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Abstract

We present a novel methodology aimed at optimizing the application of frozen large
language models (LLMs) for resource-intensive vision-language (VL) pre-training.
The current paradigm uses visual features as prompts to guide language models,
with a focus on determining the most relevant visual features for corresponding
text. Our approach diverges by concentrating on the language component, specifi-
cally identifying the optimal prompts to align with visual features. We introduce
the Prompt-Transformer (P-Former), a model that predicts these ideal prompts,
which is trained exclusively on linguistic data, bypassing the need for image-text
pairings. This strategy subtly bifurcates the end-to-end VL training process into
an additional, separate stage. Our experiments reveal that our framework signifi-
cantly enhances the performance of a robust image-to-text baseline (BLIP-2), and
effectively narrows the performance gap between models trained with either 4M
or 129M image-text pairs. Importantly, our framework is modality-agnostic and
flexible in terms of architectural design, as validated by its successful application in
a video learning task using varied base modules. The code will be made available
athttps://github.com/yiren-jian/BLIText.

1 Introduction

The field of vision-language (VL) learning seeks to create Al systems that mimic human cognition,
processing the world through multi-modal inputs. Core research areas in VL include visual-question-
answering (VQA), image captioning, image-text retrieval, and visual reasoning. VL learning began
with task-specific learning [3l 164] and has since progressed to large-scale image-text pre-training
paired with task-specific fine-tuning [50]]. Furthermore, contemporary studies have begun exploring
the use of off-the-shelf frozen pre-trained large language models (LLMs) in VL models [2} 123} 134, 58],
which have delivered impressive results in language generation tasks such as VQA and image
captioning.

Present VL models utilizing frozen LLMs are characterized by shared design elements: visual
encoders, visual-to-language modules, and frozen LLMs. Except for Flamingo [2]], which employs
a visual signal at each layer of the frozen LLM via gated cross-attention, the majority of works
[6,134) 1411146} 58] feed aligned visual features as soft language prompts [29] into the frozen LLMs
(see Figure[I]left). The models are then trained end-to-end with an image-conditioned language
generation loss using large-scale image-text pairs. This conceptually simple and implementation-wise
straightforward design has proven effective. BLIP-2 [34] demonstrates that decoupling the end-to-end
training into two stages is crucial for state-of-the-art results. The second stage of training involves
standard end-to-end learning, while the first stage of training of BLIP-2 utilizes a learnable module
(called Query-Transformer/Q-Former) to selectively choose/query visual features relevant to the
corresponding text. This reduces 256 features of an entire image to the 32 most relevant visual
features that will be sent into the following parts of the model. Stage 1 of BLIP-2 can be viewed as a
refined learnable version of early VL works [3} 138, [71] that use object detectors like Faster-RCNN
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Figure 1: left: End-to-end training of X-to-language models (where X can be images, videos, or audio), in
which aligned input features are provided as prompts to LLMs. Examples include Frozen [29] and ClipCap [46].
middle: “Forward-decoupled training” as demonstrated in BLIP-2 [34] and X-LLM [6]. For instance, in BLIP-2,
the Q-Former is first trained to extract relevant features from the image encoder, and then the selected features
are used as prompts for LLM for end-to-end learning. right: We propose ‘“backward-decoupled training”, which
initially identifies the “reference prompt” for the LLM to generate the target text, followed by mapping input
features to the “reference prompt”.

[L7] to select features from regions of objects (objects in images are likely to be mentioned and thus
relevant to the accompanying text). We refer to this strategy as “forward-decoupling” since it uses
a heuristic to learn/select which useful features are forward-passed into the subsequent model to
mitigate challenges in the end-to-end optimization (shown in Figure T|middle).

We provide a novel insight to mitigate the challenges in end-to-end optimization by introducing
“backward-decoupling” during back-propagation. For a caption ¢ (e.g., “a cat wearing sunglasses”)
from VL pre-training dataset Dy, the optimizer first finds the optimal continuous prompt p for a
fixed decoder LLM Dyanguage: p = argmin,, £( Dianguage (p), ), before further back-propagating into
the vision-to-language module (e.g., Q-Former in BLIP-2, or MLP in ClipCap) and the vision encoder
(shown in Figure right). We realize that the first stage, optimization of p given Diypguage and ¢, is
purely linguistic and does not restrict the learning text examples from Dyy,. Thus, we propose to
learn this part independently with the available sentence dataset.

While it’s not feasible to learn individual prompts p for each sentence ¢ due to the infinite number of
possible sentences, we propose to parameterize prompt p by a Prompting-Transformer (P-Former):
P = Epromer(t). This effectively transforms the learning of p given Dignguage and ¢ into learning
Ep_Former by argming,  L(Dianguage (Ep-Former(t)), ). Essentially, this is an autoencoder with the
causal LLM Diaguage as the decoder. As for P-Former, we use a bidirectional Transformer and
the [CLS] representation as the bottleneck. Besides the reconstruction loss, we add a contrastive
loss to discriminate each sample. Such a design makes Ep_pormer @ Semantic sentence embedding
model like SimCSE [16] (i.e., semantically similar sentences have similar representations). Once
Ep Former 18 learned, p = Ep_pormer(t) will be the “reference prompt” for LLM Dianguage t0 generate ¢
auto-regressively. The training overview and P-Former details are shown in Figure [2]

Returning to the VL pre-training, we add a complementary loss to minimize the distance between
aligned visual features (being used as language prompts) and the "reference prompt" given by P-
Former. We expect this to improve the VL pre-training in two ways: (1) We further decouple the VL
learning into another stage, as Li et al. [|34]] suggest that multi-stage training is important to mitigate
alignment challenges. (2) A semantically rich space is learned for aligned visual features/prompts
by a SimCSE design for our P-Former trained with the unimodal sentence dataset (i.e., semantically
similar images are encouraged to align to “reference prompts” with close representations).

Our proposed framework only adds a learning objective on tensors feeding into LLMs as prompts
(a.k.a images/multi-modalities as foreign languages [6} 61]). Therefore, our method is agnostic to
the input modalities, X encoders, and X-to-language modules (where X can be images, videos, and
audio). This could be especially salient for videos, which have much less high-quality paired data
[15] compared to image-text pairs. And because P-Former is only trained with the LLM, there is no
need to re-train the P-Former for different modalities.
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Figure 2: Overview of P-Former. left: The P-Former training resembles an autoencoder, with the bidirectional
P-Former as the encoder and a causal LLM (frozen) as the decoder. The objective is to reconstruct input
text auto-regressively. The [CLS] representation serves as sentence embeddings, which are projected back to
the length of prompts. The contrastive loss at [CLS] mirrors the training of SimCSE [16]. A regularization
vocabulary loss is utilized to encourage the prompts to be close to the vocabulary embeddings. right: Overview
of bootstrapping VL pre-training with the trained P-Former. The alignment loss introduced by P-Former is
agnostic to input modalities, encoders, and X-to-language modules (i.e., modules within the dashed box can be
flexible). P-Former is only used during training and not during inference.

In our experiments, we take BLIP-2 as an example and show that our proposed framework improves
this latest VL method by great margins in various benchmarks of VQA and image captioning.
In Section @, we demonstrate its effectiveness in other modalities (i.e., video) using different
vision-to-language modules (i.e., plain Transformer over Q-Former).

We anticipate a growing body of future work within the paradigm of “images/multi-modalities as
language prompts with frozen LLMs” due to its simplicity and effectiveness, as demonstrated by BLIP-
2. For example, a concurrent work X-LLM [6] extends BLIP-2 from images to videos/speech with
more advanced LLMs, augmenting BLIP-2’s vision-to-language module Q-Former with Adapters.
Because our proposed method is agnostic to input modalities, encoders, and X-to-language modules, it
should seamlessly apply to future work within this paradigm of “images/multi-modalities as language
prompts with frozen LLMs”.

2 Related work

End-to-end vision-language learning Most end-to-end VL pre-training models can be broadly
classified into two categories: dual-encoder and fusion-encoder models. Dual-encoder models
employ two separate networks for vision and language, with the modality interaction computed via
dot-product between visual and linguistic features (e.g., CLIP [50]). Due to the efficient computation
of vector dot-product through feature caching, dual-encoder models are effective and highly efficient
for image-text retrieval tasks. However, their performance in VQA, captioning, and visual reasoning
tasks is limited due to the lack of fine-grained alignment between the two modalities.

Fusion-encoder models, such as ALBEF [32]], VLMo [4], and CoCa [69], introduce new fusion-
Transformer layers to model deep interactions between the two modalities in addition to vision and
language encoders. Common designs include concatenating visual and linguistic features before
feeding them into a self-attentive Transformer [4} 7} 18, [14} [19] 201 25} 27, 135} 137, 138} 154! 1561 159,
60, 161} 163 166, 168, [71] or cross-attending vision and language encoders to compute fused features
(201111211305 132) 13311401 14311441157, 165]]. The vision encoder can range from simple linear embeddings
[27] and ConvNets [19} 20, 25 54, 160, 163, 168]] to Transformers [4} (11} [12} 32} 33} 59, |61, 166]], an
offline pre-trained object detector like Faster-RCNN [7} (8}, [14} [35} 137, 1381 1561 [71], or an ensemble
of models [42]]. The language encoder can be initialized with a BERT-based [26] model or as part
of a fusion-Transformer [4, [11} 12} 161} [70]. Most methods utilize three types of losses during pre-
training: image-text contrastive (ITC) loss, image-text matching (ITM) loss, and mask language
modeling (MLM) loss or language generation (ITG) loss. Fusion-encoder models have shown
superior performance in VQA and captioning tasks, though they are less efficient in retrieval tasks. A
thorough review of the recent advancements in VL pre-training can be found in Gan et al. [15].



Vision-language learning with frozen language models Large language models, pre-trained
on large text corpora, show exceptional performance in language generation tasks. Therefore,
incorporating these large frozen language models into VL models can be particularly beneficial for
vision-language generation tasks, such as VQA and captioning. Flamingo [2] incorporates visual
signals into each layer of a large frozen LLM using cross-attention. In contrast, Frozen [58]] fine-
tunes the image encoder to align visual features as soft prompts, which are input into the frozen
language model. Recently, BLIP-2 [34]] introduced an additional vision-to-language adaptation
module Q-former (in conjunction with the frozen ViT [10] and an LLM), proposing a two-stage
training process to mitigate the challenges in learning visual-language alignment. The first stage of
BLIP-2 training optimizes the Q-former to extract beneficial visual features using ITC, ITM, and
ITG losses. In the second stage of BLIP-2 training, all three modules (ViT, Q-former, and LLM) are
trained end-to-end with only the parameters in Q-former updated. Despite being trained on 129M
image-text pairs and with affordable computational resources, BLIP-2 demonstrates competitive
results across multiple benchmarks. Finally, a concurrent work on visual chat-bot X-LLM [6] also
adopts a similar architectural design philosophy to BLIP-2. Our proposed framework with P-Former
can be applied to models under this paradigm that use soft prompts as the visual-language interface
(e.g., Frozen, BLIP-2, X-LLM, etc).

Multi-modal auxiliary data learning Besides using off-the-shelf pre-trained vision encoders (ViT
and Faster-RCNN [[17, [51]]) and language models, it is also interesting to explore how unimodal
training can enhance multi-modal models. VLMo [4] demonstrated the benefits of conducting
stage-wise pre-training with image-only and text-only data for their proposed model architecture. Li
et al. [36] proposed using object tags from detectors as anchor points to bridge unpaired images and
text, while Zhou et al. [74] formed pseudo-image-text pairs using an image-text retrieval alignment.
Video-language models also leverage image-text pairs by repeating images to create static videos,
constructing auxiliary paired datasets for pre-training. Jian et al. [22]] showed that contrastive visual
learning could also enhance contrastive sentence embeddings, a purely linguistic task. We also show
how pure language training can enhance a multi-modal model.

3 Methodology

Problem formulation Given an image-text dataset {I,¢} € Dy, and a unimodal language dataset
composed purely of sentences {t} € Dy, our objective is to optimize the pre-training of a vision-
language (VL) model. This model consists of a pre-trained vision encoder Fyisjon, a Vision-to-language
adaptation module VQL, and a frozen pre-trained language decoder Diapguage- The goal is to minimize

the image-conditioned language generation loss, given that the vision encoder Fyision 1S also frozen:
argmin LCrossEntmpy (Dlanguage ( @ (Evision (I) ) ) 9 t) (1)
[€) V—L
V—L
As Li et al. [34] have noted, end-to-end optimization of Equation [I] visualized in Figure[I)left, can
sometimes lead to catastrophic forgetting in LLMs.

3.1 Backward-decoupling and soft prompt pre-training (Training P-Former)

Let’s denote the adapted visual features as p = v@L(Evision(I )), which serve as soft prompts for the
—

LLM Diapguage- During the optimization, Equation (I{can be decomposed into two parts, visualized in
Figure[T|right:

argmin £cmssEntropy (D language (p) ) t) @)
P
argmin Lysg (V(?)L(Evision(I))zp) 3)

V—L
Equation [2] essentially asks “What is the optimal soft prompt p that enables the auto-regressive
language model D agyaqe to generate the sentence t." Like all gradient-based deep learning models,
depending on the training dataset, learning p given { Diaguage, t} could lead to different sub-optimal
point (a conventional deep learning problem is usually learning Dianguage given {p, t}). End-to-end

'Tt can be easily verified that there exist multiple different soft prompts for an LLM to generate the same text
auto-regressively. In an extreme example, a prompt with 32 tokens and a prompt with 16 tokens padded with 16
empty tokens (zeros vectors) can be both optimized for a LLM to generate the same text.



learning of Equation [I] can only use text ¢ from image-text dataset Dyy, to update its intermediate
variable p. However, we observe that the learning of Equation [2]involves no image, thus allowing us
to leverage abundantly available unimodal sentences in Dy .

Learning p for each ¢ in Dy, without constraint is intractable. Thus, we model p by a bidirectional
Transformer Ep_gormer (named Prompt-Former, or P-Former) p = Ep_gormer(t). Specifically, we use
the output [CLS] hidden state of BERT as a compact representation for ¢ and project it back to the
token length of p. Equation [2|can thus be reformulated as:
argmin LCrossEntropy (Dlanguage (EP-Fnrmer (t) ) ) t) (4)
EP-Former
In essence, Equation [ describes the training of an autoencoder with the bidirectional P-Former
Ep_Former serving as the encoder, and the auto-regressive LLM Djyyguage as the decoder. To enhance
our model, we include an unsupervised contrastive 10ss Longast, acting on the [CLS] representations
of sentences to differentiate distinct instances. This loss, combined with our P-Former design,
emulates the training of SImCSE [[16], a semantic sentence embedding model (i.e., for semantically
similar image-text pairs, the predicted prompts by P-Former should also be close). Furthermore,
we introduce a regularization loss Lycp to minimize the distance between each token in p and the
closest embedding of the LLM’s (Dyanguage) vocabularies. The final objective becomes:
aJrglnin(‘CCrossEntropy(Zjlanguage(E‘P-Former(t))7 t) + Lcontrast + Evocab) (5)
EP—Former
A comprehensive view of the P-Former’s architecture and learning losses is presented in Figure [2) left.
We emphasize that the optimization of Equation [5and P-Former training rely only on the text. Upon
training the P-Former, Equation [3|can be reformulated as:

argmin EMSE( ) (Evision (I) ) y EP—Former(t)) = argmin Ealignment ©6)
[E) V—L [E)
V—L V—L
This new form, depicted in Fig[2]right, minimizes the distance between the aligned visual features and
the prompts predicted by the trained P-Former, effectively aligning visual-linguistic representations.

3.2 Preliminary: BLIP-2 forward-decoupled training

While our proposed framework is flexible in regards to the specific architecture of VGL or the learning
—

strategy deployed, for illustrative purposes, we employ BLIP-2 as a case study to demonstrate the

applicability of our approach with state-of-the-art learning methods, owing to the strong performance

and reproducibility of BLIP-2. In the context of BLIP-2, E\ion is a ViT-g, V@L is referred to as
—

Q-Former, and Dianguage is @ OPT, 75. BLIP-2 proposes a two-stage pre-training process, with the
initial stage involving the pre-training of V@L by:
—
argminITC( © (Eyision(1)), @L(t)) +ITM( © (Eyision(1),t)) + ITG( O (Eyision(I),t)) (7)
e}

V—L V— V—L V—L
V—L

This is followed by a second stage that involves end-to-end training of Equation|l} The terms ITC,
ITM, and ITG in Equation [/|are utilized to guide the Q-Former VGL in extracting visually relevant
—

features that correspond to the associated captions. We refer to this two-step process in BLIP-2 — first
determining the visual features to extract and then incorporating the selected visual features into an
end-to-end learning framework — as “forward-decoupled training.”

3.3 BLIP-2 forward-decoupled training with pre-trained P-Former

‘We now describe the full training pipeline when integrating our framework with BLIP-2. The first
stage of training involves pre-training the Q-Former with Equation (LBLIP2-stage1 = ITC +ITM +
ITG), supplemented with the alignment loss introduced by the P-Former, as defined in Equation [6}

LBLIP2-stagel + W1 X Lalignment (®)

Subsequently, the second stage of training, in line with our approach, involves BLIP-2’s stage 2,
which is the end-to-end training of Equation LBLIP - stage2 = E(Dlanguage(VGL(Evision(I 1)), 1)),
—
again enhanced with the alignment loss imparted by P-Former in Equation [6}
»CBLIPZ—stagSZ + wa X »Calignment (9)
Figure [3] provides a schematic representation of the proposed integration of our framework and
P-Former with BLIP-2.
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Figure 3: An overview of our framework with BLIP-2, which employs a two-stage training process. The green
components represent the alignment loss and modules added by us, which do not require gradients. The blue
components are part of the original BLIP-2 structure. P-Former is solely utilized during training and is not
required during the inference phase. Our proposed framework, with P-Former, can be seamlessly applied to
any models that leverage prompts as the interface for multi-modal-language communications.

3.4 Model pre-training

Training dataset We employ a 12M subset of the pseudo-labeled [33]] LAION dataset [52], using
only the sentences, for pre-training the P-Former. For VL pre-training, we widely adapted academic
setting (since academic institutions lack the resources available to industry researchers to use very
large datasets) with approximately 4M image-text pairs. This set comprises the MSCOCO-80K [39]],
VG-100K [28], CC-3M [53], and SBU-1M [47]] datasets.

Pre-training models Our method is universally applicable to any vision-to-text models that utilize
prompts as the interface. Owing to its impressive performance and reproducibility, we chose BLIP-2
as the base model for our primary experiments. Thus, for VL pre-training, the image encoder Fysion
is a ViT-g/14 from EVA-CLIP [13]], the LLM decoder Dianguage is an OPT, 7p [72]], and the vision-to-
language adaptation module is a Q-Former [34]. The Q-Former is initialized by BERT-base with 32
learnable queries. Our newly proposed P-Former is a base Transformer initialized by BERT-base.

Pre-training details The P-Former is trained on a system with 3 x RTX-A6000 (48GB) GPUs,
using PyTorch [48]]. We trained for five epochs with a linear warm-up and cosine scheduling, using a
batch size of 384 (3 x 128), and AdamW as the optimizer. The initial learning rate is set to le™4,
with a minimum learning rate of 1e~°, a warm-up learning rate of 1e~5, and 2000 warm-up steps.
The VL pre-training is performed on a server equipped with 8 x RTX-A6000 (48GB) GPUs, using
PyTorch. We developed the code based on the LAVIS project [31]. Predominantly, we employed
the default configuration files provided by BLIP-2 of LAVIS. Both the stage 1 and stage 2 training
ran for 10 epochs with linear warm-up and cosine scheduling, using a batch size of 1024 (8 x 128),
and AdamW as the optimizer. The weight decay is set to 0.05, the initial learning rate is le %, the
minimum learning rate is 1e~5, and the warm-up learning rate is 1e~®. The key distinction is that
stage 1 and stage 2 incorporate 5000 and 2000 warm-up steps, respectively. We set w; = 10 and
we = 100 while training BLIP-2 OPT, 75 with our P-Former.

Computational overhead considerations Incorporating Ljignmen: from Equation 8{and E] introduces
only a minimal computational overhead, attributable to an additional forward pass of the P-Former
(Transformer-base) at each iteration. To illustrate, in our experimental settings using BLIP-2 OPT), 75,
the training time for stage 1 saw a modest increase from 2,669 minutes to 2,743 minutes. Similarly,
for stage 2, the training time increased marginally from 1,862 minutes to 1,880 minutes. Thus, our
methodology’s overall computational burden remains manageable despite its enhancements (the only
additional cost is pre-training of the P-Former, which only needs to be done once for an LLM).



4 Experiments

Given the impressive performance and accessibility of the BLIP-2 model, coupled with its open-
source nature, we primarily employ it as our base model. We aim to demonstrate how our proposed
“backward-decoupling” strategy, along with the learned P-Former, can enhance the baselines across
various image-to-text generation benchmarks. In Section[d.5] we further extend the applicability of
our framework to other modalities, utilizing different base models.

4.1 Zero-shot image-to-text generation

We assess the performance of our pre-trained models on zero-shot VQA, encompassing GQA [21]],
OKVQA [43]], and VQAV2 [18]], without any task-specific fine-tuning. As per BLIP-2, we append
text prompts to visual prompts prior to their processing by the frozen LLM. Both for the baseline
BLIP-2 and our model, the text prompt used is “Question: Short answer:”. The results, as detailed in
Table[T] suggest that our proposed framework significantly enhances the zero-shot VQA performance
of BLIP-2 trained with 4M image-text pairs. Remarkably, the gap between the BLIP-2 trained with
4M and 129M image-text pairs is largely bridged by our method.

Models #Pretrain Pretrain VQAV2 OK-VQA GQA
Image-Text Uni-Text | val test-dev test test-dev

FewVLM [24] 9.2M - 47.7 - 16.5 29.3
Frozen [58]] 3M - 29.6 - 59 -
VLKD [9] 3M - 42.6 44.5 133 -
Flamingo3B [2] 1.8B - - 49.2 41.2

OPT,78 BLIP-2 [34] 4M - 46.8 45.6 259 30.5
OPT,.78 Ours 4M v 52.6 522 30.0 34.0
OPT,75 BLIP-2' [34] 129M - 53.5 52.3 31.7 34.6

Table 1: Comparison with different methods on zero-shot VQA T: numbers taken from Li et al. [34].

4.2 Fine-tuned image captioning

We further fine-tune our pre-trained model for MSCOCO [39]] image captioning, employing the text
prompt “a photo of ”. Following BLIP-2, we fine-tune the model for 5 epochs using a batch size of
1024 (8 x 128), AdamW with an initial learning rate of 1e~°, minimum learning rate of 0, warm-up
learning rate of 1le~® and 1000 warm-up steps, with linear warm-up and cosine scheduling. We
evaluate our fine-tuned model on the Karpathy test split of MSCOCO. Also, zero-shot transfer results
on the NoCaps dataset [I]] are reported. Shown in Table [2] our framework improves BLIP-2 in all
metrics, with greater improvements in CIDEr compared to SPICE.

#Pretrain NoCaps Zero-shot (validation set) COCO Fine-tuned
Models Image-Text in-domain near-domain  out-domain overall Karpathy test
& C S ¢ S C S C S | B@4 C
OSCAR [38] 4M - - - - - 809 113 | 374 127.8
VinVL [71] 5.M 103.1 142 961 138 883 121 955 13.5]| 382 129.3
BLIP [33] 129M 1149 152 112.1 149 1153 144 1132 148 | 404 136.7
OFA [60] 20M - - - - - - - - 43.9 145.3
Flamingo [2] 1.8B - - - - - - - - - 138.1
SimVLM [63] 1.8B 113.7 - 110.9 - 115.2 - 112.2 - 40.6 143.3
OPT, 7 BLIP-2 [34] 4M 1153 150 111.0 14.6 1125 140 1119 145 | 41.8 1404
OPT, 7 Ours 4M 118.3 153 1147 149 114.1 14.1 1151 148 | 423 141.8
OPT,,5 BLIP-2' [34] 129M 123.0 158 117.8 154 1234 151 119.7 154 | 43.7 145.8

Table 2: Comparison with different captioning methods on NoCaps and COCO. All methods optimize the
cross-entropy loss during fine-tuning. C: CIDEr, S: SPICE, B: BLEU. T: numbers taken from Li et al. [34].

4.3 Zero-shot image-text retrieval
While our proposed method primarily focuses on refining visual prompts for a frozen LLM to generate

corresponding text, it may not prove as beneficial for image-text retrieval tasks (the ITC and ITM
losses are principally responsible for these tasks). Nevertheless, we present results on zero-shot



MSCOCO, and zero-shot Flickr30K [49] image-to-text and text-to-image retrievals. We compare
two models trained with Lpyipo-staget ATC, ITM and ITG) and Lpr1p2-stagel + Latignment> Without any
further task-specific fine-tuning. As expected, Table [3|reveals that the newly introduced Laiignment
offers limited benefits for retrieval tasks. However, it does not negatively impact the performance.

Pre-training
objectives

Image — Text  Text — Image
R@] R@5 R@l R@5

943 998 829 955
937 997 83.0 958

784 938 60.5  83.0
787 945 604 828

Table 3: Comparison with different image-to-text and text-to-image retrieval methods.

Task

. L R
Flickr30K BLIP2-stagel
BLIP2-stagel ['alignmem

MSCOCO EBLIPZ—stagel

BLIP2-stagel + Lalignmem

4.4 Ablation studies

Impact of alignment loss weights We investigate the influence of w; and w, in Equation [8|and 0]
w1 = 0 and wy = 0 refers to BLIP-2, and w; = 10 and wy = 100 refers to our default configuration
of BLIP-2 + P-Former. The alignment loss introduced by the P-Former proves beneficial in both
stages of VL pre-training, as shown in Table 4]

Alternate language model In this section, we substitute the decoder-based OPT; 75 model with an
encoder-decoder-based FLAN-TS5x;, as the new LLM. The experiments are conducted with a limited
computational budget on 3 x RTX-A6000 and for 5 epochs on both stage 1 and stage 2. The results,
displayed in Table[5] verify the effectiveness of our framework with another LLM.

VQAv2 OK-VQA GQA #Pretrain  |[VQAv2 OK-VQA GQA

w2l val test  test-dev Models Image-Text| val test  test-dev

0 0468 259 305 Flan-T5x; BLIP-2* 4M 483 315 364

Vol s B2 28 Flan-T5 PoaMm 549 357 403

0 100| 50.4 28.7 33.0 an-1.x1. ours =12 220 uat i

10 100| 52.6 30.0 34.0 Flan-T5x;, BLIP-2" 129M 62.6 394 44.4
Table 4: Ablations on w; and w» of Equa- Table 5: Experiments using Flan-T5x;. as LLM. ¥: using much
tion[8land[9] (using OPT,.75 as LLMs). less GPUs/epochs compared to Sec f: from Li et al. [34].

Effect of P-Former’s pre-training sentence datasets In our primary experiments, we utilize a
dataset containing 12M sentences for P-Former training. We investigate the impact of the pre-training
sentence dataset for P-Former by re-training it with 4M sentences from our VL pre-training datasets.
We then train BLIP-2 + P-Former and report zero-shot VQA results in Table[6] This examination
underscores that both the implicit decoupling of BLIP-2’s two-stage training into a 3-stage training
(pre-training of P-Former), and the employment of additional unimodal sentences contribute to the
improved outcomes.

#Pretrain [VQAv2 OK-VQA GQA |IBLEU-4 CIDEr ROUGE
P-Former
Sentences| val test  test-dev NITS-VC [33] | 20.0 240 420
X - 46.8 25.9 30.5 ORG-TRL [73]| 32.1 49.7 489
v, M 5L7 282 323 Lng 293 566 482
v 12M 52.6 30.0 34.0 L116 + Latignment| 309 609 49.1

Table 6: Ablations on sentence datasets used 0 Table7: VATEX English video captioning. Baseline

train P-Former (using OPT,7p as LLMs). The first  jg 5 sequential model (I3D — Transformer — OPT, 1),
row w/o P-Former is baseline BLIP-2. training end-to-end with ITG.

4.5 Video captioning

Our framework is modality-agnostic with respect to the visual encoder and vision-to-language adaptor,
making it applicable to other modalities, such as video. Consequently, we establish a video learning



pipeline, with the vision encoder set as a frozen I3D [5] video encoder, the vision-to-language adaptor
as a Transformer-base, and the LLM decoder as the OPT, 7 (also frozen). We then train this model
on the VATEX [62] English training set and evaluate it on the validation set. This dataset contains
26K videos for training. The experiments are conducted on an RTX-A6000. Initially, we train the
model solely using Lajignmen: for 10 epochs with the P-Former, followed by end-to-end learning with
L1 for an additional 10 epochs.

Our baseline, represented in Table [/| is competitive with two well-established video captioning
models: MITS-VC [55] and ORG-TRL [73]. It is noteworthy that the current state-of-the-art on this
benchmark, VideoCoCa [67]], is trained on 10M videos, in contrast to our model, which is trained
on merely 26K videos. Furthermore, the integration of P-Former and Ljignmen: €nhances the CIDEr
score by 4.3 (from 56.6 — 60.9).

Despite being a smaller-scale experiment without large-scale pre-training, we demonstrate that
our learning framework can be generalized to another modality (i.e., video-learning), employing a
different vision-language adaptor (i.e., a plain Transformer as opposed to a Q-Former).

5 Limitations

Despite the modality-agnostic nature of P-Former and its ability to adapt to various encoders and
vision-to-language adaptors, the unimodal language pre-training remains contingent on the choice of
the frozen LLM. This necessitates re-training of the P-Former for different language decoders such
as OPT, 75 and FLAN-TS5x... Moreover, incorporating P-Former primarily enhances image-to-text
generation tasks such as VQA and image captioning, while it falls short in improving image-text
retrieval tasks. Finally, our methodology primarily assists in bootstrapping prompt-based VL pre-
training, i.e., providing aligned visual features as soft prompts to LLMs. Its application to Flamingo
remains unclear due to its cross-attention basis and non-open-source status. Nevertheless, given the
simplicity of sequential modules of prompt-based models (as demonstrated by recent works such as
Frozen, BLIP-2, X-LLM, etc.), we anticipate that our framework will be broadly applicable to most
future work in the academic setting.

6 Conclusion and discussion

This paper introduces a novel optimization framework for enhancing vision-language models based
on large, frozen LLMs. We observe that the end-to-end image-to-text pre-training can be backwardly
decoupled: initially determining the “ideal prompt” that triggers the LLM to generate the target
text (which can be trained in an unsupervised fashion), followed by the alignment of visual features
to the prompt. To this end, we train a P-Former, which functions similarly to a semantic sentence
embedding model, to predict prompts to which visual features should align. Experimental results
demonstrate that including alignment loss (via P-Former) in the BLIP-2’s framework significantly
narrows the performance gap between models trained with 4M and 129M image-text pairs.

The key contributions of this paper are as follows:

* Contrary to most prior studies, which decouple VL pre-training into (1) learning which visual
features to forward into language modules and (2) conducting end-to-end learning with the selected
visual features (dubbed “forward-decoupling”), we propose an innovative perspective of VL
decoupled-training from a backward viewpoint. We bifurcate the training into (1) determining the
“ideal prompt” for the LLM to generate the text and (2) aligning visual features to that prompt.
We introduce the P-Former, designed to predict the “ideal prompt,” which is trained using a
unimodal sentence dataset. This exhibits a novel application of unimodal training in enhancing
multi-modal learning.

* Our proposed training framework substantially enhances a robust and recent baseline (BLIP-2),
bridging the gap between models trained with 4M and 129M image-text pairs using accessible
hardware (8 x RTX-A6000 in less than 4 days). This considerably lowers the entry barriers to VL
pre-training research and is expected to attract interest from groups with limited resources.

» The proposed framework generally applies to different modalities (images, videos, audio, etc.),
vision encoders, and vision-to-language modules.

Lastly, we address the commonly asked questions by the reviewers in Appendix D] and[E]
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A Intuition and motivation behind P-Former

In this section, we summarize the intuitive explanation and motivation on why learning an ideal
language prompt helps more than using visual ones as in the counterpart models.

* In our experiments with base models like BLIP-2, the architecture consists of three sequential
components: (1) ViT, (2) VL-connector, and (3) LLM decoder. Since we use a frozen LLM for
generation, optimizing closer to the LLM decoder becomes more pivotal for achieving optimal
generation quality.

* The unique design of P-Former mirrors a sentence embedding model. This means the prompts
predicted by the P-Former carry rich semantics. Therefore, during evaluations on unfamiliar images,
the model boasts an improved generalization capability.

* BLIP2’s studies indicate that direct end-to-end optimization of the sequential model can sometimes
lead to catastrophic forgetting. Our approach adds an additional layer of complexity by decompos-
ing the 2-stage BLIP2 training into 3 stages, further addressing this optimization challenge.

* For BLIP2, optimization of soft prompt is learned only using text from image-text pair, while our
decoupled training allows for leveraging additional unimodal data for optimizing these soft prompts

B Justification for lack of ablation experiments w/ and w/o the P-Former

We purposely omitted experiments with and without the P-Former module (e.g., using a randomly
initialized prompt p). This omission was driven by the following considerations:

* Random initialization and learning without P-Former: Our initial approach was to directly
learn from a randomly initialized prompt p without incorporating the P-Former. But, upon testing,
we identified a significant challenge. For a smaller model variant like opt-2.7b, which possesses
a hidden size of 2560, if we employ 32 tokens as soft prompts for an expansive dataset with 4M
sentences, the resultant model would have to accommodate an overwhelming 327B parameters.
This would have computational implications and potentially overfit, as learning from such a vast
parameter space can dilute the essential semantic connections between various sentences.

» P-Former’s efficiency in parameterization: The P-Former emerged as a solution to this parameter
explosion problem. Instead of requiring a unique prompt for each data point in the dataset, the
P-Former parameterizes the soft prompt p using a semantically-rich Transformer model. This
design ensures that the total number of parameters remains fixed at 110M. The major advantage
here is scalability. Whether working with a dataset of 4M, 12M, or even larger (e.g., 129M) or LMs
with varying decoder sizes, the P-Former guarantees a consistent number of parameters, making the
model more computationally efficient and preventing the loss of essential semantic relationships.

In brief, our experimentation strategy was driven by the dual goals of maintaining computational
efficiency while preserving rich semantics. The challenges posed by direct learning from a randomly
initialized prompt emphasized the need for a more structured approach, leading to the birth of the
P-Former concept.

C Qualitative analysis on VQA

In this section, we incorporate qualitative comparisons for the GQA and OKVQA datasets, allowing
us to offer more nuanced insights. In Figure|C.1| we show several examples comparing our model’s
response with BLIP-2 and the ground truth (GT). From these examples, it can be observed that there
is greater agreement with GT by our model.

It should be noted that the abstract semantic reasoning of our model can sometimes lead to artificially
low scores for our model when looking for an exact match. For instance, asking “What occupation
might he have?” with a picture of a person driving a forklift generates the answer “forklift operator”
by our model, whereas the correct exact answer in the GT is stated as “forklift driver.” Though these
two answers are semantically identical, they will count as a wrong generation by our model.

D Additional discussion of the results

In this section, we provide more interpretation of the results. For instance, Table E], in addition to
underscoring the potency of our proposed framework in bolstering the zero-shot VQA performance,
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What  type of
material is the
crosswalk near the |
:tﬂreet lamp made |

W BLIP-2: Asphalt
8 Our: Concrete
GT: concrete

the picture is the

clean mirror? 3

BLIP-2: both
Our: left
GT: left

Which  kind of
device is
reflective?

BLIP-2: a computer A
Our: computer

monitor
GT: monitor

Is the door white
and open?

BLIP-2: yes
Our: no
GT: no

Is the color of the
road the same as
that of the flag?

BLIP-2: yes
Our: no
GT: no

On which side of V(f@‘y

Is the field soft and What brand is this
snowy? device?

BLIP-2: yes BLIP-2: sony

Our: no Our: samsung
GT:no 1 GT:samsung

What of person

type
Is there a tomato would you call if this

in this photo? happened in your
house?
BLIP-2: yes BLIP-2: me
Our: no Our: a plumber
GT:no GT: plumber
Does the train that "
looks orange and ::’h“ :xr: of p":;‘or:
o gray look old or 1 - pel
new? taking?
BLIP-2: both BLIP-2: a mirror
@ Our: new Our: selfie
GT: new GT: selfie

What color do you
think the shirt is?

What  occupation
might he have?

BLIP-2: red
Our: black
GT: black

BLIP-2: truck driver
= Our: forklift operator
GT: forklift driver

What does the
happy man hold?

‘What type of cheese
is being spread?

5
BLIP-2: video game g
controllers -
Our: a wii controller
GT: wii controller

BLIP-2: cheese
Our: mozzarella
GT: mozzarella

What type of
. clothing are the
“  men wearing?

/ BLIP-2: black

Our: suit
GT: suit

. What grade are
g these kids in?

BLIP-2: middle school

What do you call a
baby version of
this animal?

BLIP-2: cat
Our: kitten
GT: kitten

A group of these
animals is called a
what?

BLIP-2: zebra
Our: herd
GT: herd

Where is this lady
having lunch?

BLIP-2: ata
restaurant
Our: outside
GT: outside

What are the round

What device is on L
top of the computer. —
underneath the,
desk?

BLIP-2: a computer
Our: a computer
GT: router

black things called
that is used as a
topping for this
pizza in the photo?
BLIP-2: pizza crust
Our: pepperoni

GT: olives

What is the purpose

Which room s it? of those umbrellas?

BLIP-2: they are for
shade

Our: for shade
GT: block sun

BLIP-2: both
gy Our: classroom
GT: office

Figure C.1: Qualitative analysis on success and failure cases of GQA and OKVQA.

particularly when trained with 4M image-text pairs, shows that our method manages to considerably
close the performance gap between the BLIP-2 trained on different scales: 4M and 129M image-text
pairs. This suggests that the effectiveness of our model is not solely a function of the amount
of training data but rather the methodology itself. In essence, this table illustrates how strategic
modifications and improvements can achieve comparable results to models trained on much larger
datasets.

Similarly, Table 2] provides insights into our model’s adaptability. When we fine-tune our pre-trained
model for a specific task like MSCOCO image captioning, the results reflect an overall enhancement
over BLIP-2 across all metrics. The pronounced improvement in CIDEr, as opposed to SPICE,
indicates that our model is adept at recognizing and generating more relevant and contextually
accurate descriptions of images. The additional data on zero-shot transfer to the NoCaps dataset
further substantiates the model’s capability to generalize and adapt to newer, unseen data.

Finally, while our model’s primary design goal is to refine visual prompts for text generation, Table[3]
offers a perspective on its performance in the retrieval domain. Even though the model was not
specifically optimized for retrieval tasks, it is evident that the introduced modifications do not
compromise the retrieval performance, attesting to the model’s robustness.

E LLM-dependence of the stage-1 pre-training

It should be noted that our stage-1 pre-training needs to be repeated for each LLM, if w; # 0.
However, as evidenced in Table ] (w; = 0 and wy = 100), our approach achieves competitive results
even without the alignment loss in stage-1, focusing the alignment solely on stage-2.
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