKING deadend:
3%

Figure 11: Deadend rate for reachable planning, BWD construction
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(a) NONE: 0% (b) COT: 1% (c) w.o. ALL BACKTRACK:
26%

(d) w.o. ALL: 3%

(e) w.o. MARKING BACK-
TRACK: 0%

(f) w.o. BACKTRACK: 1% (g) w.o. MARKING: 1% (h) MARKING deadend:
1%

Figure 12: Max step rate for reachable planning, BWD construction

(a) NONE: 3% (b) COT: 1% (c) w.o. ALL BACKTRACK:
2%

(d) w.o. ALL: 32%

(e) w.o. MARKING BACK-
TRACK: 7%

(f) w.o. BACKTRACK: 4% (g) w.o. MARKING: 7% (h) MARKING deadend:
8%

Figure 13: Invalid rate for reachable planning, BWD construction
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