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Abstract

We develop a new model-free reinforcement learning (RL) algorithm: D2AC. Motivated
by recent advances in iterative function approximation, we make two adjustments to the
typical actor-critic RL pipeline. First, we learn distributional critics with a novel fusion
of distributional RL and clipped double Q-learning. Second, we use a diffusion model to
parameterize the policy and derive an efficient method for aligning the diffusion process
with policy improvement. These changes are highly effective, resulting in highly performant
model-free policies on a benchmark of eighteen hard RL tasks, including Humanoid, Dog,
and Shadow Hand domains, spanning both dense-reward and goal-conditioned RL scenarios.
Beyond standard benchmarks, we also evaluate a biologically motivated predator-prey task
to examine the behavioral robustness and generalization capacity of our approach.

1 Introduction

Actor-Critic methods have been at the center of many recent advances in Reinforcement Learning. In
continuous control and robotics, Soft Actor-Critic (Haarnoja et al., 2018) outperformed all prior model-based
methods (Wang et al., 2019). On the ALE environment, Atari agents such as Rainbow (Hessel et al., 2018),
BBF (Schwarzer et al., 2023) and ULTHO (Yuan et al., 2025) have continued to push forward state of the art
reinforcement learning performance.

Each instantiation of actor-critic methods crucially relies on two components: an actor and a critic. The
critic tells us how valuable it is to be in a given state, and the actor tells us what we should do when we
find ourselves in that state. Generally, an actor-critic algorithm will only be as strong as the weakest link,
a powerful critic is wasted on an actor that can’t optimize for the correct actions, and vice-versa. This
naturally leads us to ask the question of how we can use modern advancements in machine learning and
function estimation to learn a critic and an actor that are a perfect match, equally powerful and capable of
complementing one another.

When estimating the critic, classical RL favored point-estimates for the value function, often resulting in
unstable or overly-opinated estimation, causing instability. Distributional critics (Bellemare et al., 2017)
mitigate this problem by modeling distributional returns, making them a good deal more powerful than
classical critics. In this paper, we explore the use and stability of distributional critics, and find that applying
the clipped double Q-learning technique (Fujimoto et al., 2018) to distributional Q-function estimation can
make the process more stable and reduce noise, improving the overall health of our critic.

Meanwhile, actor-learning is known to be a devilishly hard problem. The reasons for this are many and
well-studied, but a major reoccuring issue is that action-estimates are simply very noisy. It’s hard to tell in a
single pass how we should generate an auto-correlated vector of actions in a complex environment. On this
front, we consider the strategy of first producing a noisy estimate of what actions an agent should take, and
then iteratively de-biasing this estimate, which gives the agent a powerful mechanism to propose and refine
its actions.

More concretely, to get better action estimates we leverage denoising diffusion model for the policy network
under the formulation of EDM (Karras et al., 2022), and derives a novel and simplified policy improvement
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objective to supervise each step of the denoising process so that action proposals can be iteratively refined at
inference. This derivation takes inspiration from the monotonic policy improvement theory (Schulman et al.,
2015) and applies additional simplifications to the policy improvement bound based on properties of diffusion,
yielding a conceptually simple yet fast and performant diffusion algorithm for policy improvement.

In this paper, we show how to marry a distributional critic to a diffusion actor, leading to the development
of D2AC, a new actor-critic algorithm. D2AC achieves excellent performance on a variety of hard robotics
environments, including locomotion tasks such as Humanoid and Dog domains in DeepMind Control Suite
(Tassa et al., 2018), and manipulation tasks such as Pick-and-Place and Shadow-Hand Manipulate in multi-
goal RL environments with sparse rewards (Plappert et al., 2018). In addition, we evaluate D2AC on
a biology-inspired predator–prey benchmark(Lai et al., 2024), where it demonstrates higher exploration
coverage, richer path diversity, and superior zero-shot transfer compared to SAC and TD-MPC2. Importantly,
D2AC consistently performs well across difficult domains where prior model-free RL methods struggle or
completely fail. Moreover, it significantly closes the performance gap between model-free RL and SOTA
model-based methods such as TD-MPC2 (Hansen et al., 2023), despite using an order-of-magnitude less
compute compared to TD-MPC2 and being considerably faster to run. Our results show that D2AC can
serve as a strong base for policy optimization in continuous control. Videos of our policy in action can be
found here 1.
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Figure 1: D2 Actor Critic uses a distributional Q-function to estimate a distribution over possible returns.
A diffusion actor uses this Q-function to help align the denoising process with policy improvement. Above
are visualizations on the Pick-and-Place and Fetch Slide environments.

2 Related Works

Model-free RL has two families of approaches: policy gradient methods and value-based methods. Policy
gradient methods typically require on-policy data and trust-region regularization, as showcased in TRPO
(Schulman et al., 2015), PPO (Schulman et al., 2017b), and IMPALA (Espeholt et al., 2018). Value-based
methods, on the other hand, enable off-policy training, which can greatly improve sample-efficiency. Since
DQN (Mnih et al., 2015), many improvements have been proposed including double Q-learning (Van Hasselt
et al., 2016), clipped double Q-learning (Fujimoto et al., 2018), distributional RL (Bellemare et al., 2017;
Dabney et al., 2018), and soft Q-learning (Haarnoja et al., 2018). Recent efforts further integrate uncertainty-
aware critic learning for better exploration, such as Langevin Soft Actor-Critic (Ishfaq et al., 2025), which
combines critic uncertainty with Langevin sampling for efficient policy updates. D2AC builds on this progress
by unifying distributional critics with clipped double Q-learning and enabling iterative actor updates via a
denoising process guided by value distributions.

Model Prediction Control (MPC) requires a learned dynamics model to generate virtual rollouts and
plan its action accordingly. Popular methods include Random Shooting (RS) (Rao, 2009), Cross-Entropy

1https://d2ac-actor-critic.github.io/
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Method (CEM) (De Boer et al., 2005), and Model Predictive Path Integral Control (MPPI) (Williams et al.,
2015a). MPC is also closely related to model-based RL framework Dyna (Sutton, 1991). Traditionally,
the pain point of MPC is the quality of the learnt dynamics: model-based methods had lower asymptotic
performance on hard domains (Wang et al., 2019), where learning good world models requires more expressive
generative models (Janner et al., 2021; Zhang et al., 2023). MuZero (Schrittwieser et al., 2020) managed
to circumvent this issue by only modeling future rewards and values without the states. Sampled MuZero
(Hubert et al., 2021), TD-MPC (Hansen et al., 2022) all combine a model-free agent, MuZero dynamics, and
an off-the-shelf planning module to achieve impressive results on hard tasks in continuous control. Our work
is inspired by MPC, but only tackles model-free RL. D2AC is orthogonal to model-based planning, and can
be freely combined with any dynamics learning and MPC method.

Diffusion Policy for RL has attracted interest following the success of denoising diffusion models (Sohl-
Dickstein et al., 2015; Ho et al., 2020) and its generalized formulation, denoising score matching (DSM) (Song
et al., 2020b; 2023; Chewi et al.). The most straightforward application of such models is conditional generative
modeling of actions, or conditional behavior cloning (BC), using a denoising policy (Janner et al., 2022; Chi
et al., 2023; Römer et al., 2024). However, making denoising policies compatible with the online RL has been
a challenge, because policy improvement necessarily means that the target data distribution is non-stationary.
Existing works have studied how to apply diffusion policies to offline RL settings (Hansen-Estruch et al.,
2023; Gao et al., 2025) and online RL settings (Chen et al., 2023; Ma et al., 2025; Dong et al., 2025). Our
work uses the monotonic improvement theory from policy optimization literature (Schulman et al., 2015) to
derive a new method of training diffusion policies in online RL setting, which significantly improves upon
prior art (Yang et al., 2023).

3 Background

3.1 Reinforcement Learning

A Markov Decision Process (MDP) is defined by the state space S, action space A, the initial state distribution
ρ0(s), the transition probability p(s′ | s, a), and the reward function r(s, a).

The policy π(a | s) generates a trajectory τ with horizon T within the environment:

τ = {s0, a0, · · · , sT } (1)

where s0 ∼ ρ0(·), at ∼ π(· | st), and st+1 ∼ p(· | st, at) for t ∈ {0, · · · , T − 1}.

We denote the trajectory distribution starting from state s under policy π as pπ(τ | s). With a discount
factor γ ∈ (0, 1), the goal is for the policy π to maximize the discounted cumulative rewards:

J (π) = Eρ0(s0)pπ(τ |s0)

[
T −1∑
t=0

γtr(st, at)
]

(2)

Value-based RL methods optimize this objective by estimating a Q function for the current policy π:

Q(st, at) = Ep(st+1|st,at)pπ(τ |st+1)

[
T −t∑
∆=0

γ∆r(st+∆, at+∆)
]

(3)

and then training the policy π to maximize Q.

3.2 Denoising Diffusion Models

Denoising Diffusion Models are generative models that estimate the gradients of data distribution (Vincent,
2011; Song & Ermon, 2019; Song et al., 2020a). Diffusion models train a denoiser Dϕ to reconstruct data
x ∼ pdata from noised data x(k) ∼ N (x, σ2

kI) under various noise levels σmax = σK > · · · > σ0 = σmin.

Let the distribution of noised data be defined as:

p(x(k)) =
∫

pdata(x)N (x(k)|x, σ2
kI)dx (4)
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The min σmin and max σmax of noise levels are selected such that p(x(0)) ≈ pdata(x) and p(x(K)) ≈
N (0, σ2

maxI).

The diffusion loss is typically:

Eϵ∼N (0,I), k∼Unif(1···K)[λ(k)∥Dϕ(x + ϵσk; σk)− x∥2] (5)

where λ(k) is the loss weighting based on noise level.

Then the score for arbitrary input x is:

∇x log p(x; σ) = Dϕ(x; σ)− x
σ2 (6)

which can be used to sample data by starting from noise and solving either an SDE or ODE (Song et al.,
2020b).

We follow EDM (Karras et al., 2022) to define the denoiser as:

Dϕ(x, σ) = cskip(σ)x + cout(σ)Fϕ(cin(σ)x, cnoise(σ)) (7)

3.3 Clipped Double Distributional Q-Learning

While distributional reinforcement learning (RL) provides richer return modeling by capturing full return
distributions instead of scalar estimates (Bellemare et al., 2017), it inherits a well-known flaw of traditional
Q-learning: overestimation bias (Van Hasselt, 2010; Van Hasselt et al., 2016). In distributional RL, this bias
manifests not just in the expected value, but across entire regions of the predicted return distribution, leading
to pathological optimism.

To address this, we apply a clipped double Q-learning approach (Fujimoto et al., 2018) within the distributional
setting. Though this combination is conceptually simple, it plays a crucial role in stabilizing training and
improving empirical performance.

Categorical Distributional Q-Functions: We represent return distributions using the categorical
formulation introduced in (Bellemare et al., 2017). Specifically, each Q-function qθ(s, a) outputs a softmax
distribution over a fixed support zq = [Vmin, . . . , Vmax] consisting of N +1 discrete bins. The expected Q-value
is computed as:

Qθ(s, a) = qθ(s, a)⊤zq

Any continuous value within the support range can be represented via a linear combination of two adjacent
bins using a two-hot encoding function hzq (·).

Categorical Projection: To perform bootstrapped learning, we shift the support according to the observed
reward and discount factor: zp = r + γzq. The predicted distribution p = qθ(s′, a′) under this shifted support
must be projected back to the original support zq to compute a training target. This is done via:

Φdist(zp, p, zq)[k] =
N∑

j=0
hzq (zp[j])[k] · p[j]

This yields a valid probability distribution over the original support, which serves as a supervised signal.

Clipped Double Distributional RL: To reduce overestimation, we maintain two independent critics, qθ1

and qθ2 , each producing a distribution over returns. For each training step, we compute expected Q-values:

Qθi(s, a) = qθi(s, a)⊤zq

We then select the entire distribution from the critic with the lower expected value:

qclip
θ (s, a) =

{
qθ1(s, a) if Qθ1 ≤ Qθ2

qθ2(s, a) otherwise
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This clipped distribution is projected and used to train both critics via cross-entropy loss. The full critic loss
becomes:

Lcritic(θ) = −ℓ⊤ (log qθ1(s, a) + log qθ2(s, a))

where ℓ = Φdist(r + γzq, qclip
θ

(s′, a′), zq) and a′ ∼ πϕ(· | s′).

4 Policy Improvement for Diffusion Actors

When the policy π in actor-critic algorithms is a diffusion model (Sohl-Dickstein et al., 2015; Ho et al., 2020),
it starts from the noise distribution N (0, σ2

maxI) and goes through K diffusion steps a(K) → a(K−1) · · · → a(0)

using a sequence of noise levels σmax = σK > · · · > σ1 > σ0 = σmin to sample an action. If we assume a
sampler based on the Euler-Maruyama method (Song et al., 2020b), then one step of the diffusion process
a(k) → a(k−1) for policy πϕ can be written as:

πϕ(a(k−1) | s, a(k)) = N (a(k−1) | µϕ(a(k), k; s), (σ2
k − σ2

k−1)I)

Where µϕ is a learned denoising process that takes actions away from the noise and towards the desired
action distribution. It is parameterized as:

µϕ(a(k), k; s) = a(k) + (σ2
k − σ2

k−1)∇a log p(a(k) | σk, s)
∇a log p(a | σ, s) = (Dϕ(a, σ; s)− a)/σ2

where Dϕ(a, σ; s) = cskip(σ)a + cout(σ)Fϕ(s, cin(σ)a, cnoise(σ)). The functions cskip(σ), cout(σ), and cnoise(σ)
are flexible design choices (Karras et al., 2022). Thus, taking an action a(0) from the denoising process
a(k) → · · ·a(0) can be written as an integral over the denoising steps:

πϕ(a | s) =
∫

p(a(K))
K∏

k=1
πϕ(a(k−1) | s, a(k))da1:K (8)

We would like a way to guarantee the diffusion process actually provides us with a better action. Define
the optimal policy to be p∗(a | s) = (exp Q(s, a)/α)/Z(s), where α is the temperature. The goal of entropy-
regularized policy improvement is to minimize the following (Schulman et al., 2017a; Haarnoja et al., 2018;
Black et al., 2023):

arg max
ϕ

−DKL(πϕ(a | s) ∥ p∗(a | s)) = Ea∼πϕ(·|s)[Q(s, a)] + αH(πθ(a | s)) (9)

Diffusion Policy Gradients: In the case of diffusion policies, our main challenge with optimizing for
policy improvement is that accessing a ∼ πϕ requires K intermediate sampling steps. To optimize a lower
bound on the policy gradient objective, the variational lower bound in (Kingma et al., 2021) can be applied
with a positive transformation of the Q-values (Peters & Schaal, 2007; Abdolmaleki et al., 2018), with
λpg(k) = (1/σ2

k−1 − 1/σ2
k) · (K/2):

EπEϵ∼N (0,I),k∼Unif(1···K)[λpg(k)∥a −Dϕ(a + σkϵ, σk; s)∥2 · exp Q(s, a)] (10)

On the one hand, policy gradients tend to suffer from high variance and instability. On the other hand, value
gradients (Heess et al., 2015) for diffusion require backpropagation through time (BPTT), which is known
to be difficult (Pascanu et al., 2013). Those challenges have been previously noted in (Wallace et al., 2023;
Black et al., 2023; Clark et al., 2023). Next, we will show that by re-examining the MDP view of diffusion
process and making mild assumptions, we can circumvent those challenges. The main insight is that we can
convert a classical policy improvement result from the literature into an easier-to-manage form by isolating
the effect of one-step denoising.

Diffusion MDP: Towards a policy improvement result for a diffusion actor, let’s first define a diffusion
MDP as taking K steps of actions from p(a(K)) to π(a(k−1) | s, a(k)), reaching the final state a(0). After this
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diffusion process (under discount factor γ), the policy receives a reward Q(s, a(0))/γK at the final timestep of
diffusion (reward is 0 elsewhere). The objective of diffusion is to maximize:

η(s, π) = Ea(K)···a(0)∼π[Q(s, a(0))] (11)

Where we have made the dependence on the intermediate diffusion steps a(K) · · · a(1) explicit. In the diffusion
MDP, the Q-function, value function, and advantage function are given by:

V diffusion
π ((s, a(k))) ≜ Ea(k−1)···a(0)∼π[(γk−1/γK)Q(s, a(0))]

Qdiffusion
π ((s, a(k+1)), a(k))) ≜ Ea(k−1)∼π[γV diffusion

π ((s, a(k−1)))]
Adiffusion

π ((s, a(k+1)), a(k))) ≜ Qdiffusion
π ((s, a(k+1)), a(k)))− V diffusion

π ((s, a(k+1)))

Monotonic improvement theory, and in particular the policy improvement objective from Trust Region
Policy Optimization (Schulman et al., 2015), can now be applied naively to the diffusion MDP framework.
Doing so will give us gives us the following proximal objective for policy improvement:

η(s, π) ≥ Jπref(s, π)− 4ϵγ

(1− γ)2

{
max
k,a(k)

DKL(πref(· | s, a(k)), π(· | s, a(k)))
}

Jπref(s, π) ≜ η(s, πref) + Ek∼Unif{1,K},a(k)∼πref

a(k−1)∼π(·|a(k),s)

[γkAdiffusion
πref

((s, a(k)), a(k−1))]

These equations say that we can lower bound our policy objective equation 11, by a loss that depends on
the Diffusion MDP advantage of the reference policy Adiffusion

πref
, and the KL between the reference policy

πref and the policy we are learning π. Essentially, if π and πref are sufficiently close, then if πref makes an
improvement, so does π. Since this is a lower bound on the target objective equation 11, we can move in the
direction of improvement by taking the gradient of Jπref(s, π) in the lower bound

∇ϕJπref(s, πϕ) = ∇ϕ Ek∼Unif{1,K},a(k)∼πref

[
γkEa(k−1)∼πϕ

[Qdiffusion
πref

((s, a(k)), a(k−1))]
]

︸ ︷︷ ︸
Jproximal

πref (s,πϕ)

(12)

Note that in practice this is still difficult, because we need to learn a separate Q function Qdiffusion.

Proposed simplification: Rather than learning Qdiffusion
πref

for diffusion MDP, we utilize the fact that the
denoising function â = Dϕ(a(k), σ; s) directly aims to predict a strictly cleaner signal with each passing
step (Song et al., 2020a). The diffusion literature has shown that (Ho et al., 2020; Song et al., 2020b) for
a well-trained diffusion model, more sampling steps result in smaller truncation error in the SDE solver
and higher quality of â. Since Q-value is analogous to unnormalized log probability (Levine, 2018), it is
plausible to reason that, under mild assumptions, more sampling steps should lead to higher Q-value, giving
us a lower bound on the Q-value based on a single denoising step. We formalize this intuition in the following
proposition.

Proposition 1. Define the data distribution under diffusion step k ≥ 0 to be (with σ̂ ≥ σmin):

pk(a|s) =
∫

π(a(0)|s)N (a|a(0), σ2
kI)da(0) p̂k(a|s) =

∫
pk+1(u|s)N (a|D(u, σk+1; s), σ̂2I)du

Under the assumptions that (i) entropy of pk and p̂k strictly increases with k; (ii) the KL distance from pk

and p̂k to optimal policy p∗ strictly decreases with k; (iii) σ̂ is sufficiently large such that DKL(p̂0 ∥ p∗) ≥
DKL(p0 ∥ p∗). Then for any state s and diffusion step k, we have

Ep0 [Q] ≥ Ep̂k
[Q] (13)

Which results in the following lower bound of equation equation 12 based on one-step generation:

γkEa(k−1)∼πϕ
[Qdiffusion

πref
((s, a(k)), a(k−1))]

=γ2k−KEa(k−1)∼πϕ
Ea(k−2)···a(0)∼πref︸ ︷︷ ︸

Additional k − 1 SDE steps

[Q(s, a(0))] ≥ γ2k−K EN (â|Dϕ(a(k),σk;s);σ̂2)︸ ︷︷ ︸
One step generation

[Q(s, â)]
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Humanoid: 21-DoF Dog: 38-DoF Quadruped: 12-DoF Pick-and-Place: 4-DoF Manipulate Block: 20-DoF Manipulate Egg: 20-DoF Manipulate Pen: 20-DoF

Figure 2: D2AC works out of the box across a wide range of environments, including locomotion and
manipulation with sparse and dense rewards.

Intuitively, having additional refinement steps on action â should result in higher Q-value on average.

Diffusion Value Gradients: This lower bound based on one-step generation is much easier to optimize,
since it avoids the requirement for separate value functions Qdiffusion

πref
in diffusion MDP.

Jproximal
πref

(s, πϕ) ≥ Ek∼Unif{1,K},a(k)∼πref,ϵ∼N (0,I)[(γ
2k/γK) ·Q(s, Dϕ(a(k), σk; s) + σ̂ϵ)] (14)

This simplified policy objective can be written in a form similar to the L2 loss commonly used in diffusion
models (Kingma et al., 2021). In essence, the loss takes a noised version of on-policy action, and learns
how to iteratively improve upon this noised action via denoising guided by the critic Q. Each intermediate
diffusion step is aligned towards policy improvement. Setting πref = πϕ, the D2AC policy loss is:

∇ϕLsimple
π (ϕ) = E a∼πϕ(·|s)

ϵ∼N (0,I),k∼Unif{1,K}
N (â|Dϕ(a+σkϵ,σk;s),σ̂2)

∇ϕ

[
λ(k) ∥â +∇âQ(s, â)−Dϕ(a + σkϵ, σk; s)∥2

]
(15)

The function λ(k) is the weighting according to the noise schedule. λ(k) = γ2k/γK in our derivation; in
practice we find that simply setting λ(k) = 1 works well. Compared to diffusion policy gradients equation 17,
our diffusion value gradients are designed to directly align the noisy predictions based on value gradients
from Q without backprop-through-time, thus providing cleaner supervision signal.

5 Experiments

In these experiments, we evaluate the performance of D2AC across a range of domains to assess its generality,
efficiency, and behavioral characteristics. Our benchmarks cover various task modalities such as locomotion,
grasping, and manipulation, as well as both sparse and dense reward structures. In addition to standard
control tasks, we introduce a biology-inspired predator–prey environment to examine how D2AC performs
scenarios that demand strategic adaptability.

We also investigate how D2AC compares to strong model-based baselines in selected tasks, aiming to
understand how effectively it bridges the gap between model-free and model-based approaches. Finally,
we evaluate the algorithm’s practical scalability by measuring wall-clock training time and analyzing how
its performance varies with compute resources. We use rliable (Agarwal et al., 2021) library for rigorous
statistical evaluation.

Evaluation environments. We evaluate D2AC across three primary domains: (i) the DeepMind Control
Suite (Tassa et al., 2018), which consists mainly of locomotion tasks with dense rewards, (ii) the Multi-Goal
RL environments from (Plappert et al., 2018), which include robotic manipulation tasks with sparse rewards,
and (iii) a predator–prey environment inspired by biological survival dynamics (Lai et al., 2024), which
emphasizes adaptive behavior in dynamic and high-stakes scenarios. A list of the environments we use are
shown in Figure 2. Those environments include 21-DoF Humanoid, 38-DoF Dog, 12-DoF Quadruped, a
4-DoF Pick-and-Place task, and a series of 20-DoF Shadow Hand tasks aiming to manipulate Block, Egg,
and Pen to target orientations.
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Figure 3: Experiments on DeepMind Control Suite. Results over 5 seeds. In model-free RL, D2AC
achieves much better sample efficiency and asymptotic performance compared to all other baselines.

5.1 Benchmarking on dense-reward environments

In Figure 3, we showcase our benchmarking results on 12 tasks in DeepMind control suite. We compare our
method to a variety of baselines, including: Soft Actor Critic (Haarnoja et al., 2018), D4PG (Barth-Maron
et al., 2018), and the model-free component of TD-MPC2 (Hansen et al., 2023), which we denote as Two-hot
+ CDQ, because it essentially combines SAC, two-hot critic representation, and clipped double Q-learning.
We also compare against DIPO (Yang et al., 2023), which is a model-free RL method based on diffusion
policy. D2AC achieves higher asymptotic performance across all 12 environments, and generally learns faster.

When compared to TD-MPC2 (Hansen et al., 2023) trained with the same number of environment interactions,
we see that D2AC is very competitive despite being model-free. In Figure 4, we see that D2AC achieves
performance within five percent of TD-MPC2 on 8 out of 12 benchmark environments. On 4 of the
environments, the performance of D2AC exceeds TD-MPC2. The two standout environments were Dog
Walk and Humanoid Stand, where D2AC significantly outpaced TD-MPC2 performance. The relatively
poor performance of Two-hot + CDQ baseline shows that the model-free component of TD-MPC2 is not
in isolation a strength of the algorithm, and the strong performance of TD-MPC2 relies on its ability to
pair this model free algorithm with its planning module. Our proposed model-free learning algorithm is
orthogonal to any planning algorithm, and can be used as a drop-in replacement in any model-based method
such as TD-MPC2.
D2AC Is highly performant in a wide variety of settings: D2AC achieves significantly better sample
efficiency and asymptotic performance compared to all other model-free baselines we tested. This is true
across multiple control modalities (grasping, locomotion, manipulation). We use 5 seeds for the results shown
in Figure 3 and Figure 4; we also use the rliable (Agarwal et al., 2021) evaluation under Interquartile Mean
(IQM) with interval estimates via stratified bootstrap confidence intervals.

Thanks to being model-free, our method is considerably faster to run compared to TD-MPC2: see
Figure 9 for a clear comparison. In particular, D2AC is able to make significant process on the Dog Trot task
within 24 hours, where TD-MPC2 has barely started increasing its episodic return; SAC completely fails on
this task.

Overall, the strong performance of D2AC seems to suggest that model-based RL’s recent success does not
stem entirely from planning with rollouts. Rather, a major component of this success is model-based RL’s
ability to model a distribution of returns and iteratively refine action proposals.
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Figure 4: Comparison between model-based TD-MPC2 (Hansen et al., 2023), SAC (Haarnoja et al., 2018),
and our method D2AC on DeepMind Control Suite. D2AC without planning can achieve results on-par
with TD-MPC2.

5.2 Benchmarking on goal-conditioned RL environments

Figure 5: Experiments on Multi-Goal RL environments with sparse rewards. Results over 5 seeds.

In Figure 5, we present results on robotic manipulation tasks with sparse rewards. All methods are trained
with Hindsight Experience Replay (HER) (Andrychowicz et al., 2017). The baselines include: DDPG (Lillicrap
et al., 2015), a distributional version of HER (Eysenbach et al., 2019), and recently proposed Bilinear-Value
Network (BVN) (Hong et al., 2022) found to be effective in goal-conditioned RL. We use a centralized learner
and 20 sampling workers for all methods. We find that on Fetch tasks, D2AC performs better or on-par with
previous SOTA method BVN. On 20-DoF Hand Manipulate tasks, the second-best method is still DDPG,
and our method is able to outperform it by a large margin, often both in terms of learning speed and policy
performance at convergence. This performance shows that D2AC is a strong base algorithm that
can work out-of-the-box in a variety of settings.

Interestingly, the previously proposed distributional critic function in (Eysenbach et al., 2019) achieves worst
performance than non-distributional critics. We hypothesize that this is because its specialized type of
goal-conditioned distributional Bellman backup uses a one-hot target the moment a goal is reached, so it
becomes more difficult for the agent to learn how to consistently stay at the goal. Our distributional critics
do not make any particular assumptions about the problem structure of goal-conditioned RL, but still achieve
very strong results in this setting.
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5.3 Biology-Inspired Benchmark: Behavioral Adaptation in Predator–Prey Scenarios

Figure 6: Left: Predator–prey arena(hexagonal maze, start to goal, +1 at goal, –1 when predator is within
0.1 units, matching the real-mouse water/air-puff setup). Middle: Prey’s egocentric view on Map Level 5
(RL sim). Right: Predator’s egocentric view on Map Level 9 (RL sim).

While standard reinforcement learning benchmarks primarily focus on task completion or reward maximization,
they often overlook structural differences in the learned policies. To address this limitation, we introduce
a predator–prey environment inspired by biological survival dynamics (Lai et al., 2024). Such scenarios
serve as foundational models in both natural and artificial systems for analyzing adaptive decision-making
under pressure (Marrow et al., 1996; Han et al., 2025). This domain provides a natural testbed for analyzing
the internal structure of learned policies, including diversity and strategic flexibility to adversarial changes,
qualities often hidden behind reward curves.

Figure 7: Comparison of state density among TD-MPC2, D2AC, and SAC algorithms in a predator-prey
environment. The visualization shows 2000 random episodes for each method, where purple represents the
agent’s state density as the prey reaches the goal while avoiding predators. D2AC demonstrates superior
performance with greater path diversity compared to TD-MPC2 and SAC.

Table 1: Exploration Coverage Analysis over five seeds (values reported as coverage % ± standard deviation)

Algorithm Visit Coverage (τ ≥ 1) a Main Coverage (τ ≥ 10) b

SAC 35.07± 6.07 10.18± 1.18
TDMPC 31.32± 11.64 10.09± 1.76
D2AC 44.58± 3.16 20.04± 0.49

Notes. aStates visited at least once. bStates visited at least 10 times.

Metrics: We train three agents (TD-MPC2, SAC, and our proposed D2AC) for 50,000 steps on Map Level
5 and evaluate: (i)Exploration Coverage (Table 1) through visit coverage and core-area coverage; (ii)Survival
Rate over 2,000 episodes; (iii)Zero-Shot Transfer to unseen Map Level 9 (Table 2).

Results and Analysis: As shown in Table 1, D2AC achieves the highest visit coverage (44.6%, 9.5%
over SAC and 13.2% over TD-MPC2) and doubles TD-MPC2’s core coverage, indicating richer exploration.
Crucially, this richer exploration directly drives generalization: In zero-shot transfer (Table 2), both TD-MPC2
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Table 2: Zero-shot transfer performance from Map Level 5 (trained) to Map Level 9 (unseen). Results are
reported as survival rate % ± standard deviation over five seeds.

Algorithm Level 5 (Trained) Level 9 (Zero-Shot) Change (%)
TD-MPC2 72.33 ± 1.95 62.35 ± 1.36 −9.98
SAC 86.37 ± 3.23 75.95 ± 7.41 −10.42
D2AC 87.05± 4.24 90.69± 3.56 +3.64

and SAC degrade by approximately 10%, while D2AC improves by 3.6%, demonstrating notable adaptability.
Fig. 7 further reveals that TD-MPC2 and SAC exhibit repetitive narrow trajectories, while D2AC explores
more diverse paths and dynamically avoids the predator. These findings indicate that our framework not
only achieves competitive survival rates, but also uncovers structurally richer strategies.

Why D2AC Excels? We hypothesize that the key to D2AC’s success lies in the synergy between its
two main components: the distributional critic and the diffusion actor. The critic models the full return
distribution over trajectories, capturing higher-order statistics such as variance and skewness, which serve
as dense, uncertainty-aware learning signals (Kuang et al., 2023; Lowet et al., 2025). The diffusion actor
generates multimodal action proposals by iteratively denoising samples, enabling it to flexibly trade off
between risk and reward. By aligning action sampling with the uncertainty contours of the critic’s distribution
(Jain et al., 2024; Li et al., 2024), D2AC naturally balances exploration and exploitation and produces richer,
more informative policy gradients.

5.4 Distributional Critic vs. Diffusion Actor

Figure 8: Ablation Studies based on Probability of improvement (Agarwal et al., 2021) using the recommended
protocol from rliable. The X-axis gives the probability D2AC improves upon the performance of the baseline
algorithm on the Y-axis. The boxes represent 95% confidence intervals for each baseline.

One natural question is the following: what is the relative importance of the diffusion actor vs the distributional
critic? Are both components necessary? We test this by introducing an additional method called D1AC.
This method implements the clipped double distributional critics proposed in our paper, but uses a standard
Tanh-Gaussian actor similar to SAC. In Figure 8, we present the results of D1AC alongside D4PG and D2AC
to ablate how much which each modification helps. D2AC has a high probability of improvement on a variety
of ablation environments considered. Note that P(D2AC > Y) is higher than 0.5 on all choices of Algorithm
Y. The improvement of D1AC compared to D4PG is smaller depending on the environment; our hypothesis
is that it might be important to increase the representation power of critic and actor at the same time.
Furthermore, we hypothesize some environments might be more bottlenecked by the policy rather than the
critic function. In addition, the fact that D1AC has much stronger performance than Two-hot + CDQ means
that combining distributional RL with CDQ is significantly more effective than its counterpart with two-hot
discrete critic, which was widely adopted in other methods (Schrittwieser et al., 2020; Hafner et al., 2023).

With respect to the diffusion actor, we are also interested in understanding the relationship between the
number of diffusion steps at training vs the final model performance. In particular, we can consider both
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D2AC TD-MPC2

12h 24h24h12h

Figure 9: Wall-clock runtime comparison against TD-MPC2 on a single GPU. Thanks to being model-free
algorithm without the need for dynamics unrolling and planning, D2AC is a lot faster.

Ktrain, the number of diffusion steps used during training, and K, the number of diffusion steps used at
inference. In Table 1, we see that there is some moderate improvements to the final results when training on
longer diffusion horizons. Our results agree with the common practice in diffusion models (Song et al., 2020a;
Karras et al., 2022) of using more diffusion steps for training and for inference. In addition, we also find that
setting πref = πϕ as done in D2AC policy loss equation 15 rather than just using the actions from the replay
buffer πref ̸= πϕ slightly improves results.

Table 3: Performance Statistics at 500K Environment Steps

Configuration Quadruped Walk Humanoid Walk
Ktrain = K = 2 778.6± 227.6 378.7± 52.5
Ktrain = K = 5 941.5± 9.7 425.1± 39.9
Ktrain = 5, K = 2 928.8± 15.9 386.9± 59.8
Ktrain = K = 5 where πref ̸= πϕ 829.9± 127.5 314.2± 76.5

5.5 Limitation of Our Method

Fundamentally, our method is still a model-free RL method; even a more expressive policy class based on
denoising score matching cannot fully substitute for the role of planning. Although the denoising diffusion
policy improvement we propose already has a lot of similarity to MPPI (Williams et al., 2015a; 2016) in
terms of optimization objective, MPPI is explicitly guided by the critic function during the sampling process,
and simultaneously considers multiple possible trajectories. We expect that explicit value-based planning
should be able to further enhance diffusion performance, but leave it for future work.

6 Conclusion

We have presented D2AC, a model-free RL algorithm that takes inspiration from recent advances in model-
based RL (MBRL). By making careful use of a distributional critic and a denoising actor, we are able to
capture two salient properties from MBRL algorithms: the ability to optimize over a distribution of possible
returns, and the ability to iteratively refine our action selection. Several careful design choices were required to
make this algorithm work at its full potential, most notably using a double-Q learning trick with distributional
RL and a tailored denoising loss for the actor. The resulting method achieves state-of-the-art model-free
performance on both sparse and dense tasks, runs significantly faster than model-based methods, and even
excels on a biology-inspired predator–prey benchmark, delivering superior exploration and zero-shot transfer.

There exist a few exciting avenues for future work. D2AC can be plugged into any model-based methods
as the model-free RL component; we hope to see how simple planning modules can boost its performance.
Our method also did not consider exploration in a direct manner; for some environments, the bottleneck
might be exploration. Finally, we are interested in further improving the computational efficiency of D2AC
by investigating faster diffusion models (Song et al., 2023; Song & Dhariwal, 2023; Chadebec et al., 2025)
and beyond.
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A On Two-hot Functions

The function hzq
is called the two-hot function. Mathematically, hzq

(z) is defined as:

hzq
(z)[k] =



1 z ≤ Vmin and k = 0,

0 z ≤ zq[k − 1],
z−zq [k−1]

zq [k]−zq [k−1] zq[k − 1] ≤ z ≤ zq[k],
zq [k+1]−z

zq [k+1]−zq [k] zq[k] ≤ z ≤ zq[k + 1],
0 z ≥ zq[k + 1],
1 z ≥ Vmax and k = N.

Which is a piece-wise linear function with the following properties. ∀z, if Vmin ≤ z ≤ Vmax,

N∑
j=0

hzq
(z)[j] = 1

N∑
j=0

hzq
(z)[j] · zq[j] = z (16)

Which means that for any z value, the two-hot function will distribute probability mass in the [Vmin, Vmax]
region that sums up to 1, with a weighted mean equal to z itself. Note that the two-hot function is not the
only function that satisfies those properties; for instance, the HL-Gauss parameterization proposed in (Imani
& White, 2018) can also satisfy those two conditions.

Lately, a different type of discrete critic based on two-hot representation has gained popularly from the
success of MuZero (Schrittwieser et al., 2020), Dreamer-v3 (Hafner et al., 2023), and TD-MPC2 (Hansen
et al., 2023). To draw the connection between the two types of discrete critics, we first notice the following:

N∑
j=0

p[j] = 1 r + γ

N∑
j=0

zq[j] · p[j] =
N∑

j=0
(r + γzq)[j] · p[j]
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It follows that: two-hot discrete critic learning can be reformulated as simply swapping the order between
the sum and the two-hot function in the projection operator of distributional RL:

Φdist(zp, p, zq)[k] =
N∑

j=0
hzq (zp[j])[k] · p[j]

Φtwohot(zp, p, zq)[k] = hzq

 N∑
j=0

zp[j] · p[j]

 [k]

And the two-hot label is:

a′ ∼ πϕ(· | s′) ℓtwohot = Φtwohot(r + γzq, qθ(s′, a′), zq)
L(θ) = −ℓ⊤

twohot log qθ(s, a)

In comparison, distributional RL can be seen as using soft labels rather than hard labels; it allows the
uncertainty about future returns to propagate through Q-learning. Two-hot discrete critic learning does not
allow such uncertainty to propagate between different timesteps through Bellman backup.

B Policy Gradients for Variance-Exploding (VE) Diffusion

Let one step of the diffusion process a(k) → a(k−1) for policy πϕ be:

πϕ(a(k−1) | a(k), s) = N (a(k−1) | µϕ(a(k), k; s), (σ2
k − σ2

k−1)I)
µϕ(a(k), k; s) = a(k) + (σ2

k − σ2
k−1)∇a log p(a(k) | σk, s)

∇a log p(a | σ, s) = (Dϕ(a, σ; s)− a)/σ2

where we can see that

µϕ(a(k), k; s) = a(k) +
(σ2

k − σ2
k−1)

σ2
k

(
Dϕ(a(k), σk; s)− a(k)

)
=

σ2
k−1
σ2

k

a(k) +
(σ2

k − σ2
k−1)

σ2
k

Dϕ(a(k), σk; s)

In addition, let the latent variables a(1) · · ·a(K) be:

q(a(k) | a) = N (a(k) | a, σ2
kI)

Then we have the marginal distribution denoted as:

p(a(k)) =
∫

pdata(a)q(a(k) | a)da

Under the assumption that σmax is sufficiently large, the initial noise distribution is pre-defined as:

p(x(K)) = N (0, σ2
maxI)

The full policy distribution is:

πϕ(a | s) =
∫

p(a(K))
K∏

k=1
πϕ(a(k−1) | s, a(k))da1:K

The distribution of a(k) given a(i), for k > i, is given by:

q(a(k) | a(i)) = N (· | a(i), (σ2
k − σ2

i )I)
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Since the forward process is Markov, we have

q(a(k), a(i) | a) = q(a(k) | a) · q(a(i) | a)

The posterior distribution can be written as:

q(a(i) | a(k), a)

Which can be computed in closed-form using the conjugate prior of Gaussian distributions:

q(a(i) | a(k), a) = N
(
·
∣∣∣σ2

i

σ2
k

a(k) + (σ2
k − σ2

i )
σ2

k

a, σ2
i

(σ2
k − σ2

i )
σ2

k

)

Then Jensen’s inequality gives us the following lower bound (Sohl-Dickstein et al., 2015; Ho et al., 2020):

− log πϕ(a | s) ≤ Lprior +
K∑

k=1
Eq(a(k)|a)DKL

[
q(a(k−1)|a(k), a) ∥ πϕ(a(k−1)|a(k), s)

]
Lprior = DKL(q(a(K) | a) ∥ p(a(K)))

From the result of (Kingma et al., 2021), we know that

DKL(q(a(k−1)|a(k), a) ∥ πϕ(a(k−1)|a(k), s)) = 1
2σ2

k−1

σ2
k − σ2

k−1
σ2

k

∥a −Dϕ(a(k), σk; s)∥2

= 1
2

(
1

σ2
k−1
− 1

σ2
k

)
∥a −Dϕ(a(k), σk; s)∥2

Allowing us to arrive at the following result:

log πϕ(a|s) exp Q(s, a) ≥ −Eϵ∼N (0,I),k∼Unif(1···K)[λpg(k)∥a −Dϕ(a + σkϵ, σk; s)∥2exp Q(s, a)]

where the weightings for policy gradient objective λpg are:

λpg(k) = (1/σ2
k−1 − 1/σ2

k) · (K/2)

C Proof of Proposition 1

Proposition 1. Define the data distribution under diffusion step k ≥ 0 to be (with σ̂ ≥ σmin):

pk(a|s) =
∫

π(a(0)|s)N (a|a(0), σ2
kI)da(0) (17)

p̂k(a|s) =
∫

pk+1(u|s)N (a|D(u, σk+1; s), σ̂2I)du (18)

Under the assumptions that (i) entropy of pk and p̂k strictly increases with k; (ii) the KL distance from pk

and p̂k to optimal policy p∗ strictly decreases with k; (iii) σ̂ is sufficiently large such that DKL(p̂0 ∥ p∗) ≥
DKL(p0 ∥ p∗). Then for any state s and diffusion step k, we have

Ep0 [Q] ≥ Ep̂k
[Q]

Proof. Fix an arbitrary state s ∈ S. Because the Boltzmann optimal policy satisfies

p∗(a | s) = exp{Q(s, a)}
Z(s) , Z(s) =

∫
exp{Q(s, a′)} da′,
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it follows that Q(s, a) = log Z(s)− log p∗(a | s). For any distribution q(· | s) this identity yields

Eq[Q] = log Z(s)−DKL
(
q ∥ p∗)−H(q), (19)

where H( · ) denotes differential entropy. Applying equation 19 to q = p0 and q = p̂k and taking their
difference gives

Ep0 [Q]− Ep̂k
[Q] = DKL

(
p̂k ∥ p∗)−DKL

(
p0 ∥ p∗)︸ ︷︷ ︸

:=∆KL(k)

+ H(p̂k)−H(p0)︸ ︷︷ ︸
:=∆H (k)

. (20)

KL term. Assumption (ii) states that k 7→ DKL
(
p̂k∥p∗) is strictly decreasing, and Assumption (iii) gives

DKL
(
p̂0∥p∗) ≥ DKL

(
p0∥p∗). Therefore ∆KL(k) ≥ 0 for every k ≥ 0.

Entropy term. Assumption (i) ensures H(p̂k) ≥ H(p̂0), so it remains to verify H(p̂0) ≥ H(p0). Let
A(0) ∼ π(· | s) and draw independent Gaussian noises ε0 ∼ N (0, σ2

1I) and ε1 ∼ N (0, σ̂2I). Then A(0)+ε0 ∼ p1,
while

Y := D
(
A(0) + ε0, σ1; s

)
+ ε1 ∼ p̂0.

For independent random vectors X and Z, Lemma 17.2.1 of Cover (1999) asserts that

H(X + Z) ≥ H(X), (21)

with strict inequality whenever Z is non-degenerate and X is not already Gaussian with the same covariance.
Applying equation 21 to X = D

(
A(0) + ε0, σ1; s

)
and Z = ε1 gives

H(p̂0) = H(Y ) ≥ H
(
D(A(0) + ε0, σ1; s)

)
≥ H(p1),

where the final inequality follows because deterministic mappings cannot raise differential entropy. Assump-
tion (i) further yields H(p1) > H(p0), hence

H(p̂0) ≥ H(p0), so ∆H(k) ≥ 0 ∀k ≥ 0. (22)

Conclusion. Both terms on the right-hand side of equation 20 are non-negative; consequently

Ep0 [Q]− Ep̂k
[Q] ≥ 0 =⇒ Ep0 [Q] ≥ Ep̂k

[Q], ∀k ≥ 0.

D MPPI

Model Predictive Path Integral Control (MPPI) applies an iterative process of sampling and return-weighted
refinement (Williams et al., 2015a; 2016; 2015b; Nagabandi et al., 2020; Hansen et al., 2022). Initial trajectories
are sampled from a noise distribution:

xk=0···K−1
i=0 ∼ N (· | µi=0, σ2

i=0)
µi=0 = 0
σ2

i=0 = σ2
maxI

At the i-th iteration, MPPI samples K action sequences xk=0···K−1
i from

N (· | µi, σ2
i )
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uses stochastic (virtual) rollouts to estimate the K empirical returns of each action sequences {R}K−1
k=0 . It

then updates the sampling distribution according to

µi+1 =
(

K−1∑
k=0

exp(Rk/λ)xk
i

)/(K−1∑
k=0

exp(Rk/λ)
)

σ2
i+1 =

(
K−1∑
k=0

exp(Rk/λ)(xk
i − µi+1)2

)/(
K−1∑
k=0

exp(Rk/λ)
)

MPPI uses a distribution of returns to update the action proposals to higher-return regions.

E On Tanh Squashing of Actions

The most commonly used action distribution for continuous control is a Gaussian distribution with tanh
squashing (Haarnoja et al., 2018). The policy πϕ outputs the mean µϕ and log sigma, which we exponentiate
to get σϕ.

u ∼ N (· | µϕ(s), σ2
ϕ(s)) a = tanh(u) (23)

where u is sampled using the reparameterization trick (Kingma & Welling, 2013): u = µϕ +ϵ⊙σϕ, ϵ ∼ N (0, I).

Applying the change of variable formula, The change of variable formula says

log π(a | s) = logN (u | µϕ, σ2
ϕ)−

∑
i

log(1− tanh2(ui))

And the second part can be written as:

log(1− tanh2(u))) = 2 log u
= 2 log 2− 2 log(eu + e−u)
= 2 log 2− 2 log(eu(1 + e−2u))
= 2 log 2− 2u− 2 log(1 + e−2u)
= 2 log 2− 2u− 2ζ(−2u)
= 2[log 2− u− ζ(−2u)]

Thus, we use an easy-to-compute and numerically stable form of the log likelihood of Tanh Gaussian
distribution:

f ent(u, µ, σ) = logN (u | µ, σ2)− 2 · 1⊤[log 2− u− ζ(−2u)] (24)

Thus, we can use the squashing to enforce the action boundary, and apply entropy regularization (Haarnoja
et al., 2018):

L(α) = −α[f ent
ϕ − λent|A|]

Which we apply to policy network similar to other model-free baselines.

F Policy Network Parameterization

Let pσ(ũ) =
∫

pdata(u)N (ũ | u, σ2I)du. The min σmin and max σmax of noise levels are selected such that
pσmin(ũ) ≈ pdata(u) and pσmax(ũ) ≈ N (0, σ2

maxI). We adopt the EDM denoiser parameterization (Karras
et al., 2022):

µϕ(s, u, σ) = cskip(σ)u
+ cout(σ)Fϕ(s, cin(σ)u, cnoise(σ))

(25)
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Algorithm 1 Policy Optimization (under Tanh Action Squashing)
procedure Update(ϕ, α | s, a, σ, Q)

Input: policy parameters ϕ, entropy coefficient α.
Input: state s, continuous action a ∈ (−1, 1).
Input: differentiable Q(s, a), noise level σ.
ϵ ∼ N (0, I), ũ = tanh−1(a) + ϵ · σ
µ̂ϕ = µϕ(s, ũ, σ), σ̂ϕ = σϕ(s, ũ, σ)
xϕ ∼ N (· | µ̂ϕ, σ̂2

ϕ)
xtarget = x +∇xQ(s, tanh(x))

∣∣
x=xϕ

▷ Eq equation 15
f̂ ent

ϕ = f ent(xϕ, µ̂ϕ, σ̂ϕ) ▷ Eq equation 24
ϕ← SGD(ϕ,∇ϕ[∥xϕ − xtarget∥2 + αf̂ ent

ϕ ])
α← SGD(α,∇α[−α(f̂ ent

ϕ − λent|A|)]) ▷ Update temperature
end procedure

Algorithm 2 : D2 Actor Critic
procedure ActorCritic(D, θ, ϕ, α)

Input: (s, a, s′, r) ∼ D
Input: critic parameters θ, policy parameters ϕ.
Input: entropy coefficient α.
a′ ∼ πϕ(· | s′) ▷ Diffusion Sampling
Optimize θ with clipped double distributional RL equation ??
i ∼ Unif{1 · · ·Ktrain}, j ∼ Unif{1 · · ·K}
σi ← σ( i−1

Ktrain−1 ), σj ← σ( j−1
K−1 ) ▷ Select noise levels in EDM

Update ϕ, α on (s, a, σi) and (s′, a′, σj). ▷ Alg 1
Target network update: θ ← τθ + (1− τ)θ ▷ Exponential moving average.

end procedure

With the specific functions being:

cskip(σ) = σ2
data/(σ2 + σ2

data)

cout(σ) = σ · σdata/
√

σ2 + σ2
data

cin(σ) = 1/
√

σ2 + σ2
data

cnoise(σ) = log σ

This parameterization offers powerful inductive bias for an iterative denoising process that has been shown to
work well. σϕ(s, a, σ) uses the same network Fϕ except for the last linear layer. The conditioning of cnoise(σ)
is done via positional embedding (Vaswani et al., 2017).

A sequence of noise levels is used σmin = σ1 < σ2 < · · · < σM = σmax. We follow EDM in setting σi = σ( i−1
M−1 )

for i = {1, · · · , M} and ρ = 7:

σ(η) =
(

σ
1/ρ
min + η

(
σ1/ρ

max − σ
1/ρ
min

))ρ

(26)

G Hyperparameters
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Table 4: Hyperparameters for D2AC

Parameters Value

Batch size 256
Optimizer AdamW adamw
Learning rate for policy 0.001
Learning rate for critic 0.001
Learning rate for temperature α 0.0001
α initialization 0.2
Weight Decay 0.0001
Number of hidden layers (all networks) 2
Number of hidden units per layer 256
Non-linearity Layer Normalization (Ba et al., 2016) + ReLU
γ 0.99
λent 0.0
Polyak for target network 0.995
Target network update interval 1 for dense rewards and predator-prey

10 for sparse rewards
Ratio between env vs optimization steps 1 for dense rewards and predator-prey

2 for sparse rewards
Initial random trajectories 200
Number of parallel workers 4 for dense rewards and predator-prey

20 for sparse rewards
Update every number of steps in environment same as Number of parallel workers
Replay buffer size 106 for dense rewards and predator-prey

2.5× 106 for sparse rewards

[V min, V max] [−1000, 1000] for DM control
[−200, 200] for predator-prey
[−50, 0] for Multi-Goal RL

Number of bins (size of the support zq) 201 for DM control
201 for predator-prey
101 for Multi-Goal RL

σmin 0.05
σmax 2.0
σdata 1.0
ρ 7
M 2
M train 5
Noise-level conditioning Position encoding on (103 log σ)/4
Embedding size for noise-level conditioning 32
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