

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 WHY LESS IS MORE (SOMETIMES): A THEORY OF DATA CURATION

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 This paper introduces a theoretical framework to resolve a central paradox in
012 modern machine learning: When is it better to use less data? This question has
013 become critical as classical scaling laws suggesting “more is more” (Sun et al.,
014 2025) are challenged by methods like LIMO (“less is more”) and s1 (Ye et al.,
015 2025; Muenighoff et al., 2025), which achieve superior performance with small,
016 aggressively curated datasets. Here, we study data curation strategies where an
017 imperfect oracle selects the training examples according to their difficulty and
018 correctness. Our results provide exact scaling law curves for test error under both
019 label-agnostic and label-aware curation rules, revealing when and why keeping
020 only a subset of data can improve generalization. In contrast to classical scaling
021 laws, we show that under certain conditions, small curated datasets can outper-
022 form full datasets, and we provide analytical conditions for this by deriving precise
023 phase transition curves tied to data size and quality. We validate these theoretical
024 claims with empirical results on ImageNet, confirming our predictions about when
025 curation improves accuracy and can even mitigate model collapse. Furthermore,
026 our framework provides a principled explanation for the contradictory curation
027 strategies recently observed in LLM mathematical reasoning.

1 INTRODUCTION

030 Despite remarkable advances in large language models (LLMs) and other foundation models, train-
031 ing them remains highly inefficient, often requiring hundreds of billions of tokens. A key reason
032 lies in how training data is used: standard loss functions treat all examples equally, regardless of
033 their informativeness. Yet not all data points contribute equally to learning; while some accelerate
034 progress, others are redundant or even detrimental (Sorscher et al., 2022). This inefficiency moti-
035 vates the exploration of principled data curation strategies.

036 Recent empirical successes highlight the promise of aggressive data curation. Methods such as
037 LIMO (Less Is More) (Ye et al., 2025) and s1 (Muennighoff et al., 2025) show that curating compact
038 sets of valid and challenging examples can dramatically improve reasoning performance, often with
039 a fraction of the original data. These results stand in contrast to the traditional scaling law perspective
040 (Kaplan et al., 2020; Hoffmann et al., 2022), which suggests that simply increasing dataset size
041 should monotonically improve generalization. The apparent contradiction between “less is more”
042 and “more is more” (Sun et al., 2025) raises a fundamental question: under what conditions does
043 data curation help, and when does full-data training remain optimal?

044 In this work, our goal is not to propose another heuristic curation method, but rather to build a
045 principled theoretical framework that explains why and when such strategies succeed. We analyze
046 high-dimensional binary classification under pruning oracles that filter examples based on difficulty
047 and correctness. Our theory provides exact scaling laws for test error, revealing sharp phase transi-
048 tions tied to dataset size, label quality, and oracle reliability. These results establish conditions
049 under which keeping only the hardest or easiest examples outperforms training on the full dataset.
050 Crucially, we show how strategic curation can mitigate *model collapse* (Shumailov et al., 2024;
051 Dohmatob et al., 2024a), where iterative self-training on noisy or synthetic data leads to catastrophic
052 degradation.

054
055 **Main Contributions:**
056 • We develop a precise theoretical framework for data curation in high-dimensional learning,
057 deriving exact scaling laws that characterize the effect of data pruning on generalization.
058 • We demonstrate that, under realistic compute or label-quality constraints, strategically pruned
059 datasets can outperform full datasets, thereby bending classical scaling laws.
060 • We empirically confirm our theoretical predictions on ImageNet and connect them to recent
061 large-scale results in LLM reasoning, providing a rigorous justification for why methods like
062 LIMO and s1 succeed.
063 • We show analytically that data curation can avert model collapse under label shift, establishing
064 phase boundaries where uncurated training diverges while curated training remains stable.
065

066 Together, these results reframe data curation not as a heuristic preprocessing step, but as a principled
067 tool for stable and efficient learning.
068
069 **2 SETUP FOR THEORETICAL ANALYSIS**
070
071 To formally analyze when “less is more” versus when “more is more”, we must first establish a
072 precise mathematical setting, which is rich enough to capture the complexity of the problem, but
073 simple enough to be analytically tractable. This section defines our data generation process, the
074 model we analyze, and, most importantly, the key quantities that will allow us to distinguish between
075 different learning regimes: the **quality of the data generator** and the **quality of the pruning oracle**.
076
077 **2.1 DATA, MODEL, AND ASSUMPTIONS**
078
079 **Data Distributions.** Let $P_{w,A}$ denote the probability distribution on $\mathbb{R}^d \times \mathbb{R}$ given by:
080

081
$$(x, y) \sim P_{w,A} \quad \text{iff} \quad x \sim \mathcal{N}(0, A), \quad y = \text{sign}(x^\top w). \quad (1)$$
082

083 The training dataset consists of n i.i.d. pairs (x_i, y_i) from a distribution $P_g = P_{w_g, C_g}$, where $w_g \in$
084 \mathbb{R}^d and $C_g \in \mathbb{R}^{d \times d}$ are the weights/labeling vector and the covariance matrix for the generative
085 distribution (the “generator”). The true test data distribution is, however, $P_* = P_{w_*, \Sigma}$, where $w_* \in$
086 \mathbb{R}^d and $\Sigma \in \mathbb{R}^{d \times d}$ are the true weights and covariance. In general, we consider $w_g \neq w_*$ (i.e., label
087 shift) and $C_g \neq \Sigma$ (i.e., covariate shift).
088

089 **The Model.** Consider a vector $\hat{w} \in \mathbb{R}^d$ defined as the solution to the convex optimization problem:
090

091
$$\underset{w \in \mathbb{R}^d}{\text{minimize}} \frac{1}{n} \sum_{i=1}^n p_i \ell(x_i^\top w; y_i) + \frac{\lambda}{2} \|w\|^2, \quad (2)$$
092

093 Here, $\ell(z; y) := (z - y)^2/2$ is the squared L2 loss, $\lambda > 0$ is a regularization parameter, and
094 $p_i \in \{0, 1\}$ indicates if an example is kept. The downstream classifier is $x \mapsto \text{sign}(x^\top \hat{w})$. The
095 first-order condition for optimality in Eqn (2) gives the solution:
096

097
$$\hat{w} = RX^\top DY/n, \quad \text{with} \quad R := (S + \lambda I_d)^{-1} \quad \text{and} \quad S := X^\top DX/n, \quad (3)$$
098

099 where $X \in \mathbb{R}^{n \times d}$ is the design matrix, $Y \in \mathbb{R}^n$ is the label vector, and D is a diagonal matrix with
100 $D_{ii} := p_i$, indicating which examples are present.
101

102 **Object of Study: High-Dimensional Test Error** Our goal is to characterize the classification test
103 error, $E_{\text{test}}(\hat{w}) := \mathbb{P}(\text{sign}(x^\top \hat{w}) \neq y)$, in the high-dimensional proportionate scaling limit:
104

105
$$n, d \rightarrow \infty, \quad d/n \rightarrow \phi \in (0, \infty). \quad (4)$$
106

107 For simplicity of presentation of our main theoretical results and insights, we limit the analysis to
108 the isotropic setting where the covariance matrices are identity matrices, i.e., $C_g = \Sigma = I_d$. More
109 general results are deferred to the appendix. Thus, our focus here is on label shift, where the labels
110 from the generator P_g might deviate from the ground-truth labels from P_* .
111

108 2.2 DATA CURATION RULES
109110 **Label-Agnostic Curation.** First, we consider a setting where an example (x_i, y_i) is retained based
111 only on its features x_i , via a pruning function $q : \mathbb{R} \rightarrow \{0, 1\}$ and an oracle pruning vector $w_o \in \mathbb{R}^d$:

112
$$p_i = q(x_i^\top w_o). \quad (5)$$

113

114 This rule uses the function q to select examples based on their projection onto the oracle vector w_o .
115 For instance, common strategies like ‘‘keep easy’’ and ‘‘keep hard’’ correspond to choosing $q(t) :=$
116 $1[|t| \geq \alpha]$ to retain large-margin examples (far from the decision boundary) and $q(t) := 1[|t| \leq \alpha]$
117 to retain small-margin examples (close to the decision boundary), respectively. The notion of an
118 example’s difficulty is thus determined by the oracle w_o , and the threshold $\alpha > 0$ controls the
119 proportion of data kept. This captures the setting considered in (Sorscher et al., 2022).120 **Label-aware Curation.** We also analyze a more realistic rule where the oracle filters for the
121 correctness of the corresponding label as well. Here, an example (x_i, y_i) is kept if its label y_i matches
122 the oracle’s label y_i^o and it is deemed interesting by q :

123
$$p_i = 1 \text{ iff } y_i = y_i^o \text{ and } q(x_i^\top w_o) = 1, \quad (6)$$

124

125 where $y_i^o := \text{sign}(x_i^\top w_o)$ is the label according to the pruning oracle (not revealed to the learner!).126 In the practical setting of LIMO (Ye et al., 2025) and s1 (Muennighoff et al., 2025) methods, the
127 pruning function q might capture other heuristic rules which decides if an example is sufficiently
128 diverse or interesting to be retained in the curated dataset.129 **Desiderata:** Importantly, our setup posits that the machine learner can only query the curation
130 rule by submitting input/label pairs (x_i, y_i) and obtaining bits $p_i \in \{0, 1\}$, but has no access to
131 the underlying pruning direction w_o , nor the oracle labels $y_i^o = \text{sign}(x_i^\top w_o)$.132 **Remark 1.** The setups in Feng et al. (2024) and Firdoussi et al. (2024) are a special case of Eqn (6).
133 This occurs when the difficulty-based pruning is ignored ($q \equiv 1$), meaning the curation rule retains
134 an example if and only if its label y_i matches the oracle’s label y_i^o .135 **Pruning Ratio.** The fraction of data retained for learning is the **pruning ratio**, $p := \mathbb{P}(p_i = 1)$.
136 Out of n original examples, approximately np survive curation. A small p corresponds to aggressive
137 pruning, while $p \rightarrow 1$ means no data is removed.140 2.3 QUANTIFYING GENERATOR AND PRUNING ORACLE QUALITY
141142 The following constants play a crucial role in our theory. They measure the geometric alignment
143 between the generator (the labeler of the training data, w_g), the oracle (the pruner, w_o), and the
144 ground truth (the true labeler of the test data, w_*):

145
$$\rho := \frac{w_g^\top C w_*}{\|w_g\|_C \|w_*\|_C}, \quad \rho_* := \frac{w_o^\top C w_*}{\|w_o\|_C \|w_*\|_C}, \quad \rho_g := \frac{w_o^\top C w_g}{\|w_o\|_C \|w_g\|_C}, \quad \tau := \frac{\rho_g}{\sqrt{1 - \rho_g^2}}. \quad (7)$$

146

147 Here, $\|w\|_C := \sqrt{w^\top C w}$ is the Mahalanobis norm induced by the covariance matrix C .148 Geometrically, ρ , ρ_* , and ρ_g are the **cosines of the angles** between their respective vector pairs,
149 while τ is the **cotangent** of the angle between the pruner (w_o) and the generator (w_g).150 Crucially, ρ and ρ_* directly quantify the performance of the generator and the pruner. Their test
151 errors are given by the simple relationship:

152
$$E_{\text{test}}(w_g) = (1/\pi) \arccos \rho \quad \text{and} \quad E_{\text{test}}(w_o) = (1/\pi) \arccos \rho_*.$$

153 Note that \arccos has range $[0, \pi]$. These constants have the following interpretation for our analysis:154

- 155 • **Generator Quality (ρ):** When $\rho \rightarrow 1$, the generator is excellent, which we call a **strong**
156 **generator**. When $\rho < 1$ corresponding to label shift, it is a **weak generator**.
- 157 • **Oracle Quality (ρ_*):** When $\rho_* \rightarrow 1$, the pruning oracle is excellent and aligns well with the
158 ground truth.

159 The triplet (ρ, ρ_g, ρ_*) will appear in our analytical descriptions of the limiting test error $E_{\text{test}}(\hat{w})$.

162 **3 MAIN THEORY: WHEN TO PRUNE AND WHEN TO SCALE**
 163

164 We established a precise mathematical framework in Section 2, defining key quantities such as the
 165 data distribution, model, and curation rules. In this section, we use this framework to develop a core
 166 theory that explains when and why data pruning can improve performance by deriving exact scaling
 167 laws for test error under different data curation strategies. As we will demonstrate, our theory shows
 168 precisely how the optimal pruning strategy changes as a function of ρ .

169 For simplicity, we present our main results for the isotropic setting where $\Sigma = C_g = I_d$ and the
 170 pruning direction w_o has unit norm. General results are in the appendix.

171 **Assumption 1** (Symmetric Pruning Functions). *q is a symmetric binary-valued measurable function,
 172 i.e., $q(t) = q(-t) \in \{0, 1\}$ for all $t \in \mathbb{R}$. \mathcal{Q} denotes the collection of all such functions.*

173 This is a common setup that includes rules based on the absolute value of margins, such as keeping
 174 the "easiest" or "hardest" examples (Sorscher et al., 2022).

177 **3.1 SETTING #1: LABEL-AGNOSTIC DATA CURATION**
 178

179 We first consider label-agnostic pruning, where the decision to keep an example (x_i, y_i) depends
 180 only on the features x_i , as in Eqn (5). For any pruning function $q \in \mathcal{Q}$, we define four key constants
 181 that capture its effect on the learning dynamics:

182
$$p := \mathbb{E}[q(G)], \quad \gamma := \mathbb{E}[q(G)G^2], \quad \beta := 2\mathbb{E}[q(G)\varphi(\tau G)], \quad \tilde{\beta} := 2\mathbb{E}[q(G)\Phi(\tau G)G], \quad (8)$$

 183

184 where φ and Φ are the pdf and cdf respectively of a standard Gaussian variable $G \sim \mathcal{N}(0, 1)$. Note
 185 that $p = p(q)$ defined above is just the average fraction of data kept by the pruning strategy in
 186 Eqn (5).

187 The following theorem provides our first main result: an exact analytical formula for the test error.

188 **Theorem 1** (Exact Test Error). *In the asymptotic limit Eqn (4), the test error of the model \hat{w} from
 189 Eqn (3) is given by,*

190
$$E_{test}(\hat{w}) \rightarrow \frac{1}{\pi} \arccos(|m_0|/\sqrt{\nu_0}), \text{ where} \quad (9)$$

 191

192
$$m_0 := \omega m(-\lambda) + \tilde{\omega} \tilde{m}(-\lambda), \quad \nu_0 := p\phi m'(-\lambda) + r'(-\lambda) - \frac{2\phi m'(-\lambda)r(-\lambda)}{1 + \phi m(-\lambda)}, \quad (10)$$

 193

194
$$\text{with } \omega := (\rho - \rho_g \rho_*), \quad \tilde{\omega} := \tilde{\beta} \rho_*, \quad (11)$$

 195

196 where m , \tilde{m} , and r are functions explicitly determined by the constants in Eqn (8). In particular, m
 197 is the Stieltjes transform of a Marchenko-Pastur law, "deformed" by pruning. Details in appendix.

198 This theorem provides the machinery to analyze any pruning strategy q , and isolate its effect on the
 199 dynamics of the classification test error curve. This impact is entirely captured by the scalars p, γ, β ,
 200 and $\tilde{\beta}$. Now, we use this tool to characterize the optimal choice of q .

201 **Sketch of Proof of Theorem 1.** The full proof is given in the appendix, and relies on the construction
 202 of suitable deterministic equivalents for the resolvent matrix R defined in Eqn (3) and its square R^2 .
 203 This allows us to calculate the limiting distribution of the "margin" $yx^\top \hat{w}$ at a random test point
 204 $x \sim \mathcal{N}(0, I_d)$, and then the test error $E_{test}(\hat{w}) := \mathbb{P}(yx^\top \hat{w} < 0)$. Our approach follows random
 205 matrix theory (RMT) techniques which are now prevalent in machine learning theory (Coullet &
 206 Liao, 2022; Firdoussi et al., 2024).

207 **Optimal Pruning Strategy.** In the asymptotic limit Eqn (4), let $F(q)$ be an error functional repre-
 208 senting the limiting test error for a given strategy q in the data-rich, unregularized regime:

209
$$F(q) := \lim_{\phi \rightarrow 0} \lim_{\lambda \rightarrow 0} \lim_{d, n \rightarrow \infty, d/n \rightarrow \phi} E_{test}(\hat{w}), \quad (12)$$

 210

211 where $\hat{w} = \hat{w}(q, n, d, \lambda, \rho_*, \dots)$ is the estimator Eqn (3) fitted on a version of the training dataset
 212 D_n pruned with the pruning strategy q .

213 The following theorem shows how the minimizer of $F(q)$ changes based on the generator quality ρ .

216 **Theorem 2** (Optimal Pruning Strategy). *Suppose that the pruning direction w_o has a positive pro-
217 jection along the generator direction w_g ($\rho_g > 0$) and fix the pruning ratio $p \in (0, 1]$. Let \mathcal{Q}_p be the
218 set of strategies that keep a fraction p of the data.*

219 (A) *If the generator is excellent ($\rho \rightarrow 1$) and the pruner is excellent ($\rho_* \rightarrow 1$), then the "keep hard"
220 (KH) strategy uniquely minimizes the test error $F(q)$ over \mathcal{Q}_p .*

222 (B) *If the generator is poor ($\rho < 1$) but the pruner is excellent ($\rho_* \rightarrow 1$), then the "keep easy" (KE)
223 strategy uniquely minimizes the test error $F(q)$ over \mathcal{Q}_p .*

224 Part (A) shows that for a strong model/generator that has already mastered the task, performance
225 is refined by focusing on difficult examples—a "less is more" (Ye et al., 2025) approach. Part
226 (B) captures the opposite scenario: for a weak model/generator, the best strategy is to keep easy
227 examples. This latter case is particularly relevant for mitigating model collapse, where a model
228 trained on its own imperfect outputs acts as a poor generator (Shumailov et al., 2024; Dohmatob
229 et al., 2025). Also see Appendix C.

231 3.2 SETTING #2: LABEL-AWARE DATA CURATION

233 We now extend our analysis to the pruning rule from Eqn (6), inspired by methods like LIMO (Ye
234 et al., 2025) and s1 (Muennighoff et al., 2025). Here, an example is kept only if an oracle deems its
235 label to be correct **and** it satisfies the difficulty-based rule. This requires modifying the definitions
236 of our key constants from Eqn (8). Set $z_i := x_i^\top w_g$, $z_i^o := x_i^\top w_o$, and $f_i := p_i y_i$, where $p_i \in \{0, 1\}$
237 is as defined in Eqn (6). The said modifications are:

$$238 \quad p := \mathbb{P}(p_i = 1), \quad \gamma := \mathbb{E}[(y_i^o)^2 p_i], \quad \beta := \mathbb{E}\left[\frac{\partial f_i}{\partial z_i}\right], \quad \tilde{\beta} := \mathbb{E}\left[\frac{\partial f_i}{\partial z_i^o}\right]. \quad (13)$$

240 Expectations are over the training data and derivatives are in the distribution-theoretic sense. Explicit
241 formulae for the above constants are provided in the appendix for a general pruning strategy $q \in \mathcal{Q}$.

242 **Theorem 3** (Test Error for Label-aware Curation). *In the asymptotic limit Eqn (4), the test error
243 $E_{test}(\hat{w})$ for label-aware curation is given by the same formula as in Theorem 1, but using the
244 modified constants from Eqn (13).*

245 Refer to the appendix for full proofs, various corollaries and their phenomenological implications.

247 4 BRIDGING THEORY AND PRACTICE

250 Our theoretical framework provides a clear principle: the optimal data curation strategy is not uni-
251 versal but depends on the interplay between the generator's quality (ρ), the pruner's quality (ρ_*),
252 their alignment (ρ_g), and the amount of available data (n). In this section, we first validate our pre-
253 dictions in a controlled synthetic environment. We then use these validated principles as a lens to
254 interpret and unify real-world results in LLM mathematical reasoning and ImageNet classification.
255 For a comprehensive set of validations, please see Figure 4 and Appendix B.

256 4.1 THEORY PREDICTION: THE INTERPLAY OF GENERATOR QUALITY AND DATA SCALE

258 We simulate four distinct learning regimes in a 2x2 grid to characterize the test error as we vary
259 the generator's quality (ρ) and the amount of available data (n). The left column shows a **strong**
260 **generator** ($\rho = 1$), while the right shows a **poor generator** ($\rho < 1$). The top row represents a
261 **small- n** regime, and the bottom represents a **large- n** regime.

262 In each setting, we compare a strategic "keep hard" pruning strategy against a baseline "random"
263 selection of the same size, where the pruner is uninformative¹. Figure 1 plots the test error, showing
264 the match between our theoretical predictions and the empirical results.

265 The results reveal a clear pattern for when to prune. In three of the four regimes, the test error
266 is minimized when the pruning fraction $p = 1$, confirming the "more is more" (Sun et al., 2025)
267 principle. This holds true when:

269 ¹For the "keep hard" strategy, we set $\rho_g = 0.5$ and $\rho_* = \rho$. The "random" strategy uses an orthogonal
pruner where $\rho_* = \rho_g = 0$.

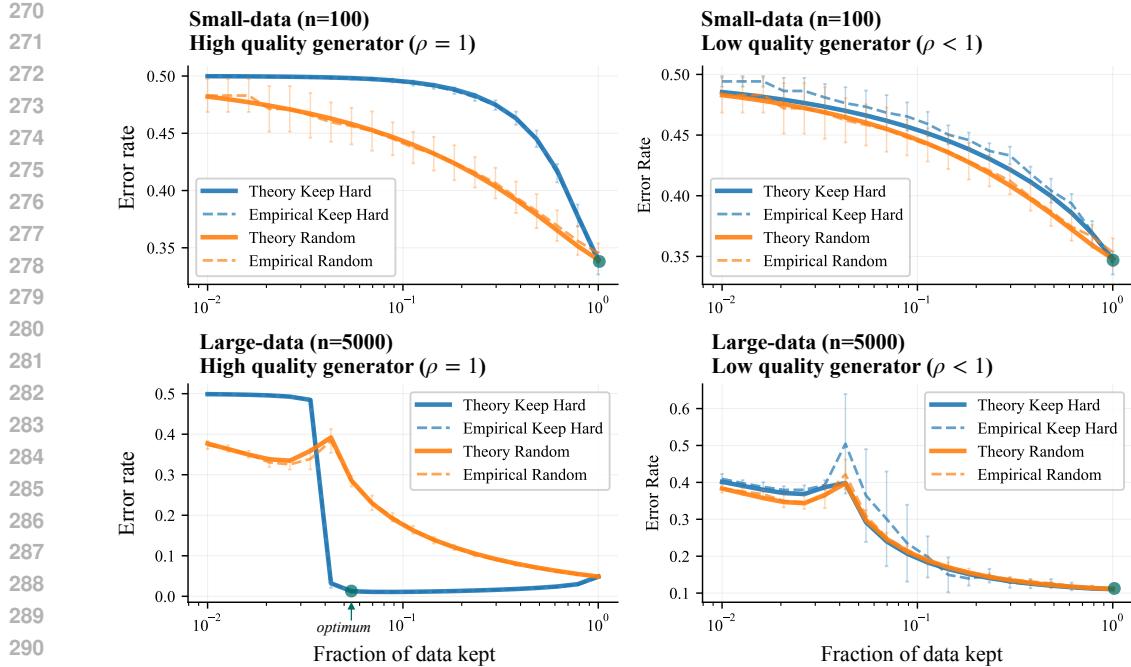


Figure 1: **Theory Prediction across four key regimes.** Test error as a function of fraction of data kept ($p = 1$ means keeping all the data) for “keep hard” and “random” pruning. Solid lines are theoretical predictions; dashed lines are empirical results with error bars. The plot reveals that a “more is more” strategy (optimal error at $p=1$) is the default, holding true for small datasets (top row) or a poor generator (right column). The bottom-left quadrant shows the crucial exception: only when data is abundant and the generator is strong does the “less is more” principle apply, with aggressive pruning yielding the lowest error.

- The amount of data is small (top row, both poor and strong generators).
- The generator is poor, even with abundant data (bottom right).

However, the bottom-left quadrant reveals the critical exception. When the data is abundant **and** the generator is strong ($\rho = 1$), the error is minimized at $p \ll 1$. This confirms the “less is more” principle: in this specific regime, curating a small set of hard examples is the optimal strategy.

4.2 RECONCILING RECENT FINDINGS IN LLM MATH REASONING

Our framework can interpret and unify seemingly contradictory findings in LLM mathematical reasoning. The following results are aggregated from existing literature and our theory provides a novel explanation for *why* different curation strategies succeed under different conditions. In this context, the **generator** (w_g) is the base LLM that produces reasoning traces, and its **quality** (ρ) reflects its proficiency on a specific slice of the test data.

Recent methods like LIMO and s1 show that “less is more”: aggressive curation of high-quality, difficult examples improves *average* performance on the AIME benchmark (Table 1). However, a paradox emerges when evaluating only on the *hardest* AIME questions: here, “more is more” holds true, and performance scales with the number of training examples (Table 2).

Our theory resolves this cleanly:

- **For Average Performance**, the base LLM is a **strong generator** (high ρ) for the majority of problems. As predicted by our theory, the optimal strategy is to aggressively prune and “keep hard” examples to refine its already strong capabilities.

324
325 Table 1: AIME 2024 (Average Performance) re-
326 ported in [Muennighoff et al. \(2025\)](#); [Ye et al.](#)
327 ([2025](#)).
328
329

Training Data Size	Pass@1 (%)
0 (Base Qwen2.5_32B)	16.5
114k (Openthinker)	50.2
59k (curated in s1)	53.3
1k (curated from pool of 59k)	56.7

334
335
336 • **For Hard Performance**, the same LLM is a **weak generator** (low ρ) relative to this diffi-
337 cult data slice. In this regime, our theory correctly predicts that a "more is more" approach
338 is superior, as the model needs a larger dataset to build foundational skills for these novel
339 problems.

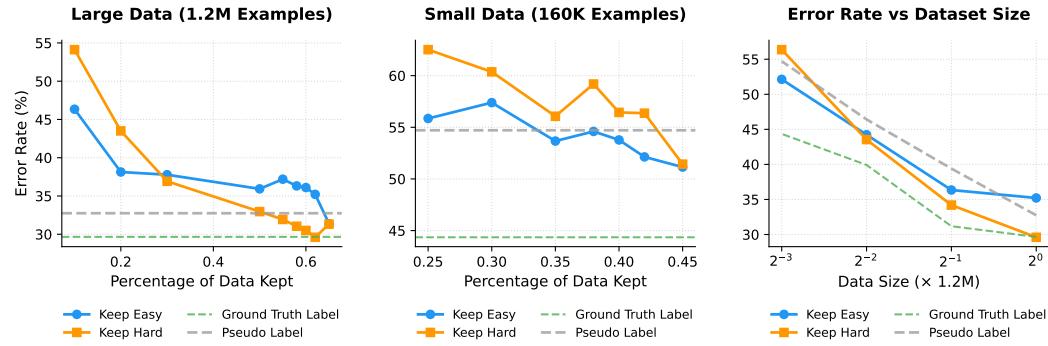
340 The optimal strategy is not universal; it depends on the generator's capability relative to the target
341 task's difficulty.

343 4.3 CURATION ON IMAGENET: DATA SCALE AND MODEL COLLAPSE

345 We demonstrate that the same principles apply to large-scale vision tasks. We use a pre-trained
346 model as both the *generator* (w_g) and *pruner* (w_o) to create and select from a pseudo-labeled dataset.
347 The strength of this generator is controlled by the size (n) of its initial training set.

349 **Optimal Strategy Depends on Data Scale.** As predicted, the initial data size dictates the best
350 pruning strategy. Figure 2 shows a clear crossover point:

351 • **Small n (Weak Generator):** When trained on only 160K examples, the "keep easy" strategy
352 is more effective.
353
354 • **Large n (Strong Generator):** When trained on 1.2M examples, the "keep hard" strategy
355 becomes superior, achieving performance close to a model trained on ground-truth labels.



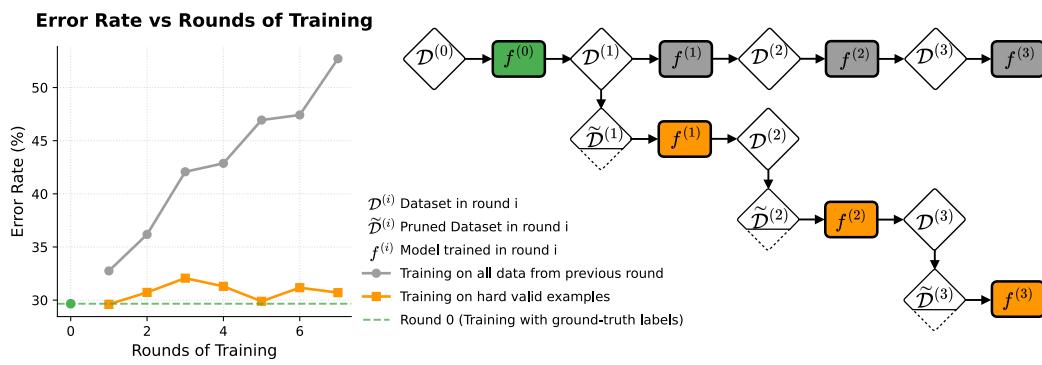


Figure 3: **Strategic pruning prevents model collapse.** Over multiple rounds of pseudo-labeling, training on all examples leads to performance degradation. In contrast, selectively training on only hard, valid examples consistently preserves performance across rounds.

5 RELATED WORK

Beating Neural Scaling Laws. The award-winning work of [Sorscher et al. \(2022\)](#) show that pruning a training set with margin-based difficulty scores can bend neural scaling curves, delivering higher accuracy with fewer samples. More recent methods in reasoning and program-synthesis tasks—LIMO ([Ye et al., 2025](#)) and S1 ([Muenninghoff et al., 2025](#)) report an even more drastic picture: a compact set of challenging, high-quality examples drives larger gains than indiscriminate data expansion. In these pipelines the *inputs* (questions) are human-curated, while the *outputs* (answers or solutions) are generated by a large model such as R1 ([Guo et al., 2025](#)). We provide theoretical justification for the improved scaling behavior and systematically study a simpler, yet analogous, setup through controlled experiments on ImageNet ([Deng et al., 2009](#)).

Model Collapse. Advances in generative models have led to synthetic data becoming widespread online, where it now irreversibly blends into training corpora. Recent studies have highlighted the potential for dramatic deterioration in downstream models, a phenomenon known as “*model collapse*” ([Shumailov et al., 2023](#)). Empirical studies have demonstrated this issue in various settings ([Hataya et al., 2023](#); [Martínez et al., 2023a;b](#); [Bohacek & Farid, 2023](#); [Briesch et al., 2023](#)). Synthetic data can exacerbate biases via feedback loops ([Taori & Hashimoto, 2023](#); [Wyllie et al., 2024](#)), narrow content diversity ([Padmakumar & He, 2024](#); [Guo et al., 2023](#)), and distort underlying distributions ([LeBrun et al., 2021](#)).

Theoretical analysis also examines the effects of iterative training on self-generated data ([Alemohammad et al., 2023](#); [Bertrand et al., 2023](#); [Dohmatob et al., 2024a](#); [Seddk et al., 2024](#)). Notably, [Dohmatob et al. \(2024b\)](#) warns that model collapse signifies a break in customary neural scaling laws ([Kaplan et al., 2020](#); [Hoffmann et al., 2022](#)), where increasing synthesized data volume does not enhance performance as effectively as scaling with human-generated data. As a result, recent works have focused on avoiding or correcting synthetic data to prevent model collapse. [Gillman et al. \(2024\)](#) propose using a correction function informed by expert knowledge to modify the synthesized data. [Alemohammad et al. \(2024\)](#) leverage a model trained on synthetic data as negative guidance for diffusion models. [Zhang et al. \(2024\)](#) employ the confidence score and an AI detection classifier to discard synthesized data. In contrast, we propose leveraging the synthesized data through strategic selection techniques.

We also note the approach proposed by [Gerstgrasser et al. \(2024\)](#), which suggests accumulating multiple versions of the training dataset over time so that their union, unlike the latest version alone, retains crucial information about the ground truth distribution of the data. While this is an interesting direction, we believe it may face practical limitations as both models and datasets continue to scale over time.

Building on the recent works of [Feng et al. \(2024\)](#); [Firdoussi et al. \(2024\)](#) which assume a pruning oracle that can only guess which examples from the training data have correct labels, we propose and analyze a more general setup covering oracles which can also assess the difficulty of example.

Benefits of Synthesized Data. Synthetic data holds great potential, as it is much easier and cheaper to scale compared to human-labeled data. Numerous empirical studies have demonstrated the benefits of synthesized data across a wide range of settings. Common practices include cases where the downstream task slightly differs from that of the data-generating model (Cheng et al., 2024), where the generating model is significantly stronger than the consuming one (Hemmat et al., 2025), or when better prompt engineering and external information are utilized (Shin et al., 2023; Hemmat et al., 2023; Nalela, 2025). Data selection is already employed in some domains, particularly in code generation and mathematics, where natural verifiers such as compilers, solutions, or heuristic verifiers exist. For instance, Haluptzok et al. (2022) generate synthesized code and filter out incorrect samples. Ulmer et al. (2024) use conversational metrics to filter synthetic dialogue data. Trinh et al. (2024) utilize a symbolic deduction engine to verify correct solutions for Olympiad geometry problems. Setlur et al. (2024) apply a final answer verifier to distinguish between good and bad synthetic data. Although verifiers are used in these cases, their effects on performance have not been systematically explored, especially in terms of how different types of verifiers influence outcomes.

6 CONCLUDING REMARKS

We put forward a principled view of aggressive data curation, demonstrating that the striking results from systems like LIMO and s1 are not coincidences but follow from fundamental properties of learning with pruned data. By supplying a clean theoretical lens—validated on synthetic data and ImageNet, and shown to explain phenomena in LLMs—we give practitioners a clearer picture of *when* to discard data and *why* this can stabilize training and improve generalization. In doing so, we shift the focus from a “more is always better” mindset toward a more evidence-based, data-centric workflow.

Furthermore, our framework explains how principled curation can mitigate **model collapse** Shumailov et al. (2024), a phenomenon characterized by a shift in scaling laws Dohmatob et al. (2024b;a; 2025). By revealing the stabilizing role of a strong pruning oracle, our findings also provide a theoretical basis for recent empirical successes in this area Feng et al. (2024).

Limitations. While our framework provides a unifying perspective, we acknowledge its limitations. Our core theory assumes a high-dimensional Gaussian feature model and binary classification, whereas real-world data is structured, multi-class, and often curated online. We do not address non-linear predictors, the effects of multi-epoch optimization, or the interplay between pruning and active learning.

Future Directions. We see three immediate avenues for extending this work:

- (i) *Analysis of non-linear models.* Extending the theory to neural networks in the kernel regime, i.e., random-feature and kernel regimes—or to the infinite-width neural tangent kernel—would bridge the gap to practical deep learning architectures. Such an analysis can still be carried out using RMT ideas. Less obvious is analyzing the feature-learning regime (e.g., SGD on moderately parametrized networks). Here, the analysis becomes significantly more difficult and we can no longer rely on classical RMT. This is an interesting future direction.
- (ii) *Adaptive curation loops.* Incorporating iterative re-scoring and re-training would capture the feedback dynamics used in modern self-distillation and RLHF pipelines.
- (iii) *Broader evaluation.* Testing theory-guided pruning on diverse modalities (text, code, speech) and assessing its impact on fairness, privacy, and energy consumption will clarify when and how “less is more” in large-scale ML.

We hope this work provides a rigorous starting point for these efforts and for the principled design of future data-centric training pipelines.

486 REFERENCES
487

488 Sina Alemohammad, Josue Casco-Rodriguez, Lorenzo Luzi, Ahmed Imtiaz Humayun, Hossein
489 Babaei, Daniel LeJeune, Ali Siahkoohi, and Richard G. Baraniuk. Self-consuming generative
490 models go mad. *arXiv preprint arxiv:2307.01850*, 2023.

491 Sina Alemohammad, Ahmed Imtiaz Humayun, Shruti Agarwal, John Collomosse, and Richard
492 Baraniuk. Self-improving diffusion models with synthetic data, 2024. URL <https://arxiv.org/abs/2408.16333>.

493 Quentin Bertrand, Avishek Joey Bose, Alexandre Duplessis, Marco Jiralerspong, and Gauthier
494 Gidel. On the stability of iterative retraining of generative models on their own data. *arXiv
495 preprint arxiv:2310.00429*, 2023.

496 Matyas Bohacek and Hany Farid. Nepotistically trained generative-ai models collapse, 2023.

497 Martin Briesch, Dominik Sobania, and Franz Rothlauf. Large language models suffer from their
498 own output: An analysis of the self-consuming training loop, 2023.

499 Yinan Cheng, Chi-Hua Wang, Vamsi K Potluru, Tucker Balch, and Guang Cheng. Downstream
500 task-oriented generative model selections on synthetic data training for fraud detection models.
501 *arXiv preprint arXiv:2401.00974*, 2024.

502 MMPreTrain Contributors. Openmmlab’s pre-training toolbox and benchmark. <https://github.com/open-mmlab/mmpretrain>, 2023.

503 Romain Couillet and Zhenyu Liao. *Random Matrix Methods for Machine Learning*. Cambridge
504 University Press, 2022.

505 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
506 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
507 pp. 248–255. Ieee, 2009.

508 Elvis Dohmatob, Yunzhen Feng, and Julia Kempe. Model collapse demystified: The case of regres-
509 sion. *arXiv preprint arXiv:2402.07712*, 2024a.

510 Elvis Dohmatob, Yunzhen Feng, Pu Yang, Francois Charton, and Julia Kempe. A tale of tails:
511 Model collapse as a change of scaling laws. In *Forty-first International Conference on Machine
512 Learning*, 2024b.

513 Elvis Dohmatob, Yunzhen Feng, Arjun Subramonian, and Julia Kempe. Strong model collapse. In
514 *The Thirteenth International Conference on Learning Representations*, 2025.

515 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
516 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
517 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint
518 arXiv:2010.11929*, 2020.

519 Yunzhen Feng, Elvis Dohmatob, Pu Yang, Francois Charton, and Julia Kempe. Beyond model col-
520 lapse: Scaling up with synthesized data requires reinforcement, 2024. URL <https://arxiv.org/abs/2406.07515>.

521 Aymane El Firdoussi, Mohamed El Amine Seddik, Soufiane Hayou, Reda Alami, Ahmed Alzubaidi,
522 and Hakim Hacid. Maximizing the potential of synthetic data: Insights from random matrix
523 theory, 2024.

524 Matthias Gerstgrasser, Rylan Schaeffer, Apratim Dey, Rafael Rafailov, Tomasz Korbak, Henry
525 Sleight, Rajashree Agrawal, John Hughes, Dhruv Bhandarkar Pai, Andrey Gromov, Dan Roberts,
526 Diyi Yang, David L. Donoho, and Sanmi Koyejo. Is model collapse inevitable? breaking the curse
527 of recursion by accumulating real and synthetic data. In *First Conference on Language Modeling*,
528 2024.

529 Nate Gillman, Michael Freeman, Daksh Aggarwal, HSU Chia-Hong, Calvin Luo, Yonglong Tian,
530 and Chen Sun. Self-correcting self-consuming loops for generative model training. In *Forty-first
531 International Conference on Machine Learning*, 2024.

540 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 541 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 542 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

543

544 Yanzhu Guo, Guokan Shang, Michalis Vazirgiannis, and Chloé Clavel. The curious decline of
 545 linguistic diversity: Training language models on synthetic text, 2023.

546

547 Patrick Haluptzok, Matthew Bowers, and Adam Tauman Kalai. Language models can teach them-
 548 selves to program better. In *The Eleventh International Conference on Learning Representations*,
 549 2022.

550

551 Ryuichiro Hataya, Han Bao, and Hiromi Arai. Will large-scale generative models corrupt future
 552 datasets? In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*,
 553 pp. 20555–20565, October 2023.

554

555 Askari Reyhane Hemmat, Mohammad Pezeshki, Elvis Dohmatob, Florian Bordes, Pietro Astolfi,
 556 Melissa Hall, Jakob Verbeek, Michal Drozdzal, and Adriana Romero-Soriano. Improving the
 557 scaling laws of synthetic data with deliberate practice. *arXiv preprint arXiv:2502.15588*, 2025.

558

559 Reyhane Askari Hemmat, Mohammad Pezeshki, Florian Bordes, Michal Drozdzal, and Adriana
 560 Romero-Soriano. Feedback-guided data synthesis for imbalanced classification. *arXiv preprint*
 561 *arXiv:2310.00158*, 2023.

562

563 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 564 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
 565 nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
 566 Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
 567 Training compute-optimal large language models, 2022.

568

569 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
 570 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 571 models. *arXiv preprint arXiv:2001.08361*, 2020.

572

573 Benjamin LeBrun, Alessandro Sordoni, and Timothy J O’Donnell. Evaluating distributional dis-
 574 tortion in neural language modeling. In *International Conference on Learning Representations*,
 575 2021.

576

577 Zhenyu Liao and Michael W. Mahoney. Hessian eigenspectra of more realistic nonlinear models. In
 578 *Advances in Neural Information Processing Systems*, 2021.

579

580 Gonzalo Martínez, Lauren Watson, Pedro Reviriego, José Alberto Hernández, Marc Juarez, and Rik
 581 Sarkar. Combining generative artificial intelligence (ai) and the internet: Heading towards
 582 evolution or degradation? *arXiv preprint arxiv: 2303.01255*, 2023a.

583

584 Gonzalo Martínez, Lauren Watson, Pedro Reviriego, José Alberto Hernández, Marc Juarez, and Rik
 585 Sarkar. Towards understanding the interplay of generative artificial intelligence and the internet.
 586 *arXiv preprint arxiv: 2306.06130*, 2023b.

587

588 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 589 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 590 scaling. *arXiv preprint arXiv:2501.19393*, 2025.

591

592 Polycarp Nalela. Leveraging generative ai through prompt engineering and rigorous valida-
 593 tion to create comprehensive synthetic datasets for ai training in healthcare. *arXiv preprint*
 594 *arXiv:2504.20921*, 2025.

595

596 Vishakh Padmakumar and He He. Does writing with language models reduce content diversity? In
 597 *International Conference on Learning Representations (ICLR)*, 2024.

598

599 Mohamed El Amine Seddik, Suei-Wen Chen, Soufiane Hayou, Pierre Youssef, and Merouane Ab-
 600 delkader DEBBAH. How bad is training on synthetic data? a statistical analysis of language
 601 model collapse. In *First Conference on Language Modeling*, 2024.

594 Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar. RI
 595 on incorrect synthetic data scales the efficiency of llm math reasoning by eight-fold. *Advances in*
 596 *Neural Information Processing Systems*, 37:43000–43031, 2024.

597

598 Joonghyuk Shin, Minguk Kang, and Jaesik Park. Fill-up: Balancing long-tailed data with generative
 599 models. *arXiv preprint arXiv:2306.07200*, 2023.

600 Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Yarin Gal, Nicolas Papernot, and Ross Ander-
 601 son. The curse of recursion: Training on generated data makes models forget. *arXiv preprint*
 602 *arxiv:2305.17493*, 2023.

603

604 Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Yarin Gal, Nicolas Papernot, and Ross Anderson.
 605 Ai models collapse when trained on recursively generated data. *Nature*, 631, 2024.

606 Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari Morcos. Beyond neu-
 607 ral scaling laws: beating power law scaling via data pruning. *Advances in Neural Information*
 608 *Processing Systems*, 35:19523–19536, 2022.

609

610 Yiyou Sun, Georgia Zhou, Hao Wang, Dacheng Li, Nouha Dziri, and Dawn Song. Climbing the lad-
 611 der of reasoning: What llms can-and still can't-solve after sft? *arXiv preprint arXiv:2504.11741*,
 612 2025.

613 Rohan Taori and Tatsunori Hashimoto. Data feedback loops: Model-driven amplification of dataset
 614 biases. In *Proceedings of the 40th International Conference on Machine Learning*, volume 202
 615 of *Proceedings of Machine Learning Research*, pp. 33883–33920. PMLR, 23–29 Jul 2023.

616

617 Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
 618 without human demonstrations. *Nature*, 625(7995):476–482, 2024.

619 Dennis Ulmer, Elman Mansimov, Kaixiang Lin, Justin Sun, Xibin Gao, and Yi Zhang. Bootstrapping
 620 llm-based task-oriented dialogue agents via self-talk. *arXiv preprint arXiv:2401.05033*, 2024.

621

622 Sierra Wyllie, Ilia Shumailov, and Nicolas Papernot. Fairness feedback loops: training on synthetic
 623 data amplifies bias. In *The 2024 ACM Conference on Fairness, Accountability, and Transparency*,
 624 FAccT '24, New York, NY, USA, 2024. Association for Computing Machinery.

625

626 Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more
 627 for reasoning. *arXiv preprint arXiv:2502.03387*, 2025.

628

629 Jinghui Zhang, Dandan Qiao, Mochen Yang, and Qiang Wei. Regurgitative training: The value of
 630 real data in training large language models. *arXiv preprint arXiv:2407.12835*, 2024.

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

Appendix for “Why Less is More (Sometimes): A Theory of Data Curation”

CONTENTS

1	Introduction	1
2	Setup for Theoretical Analysis	2
2.1	Data, Model, and Assumptions	2
2.2	Data Curation Rules	3
2.3	Quantifying Generator and Pruning Oracle Quality	3
3	Main Theory: When to Prune and When to Scale	4
3.1	Setting #1: Label-Agnostic Data Curation	4
3.2	Setting #2: Label-aware Data Curation	5
4	Bridging Theory and Practice	5
4.1	Theory Prediction: The Interplay of Generator Quality and Data Scale	5
4.2	Reconciling Recent Findings in LLM Math Reasoning	6
4.3	Curation on ImageNet: Data Scale and Model Collapse	7
5	Related Work	8
6	Concluding Remarks	9
A	Experimental Details for ImageNet	14
A.1	Dataset	14
A.2	Model Architecture	15
A.3	Training Setup	15
B	Empirical Confirmation of Our Theoretical Formulae	15
B.1	Experiments for Label-Agnostic Curation Rule Eqn Eqn (5)	16
B.2	Which is Better, “Keep Easy Examples” of “Keep Hard Examples”?	16
C	Results in the Regression Setting	17
C.1	Theoretical Setup	17
C.2	Main Result for Regression	18
C.3	Optimal Pruning in Regression Setting	19

702	D Main Ingredients of Proofs	21
703	D.1 Deterministic Equivalent for the Resolvent Matrix R	21
704	D.2 The Isotropic Case	22
705	D.3 Test Error Representation: The Classification Setting	23
706		
707		
708		
709	E Proof of Proposition 2	24
710	E.1 Asymptotics of $\ \Sigma^{1/2}\hat{w}\ ^2$	24
711	E.2 Asymptotics of α	25
712	E.3 Asymptotics of Classification Test Error	26
713		
714		
715	F Proof of Proposition 1	26
716		
717		
718	G Proof of Theorem 1, Theorem 3, and Corollaries	27
719	G.1 Proof of Theorem 1 and Theorem 3	27
720	G.2 Proof of Corollary 1	28
721	G.3 Proof of Theorem 2	29
722		
723		
724	H Proof of Theorem 4 (Regression Analysis)	31
725	H.1 A Modified Bias-Variance Decomposition	31
726	H.2 Proof of Theorem 4	31
727	H.3 Proof of Corollary 2	31
728	H.4 Proof of Proposition 3	32
729		
730		
731		
732	I Proof of Theorem 5 (Optimal Pruning in Regression Setting)	32
733		
734		
735	J Proofs of Lemmas	33
736	J.1 Proof of Lemma 2	33
737		
738	K Proof of Lemma 7	34
739		
740		
741	L Proof of Lemma 3	34
742	L.1 Non-LIMO Case	34
743	L.2 LIMO Case	35
744		
745		
746	M Analytic Formulae for $p(q)$, $\gamma(q)$, $\beta(q)$, and $\tilde{\beta}(q)$	36
747		
748		
749	A EXPERIMENTAL DETAILS FOR IMAGENET	
750		
751	We now provide details for the experimental results presented in Section 4.3 of the manuscript.	
752		
753	A.1 DATASET	
754		
755	All experiments are conducted on the ImageNet-1K (Deng et al., 2009) dataset, which contains approximately 1.2 million training images and 50,000 validation images across 1,000 classes. For	

756 experiments with reduced dataset sizes, we use random subsampling to generate smaller training
 757 sets at various fractions (e.g., 50%, 25%, 12.5%) of the full dataset.
 758

759 A.2 MODEL ARCHITECTURE 760

761 We use the Vision Transformer (ViT-B/16) (Dosovitskiy et al., 2020) as our primary backbone,
 762 implemented via the MMPretrain framework (Contributors, 2023). The model uses a patch size of
 763 16 and an input resolution of 224×224 . We apply a drop path rate of 0.1 and label smoothing with
 764 a smoothing value of 0.1 in the classification head. During training, we apply data augmentation
 765 techniques including Mixup ($\alpha = 0.8$) and CutMix ($\alpha = 1.0$).
 766

767 A.3 TRAINING SETUP 768

769 All models are trained using the AdamW optimizer. The learning rate is scaled with global batch size
 770 according to the linear scaling rule. For ViT experiments, the base learning rate is $1 \times 10^{-4} \times \frac{\text{batch size}}{256}$,
 771 with a weight decay of 0.3, $\epsilon = 1 \times 10^{-8}$, and $\beta = (0.9, 0.95)$.
 772

To ensure fairness across dataset sizes, we adjust the number of training epochs inversely proportional
 773 to the dataset fraction, so that the total number of iterations remains constant.
 774

775 Training is performed on 4 nodes, each with 8 NVIDIA H100 GPUs (total 32 GPUs), using Py-
 776 Torch’s Distributed Data Parallel (DDP) via SLURM. The batch size per GPU is 128. We use
 777 synchronized batch normalization and standard augmentations including random resized crops, hor-
 778 izontal flips, RandAugment, and random erasing. Models are evaluated on the standard ImageNet-
 779 1K validation set using top-1 accuracy.
 780

781 B EMPIRICAL CONFIRMATION OF OUR THEORETICAL FORMULAE 782

783 .
 784 We validated our framework through extensive simulations and comparison with theory, summarized
 785 in Figure 4. Synthetic datasets were generated under the model of Section 2, with $d = 200$, varying
 786 sample size n , pruning fraction p , and generator angle ρ . Logistic regression with $\lambda = 10^{-6}$ was
 787 trained on curated subsets, and error was measured as the angular deviation between learned and
 788 true weights.
 789

790 **Coverage.** We tested 15 parameter settings ($n \in \{500, 1000, 2000\}$, $p \in \{0.2, 0.5, 0.8\}$, $\rho \in$
 791 $\{0, \pi/12, \pi/6, \pi/4\}$, keep-easy vs. keep-hard), spanning both typical and extreme regimes.
 792

793 **Agreement.** Theoretical and empirical results matched closely: mean relative error 1.8%, all
 794 $< 5\%$. Bland–Altman analysis showed mean difference 0.0019 with 95% limits of agreement
 795 $[-0.0039, 0.0077]$.
 796

797 **Sweeps and Landscapes.** Parameter sweeps confirmed that theory captures observed non-
 798 monotonic pruning effects, power-law scaling with n , and angular dependence. Two-dimensional
 799 landscapes (sample size \times pruning fraction) showed near-identical patterns, with maximum absolute
 800 differences < 0.01 .
 801

802 **Statistical Checks.** Empirical error distributions (50 runs) centered tightly around theoretical pre-
 803 dictions, and theory lay within 95% confidence intervals across all tested settings.
 804

805 **Robustness.** Agreement held across configurations, including edge cases ($\rho = 0$, extreme prun-
 806 ing), indicating the framework captures the essential mechanisms.
 807

808 **Implication.** These results establish that our theory accurately predicts generalization under prun-
 809 ing in high-dimensional linear classification, providing a reliable tool for analyzing and optimizing
 data curation strategies.
 810

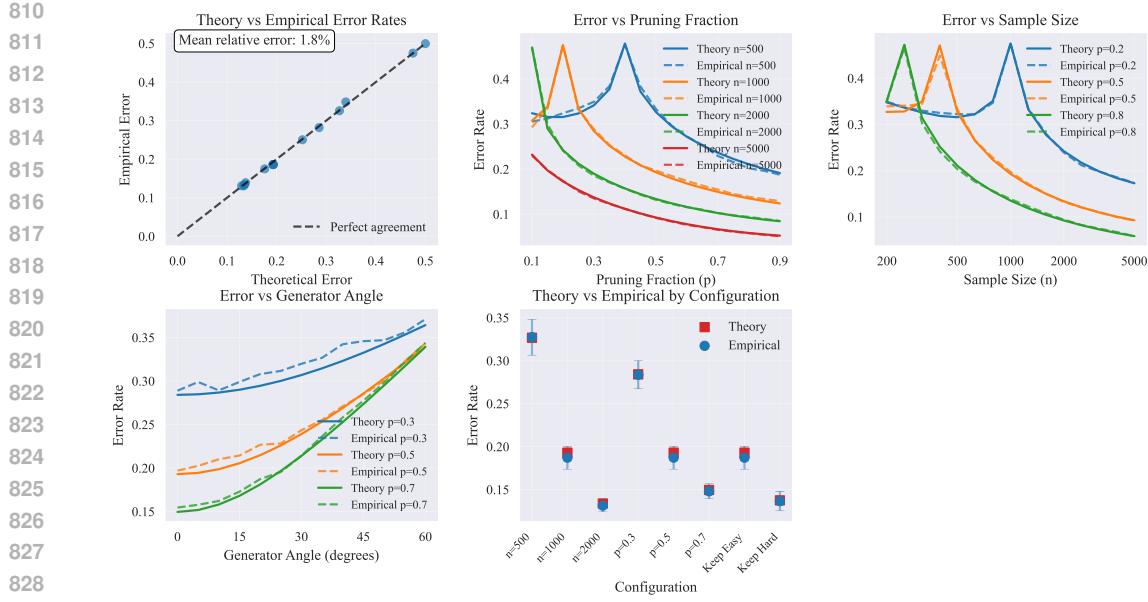


Figure 4: **Validation of theoretical error predictions against empirical simulations.** (A) Scatter plot of theory vs. empirical error across 15 configurations, with diagonal = perfect agreement. (B–D) Parameter sweeps for pruning fraction, sample size, and generator angle. (E) Configuration-wise comparisons. All results use logistic regression with $\lambda = 10^{-6}$.

B.1 EXPERIMENTS FOR LABEL-AGNOSTIC CURATION RULE EQN (5)

As promised in the main manuscript, Figure 5 presents results on toy data, with curation done according to the label-agnostic rule Eqn (5).

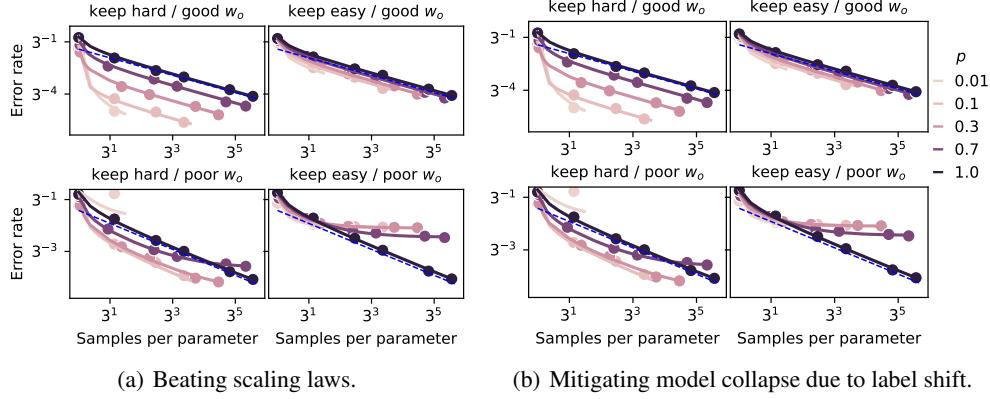


Figure 5: Effect of Label-agnostic curation rule Eqn (5) as proposed in (Sorscher et al., 2022).

B.2 WHICH IS BETTER, "KEEP EASY EXAMPLES" OR "KEEP HARD EXAMPLES"?

See Figures 6 and 7.

The data is Gaussian, generated according to Eqn (1) with $C = I_d$ (covariance matrix of samples, under the generators distribution) and $\Sigma = I_d$ (ground-truth covariance matrix). The sample size n sweeps the range 10 through 10^6 in log-scale, while the input dimension fixed to $d = 200$. The data curation is done according to the Label-aware rule Eqn (6). The estimator \hat{w} defined in Eqn (3) is

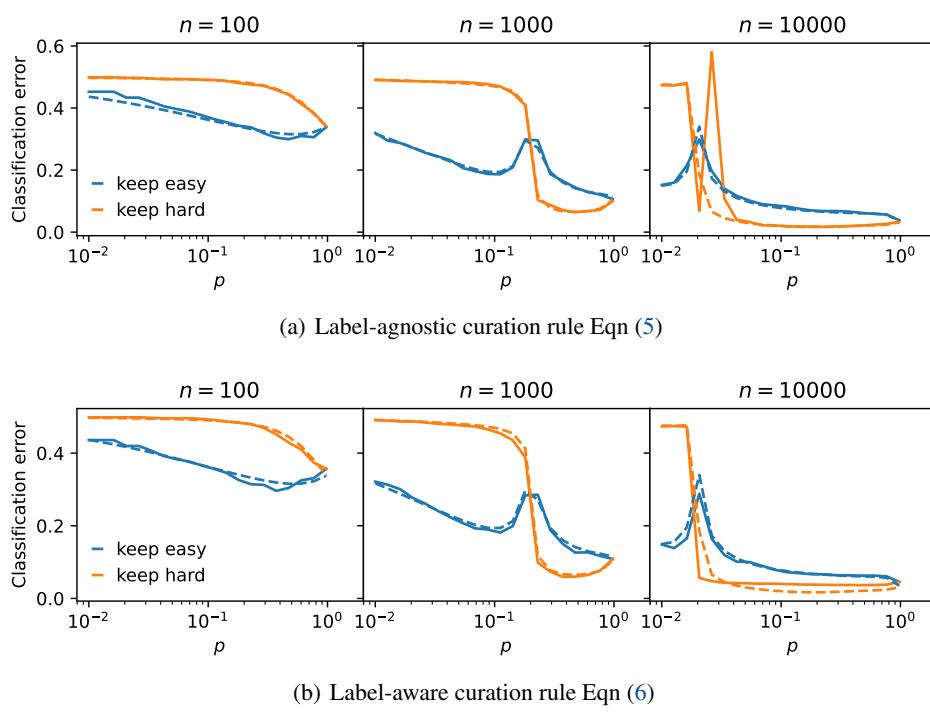


Figure 6: **Beating scaling laws.** Solid lines are experiments; broken lines are our theoretical predictions (Theorem 1 and Theorem 3). For this experiment, the angle between generator labeling vector w_g is perfect, i.e $w_g = w_*$, the ground-truth. Notice the perfect agreement between theory and experiment.

computed using Scipy’s linear algebra functions operations (from the “linalg” module therein), with regularization parameter fixed at $\lambda = 10^{-6}$. The classification test error E_{test} is defined as:

$$E_{test}(\hat{w}) := \mathbb{E} [\ell_{0/1}(\text{sign}(x^\top \hat{w}), y)] = \mathbb{P}(\text{sign}(x^\top \hat{w}) \neq y). \quad (14)$$

The pruning direction w_o in Eqn (6) is chosen to make an angle $\theta = 0$ (perfect pruning direction) or $\theta = \pi/10$ (poor pruning direction) with the ground-truth labeling vector $w_* = (1, 0, \dots, 0)$.

For Figure 5(a) (“beating neural scaling laws”), the labeling vector $w_g \in \mathbb{R}^d$ for the generator equals that of the ground-truth. Thus, the generator is taken to be perfect, a setting also considered in (Sorscher et al., 2022).

For Figure 5(b) (“mitigating model collapse”), the generator is imperfect: its labeling vector w_g makes an angle $\pi/5$ with the ground-truth w_* . This imperfection simulates the model collapse phenomenon (Shumailov et al., 2024; Dohmatob et al., 2024a;b; Feng et al., 2024; Dohmatob et al., 2025).

C RESULTS IN THE REGRESSION SETTING

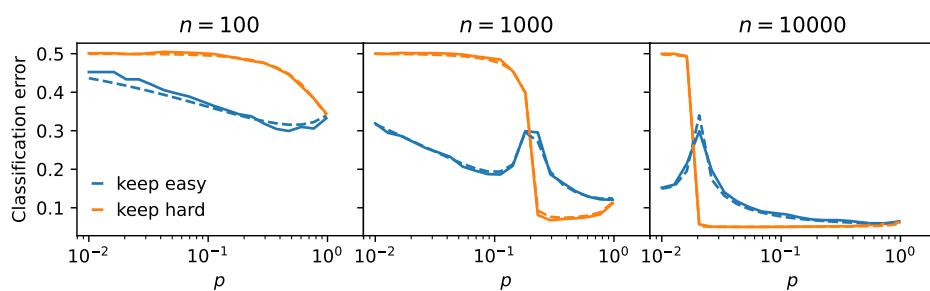
C.1 THEORETICAL SETUP

As promised in the main paper, we now turn to the case of regression, where the label variable y in the data distribution Eqn (1) is now given by

$$y = x^\top w_* + \eta, \quad (15)$$

where $\eta \sim \mathcal{N}(0, \sigma^2)$ is a noise variable independent of the covariates x . The test error of the estimator \hat{w} is now measured by

$$E_{reg}(\hat{w}) := \mathbb{E}_{(x,y) \sim P_*} [(x^\top \hat{w} - x^\top w_*)^2] - \sigma^2. \quad (16)$$



(a) Label-agnostic curation rule Eqn (5) (proposed in (Sorscher et al., 2022))



(b) Label-aware curation rule Eqn (6)

Figure 7: **Mitigating model collapse.** Solid lines are experiments; broken lines are our theoretical predictions (Theorem 1 and Theorem 3). For this experiment, the angle between generator labeling vector w_g and ground-truth w_* is $\pi/20$, thus simulating an imperfect generator. Notice the perfect agreement between theory and experiment.

C.2 MAIN RESULT FOR REGRESSION

Define the following auxiliary quantities

$$w_g^\parallel := (w_g^\top w_o) w_o, \quad w_g^\perp := w_g - w_g^\parallel, \quad \epsilon := w_g - w_*, \quad a := \epsilon^\top w_g^\perp, \quad b := \epsilon^\top w_g^\parallel, \quad c^2 := \|\epsilon\|^2. \quad (17)$$

Thus, w_g^\parallel is the component of w_g pointing in the direction of the pruning vector w_o and w_g^\perp is the perpendicular component. c^2 measures the disparity between the generative and the ground-truth labeling vectors w_g and w_* respectively. It is clear that

$$\|w_g^\parallel\|^2 = \rho_g^2 \|w_g\|^2, \quad \|w_g^\perp\|^2 = (1 - \rho_g^2) \|w_g\|^2, \quad (18)$$

$$a = \|w_g^\perp\|^2 - \|w_g\|(\rho - \rho_g \rho_*), \quad b = \|w_g^\parallel\|^2 - \|w_g\| \rho_g \rho_*, \quad (19)$$

where ρ , ρ_g , and ρ_* are as defined in Eqn (8).

The following is one of our main contributions.

Theorem 4. *In the limit Eqn (4), the regression test error of the model \hat{w} defined in Eqn (3) is given by*

$$E_{reg}(\hat{w}) \rightarrow B + V + c^2 - 2\lambda \cdot (m(-\lambda)a + \tilde{m}(-\lambda)b), \\ \text{with } B := \lambda^2 \cdot \left(m'(-\lambda) \|w_g^\perp\|^2 + \tilde{m}'(-\lambda) \|w_g^\parallel\|^2 \right), \quad V := \sigma^2 \phi \bar{m}'(-\lambda). \quad (20)$$

Universality. Note that for a fixed pruning rate $p \in (0, 1]$ and pruning direction w_o , the specific choice of pruning strategy $q \in \mathcal{Q}$ used only enters the picture via $\gamma = \gamma(q)$, defines in Eqn (8). Two pruning strategies with the same value of γ induces exactly the same test error dynamics E_{reg} in the high-dimensional limit Eqn (4).

972 **Unregularized Regime.** We now consider our theory in the limit $\lambda \rightarrow 0$, in which case the esti-
 973 \hat{w} defined in Eqn Eqn (3) reduces to the least-squares estimate for w_* , namely $\hat{w} = X'^\dagger Y'$,
 974 where (X', Y') is the pruned training dataset, i.e the nonzero rows of (DX, DY) .
 975

976 **Corollary 1.** *In the limit Eqn (4) then $\lambda \rightarrow 0$, it holds that $E_{reg} \rightarrow L$, where*

977 (A) *If $\phi < p$, then $L = \frac{\sigma^2 \phi}{p - \phi} + c^2$.*

978 (B) *If $\phi > p$, then with $c_0 := 1 - p/\phi$ and $c_1 = \gamma/\phi + c_0 = 1 - (p - \gamma)/\phi$, we have*

979
$$L = \frac{\sigma^2}{\phi - p} + (\|w_g^\perp\|^2 + \|w_g^\parallel\|^2/c_1)c_0 + c^2 - 2(a + b/c_1)c_0.$$

980 Note that when $p = 1$ (corresponding to no pruning), the above result recovers one of the main
 981 results of Dohmatob et al. (2025), namely, their Corollary 1.

982 The following result is yet another important consequence.

983 **Corollary 2.** *In the noiseless setting $\sigma = 0$, the following hold:*

984
$$\lim_{\phi \rightarrow 0} \lim_{\lambda \rightarrow 0} \lim_{\substack{d, n \rightarrow \infty \\ d/n \rightarrow \phi}} E_{reg}(\hat{w}) = \|w_* - w_g\|^2 = c^2 \forall p \in (0, 1],$$

985
$$\lim_{\phi \rightarrow 0} \inf_{p \in (0, 1]} \lim_{\lambda \rightarrow 0} \lim_{\substack{d, n \rightarrow \infty \\ d/n \rightarrow \phi}} E_{reg}(\hat{w}) = \begin{cases} \|w_* - w_g^\parallel\|^2 < c^2, & \text{if } \|w_* - w_g^\parallel\|^2 < c^2 < \|w_* - w_g^\perp\|^2, \\ c^2, & \text{otherwise} \end{cases}$$

986 Thus, pruning provably mitigates model collapse, under the sufficient condition

987
$$\|w_* - w_g^\parallel\| < \|w_* - w_g\| < \|w_* - w_g^\perp\|.$$

988 Note that if $\|w_*\|^2 = 1$ and $\|w_g\|^2 = r^2$, then $c^2 = \|w_* - w_g\|^2 = 1 + r^2 - 2r\rho_g$. Furthermore, if
 989 $\rho_* = 1$ (i.e $w_o = w_*$), then $\|w_* - w_g^\parallel\|^2 = \|w_* - \rho_g w_*\|^2 = (1 - \rho_g)^2$.

990 Keep if $|y_i - x_i^\top w_*|^2$

1009 C.3 OPTIMAL PRUNING IN REGRESSION SETTING

1010 Consider a sub-collection of parametrized pruning strategies constructed as follows. For any $p, u \in$
 1011 $[0, 1]$, define $q_{p,u} \in \mathcal{Q}$ by

1012
$$q_{p,u}(t) := \begin{cases} 0, & \text{if } a(p, u) < |t| \leq b(p, u), \\ 1, & \text{otherwise,} \end{cases} \quad (21)$$

1013 with $a(p, u) := \Phi^{-1}((1 + (1 - u)p)/2)$, $b(p, u) := \Phi^{-1}(1 - pu/2)$. (22)

1014 Thus, $q_{p,u}$ is the indicator function of the disjoint union of 3 intervals: $[-a(p, u), a(p, u)]$, and two
 1015 "tails" $(-\infty, -b(p, u))$ and $(b(p, u), \infty)$. Such a pruning strategy selects a mixture of "very easy"
 1016 training examples (corresponding to neighborhood of 0) and "very hard" examples (corresponding
 1017 to tails). The parameter p controls the proportion of training data that survives pruning, i.e we have
 1018 $p(q_{p,u}) = p$, while the parameters u controls the fraction thereof which are "very hard".

1019 **Theorem 5.** *For any pruning strategy $q \in \mathcal{Q}$, there exist $p, u \in [0, 1]$ such that pruning strategy
 1020 $q_{p,u}$ induces the the same regression test error $E_{reg}(\hat{w})$ for the estimator \hat{w} define in Eqn Eqn (3) as
 1021 pruning with q . In particular, the optimal pruning strategy has the form $q_{p,u}$.*

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

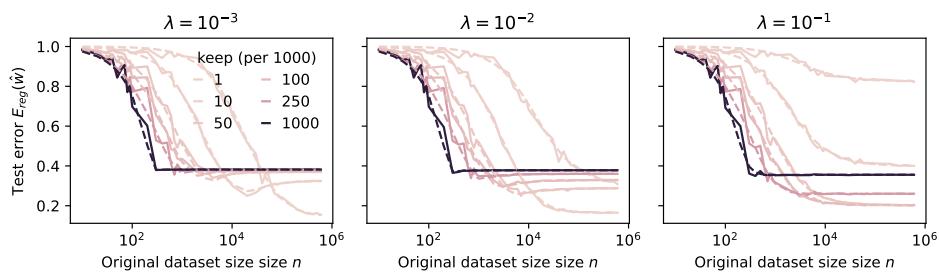
1075

1076

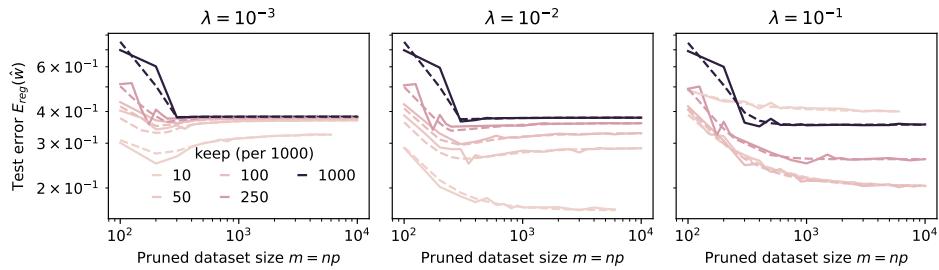
1077

1078

1079



(a) Test error vs original dataset size n . We plot the regression test error E_{reg} as a function of the original/unpruned dataset size d and report result for different rates of pruning (per thousand examples). Solid lines correspond to experiments while broken lines correspond to the analytic expression provided by Theorem 4. Notice the perfect match between theoretical predictions and experiment. We see that it is optimal to consider an unregularized model (small λ) and discard almost all training data!



(b) Test error vs pruned dataset size $m = np$. We plot test error as a function of the pruned dataset size m actually used to fit the model, the point being to control for the amount of compute. Once again, we see that it is optimal to discard almost all training data. However, optimal regularization is no longer zero; for nonzero λ , the error might eventually increase with m .

Figure 8: **Mitigating model collapse via pruning** in regression setting. Different colors correspond to different levels of pruning where we keep only the hardest/most informative examples (x_i, y_i) with the largest value of the projection of the features $|x_i^\top w_o|$ along the pruning direction w_o .

1080 **D MAIN INGREDIENTS OF PROOFS**
10811082 **D.1 DETERMINISTIC EQUIVALENT FOR THE RESOLVENT MATRIX R**
10831084 **Definition 1** (Deterministic Equivalents). *Given a sequence of random $N \times N$ matrices $(R_N)_N$, a
1085 deterministic equivalent thereof is a sequence of deterministic $N \times N$ matrices $(\bar{R}_N)_N$ such that*

1086
$$\text{tr } A_N (R_N - \bar{R}_N) \xrightarrow{a.s.} 0, \quad (23)$$

1087

1088 *for all sequences of $N \times N$ matrices $(A_N)_N$ with bounded Frobenius norm.*1089 Let Π (resp. $\Pi^\perp = I_d - \Pi$) be the projection onto the span (resp. orthogonal complement of the
1090 span) of w_o . Define the following auxiliary vectors and scalars
1091

1092
$$v = \Sigma^{1/2} w_o, \quad v_1 = \frac{v^\top w_o}{\|w_o\|}, \quad v_\perp = \Pi^\perp v. \quad (24)$$

1093

1094 Note that v_\perp is $(d-1)$ -dimensional and $\|v_\perp\| = \sqrt{\|v\|^2 - v_1^2}$.
10951096 Henceforth we make the replacement $z = -\lambda < 0$, so that the resolvent matrix R now writes
1097

1098
$$R = R(z) := (X^\top D X/n - z I_d)^{-1}, \quad (25)$$

1099

1100 where we recall that D is the $n \times D$ diagonal matrix appearing in Eqn (3), with $D_{ii} = p_i$, the
1101 prune/no prune bit for the i th training example. Let $\delta(z)$ be the unique positive solution to the
1102 fixed-point equation

1103
$$m(z) = d^{-1} \text{tr } \bar{R}_b(z), \quad \delta(z) = n^{-1} \text{tr } C \bar{R}_b(z), \quad \bar{R}_b(z) = \left(\mathbb{E} \left[\frac{p_i}{1 + p_i \delta(z)} \right] C - z I_d \right)^{-1}. \quad (26)$$

1104

1105 Note that the inner expectation evaluates to
1106

1107
$$\mathbb{E} \left[\frac{p_i}{1 + p_i \delta(z)} \right] = \frac{p}{1 + \delta(z)} =: t(z),$$

1108

1109 and so $\bar{R}_b(z) = (t(z)C - z I_d)^{-1}$. Observe that $\bar{R}_b(z)(t(z)C - z I_d) = I_d$, and so $t(z)C \bar{R}_b(z) =$
1110 $I_d + z \bar{R}_b(z)$. We deduce that
1111

1112
$$t(z)\delta(z) = n^{-1} \text{tr } t(z)C \bar{R}_b(z) = n^{-1} \text{tr } (I_d + z \bar{R}_b(z)) = \phi \cdot (1 + zm(z)).$$

1113

1114 Thus, the equations defining $m(z)$ and $\delta(z)$ can be rewritten as
1115

1116
$$m(z) = d^{-1} \text{tr } (t(z)C - z I_d)^{-1}, \quad (27)$$

1117

1118
$$t(z) = \frac{p}{1 + \delta(z)}, \quad (28)$$

1119

1120
$$\phi \cdot (1 + zm(z)) = t(z)\delta(z) = t(z) \left(\frac{p}{t(z)} - 1 \right) = p - t(z). \quad (29)$$

1121

1122 Solving for $\phi zm(z)$ in terms of $t(z)$ in the last equation gives
1123

1124
$$\phi zm(z) = \frac{p\delta(z)}{1 + \delta(z)} - \phi = p - \phi - \frac{p}{1 + \delta(z)} = p - \phi - t(z).$$

1125

1126 Plugging this into the first equation gives the following fixed-point equation for $t(z)$
1127

1128
$$p - \phi - t(z) = zn^{-1} \text{tr } (t(z)C - z I_d)^{-1}. \quad (30)$$

1129

1130 The following result shows that \bar{R} is a deterministic equivalent for R .
11311132 **Proposition 1.** *Recall the function $t(z)$ as the unique positive solution to the equation Eqn (30).
1133 Then,*

1134
$$R \simeq \bar{R}, \text{ with } \bar{R} = C^{-1/2} (\check{m}(z) \Pi^\perp + \tilde{m}(z) \Pi) C^{-1/2}, \quad (31)$$

1135

1136
$$\text{where } \check{m}(z) := \frac{1}{t(z) - z}, \quad \tilde{m}(z) := \frac{1}{s(z) - z}, \quad s(z) := \frac{\gamma}{p} t(z). \quad (32)$$

1137

1134 D.2 THE ISOTROPIC CASE
11351136 Consider the special case where the covariance matrix is $C = I_d$. Fix an L2-regularization parameter
1137 $\lambda > 0$ and pruning rate $p \in [0, 1]$.1138 **Lemma 1.** *For every $z = -\lambda < 0$, $m(z)$ is the unique positive solution to the fixed-point equation*
1139 *Eqn (34), and is given explicitly by formula*

1140
1141
$$m(z) = \frac{p - \phi - z - \sqrt{(p - \phi - z)^2 - 4\phi z}}{2\phi z}. \quad (33)$$

1142
1143

1144 Alternatively, $m(z)$ defined in Eqn (33) unique positive solution to the fixed-point equation:
1145

1146
1147
$$\frac{1}{m} = -z + \frac{p}{1 + \phi m}, \text{ with } z := -\lambda. \quad (34)$$

1148 Thus Lemma 1 shows that $m(z)$ is the Stieltjes transform of the limiting spectral density of the
1149 resolvent matrix R appearing in Eqn (3), and has the property (among many others) that $d^{-1} \text{tr } R \rightarrow$
1150 $m(z)$ in the limit Eqn (4). It represents a somewhat distorted Marchenko-Pastur law; indeed, the
1151 classical MP corresponds to $p \rightarrow 1$ (i.e. no pruning).

1152 Furthermore, it is not hard to see that

1153
1154
$$\bar{m}(z) \equiv m(z) \equiv \delta(z)/\phi \quad (35)$$

1155 in this case.
11561157 *Proof of Lemma 1.* Indeed, observe that in the isotropic case the equation Eqn (30) reduces to $p -$
1158 $\phi - t(z) = \phi z / (t(z) - z)$, or equivalently

1159
1160
$$0 = \phi z + (t(z) - p + \phi)(t(z) - z) = t(z)^2 - (p - \phi + z)t(z) + pz.$$

1161 The discriminant of this quadratic equation evaluates to

1162
1163
1164
1165
$$\begin{aligned} (p - \phi + z)^2 - 4pz &= (p - \phi - z + 2z)^2 - 4pz \\ &= (p - \phi - z)^2 + 4z^2 + 4z(p - \phi - z) - 4pz \\ &= (p - \phi - z)^2 - 4\phi z, \end{aligned}$$

1166 and so because $z = -\lambda < 0$, the positive solution is
1167

1168
1169
$$t(z) = \frac{p - \phi + z + \sqrt{(p - \phi - z)^2 - 4\phi z}}{2}. \quad (36)$$

1170 We deduce that

1171
1172
1173
1174
1175
1176
1177
1178
$$\begin{aligned} m(z) &= \frac{1}{t(z) - z} = \left(\frac{p - \phi - z + \sqrt{(p - \phi - z)^2 - 4\phi z}}{2} \right)^{-1} \\ &= 2 \cdot \frac{p - \phi - z - \sqrt{(p - \phi - z)^2 - 4\phi z}}{(p - \phi - z) - ((p - \phi - z)^2 - 4\phi z)} \\ &= \frac{p - \phi - z - \sqrt{(p - \phi - z)^2 - 4\phi z}}{2\phi z}, \end{aligned}$$

1179 which is precisely the formula given in Eqn (34). \square
11801181 **Spectral Functions.** Define the following auxiliary functions:
1182

1183
1184
$$\bar{m}(z) := zm(z), \quad s(z) := \frac{\gamma}{1 + \phi m(z)}, \quad \tilde{m}(z) := \frac{1}{s(z) - z}, \quad r(z) := \beta^2 m(z) + \tilde{\beta}^2 \tilde{m}(z), \quad (37)$$

1185 where the constants $\tilde{\beta}$ and β are as defined in Eqn (8). Notice that r is (proportional to) a convex
1186 combination of m and \tilde{m} .
11871188 We will be needing the derivatives of m' , \bar{m}' , \tilde{m}' , and r' . This is the purpose of the next lemma.

1188 **Lemma 2.** *We have the following identities:*

$$1190 \quad m'(z) = \frac{m(z)^2}{1 - (1 + \bar{m}(z))^2 \phi / p}, \quad \bar{m}'(z) = \frac{p}{(z + \phi \bar{m}(z))^2 / \bar{m}(z)^2 - p\phi} = \frac{p}{(\phi + 1/m(z))^2 - p\phi},$$

$$1192 \quad \tilde{m}'(z) = \tilde{m}(z)^2 \left(\frac{\gamma \phi m'(z)}{(1 + \phi m(z))^2} + 1 \right), \quad r'(z) = \beta^2 m'(z) + \tilde{\beta}^2 \tilde{m}'(z).$$

1195 The following result then follows directly from Proposition 1.

1196 **Corollary 3.** *In the isotropic setting, we have the following deterministic equivalents:*

$$1198 \quad R \simeq \bar{R}, \text{ with } \bar{R} = m(z)\Pi^\perp + s(z)\Pi, \quad (38)$$

$$1199 \quad R^2 \simeq m'(z)\Pi^\perp + \tilde{m}'(z)\Pi. \quad (39)$$

1200 where $\tilde{m}(z) := 1/(s(z) - z)$, $s(z) = \gamma/(1 + \phi m(z))$, and $\gamma \geq 0$ is as given in Eqn (8).

1202 D.3 TEST ERROR REPRESENTATION: THE CLASSIFICATION SETTING

1204 WLOG, suppose henceforth that $\bar{w}_g := C^{1/2}w_g$, $\bar{w}_o := C^{1/2}w_o$, and $\bar{w}_* := C^{1/2}w_*$ are unit
1205 vectors in \mathbb{R}^d . Let $u = \bar{w}_o$ and let v be its completion to an orthonormal basis for the span of \bar{w}_o
1206 and \bar{w}_g (if \bar{w}_o and \bar{w}_g are parallel, i.e if $\rho_g = \pm 1$, we simply set $v = 0$). Define $c \in \mathbb{R}^d$ by

$$1207 \quad c := \mathbb{E}[p_i y_i x_i], \quad (40)$$

1209 for a random training data point $(x_i, y_i) \sim P_g$ and corresponding selection/no select bit $p_i \in \{0, 1\}$
1210 (e.g. p_i is as given in Eqn (5) in the case of label-agnostic data curation and Eqn (6) in the case of
1211 Label-aware data pruning).

1212 Also define $p = p(q) \in [0, 1]$ and $\gamma = \gamma(q) \geq 0$ by

$$1213 \quad p = \mathbb{E}[p_i], \quad \gamma := \mathbb{E}[(x_i^\top w_o)^2 p_i]. \quad (41)$$

1216 **Lemma 3.** *It holds that $c = \beta_1 C^{1/2}u + \beta_2 C^{1/2}v$, with the β_k 's as given in Table 3. Also, the
1217 constants p and γ defined in Eqn (41) are as given in the table.*

Curation	$p(q)$	$\gamma(q)$	$\beta_2(q)$	$\beta_1(q)$
Label-agnostic	$\mathbb{E}[q(G)]$	$\mathbb{E}[q(G)G^2]$	$2\mathbb{E}[q(G)\varphi(\tau G)]$	$2\mathbb{E}[q(G)\Phi(\tau G)G]$
Label-aware	$\mathbb{E}[q(G)\Phi(\tau G)]$	$\mathbb{E}[q(G)\Phi(\tau G)G^2]$	$\mathbb{E}[q(G)\varphi(\tau G)]$	$\mathbb{E}[q(G)\Phi(\tau G) G]$

1226 **Table 3: Fundamental constants.** Here, $q \in \mathcal{Q}$ is any even/symmetric pruning function and $G \sim$
1227 $\mathcal{N}(0, 1)$, with pdf φ and cdf Φ . Recall that $\tau := \rho_g / \sqrt{1 - \rho_g^2}$, and we use the identification $\beta \rightarrow \beta_2$,
1228 $\tilde{\beta} \rightarrow \beta_1$. Note that taking $q \equiv 1$ on the second row corresponds to the setup of Feng et al. (2024)
1229 and Firdoussi et al. (2024).

1231 We are now ready to state our main results, which is a generalization of Theorem 1 and 3.

1233 **Proposition 2.** *Let $c \in \mathbb{R}^d$ be as defined in Eqn (40). For a random test point $(x, y) \sim P_*$, we have
1234 the following high-dimensional representation (where G_1 and G_2 are iid from $\mathcal{N}(0, 1)$):*

$$1235 \quad yx^\top \hat{w} \xrightarrow{L} m|G_1| + \sqrt{\nu - m^2} G_2, \text{ with} \quad (42)$$

$$1237 \quad m \simeq \frac{m_0}{1 + \delta}, \quad m_0 := \frac{c^\top \bar{R} \Sigma w_*}{\|\Sigma^{1/2} w_*\|}, \quad (43)$$

$$1239 \quad \nu \simeq \frac{\nu_0}{(1 + \delta)^2}, \quad \nu_0 := \frac{p}{n} \text{tr } \Sigma C' + c^\top \Sigma' c - \frac{2c^\top \bar{R} c}{1 + \delta} \frac{1}{n} \text{tr } \Sigma C', \quad (44)$$

$$1241 \quad \bar{R} := \mathbb{E}[R], \quad C' := \mathbb{E}[RCR], \quad \Sigma' := \mathbb{E}[R\Sigma R], \quad (45)$$

1242 where $\delta = \delta(-\lambda) > 0$ is as defined by the fixed-point equations Eqn (26).
 1243

1244 Furthermore, it holds that

1245
$$E_{test}(\hat{w}) := \mathbb{P}(yx^\top \hat{w} \leq 0) \rightarrow \frac{1}{\pi} \arccos(|m_0|/\sqrt{\nu_0}). \quad (46)$$

 1246

1248
 1249 **Remark 2.** Note that the above result is valid for any curation strategy which maps easy training
 1250 example (x_i, y_i) to a prune/no prune bit $p_i \in \{0, 1\}$, in an iid fashion. The choices Eqn (5) (label-
 1251 agnostic) and Eqn (6) (Label-aware) are but particular cases.

1252 **E PROOF OF PROPOSITION 2**

1253 For a random test point $(x, y) \sim P_*$, we can write

1254
$$yx^\top \hat{w} = yz^\top \Sigma^{1/2} \hat{w} = \text{sign}(z^\top \Sigma^{1/2} w_*) z^\top \Sigma^{1/2} \hat{w}.$$

1255 Write $\Sigma^{1/2} \hat{w} = \alpha \Sigma^{1/2} w_* + r$, where $r = \Sigma^{1/2} \hat{w} - \alpha \Sigma^{1/2} w_*$ and $\alpha \geq 0$ is to be determined.
 1256 Observe that r is perpendicular to $\Sigma^{1/2} w_*$ iff $r^\top \Sigma^{1/2} w_* = \hat{w}^\top \Sigma w_* - \alpha \|\Sigma^{1/2} w_*\|^2 = 0$ iff

1257
$$\alpha = \hat{w}^\top \Sigma w_*/\|\Sigma^{1/2} w_*\|^2. \quad (47)$$

 1258

1259 With this choice of α , one computes

1260
$$yx^\top \hat{w} = \alpha yz^\top \Sigma^{1/2} w_* + yz^\top r. \quad (48)$$

 1261

1262 Because r is perpendicular to $\Sigma^{1/2} w_*$, we know that the above is a sum of two independent random
 1263 variables.

1264 For the first summand in Eqn (48), observe that

1265
$$yz^\top \Sigma^{1/2} w_* = yx^\top w_* = \text{sign}(x^\top w_*) x^\top w_* = |x^\top w_*|,$$

 1266

1267 which has the same distribution as $|G|$ for $G \sim N(0, w_*^\top \Sigma w_*)$.
 1268

1269 For the second summand, it has distribution $\mathcal{N}(0, \|r\|^2)$ with $\|r\|^2 = \|\Sigma^{1/2} \hat{w}\|^2 - \alpha^2 \|\Sigma^{1/2} w_*\|^2$.
 1270

1271 **E.1 ASYMPTOTICS OF $\|\Sigma^{1/2} \hat{w}\|^2$**

1272 Now, one computes

1273
$$\hat{w} = \frac{1}{n} \sum_i p_i y_i R x_i = \frac{1}{(1+\delta)n} \sum_i p_i y_i R_{-i} x_i.$$

 1274

1275 We deduce that

1276
$$(1+\delta)^2 n^2 \|\Sigma^{1/2} \hat{w}\|^2 = n \sum_i p_i x_i^\top R_{-i} \Sigma R_{-i} x_i + \sum_{i,j, j \neq i} p_i p_j y_i y_j x_i^\top R_{-i} \Sigma R_{-j} x_j.$$

 1277

1278 Now, observe that

1279
$$\begin{aligned} \frac{1}{n^2} \sum_i p_i x_i^\top R_{-i} \Sigma R_{-i} x_i &= \frac{1}{n^2} \sum_i \text{tr}(p_i x_i x_i^\top R_{-i} \Sigma R_{-i}) \\ 1280 &\simeq \frac{1}{n^2} \sum_i \text{tr}(\mathbb{E}[p_i x_i x_i^\top R_{-i} \Sigma R_{-i}]) \\ 1281 &= \frac{p}{n} \text{tr} C R_{-i} \Sigma R_{-i} \\ 1282 &\simeq \frac{p}{n} \text{tr} \Sigma C'. \end{aligned}$$

 1283

1296 For two distinct sample indices $i, j \in [n]$, we have
 1297

$$\begin{aligned}
 1298 \quad R_{-i} &= R_{-ij} - \frac{1/n}{1+\delta} R_{-ij} x_j x_j^\top R_{-ij}, \\
 1299 \\
 1300 \quad R_{-i} \Sigma R_{-j} &= (R_{-ij} - \frac{1/n}{1+\delta} R_{-ij} x_j x_j^\top R_{-ij}) \Sigma (R_{-ij} - \frac{1/n}{1+\delta} R_{-ij} x_i x_i^\top R_{-ij}) \\
 1301 \\
 1302 &= R_{-ij} \Sigma R_{-ij} - \frac{1/n}{1+\delta} R_{-ij} \Sigma R_{-ij} x_i x_i^\top R_{-ij} - \frac{1/n}{1+\delta} R_{-ij} x_j x_j^\top R_{-ij} \Sigma R_{-ij} \\
 1303 \\
 1304 &\quad + \frac{1/n^2}{(1+\delta)^2} R_{-ij} x_j x_j^\top R_{-ij} \Sigma R_{-ij} x_i x_i^\top R_{-ij} \\
 1305 \\
 1306
 \end{aligned}$$

1307 and so

$$\begin{aligned}
 1308 \quad \mathbb{E}[p_i p_j y_i y_j x_i^\top R_{-i} \Sigma R_{-j} x_j] &= A_1 - A_2 - A_3 + A_4, \text{ where} \\
 1309 \\
 1310 \quad A_1 &:= \mathbb{E}[p_i p_j y_i y_j x_i^\top R_{-ij} \Sigma R_{-ij} x_j], \\
 1311 \\
 1312 \quad A_2 &:= \frac{1/n}{1+\delta} \mathbb{E}[p_i p_j y_i y_j x_i^\top R_{-ij} \Sigma R_{-ij} x_i x_i^\top R_{-ij} x_j], \\
 1313 \\
 1314 \quad A_3 &:= \frac{1/n}{1+\delta} \mathbb{E}[p_i p_j y_i y_j x_i^\top R_{-ij} x_j x_j^\top R_{-ij} \Sigma R_{-ij} x_j], \\
 1315 \\
 1316 \quad A_4 &:= \frac{1/n^2}{(1+\delta)^2} \mathbb{E}[p_i p_j y_i y_j x_i^\top R_{-ij} x_j x_j^\top R_{-ij} \Sigma R_{-ij} x_i x_i^\top R_{-ij}] \\
 1317
 \end{aligned}$$

1318 By symmetry, it is clear that $A_4 = 0$. In order to compute A_2 and A_3 , we shall need the following
 1319 result which can be obtained by applying Wick's identity (aka Anderson-Isserlis arguments).

1320 **Lemma 4.** *Let x and z be iid $\mathcal{N}(0, C)$ and let $g : \mathbb{R}^d \rightarrow \mathbb{R}$ be an odd function. Define $c := \mathbb{E}[g(x)x]$.
 1321 Then, for possibly random random $d \times d$ matrices A and B independent of x and z ,*

$$\begin{aligned}
 1322 \quad \mathbb{E}[g(x)g(z)x^\top Az \mid A] &= c^\top Ac, \\
 1323 \\
 1324 \quad \mathbb{E}[g(x)g(z)(x^\top Az)(x^\top Bx) \mid A, B] &= \text{tr}(BC)c^\top Ac + 2c^\top ACBc, \\
 1325 \\
 1326 \quad \mathbb{E}[g(x)g(z)(x^\top Az)(x^\top Bz)^2 \mid A, B] &= \text{tr}(BC)^2 c^\top Ac + 4 \text{tr}(BC)c^\top ACBc + 2c^\top ACBCBc.
 \end{aligned}$$

1327 Applying the first part of the lemma with $A = R\Sigma R$ gives $A_1 \simeq c^\top \Sigma' c$, where $\Sigma' := \mathbb{E}[R\Sigma R]$.
 1328 Applying the second part of the lemma with $A = R_{-ij} \simeq R$ and $B = R_{-ij} \Sigma R_{-ij} \simeq R\Sigma R$ gives
 1329

$$\begin{aligned}
 1330 \quad A_3 = A_2 &\simeq \frac{1}{1+\delta} \frac{1}{n} (\text{tr}(\Sigma C') c^\top R c + 2c^\top R C R \Sigma R c) \\
 1331 \\
 1332 &\simeq \frac{1}{1+\delta} \frac{1}{n} \text{tr}(\Sigma C') c^\top R c \simeq \frac{c^\top \bar{R} c}{1+\delta} \frac{1}{n} \text{tr} \Sigma C'.
 \end{aligned}$$

1334 We deduce that

$$\|\Sigma^{1/2} \hat{w}\|^2 \simeq \frac{1}{(1+\delta)^2} \left(\frac{p}{n} \text{tr} \Sigma C' + c^\top \Sigma' c - \frac{2c^\top \bar{R} c}{1+\delta} \frac{1}{n} \text{tr} \Sigma C' \right) =: \nu. \quad (49)$$

1339 E.2 ASYMPTOTICS OF α

1340 **Mean.** One computes

$$\begin{aligned}
 1342 \quad \|\Sigma^{1/2} w_*\|^2 \mathbb{E}\alpha &= \mathbb{E}\hat{w}^\top \Sigma w_* \simeq \frac{1}{1+\delta} \mathbb{E} \frac{1}{n} \sum_i p_i y_i x_i^\top R_{-i} \Sigma w_* \\
 1343 \\
 1344 &\simeq \frac{1}{1+\delta} \mathbb{E}[p_i y_i x_i^\top R_{-i} \Sigma w_*] \\
 1345 \\
 1346 &= \frac{1}{1+\delta} \mathbb{E}[p_i y_i x_i]^\top \mathbb{E}[R_{-i}] \Sigma w_* \\
 1347 \\
 1348 &\simeq \frac{c^\top \bar{R} \Sigma w_*}{1+\delta}.
 \end{aligned}$$

1350 **Variance.** On the other hand, observe that

$$1352 \quad \|\Sigma^{1/2}w_*\|^4\alpha^2 = (\hat{w}^\top \Sigma w_*)^2 = \hat{w}^\top \Sigma w_* w_*^\top \Sigma \hat{w}.$$

1353 So, applying Eqn (49) with Σ replaced with the rank one matrix $\Sigma w_* w_*^\top \Sigma$ and Σ' replaced with
1354 $R \Sigma w_* w_*^\top \Sigma R$, we get

$$1356 \quad \|\Sigma^{1/2}w_*\|^4 \mathbb{E}\alpha^2 = \mathbb{E}[\hat{w}^\top \Sigma w_* w_*^\top \Sigma \hat{w}] \simeq \frac{1}{(1+\delta)^2} \mathbb{E}[c^\top R \Sigma w_* w_*^\top \Sigma R c] \simeq \frac{1}{(1+\delta)^2} (c^\top \bar{R} \Sigma w_*)^2,$$

1358 where we have ignored all trace terms which are now of order $1/n$ (negligible). The RHS of the
1359 above display coincides with the square of the estimate for $\|\Sigma^{1/2}w_*\|^2 \mathbb{E}[\alpha]$ provided earlier. We
1360 deduce that the variance of α vanishes, and so

$$1362 \quad \alpha \simeq \mathbb{E}\alpha \simeq \frac{c^\top \bar{R} \Sigma w_*}{(1+\delta)\|\Sigma^{1/2}w_*\|^2} =: \frac{m}{\|\Sigma^{1/2}w_*\|}.$$

1364 Combining with 48 and Eqn (49) completes the proof of the first part of Proposition 2, namely the
1365 convergence Eqn (42).

1367 E.3 ASYMPTOTICS OF CLASSIFICATION TEST ERROR

1369 In the asymptotic limit Eqn (4), one may use the representation Eqn (42) to write

$$\begin{aligned} 1370 \quad \lim E_{test}(\hat{w}) &= \lim \mathbb{P}(yx^\top \hat{w} \leq 0) \\ 1371 &= \mathbb{P}(m|G_1| + \sqrt{\nu - m^2}G_2 \leq 0) \\ 1372 &= \mathbb{P}\left(\frac{G_2}{|G_1|} \leq -\frac{m}{\sqrt{\nu - m^2}}\right) \\ 1374 &= \mathbb{P}\left(\frac{G_2}{G_1} \leq -\frac{|m|}{\sqrt{\nu - m^2}}\right) \\ 1375 &= \frac{1}{2} + \frac{1}{\pi} \arctan(-|m|/\sqrt{\nu - m^2}) \\ 1377 &= \frac{1}{\pi} \arccos(|m|/\sqrt{\nu}) = \frac{1}{\pi} \arccos(|m_0|/\sqrt{\nu_0}), \end{aligned}$$

1382 as claimed. Note that, we have used the fact that G_2/G_1 is standard Cauchy random variable, for
1383 independent $G_1, G_2 \sim \mathcal{N}(0, 1)$. This completes the proof Proposition 2. \square

1385 F PROOF OF PROPOSITION 1

1387 Using Theorem 4 of (Liao & Mahoney, 2021) (and the proof thereof) combined with some basic
1388 algebraic manipulations, we can write

$$1389 \quad R \simeq \bar{R}, \tag{50}$$

$$1391 \quad \text{where } \bar{R}^{-1} = C^{1/2} \mathbb{E} \left[\frac{p_i}{1 + p_i \delta(z)} (\Pi^\perp + (\Pi x_i)(\Pi x_i)^\top) \right] C^{1/2} - z I_d, \tag{51}$$

1393 for a random training example $(x_i, y_i) \sim P_g$ from the generator, and corresponding prune/no prune
1394 bit p_i . The matrix C is the covariance matrix of x_i . Since p_i is Bernoulli with mean $p := \mathbb{P}(p_i = 1)$,
1395 it is clear that

$$1396 \quad \mathbb{E} \left[\frac{p_i}{1 + p_i \delta(z)} \right] = \frac{p}{1 + \delta(z)} := t(z).$$

1398 This further gives

$$1400 \quad \bar{R}^{-1} = t(z) C^{1/2} \Pi^\perp C^{1/2} - z I_d + C^{1/2} \Pi K \Pi C^{1/2},$$

$$1401 \quad \text{with } K := \mathbb{E} \left[\frac{p_i}{1 + p_i \delta(z)} u u^\top \right], \tag{52}$$

1403 where $u := \Sigma^{-1/2} x_i \sim \mathcal{N}(0, I_d)$ and $v := C^{1/2} w_o$.

1404 Now, to determine the matrix K , we first rewrite $u = (u_{\parallel}, u_{\perp})$ and $v = (v_1, v_{\perp})$, where
 1405

$$1406 \quad u_{\parallel} := \frac{u^T w_o}{\|w_o\|} \in \mathbb{R}, \quad v_1 := \frac{v^T w_o}{\|w_o\|} \in \mathbb{R}, \quad (53)$$

$$1408 \quad u_{\perp} := \Pi^{\perp} u \in \mathbb{R}^{d-1}, \quad v_{\perp} := \Pi^{\perp} v \in \mathbb{R}^{d-1}. \quad (54)$$

1410 The advantage of this representation is that:

- 1411 • u_{\perp} and v_{\perp} are orthogonal to w_o .
- 1412 • u_{\parallel} and u_{\perp} are statistically independent.
- 1413 • u_{\parallel} has distribution $\mathcal{N}(0, 1)$.
- 1414 • u_{\perp} has distribution $\mathcal{N}(0, I_{d-1})$.
- 1415

1417 Combining with the fact that due to the evenness of the pruning function q (in Eqn (5), Eqn (6), etc.),
 1418 the distribution of (x_i, y_i, p_i) doesn't change if x_i is replaced by $-x_i$ (so that $\mathbb{E}[p_i u_i u_j] = 0$ for all
 1419 $i \neq j$), we get:

$$1420 \quad K = s(z)\Pi + s_{\perp}(z)\Pi^{\perp},$$

$$1421 \quad \text{where } s(z) := \mathbb{E}[h_i G_1^2], \quad s_{\perp}(z) := \mathbb{E}[h_i G_{\perp}^2]$$

$$1423 \quad h_i := \frac{p_i}{1 + p_i \delta(z)}, \quad (G_1, G_{\perp}) \sim \mathcal{N}(0, I_2).$$

1425 Combining with Eqn (52), we get

$$1426 \quad \bar{R}^{-1} = C^{1/2}(a(z)I_d + b(z)\Pi)C^{1/2}, \quad (55)$$

$$1428 \quad \text{where } a(z) = t(z) - z, \quad t(z) = \frac{p}{1 + \delta(z)}, \quad b(z) = s(z) - t(z). \quad (56)$$

1429 Now, using the *Matrix-Inversion Lemma*, one can obtain \bar{R} from \bar{R}^{-1} as follows:

$$1431 \quad C^{1/2}\bar{R}C^{1/2} = (a(z)I_d + b(z)\Pi)^{-1} = \frac{1}{a(z)} \left(I_d - \frac{b(z)/a(z)}{b(z)/a(z) + 1} \Pi \right) = \frac{1}{a(z)}\Pi^{\perp} + \frac{1}{b(z) + a(z)}\Pi.$$

1433 It suffices to notice that $1/(b(z) + a(z)) = 1/(s(z) - z) = \tilde{m}(z)$ and $1/a(z) = \tilde{m}(z)$ by definition,
 1434 and the result follows. \square

1436 G PROOF OF THEOREM 1, THEOREM 3, AND COROLLARIES

1438 Theorem 1 and Theorem 3 are direct consequences of Proposition 2, where we use the deterministic
 1439 equivalents provided in Corollary 3, to considerably simplify the resulting formulae. Corollary 1 is
 1440 a consequence of Theorem 1 and limiting behavior of the spectral functions given in Eqn 37.

1442 G.1 PROOF OF THEOREM 1 AND THEOREM 3

1444 Set $z = -\lambda$. Also recall that $c = \beta_1 u + \beta_2 v$, where u, v, β_1 , and β_2 are as in Lemma 3. Note
 1445 that we have the identification $\beta = \beta_2$ and $\tilde{\beta} = \beta_1$. We know from Proposition 1 that $R \simeq \bar{R} =$
 1446 $m(z)\Pi^{\perp} + \tilde{m}(z)\Pi$, where $\Pi = uu^T$. One computes

$$1447 \quad m_0 = (w^*/\|w^*\|)^T \bar{R}c = \frac{1}{\|w^*\|} w^T (m(z)\Pi^{\perp} + \tilde{m}(z)\Pi) (\beta_1 u + \beta_2 v),$$

$$1449 \quad = \frac{1}{\|w^*\|} w^T (\beta_1 \tilde{m}(z)u + \beta_2 m(z)v),$$

1451 Moreover, on computes $w^T u / \|w^*\| = \rho_*$ by definition, and

$$1453 \quad \frac{w^T v}{\|w^*\|} = \frac{(w_g - (w_g^T w_o)w_o)^T w^*/\|w^*\|}{\|w_g - (w_g^T w_o)w_o\|} = \frac{w_g^T w^*/\|w^*\| - \rho_g \|w_g\| (w_o^T w^*/\|w^*\|)}{\|w_g\| \sqrt{1 - \rho_g^2}}$$

$$1456 \quad = \frac{\rho - \rho_g \rho_*}{\sqrt{1 - \rho_g^2}} = \frac{\cos \theta - \cos \theta_g \cos \theta_*}{\sin \theta_g} = \sin \theta_* \cos \xi = \sqrt{1 - \rho_*^2} \cos \xi =: \omega / \beta_2,$$

where we have used the identity $\cos \theta = \cos \theta_g \cos \theta_* + \sin \theta_g \sin \theta_* \cos \xi$, known as the *Spherical Law of Cosines*. Putting things together gives $m_0 \simeq \omega m(z) + \tilde{\omega} \tilde{m}(z)$ as claimed.

Likewise, one computes

$$\begin{aligned} \frac{1}{n} \operatorname{tr} \Sigma C' &= \frac{1}{n} \operatorname{tr} R^2 \simeq \frac{1}{n} \operatorname{tr} (m'(z) \Pi^\perp + \tilde{m}'(z) \Pi) \simeq \phi m'(z), \\ c^\top \bar{R} c &= c^\top (m(z) \Pi^\perp + \tilde{m}(z) \Pi) c = (\beta_1 u + \beta_2 v)^\top (\tilde{m}(z) \Pi + m(z) \Pi^\perp) (\beta_1 u + \beta_2 v) \\ &= \beta_2^2 m(z) + \beta_1^2 \tilde{m}(z) = \beta^2 m(z) + \tilde{\beta}^2 \tilde{m}(z) =: r(z), \\ c^\top \Sigma' c &= c^\top \mathbb{E}[R^2] c \simeq c^\top (m'(z) \Pi^\perp + \tilde{m}'(z) \Pi) c = \beta^2 m'(z) + \tilde{\beta}^2 \tilde{m}'(z) = r'(z). \end{aligned}$$

We deduce that $\nu = \nu_0 / (1 + \delta)^2$, where

$$\begin{aligned} \nu_0 &= \frac{p}{n} \operatorname{tr} \Sigma C' + c^\top \Sigma' c - \frac{2c^\top \bar{R} c}{1 + \delta} \frac{1}{n} \operatorname{tr} C \Sigma' \\ &\simeq \frac{p}{n} \operatorname{tr} R^2 + r'(z) - \frac{2r(z)}{1 + \delta(z)} \frac{1}{n} \operatorname{tr} R^2 = p \phi m'(z) + r'(z) - \frac{2r(z) \phi m'(z)}{1 + \phi m(z)}. \end{aligned}$$

the result then follows from Proposition 2. \square

G.2 PROOF OF COROLLARY 1

As usual, set $z := -\lambda < 0$.

(A) For $\phi < p$, it is easy to see from formula Eqn (33) and Lemma 2 that in the limit $z \rightarrow 0$, one has

$$\begin{aligned} m(z) &\rightarrow \frac{1}{p - \phi}, \\ \bar{m}(z) &\rightarrow 0, \\ \tilde{m}(z) &\rightarrow \frac{p/\gamma}{p - \phi}, \\ m'(z) &\rightarrow \frac{p}{(p - \phi)^3}, \\ \bar{m}'(z) &\rightarrow \frac{1}{p - \phi}, \\ \tilde{m}'(z) &\rightarrow \frac{p/\gamma^2}{(p - \phi)^3} (p(p - \phi) + \phi\gamma) = \frac{p}{(p - \phi)^3} ((p - \phi)p/\gamma^2 + \phi/\gamma), \\ \frac{m'(z)}{1 + \phi m(z)} &\rightarrow \frac{1}{(p - \phi)^2}. \end{aligned}$$

Furthermore, with m_0 and ν_0 as defined in Theorem 1, one computes

$$\begin{aligned} r(z) &= \beta^2 m(z) + \tilde{\beta}^2 \tilde{m}(z) \rightarrow \beta^2 \frac{1}{p - \phi} + \tilde{\beta}^2 \frac{p/\gamma}{p - \phi} = \frac{r_0}{p - \phi}, \\ r'(z) &= \beta^2 m'(z) + \tilde{\beta}^2 \tilde{m}'(z) \rightarrow \beta^2 \cdot \frac{p}{(p - \phi)^3} + \tilde{\beta}^2 \cdot \frac{p/\gamma^2}{(p - \phi)^3} (p(p - \phi) + \phi\gamma) = \frac{r'_0}{(p - \phi)^3}, \end{aligned}$$

where r_0 and r'_0 are as defined in the claim. We deduce that $m_0 / \sqrt{\nu_0 - m_0^2} = a / \sqrt{b - a^2}$ and the result follows from Theorem 1.

(B) Now consider the case $\phi > p$. Observe that $m_0 = \sqrt{\nu_0 - m_0^2} = -zm_0 / \sqrt{z^2 - z^2 m_0^2}$. On the other hand, from Eqn (33) we know that

$$-zm(z) = \frac{\sqrt{(p - \phi - z)^2 - 4\phi z} - (p - \phi - z)}{2\phi} \tag{57}$$

1512 Combining with Lemma 2, we deduce the following limits
 1513

$$\begin{aligned} -zm(z), z^2m'(z) &\rightarrow c_0 := 1 - p/\phi > 0, \\ \bar{m}'(z) &\rightarrow \frac{p/\phi}{\phi - p}, \\ -z\tilde{m}(z), z^2\tilde{m}'(z) &\rightarrow \frac{c_0}{\gamma/\phi + c_0}, \\ \frac{-zm'(z)}{1 + \phi m(z)} &\rightarrow \frac{1}{\phi}. \end{aligned}$$

1521 Furthermore, one computes
 1522

$$\begin{aligned} -zr(z) &= \beta_2^2 \cdot (-zm(z)) + \beta_1^2 \cdot (-z\tilde{m}(z)) = \beta_2^2 c_0 + \beta_1^2 \frac{c_0}{\gamma/\phi + c_0} =: c_0 r_0, \\ z^2r'(z) &= \beta_2^2 z^2 m'(z) + \beta_1^2 z^2 \tilde{m}'(z) = \beta_2^2 c_0 + \beta_1^2 \frac{c_0}{\gamma/\phi + c_0} = c_0 r_0, \\ -zm_0 &= \sqrt{2/\pi} \cdot (-zm(z)\omega - z\tilde{m}(z)\tilde{\omega}) \rightarrow \sqrt{2/\pi} c_0 \cdot (\omega + \tilde{\omega}/(\gamma/\phi + c_0)) := a, \\ z^2\nu_0 &= p\phi z^2 m'(z) + z^2 r'(z) - 2\phi \frac{-zm'(z)}{1 + \phi m(z)} \cdot (-zr(z)) \\ &\rightarrow p\phi c_0 + r_0 c_0 - 2r_0 c_0 = c_0 \cdot (p\phi - r_0) =: b. \end{aligned}$$

1523 We deduce that
 1524

$$m_0/\sqrt{\nu_0} = -za/\sqrt{z^2b} = a/\sqrt{b},$$

1525 and the result follows from Theorem 1. \square
 1526

1527 G.3 PROOF OF THEOREM 2

1528 Taking the limit $\phi \rightarrow 0$ in Corollary 1, we have

$$\begin{aligned} r'_0 &\rightarrow p \cdot (\beta^2 + \tilde{\beta}^2 p^2/\gamma^2), \quad b \rightarrow \frac{\beta^2 + \tilde{\beta}^2 p^2/\gamma^2}{p^2}, \quad a \rightarrow \frac{\omega + \tilde{\omega} p/\gamma}{p}, \\ a/\sqrt{b} &\rightarrow \frac{\omega/p + \tilde{\omega}/\gamma}{\sqrt{\beta^2/p^2 + \tilde{\beta}^2/\gamma^2}} = \frac{(\beta/p)\sqrt{1 - \rho_*^2} \cos \zeta + (\tilde{\beta}/\gamma)\rho_*}{\sqrt{\beta^2/p^2 + \tilde{\beta}^2/\gamma^2}} = \frac{j\sqrt{1 - \rho_*^2} \cos \zeta + 1}{\sqrt{j^2 + 1}}, \\ \text{with } j &= j(q) := \frac{\gamma(q)\beta(q)}{p\tilde{\beta}(q)} > 0. \end{aligned}$$

1529 where we recall that $\omega = \beta\sqrt{1 - \rho_*^2} \cos \zeta$ and $\tilde{\omega} = \tilde{\beta}\rho_*$.
 1530

1531 **Part (A).** Taking $\rho_* = 1$, meaning that pruning is done along the ground-truth, gives
 1532

$$a/\sqrt{b} = 1/\sqrt{j^2 + 1}.$$

1533 From Corollary 1, we see that the limiting value of $E_{clf}(\hat{w})$, i.e the functional F defined in Eqn (12),
 1534 is an increasing function of the ratio $j(q)$. The proof is completed by invoking Lemma 5 which
 1535 establishes that $iq_{KH(p)}$ (resp. $q_{KE(p)}$) is the unique minimizer (resp. maximizer) of the ratio $j(q)$
 1536 over $q \in \mathcal{Q}_p$.
 1537

1538 **Part (B).** On the other hand, taking $\rho = 1$ gives $\rho_g = \rho_*$, $\zeta = 0$, $\omega = \beta\sqrt{1 - \rho_g^2}$. We get $a > 0$,
 1539 and
 1540

$$a/\sqrt{b} \rightarrow \frac{j\sqrt{1 - \rho_*^2} + \rho_*}{\sqrt{j^2 + 1}}.$$

1541 It is easy to show that the RHS is strictly decreasing function of j . As with part (A), the proof is
 1542 completely by invoking Lemma 5 to extremize the ratio $j = j(q)$. \square
 1543

1544 **Lemma 5.** Suppose $\rho_g > 0$. For any fixed pruning strategy $p \in (0, 1]$, ignoring null-sets, the unique
 1545 maximizer (resp. minimizer) of the ratio $j(q)$ over $\mathcal{Q}_p := \{q \in \mathcal{Q} \mid p(q) = p\}$ is the "keep hard
 1546 examples" pruning strategy $q_{KH(p)}$ (resp. the "keep easy examples" pruning strategy $q_{KE(p)}$).
 1547

1566 *Proof.* Clearly, there is a bijective correspondence between \mathcal{Q}_p and the collection \mathcal{S}_p of Borell
 1567 subsets $S \subseteq \mathbb{R}$ of Gaussian measure equal to p , and verifying the symmetry condition $-S = S$.
 1568 This correspondence is simply $S \mapsto 1_S$, the indicator function of S . Furthermore, for any $S \in \mathcal{S}_p$,
 1569 one can write

1570 $\gamma(1_S) = 2F_0(S_+), \quad \tilde{\beta}(1_S) = 2F_1(S_+), \quad \beta(1_S) = 2F_2(S_+)$, with

1572 $S_+ := S \cap (0, \infty), \quad F_k(T) := \int_T f_k(t) \varphi(t) dt,$

1574 $f_0(t) := t^2, \quad f_1(t) := (2\Phi(\tau t) - 1)t, \quad f_2(t) := \varphi(\tau t), \quad \tau := \rho_g / \sqrt{1 - \rho_g^2}.$

1576 Define $a_p, b_p > 0$ such that the sets $I_p := \{t \in \mathbb{R} \mid |t| \geq a_p\}$ and $J_p := \{t \in \mathbb{R} \mid |t| \leq b_p\}$ both
 1577 have Gaussian measure p . We shall show that over the collection \mathcal{T}_p of Borell subsets of $(0, \infty)$
 1578 with Gaussian measure equal to $m = p/2$, the functional $T \mapsto F_0(T)F_2(T)$ is minimized (resp.
 1579 maximized) by $J_p^+ := [a_p, \infty)$ (resp. $I_p^+ := [0, b_p]$), while modulo null sets, and F_1 is uniquely
 1580 maximized (resp. minimized) by J_p^+ (resp. I_p^+).

1581 **Step 1: Reduction to Integration w.r.t Lebesgue Measure.** For any $t > 0$ and $u \in [0, 1/2]$, define

1583 $M(t) := \mu([0, t]), \quad N(u) := M^{-1}(u).$

1584 Under the change of variable $t = N(u)$, one has

1586 $F_k(T) = \bar{F}_k(M(T))$, where $\bar{F}(U) := \int_U g_k(u) du$, $g_k := f_k \circ N$, and $M(T) := \{M(t) \mid t \in T\}$.

1589 Thus, the minimizers (resp. maximizers) of F over $T \in \mathcal{T}_p$ are of the form $N(U)$ where U minimizes
 1590 (resp. maximizes) $\bar{F}(U) := \bar{F}_0(U)\bar{F}_1(U)/\bar{F}_2(U)$ over Borell sets $U \subseteq (0, 1/2)$ verifying
 1591 $|U| = m$. Let us show that modulo null sets, \bar{F} is minimized by $(0, m]$ and maximized by
 1592 $(1/2 - m, 1/2)$ where $m := p/2 \in (0, 1/2)$.

1593 For any $r \geq 0$, consider the equivalent linear-fractional program

1595
$$\min_{r \geq 0, U \subseteq (0, 1/2)} \frac{r\bar{F}_1(U)}{\bar{F}_2(U)} \text{ subject to } |U| = m, \bar{F}_0(U) \leq r. \quad (58)$$

1597 **Step 2: Dinkelbach re-Parametrization.** For fixed $r \geq 0$, consider the change of variable $\lambda =$
 1598 $\bar{F}_1(U)/\bar{F}_2(U)$, and define

1600 $v(\lambda) := \max_{U \subseteq (0, 1/2)} \bar{F}_1(U) - \lambda \bar{F}_2(U) \text{ subject to } |U| = m, \bar{F}_0(U) \leq r. \quad (59)$

1602 The "Dinkelbach trick" tells us that $\lambda^* = \max_U \bar{F}_1(U)/\bar{F}_2(U)$ iff $v(\lambda^*) = 0$.

1603 Now, the Lagrangian for the auxiliary problem is given by

1605
$$\begin{aligned} \mathcal{L}(U, \lambda, \eta, \zeta) &= \bar{F}_1(U) - \lambda \bar{F}_2(U) + \eta \cdot (r - \bar{F}_0(U)) + \zeta \cdot (m - |U|) \\ 1606 &= \int_U H(u, \lambda, \eta, \zeta) du + \eta r + \zeta m, \text{ with } H(u, \lambda, \eta, \zeta) := g_1(u) - \lambda g_2(u) - \eta g_0(u) - \zeta. \end{aligned}$$

1609 The first-order optimality conditions of U can then be expressed as

1610
$$H(u, \lambda, \eta, \zeta) \begin{cases} \geq 0, & \text{if } u \in U, \\ \leq 0, & \text{otherwise.} \end{cases} \quad (60)$$

1613 **Step 3: Shape Analysis.** Now, under the assumption that $\rho_g > 0$, the functions f_0 and f_1 (therefore
 1614 g_0 and g_2) are increasing and g_1 (therefore f_1) is decreasing. Thus, for any $\lambda, \eta \geq 0$, the function
 1615 $u \mapsto H(u, \lambda, \eta, \zeta)$ is a non-increasing function, for any feasible λ, η, ζ . A non-increasing function
 1616 crosses zero at most once. We deduce that the optimal U must be of the form $[b, 1/2)$, modulo a null
 1617 set. The condition $|U| = m$ forces $b = 1/2 - m$. We conclude that $[1/2 - m, 1/2)$ is the unique
 1618 minimizer of \bar{F} .

1619 Similarly, one shows that $[0, m]$ is the unique maximizer of \bar{F} . □

1620 H PROOF OF THEOREM 4 (REGRESSION ANALYSIS)

1622 H.1 A MODIFIED BIAS-VARIANCE DECOMPOSITION

1624 We start with the following general bias-variance decomposition for the regression test error.

1625 **Proposition 3.** *The regression test error of the estimator \hat{w} defined in Eqn Eqn (3) is given exactly by*

$$1628 E_{reg}(\hat{w}) = \lambda^2 \mathbb{E}[w_g^\top R \Sigma R w_g] + \sigma^2 \mathbb{E} \frac{1}{n} \text{tr} SR^2 \Sigma + \textcolor{red}{c^2 - 2\lambda \mathbb{E}[w_g^\top R \Sigma \epsilon]}, \quad (61)$$

1630 where $\epsilon := w_g - w_*$, $c^2 := \epsilon^\top \Sigma \epsilon$, and S and R are the random matrices defined in Eqn Eqn (3).

1632 The first two terms in the above sum correspond to bias and variance if we had $w_g = w_*$, i.e if we
1633 had no label-shift; the last two terms in red are a correction to take into account label shift.

1634 H.2 PROOF OF THEOREM 4

1636 Now, from Proposition 1 with $\Sigma = I_d$, we have the following deterministic equivalents:

$$\begin{aligned} 1638 R &\simeq m(z)\Pi^\perp + \tilde{m}(z)\Pi, \\ 1639 SR - I_d &\simeq zm(z)\Pi^\perp + z\tilde{m}(z)\Pi, \\ 1640 R^2 &= \frac{\partial}{\partial z} R \simeq m'(z)\Pi^\perp + \tilde{m}'(z)\Pi, \\ 1641 SR^2 &= \frac{\partial}{\partial z} SR \simeq (m(z) + zm'(z))\Pi^\perp + (\tilde{m}(z) + z\tilde{m}'(z))\Pi \\ 1644 &= (m(z) + zm'(z))I_d + (\tilde{m}(z) - m(z) + z\tilde{m}'(z) - zm'(z))\Pi. \end{aligned}$$

1646 Furthermore, notice that because Π is a fixed-rank (in fact rank-1) matrix, so is $S\Pi\Sigma$, and so
1647 $\mathbb{E}(1/n) \text{tr} S\Pi\Sigma \rightarrow 0$ in the limit $n \rightarrow \infty$. Thus, in view of using Proposition 3, one computes

$$\begin{aligned} 1649 \mathbb{E}[w_g^\top R \Sigma R w_g] &= w_g^\top \mathbb{E}[R^2] w_g = m'(z) \|w_g^\perp\|^2 + \tilde{m}'(z) \|w_g^\parallel\|^2, \\ 1650 \mathbb{E} \frac{1}{n} \text{tr} SR^2 \Sigma &\simeq \phi \cdot \mathbb{E} \frac{1}{d} \text{tr} SR^2 \Sigma \simeq \phi \cdot (m(z) + zm'(z)) = \phi \bar{m}'(z), \\ 1652 \mathbb{E}[w_g^\top R \Sigma \epsilon] &= \mathbb{E}[w_g^\top R \epsilon] \simeq \epsilon^\top (m(z)w_g^\perp + \tilde{m}(z)w_g^\parallel). \end{aligned}$$

1654 Putting things together then gives

$$\begin{aligned} 1656 E_{reg}(\hat{w}) &\simeq \lambda^2 \cdot \left(m'(-\lambda) \|w_g^\perp\|^2 + \tilde{m}'(-\lambda) \|w_g^\parallel\|^2 \right) + \sigma^2 \phi \bar{m}'(-\lambda) \\ 1657 &\quad + \|\epsilon\|^2 - 2\lambda \epsilon^\top (m(-\lambda)w_g^\perp + \tilde{m}(-\lambda)w_g^\parallel) \\ 1659 &= \lambda^2 \cdot \left(m'(-\lambda) \|w_g^\perp\|^2 + \tilde{m}'(-\lambda) \|w_g^\parallel\|^2 \right) + \sigma^2 \phi \bar{m}'(-\lambda) \\ 1661 &\quad + c^2 - 2\lambda \cdot (m(-\lambda)a + \tilde{m}(-\lambda)b) \text{ with } a := \epsilon^\top w_g^\perp, b := \epsilon^\top w_g^\parallel \text{ and } c^2 := \|\epsilon\|^2, \end{aligned}$$

1662 which proves Theorem 4. \square

1664 H.3 PROOF OF COROLLARY 2

1666 The first equation follows by taking the limit $\phi \rightarrow 0^+$ in part (A) of Corollary 1. For the second
1667 equation, note that in the limit Eqn (4) Corollary 1 gives $E_{reg} \simeq L = c^2 + L_0$, with

$$1669 L_0 = L_0(\phi, p) := \begin{cases} 0, & \text{if } \phi < p, \\ 1670 c_0 D + \frac{c_0}{c_1} E, & \text{if } \phi > p, \end{cases}$$

1672 where $D := \|w_g^\perp\|^2 - 2a$, $E := \|w_g^\parallel\|^2 - 2b$, and we recall that

$$1673 c_0 := 1 - p/\phi, \quad c_1 := \gamma/\phi + c_0 = 1 - (p - \gamma)/\phi, \quad \gamma = p + 2\alpha\varphi(\alpha), \quad \alpha = \Phi^{-1}(1 - p/2).$$

1674 Now, on the second branch, one computes
 1675

$$1676 \gamma' := \frac{\partial \gamma}{\partial p} = \alpha^2, \quad \frac{\partial L_0}{\partial p} = -\frac{D}{\phi} - E \frac{\gamma + (\phi - p)\gamma'}{(\phi - (p - \gamma))^2} = -\frac{D}{\phi} - E \frac{\gamma + (\phi - p)\alpha^2}{(\phi - (p - \gamma))^2},$$

1678 One can further show the Hessian of L_0 is nonnegative everywhere provided $E > 0$, and so every
 1679 stationary point is a global minimum, provided it lies in the interval $(0, \phi)$. Expanding to first order
 1680 in p , observe that if $t := -D/E > 0$, then we have a unique stationary point $p_0 = p_0(\phi)$. By the
 1681 way, observe that $D + c^2 = \|w_* - w_g^\parallel\|^2$ and $E + c^2 = \|w_* - w_g^\perp\|^2$, where $c^2 := \|w_* - w_g\|^2$ as usual,
 1682 and so the condition $D < 0 < E$ is equivalent to the condition $\|w_* - w_g^\parallel\|^2 < c^2 < \|w_* - w_g^\perp\|^2$
 1683 in the statement of the result being proved. Further, one can show that for small ϕ ,

$$1685 p_0/\phi \simeq \sqrt{t}/\sqrt{2 \log 1/\phi}, \quad (\gamma(p_0) - p_0)/\phi \simeq \sqrt{t}\sqrt{2 \log 1/\phi}. \quad (62)$$

1686 See Lemma 6. It is clear that $p_0 \ll \phi$ because $\log 1/\phi \gg 1$ for small ϕ , and so p_0 is on the second
 1687 branch of the definition of $L_0(\phi, p)$, and must therefore be a global min of L_0 the interval $(0, \phi)$.

1688 Moreover, one has (still in the limit $\phi \rightarrow 0^+$)

$$1689 \log 1/\phi \rightarrow \infty, \quad c(p_0) = 1 - p_0/\phi \rightarrow 1, \quad c_1(p_0) = 1 + (\gamma(p_0) - p_0)/\phi \rightarrow \infty, \quad c_0(p_0)/c_1(p_0) \rightarrow 0,$$

1691 and so $\lim_{\phi \rightarrow 0^+} L(\phi, p_0(\phi)) = c^2 + \lim_{\phi \rightarrow 0^+} L_0(\phi, p_0(\phi)) = D + c^2 = \|w_* - w_g^\parallel\|^2 < c^2$. \square

1692 **Lemma 6.** *Let t and p_0 be as in the proof of Corollary 2. For $\phi \rightarrow 0^+$, it holds that*

$$1694 p_0 \simeq \sqrt{t}/\sqrt{2 \log 1/\phi}, \quad (\gamma(p_0) - p_0)/\phi \simeq \sqrt{t}\sqrt{2 \log 1/\phi}. \quad (63)$$

1695
 1696
 1697 *Proof.* The idea is to argue that p must be small, and so we must have α large and $\gamma \gg 0$. One
 1698 then considers the simplified equation $D \cdot (\phi + \gamma(p))^2 + E\phi^2\alpha(p)^2 = 0$, which can be solved as a
 1699 function $p_0(\phi)$ of ϕ using Lambert-W function. Finally, since ϕ is small p_ϕ , we can further drop the
 1700 Lambert-W function and ultimately get $p_0 \simeq \sqrt{t}/\sqrt{2 \log 1/\phi}$. \square

1702 H.4 PROOF OF PROPOSITION 3

1703 As usual, set $z := -\lambda$ so that $R = (S - zI_d)^{-1}$. Observe that the estimator given in Eqn Eqn (3)
 1704 can be written as $\hat{w} = RSw_g + RX^\top D\Delta/n$, where $\Delta := Y - Xw_g \in \mathbb{R}^n$ is the vector of epistemic
 1705 label noise, which is independent of the design matrix X , and has distribution $\mathcal{N}(0, \sigma^2 I_n)$. We may
 1706 then decompose the regression test error of \hat{w} as follows:

$$\begin{aligned} 1708 E_{reg}(\hat{w}) &= \mathbb{E}[(x^\top \hat{w} - y)^2] - \sigma^2 = \mathbb{E}[(x^\top \hat{w} - x^\top w_*)^2] = \mathbb{E}[\|\hat{w} - w_*\|_\Sigma^2] \\ 1709 &= \mathbb{E}[\|RSw_g + RX^\top D\Delta/n - w_*\|_\Sigma^2], \\ 1710 &= \mathbb{E}[\|RSw_g - w_*\|_\Sigma^2] + \mathbb{E}[\|RX^\top D\Delta/n\|_\Sigma^2], \\ 1711 &= \mathbb{E}[\|RSw_g - w_g + w_g - w_*\|_\Sigma^2] + \sigma^2 \mathbb{E} \frac{1}{n^2} \text{tr} D X R \Sigma R X^\top D \\ 1712 &= \mathbb{E}[\|RSw_g - w_g\|_\Sigma^2] + \sigma^2 \mathbb{E} \frac{1}{n} \text{tr} S R^2 \Sigma + \text{tr} \Sigma \Delta + 2 \mathbb{E}[w_g^\top (SR - I_d) \Sigma \epsilon] \\ 1713 &= z^2 \mathbb{E}[w_g^\top R \Sigma R w_g] + \sigma^2 \mathbb{E} \frac{1}{n} \text{tr} S R^2 \Sigma + \epsilon^\top \Sigma \epsilon + 2z \mathbb{E}[w_g^\top R \Sigma \epsilon], \end{aligned}$$

1714 where we have used the elementary identity $SR - I_d = zR$. \square

1720 I PROOF OF THEOREM 5 (OPTIMAL PRUNING IN REGRESSION SETTING)

1721 Note that the pruning strategy q only enters the picture via the parameter $p(q) := \mathbb{E}[q(G)]$ and
 1722 $\gamma(q) := \mathbb{E}[q(G)G^2]$.

1723 **Definition 2.** *Let \mathcal{Q} be the set of all admissible pruning strategies satisfying Assumption 1, and for
 1724 any subset of \mathcal{H} of \mathcal{Q} , define $\text{Spec}(\mathcal{H}) \subseteq [0, 1]^2$ as follows:*

$$1725 \text{Spec}(\mathcal{H}) := \{(p(q), \gamma(q)) \mid q \in \mathcal{H}\}. \quad (64)$$

1726 Thus, $\text{Spec}(\mathcal{H})$ collects all possible values of p and γ attainable by some pruning strategy $q \in \mathcal{H}$.

Let $\mathcal{Q}_* := \{q_{p,u} \mid (p, u) \in [0, 1]^2\} \subseteq \mathcal{Q}$, where $q_{p,u}$ is as defined in Eqn (21). The next result gives us a tractable description of $\text{Spec}(\mathcal{Q})$. In particular, it proves Theorem 5.

Proposition 4. *We have the following analytic descriptions for $\text{Spec}(\mathcal{Q})$:*

$$\text{Spec}(\mathcal{Q}) = \text{Spec}(\mathcal{Q}_*), \quad (65)$$

$$\text{Spec}(\mathcal{Q}) = \{(p, \gamma) \mid 0 \leq p \leq 1, \gamma_{\min}(p) \leq \gamma \leq \gamma_{\max}(p)\}, \quad (66)$$

$$\text{where } \gamma_{\min}(p) := p - 2\alpha_{\min}(p)\varphi(\alpha_{\min}(p)), \quad \text{with } \alpha_{\min}(p) := \Phi^{-1}((1+p)/2), \quad (67)$$

$$\gamma_{\max}(p) := p + 2\alpha_{\max}(p)\varphi(\alpha_{\max}(p)), \quad \text{with } \alpha_{\max}(p) := \Phi^{-1}(1-p/2). \quad (68)$$

Geometrically, $\text{Spec}(\mathcal{Q})$ is thus the lens-like region between graphs of the functions γ_{\min} and γ_{\max} .

Proof. Recall the functions $\alpha_{\min}(p) := \Phi^{-1}((1+p)/2)$, $\alpha_{\max}(p) := \Phi^{-1}(1-p/2)$, $\gamma_{\min}(p) := p - 2\alpha_{\min}(p)\varphi(\alpha_{\min}(p))$ and $\gamma_{\max}(p) := p + 2\alpha_{\max}(p)\varphi(\alpha_{\max}(p))$ introduced in the lemma.

First note that any $q \in \mathcal{Q}$ is the indicator function of a disjoint union of intervals $A = \bigcup_{I \in \mathcal{I}} I$ such that $I \in \mathcal{I}$ iff $-I \in \mathcal{I}$, where $-I := \{-t \mid t \in I\}$. Now, for any $p \in [0, 1]$, the minimum (resp. maximum) feasible value for $\gamma(q)$ over the surface $\{q \in \mathcal{Q} \mid p(q) = p\}$ is $\gamma_{\min}(p)$ (resp. $\gamma_{\max}(p)$) and it is attained by taking the "keep easy" pruning strategy $q(t) := 1_{|t| \leq \alpha_{\min}(p)}$ (resp. "keep hard" pruning strategy $q(t) := 1_{|t| \geq \alpha_{\max}(p)}$). See Lemma 7. Therefore, we must have

$$\text{Spec}(\mathcal{Q}) := \{(p(q), \gamma(q)) \mid q \in \mathcal{Q}\} \subseteq \{(p, \gamma) \mid p \in [0, 1], \gamma \in \Gamma(p)\},$$

where we recall that $\Gamma(p) := [\gamma_{\min}(p), \gamma_{\max}(p)]$.

We now show the other direction of the set inclusion above. Given $\gamma \in \Gamma(p)$, we must construct $q \in \mathcal{Q}$ such that $p(q) = p$ and $\gamma(q) = \gamma$. Indeed, for any $u \in [0, 1]$, define $q_u \in \mathcal{Q}$ as the indicator function of the union of the intervals $I_u := \{t \in \mathbb{R} \mid |t| \leq a(u)\}$ and $J_u := \{t \in \mathbb{R} \mid |t| > b(u)\}$, where $a(u) := \alpha_{\min}((1-u)p)$ and $b(u) := \alpha_{\min}(pu)$. It is easy to verify that $b(u) \geq a(u)$. Indeed, because Φ^{-1} is non-decreasing, we know from the definition of α_{\max} and α_{\min} functions that

$$\alpha_{\max}(pu) \geq \alpha_{\min}((1-u)p) \iff 1-pu/2 \geq (1+(1-u)p)/2 \iff (1+p)/2 \leq 1 \iff p \leq 1.$$

It follows that I_u and J_u are disjoint and so

$$q_u(t) = 1_{I_u \cup J_u} = 1_{I_u} + 1_{J_u},$$

It is easy to verify that $p(q_u) = pu + (1-u)p = p$ and

$$\gamma(q_u) = p - 2a(u)\varphi(a(u)) + 2b(u)\varphi(b(u)).$$

Observe that $u \mapsto \gamma(q_u)$ increases continuously from $\gamma_{\min}(p)$ at $u = 0$ to $\gamma_{\max}(p)$ for $u = 1$. It follows from the *Intermediate Value Theorem* that there exists $u_0 \in [0, 1]$ such that $\gamma(q_{u_0}) = \gamma$. It suffices to take $q = q_{u_0}$.

Finally, $\text{Spec}(\mathcal{Q}) = \text{Spec}(\mathcal{Q}_*)$ follows directly from the construction of q_u . \square

Lemma 7. *For any $p \in [0, 1]$, we have the following.*

(A) *The minimum of $\gamma(q)$ over all $q \in \mathcal{Q}$ is given by*

$$\gamma_{\min}(p) = p - \alpha_{\min}(p)\varphi(\alpha_{\min}(p)), \quad \text{with } \alpha_{\min}(p) := \Phi^{-1}((1+p)/2), \quad (69)$$

and is attained by setting $q(t) \equiv 1_{|t| \leq \alpha_{\min}(p)}$.

(B) *The maximum of $\gamma(q)$ over all $q \in \mathcal{Q}$ is given by*

$$\gamma_{\max}(p) = p + \alpha_{\max}(p)\varphi(\alpha_{\max}(p)), \quad \text{with } \alpha_{\max}(p) := \Phi^{-1}(1-p/2). \quad (70)$$

and is attained by setting $q(t) = 1_{|t| > \alpha_{\max}(p)}$.

J PROOFS OF LEMMAS

J.1 PROOF OF LEMMA 2

The formula for $m'(z)$ from differentiating through Eqn (34) w.r.t z , and then doing some basic algebraic manipulations. All the other formulae for $\tilde{m}'(z)$, $\tilde{m}(z)$, and $r'(z)$ follow from the definition of the quantities and the chain rule. \square

1782 **K PROOF OF LEMMA 7**
1783

1784 (A) Every $q \in \mathcal{Q}$ is the indicator function of some measurable $A \subseteq \mathbb{R}$. We wish to maximize
1785 $\gamma(q) = \int_A t^2 \varphi(t) dt$ over A , subject to $p(q) = \int_A \varphi(t) dt = p$. The Lagrangian is
1786

$$1787 \mathcal{L}(A, \lambda) = \int_A t^2 \varphi(t) dt + \lambda \cdot \left(p - \int_A \varphi(t) dt \right) = \int_{-\infty}^{\infty} (t^2 - \lambda) 1_A(t) \varphi(t) dt + p\lambda.$$

1788 Since $\varphi(t) > 0$ for all t , it is clear that the integrand is minimized by taking
1789

$$1790 1791 1_A(t) = \begin{cases} 1, & \text{if } t^2 > \lambda \\ 0, & \text{otherwise.} \end{cases}$$

1792 Thus, by the *Rearrangement inequality* (for measures), it is optimal to take $A = (-\infty, \sqrt{\lambda}) \cup$
1793 $(\sqrt{\lambda}, \infty)$ for some $\lambda \geq 0$. The constraint $\int_A \varphi(t) dt = p$ then gives
1794

$$1795 \sqrt{\lambda} = \Phi^{-1}((1+p)/2) =: \alpha_{\min}(p).$$

1796 (B) Analogous arguments. □
1797

1799 **L PROOF OF LEMMA 3**
18001801 **L.1 NON-LIMO CASE**
1802

1803 Let us prove the formula for β_1 and β_2 given in the first row of Table 3. Consider $F = \text{sign}(U)q(V)$,
1804 where $U = Z^\top \bar{w}_g$ and $V := Z^\top \bar{w}_o$, for $Z \sim \mathcal{N}(0, I_d)$. Note that we can write $C^{-1/2}c = \mathbb{E}[FZ]$.
1805 By Stein's lemma, we have $C^{-1/2}c = a\bar{w}_g + b\bar{w}_o$, where

$$1806 1807 a := \mathbb{E}\left[\frac{\partial F}{\partial U}\right], \quad b := \mathbb{E}\left[\frac{\partial F}{\partial V}\right]. \quad (71)$$

1808 By direct computation, one has
1809

$$1810 \frac{\partial F}{\partial U} = 2\delta(U)q(V), \quad (72)$$

$$1811 \frac{\partial F}{\partial V} = \text{sign}(U)q'(V), \quad (73)$$

1812 in the distribution-theoretic sense. Thus, one computes
1813

$$1814 \mathbb{E}[\delta(U)q(V)] = \varphi(0)\mathbb{E}[q(V) | U = 0] = \varphi(0)\mathbb{E}[q(V) | U = 0] = \varphi(0)\mathbb{E}[q(G)] \\ 1815 = \varphi(0) \int_{-\infty}^{\infty} q(\sigma t)\varphi(t) dt = \frac{\varphi(0)}{\sigma} \int_{-\infty}^{\infty} q(t)\varphi(t/\sigma) dt \\ 1816 = \frac{1}{\sigma} \mathbb{E}[q(G)\varphi(\tau G)],$$

1817 where we have used the fact that
1818

$$1819 \varphi(\tau t)\varphi(t) = \frac{1}{\sqrt{2\pi}}\varphi(t\sqrt{\tau^2 + 1}) = \varphi(0)\varphi(t/\sqrt{1 - \rho^2}) = \varphi(0)\varphi(t/\sigma).$$

1820 We deduce that $a = (2/\sigma)\mathbb{E}[q(G)\varphi(\tau G)]$.
1821

1822 On the other hand, for any $s \in \mathbb{R}$, one computes
1823

$$1824 \mathbb{E}[\text{sign}(U)\delta(V - s)] = \varphi(s)\mathbb{E}[\text{sign}(U) | V = s] \\ 1825 = \varphi(s)(\mathbb{P}(U \geq 0 | V = s) - \mathbb{P}(U < 0 | V = s)).$$

1826 But, conditioned on $V = s$ the distribution of U is $\mathcal{N}(\rho_g s, \sigma^2)$, where $\sigma := \sqrt{1 - \rho_g^2}$. We deduce
1827 that $\mathbb{P}(U \geq 0 | V = s) = \mathbb{P}(\mathcal{N}(0, \sigma^2) \geq -\rho_g s) = \mathbb{P}(\mathcal{N}(0, \sigma^2) \leq \rho_g s) = \Phi(\tau s)$. Likewise,
1828 $\mathbb{P}(U < 0 | V = s) = \mathbb{P}(\mathcal{N}(0, \sigma^2) < -\rho_g s) = \Phi(-\tau s) = 1 - \Phi(\tau s)$. We deduce that
1829 $\mathbb{E}[\text{sign}(U)\delta(V - s)] = \varphi(s)(2\Phi(\tau s) - 1)$, and so
1830

$$1831 \mathbb{E}[\text{sign}(U)q'(V) | V = s] = \int q'(s)(2\Phi(\tau s) - 1)\varphi(s) dx = \mathbb{E}[q'(G)(2\Phi(\tau G) - 1)] \\ 1832 = 2\mathbb{E}[q'(G)\Phi(\tau G)] - \mathbb{E}[q'(G)] = 2\mathbb{E}[q'(G)\Phi(\tau G)],$$

1836 where we have used the evenness of q to write $\mathbb{E}[q'(G)] = \mathbb{E}[Gq(G)] = 0$. We deduce that
 1837

$$1838 \quad a = 2\sigma^{-1}\mathbb{E}[q(G)\varphi(\tau G)], \quad b = 2\mathbb{E}[q'(G)\Phi(\tau G)]. \quad (74)$$

1839 Lets write $C^{-1/2}c = a\bar{w}_g + b\bar{w}_o = \tilde{\beta}u + \beta v$, where $u = \bar{w}_o$ and v is an unit-vector perpendicular
 1840 to u but in the plane spanned by \bar{w}_o and \bar{w}_g . It is easy to see that
 1841

$$1842 \quad v = \frac{\bar{w}_g - \rho_g u}{\|\bar{w}_g - \rho_g u\|} = \frac{\bar{w}_g - \rho_g u}{\sqrt{1 - 2\rho_g^2 + \rho_g^2}} = \frac{\bar{w}_g - \rho_g u}{\sigma}.$$

1845 We deduce that

$$1846 \quad \beta = c^\top v = (\bar{w}_g^\top v)a = \sigma a = 2\mathbb{E}[q(G)\varphi(\tau G)] =: \beta_2, \quad (75)$$

$$1848 \quad \tilde{\beta} = c^\top u = b + \rho_g a = 2\mathbb{E}[q'(G)\Phi(\tau G)] + 2\tau\mathbb{E}[q(G)\varphi(\tau G)]. \quad (76)$$

1849 To match the formulae for β_1 and β_2 given in Table 3, we must now show that $\mathbb{E}[q'(G)\Phi(\tau G)] =$
 1850 $\mathbb{E}[q(G)\Phi(\tau G)G] - \tau\mathbb{E}[q(G)\varphi(\tau G)]$ and conclude that $\tilde{\beta} = \beta_1$. To this end, write $\mathbb{E}[q'(G)\Phi(\tau G)] =$
 1851 $\mathbb{E}[q'(G)f(G)]$, where $f(t) := \Phi(\tau G)$. By Stein's lemma (Gaussian integration by parts), we have
 1852

$$1853 \quad \mathbb{E}[q'(G)f(G)] = \mathbb{E}[q(G)(Gf(G) - f'(G))] = \mathbb{E}[q(G)(G\Phi(\tau G) - \tau\varphi(\tau G))]$$

$$1854 \quad = \mathbb{E}[q(G)\Phi(\tau G)G] - \tau\mathbb{E}[q(G)\varphi(\tau G)],$$

1855 as claimed.
 1856

1857 **Computing p and γ .** We now compute the pruning ratio by definition as $p := \mathbb{E}[p_i] = \mathbb{E}[q(V)] =$
 1858 $\mathbb{E}[q(G)]$ and $\gamma = \mathbb{E}[(x_i^\top w_o)^2 p_i] = \mathbb{E}[q(V)V^2] = \mathbb{E}[q(G)G^2]$ for $G \sim \mathcal{N}(0, 1)$. This matches the
 1859 formulae given in the first row of Table 3. \square
 1860

1861 L.2 LIMO CASE

1863 Let us now prove the formula for β_1 and β_2 given in the second row of Table 3. Here $F :=$
 1864 $\text{sign}(U)q(V)H(UV)$, where H is the Heaviside step function with the convention $H(0) = 1/2$.
 1865 Now, one computes

$$1866 \quad \frac{\partial F}{\partial U} = 2\delta(U)q(V)H(UV) + \text{sign}(U)q(V)V\delta(UV), \quad (77)$$

$$1868 \quad \frac{\partial F}{\partial V} = \text{sign}(U)q'(V)H(UV) + \text{sign}(U)q(V)U\delta(UV),$$

$$1870 \quad = \text{sign}(U)q'(V)H(UV) + |U|q(V)\delta(UV) \quad (78)$$

1872 **Computing the a coefficient.** One computes

$$1874 \quad \mathbb{E}[\delta(U)q(V)H(UV)] = \varphi(0)\mathbb{E}[\delta(U)q(V)H(0) \mid U = 0] = \frac{\varphi(0)}{2}\mathbb{E}[q(V) \mid U = 0]$$

$$1875 \quad = \dots = \frac{1}{2\sigma}\mathbb{E}[q(G)\varphi(\tau G)].$$

1878 On the other hand, using the well-known identity

$$1879 \quad \delta(xy) = \delta(y)/|x| + \delta(x)/|y|,$$

1881 one computes

$$1882 \quad \mathbb{E}[\text{sign}(U)q(V)V\delta(UV)] = \mathbb{E}[\text{sign}(U)q(V)V\delta(V)/|U|] + \mathbb{E}[\text{sign}(U)q(V)V\delta(U)/|V|]$$

$$1883 \quad = \mathbb{E}[(1/U)q(V)\underbrace{V\delta(V)}_{=0}] + \mathbb{E}[\text{sign}(U)\delta(U)\text{sign}(V)q(V)]$$

$$1885 \quad = \varphi(0)\mathbb{E}[\text{sign}(V)q(V) \mid U = 0] = 0,$$

1887 where the last step is because $t \mapsto \text{sign}(t)q(t)$ is an odd function, and the distribution of V conditioned
 1888 on $U = 0$ is $\mathcal{N}(0, \sigma^2)$ which is symmetric around the origin. We deduce that
 1889

$$a = \sigma^{-1}\mathbb{E}[q(G)\varphi(\tau G)]. \quad (79)$$

1890 **Computing the b coefficient.** For any $s \in \mathbb{R}$,

$$\begin{aligned} 1891 \quad & \mathbb{E}[\text{sign}(U)q'(V)H(UV) \mid V = s] \\ 1892 \quad & = q'(s)\varphi(s)\mathbb{E}[\text{sign}(U)1_{sU \geq 0} \mid V = s] \\ 1893 \quad & = q(s)\varphi(s)(\mathbb{P}(U \geq 0, sU \geq 0 \mid V = s) - \mathbb{P}(U < 0, sU \geq 0 \mid V = s)). \end{aligned}$$

1894 Now, since the distribution of U conditioned on $V = s$ is $\mathcal{N}(\rho_g s, \sigma^2)$, we have

$$\begin{aligned} 1895 \quad & \mathbb{P}(U \geq 0, sU \geq 0 \mid V = s) = \begin{cases} \mathbb{P}(U \geq 0 \mid V = s) = \Phi(\tau s), & \text{if } s \geq 0, \\ \mathbb{P}(U = 0 \mid V = s) = 0, & \text{if } s < 0, \end{cases} \\ 1896 \quad & \mathbb{P}(U < 0, sU \geq 0 \mid V = s) = \begin{cases} \mathbb{P}(U < 0, U \geq 0 \mid V = s) = 0, & \text{if } s \geq 0, \\ \mathbb{P}(U < 0 \mid V = s) = \Phi(-\tau s), & \text{if } s < 0. \end{cases} \end{aligned}$$

1897 Therefore, $\mathbb{E}[\text{sign}(U)q'(V)H(UV) \mid V = s] = q'(s)\text{sign}(s)\varphi(s)\Phi(\tau|s|)$, and we conclude that

$$1898 \quad \mathbb{E}[\text{sign}(U)q'(V)H(UV)] = \mathbb{E}[q'(G)\Phi(\tau|G|)\text{sign}(G)],$$

1899 with $G \sim \mathcal{N}(0, 1)$. Define $h(t) := \Phi(\tau|t|)\text{sign}(t)$. It is clear that

$$1900 \quad h'(t) = 2\delta(t)\Phi(\tau|t|) + \tau\varphi(\tau|t|) = 2\delta(v)\Phi(0) + \tau\varphi(\tau t) = \delta(v) + \tau\varphi(\tau t).$$

1901 Gaussian integration by parts then gives

$$\begin{aligned} 1902 \quad & \mathbb{E}[q'(G)\Phi(\tau|G|)\text{sign}(G)] = \mathbb{E}[q'(G)h(G)] = \mathbb{E}[q(G)(Gh(G) - h'(G))] \\ 1903 \quad & = \mathbb{E}[q(G)\Phi(\tau|G|)|G|] - \tau\mathbb{E}[q(G)\varphi(\tau G)] - \varphi(0)q(0). \end{aligned}$$

1904 But q' is odd (because q is even), and also $t \mapsto \Phi(\tau|t|)$ is obviously even. We deduce that $\mathbb{E}[\text{sign}(U)q'(V)H(UV)] = 0$. Likewise, using the identity $\delta(UV) = \delta(V)/|U| + \delta(U)/|V|$, one computes

$$\begin{aligned} 1905 \quad & \mathbb{E}[|U|q(V)\delta(UV)] = \mathbb{E}[q(V)\delta(V)] + \mathbb{E}[|U|q(V)\delta(U)/|V|] \\ 1906 \quad & = \varphi(0)q(0) + \mathbb{E}[\underbrace{|U|\delta(U)}_0 q(V)/|V|] = \varphi(0)q(0). \end{aligned}$$

1907 We deduce that $b = \mathbb{E}[q(G)\Phi(\tau|G|)|G|] - \tau\mathbb{E}[q(G)\varphi(\tau G)]$. Therefore, writing $C^{-1/2}c = \tilde{\beta}u + \beta v$ as before, we have

$$1908 \quad \beta = \sigma a = \mathbb{E}[q(G)\varphi(\tau G)] =: \beta_2,$$

$$1909 \quad \tilde{\beta} = b + \rho_g b = \mathbb{E}[q(G)\Phi(\tau|G|)|G|] =: \beta_1,$$

1910 which are precisely the formulae given in Table 3.

1911 **Computing p and γ .** We now compute the pruning ratio $p := \mathbb{E}[p_i] = \mathbb{E}[q(V)H(UV)]$ and $1912 \quad \gamma := \mathbb{E}[(x_i^\top w_o)^2 p_i] = \mathbb{E}[V^2 q(V)H(UV)]$ by definition of p_i in Eqn (6). Now, for any $s \in \mathbb{R}$, we have

$$\begin{aligned} 1913 \quad & \mathbb{E}[H(UV) \mid V = s] = \begin{cases} \mathbb{P}(U \leq 0 \mid V = s) = \Phi(-\tau s), & \text{if } s < 0, \\ 1/2, & \text{if } s = 0, \\ \mathbb{P}(U \geq 0 \mid V = s) = \Phi(\tau s), & \text{if } s > 0 \end{cases} \\ 1914 \quad & = \Phi(\tau|s|). \end{aligned}$$

1915 Integrating out s with density $\varphi(s)$, we deduce that

$$1916 \quad p = \mathbb{E}[q(G)\Phi(\tau|G|)], \quad \gamma = \mathbb{E}[q(G)\Phi(\tau|G|)G^2],$$

1917 as claimed. \square

1918 M ANALYTIC FORMULAE FOR $p(q)$, $\gamma(q)$, $\beta(q)$, AND $\tilde{\beta}(q)$

1919 Note that every symmetric pruning function $q \in \mathcal{Q}$ is the support function of sum $T := -S \cup S$, where S is (up to a null set) a countable union of closed intervals. We consider a subclass of 1920 symmetric pruning functions corresponding to finite unions, i.e.

$$1921 \quad q = 1_T, \text{ with } T = -S \cup S, \quad S = \bigcup_{j=1}^k [a_j, b_j], \quad 0 \leq a_1 < b_1 < a_2 < \dots < a_k < b_k \leq \infty. \quad (80)$$

1944 The "keep easy examples" (KE) and "keep hard examples" (KH) pruning functions used in (Sorscher
 1945 et al., 2022) and defined below belong to this class $k = 1$ (for some $\alpha > 0$):
 1946

$$q_{\text{KE}}(t) := 1[|t| \geq \alpha], \text{ i.e. } q_{\text{KE}}(t) = 1 \text{ if } |t| \geq \alpha \text{ and } q_{\text{KE}}(t) = 0 \text{ otherwise,} \quad (81)$$

$$q_{\text{KH}}(t) := 1[|t| \leq \alpha], \text{ i.e. } q_{\text{KH}}(t) = 1 \text{ if } |t| \leq \alpha \text{ and } q_{\text{KH}}(t) = 0 \text{ otherwise,} \quad (82)$$

1949 where $\alpha > 0$ which controls the proportion $p = \mathbb{E}[p_i]$ of training data which survives the curation.
 1950

1951 Since they correspond to taking $S = [\alpha, \infty]$ and $S = [0, \alpha]$ respectively. The representation 80
 1952 also generalizes the setup of Feng et al. (2024) and Firdoussi et al. (2024) corresponds to $q \equiv 1$, i.e.
 1953 $S = [0, \infty]$.

1954 For any $\alpha \in [0, \infty]$, define $I_k(\alpha) := \int_0^\alpha f_k(x)\varphi(x)dx$, where the functions f_k are defined by
 1955

$$f_1(x) := \Phi(\tau x), \quad f_2(x) := \varphi(\tau x), \quad f_3(x) := x\Phi(\tau x), \quad f_4(x) := x^2\Phi(\tau x).$$

1956 As usual, φ and Φ are the standard normal pdf and cdf respectively.
 1957

1958 **Proposition 5.** Consider a symmetric pruning function q of the form Eqn (80).

1959 (A) For label-agnostic curation Eqn (5), it holds that
 1960

$$1961 \quad p(q) = \sum_{j=1}^k g(b_j) - g(a_j), \text{ with } g(z) := 2\Phi(z) - 1 \quad (83)$$

$$1964 \quad \gamma(q) = \sum_{j=1}^k g(b_j) - g(a_j), \text{ with } g(z) := 2(\Phi(z) - z\varphi(z)) - 1, \quad (84)$$

$$1966 \quad \beta_1(q) = \dots, \quad (85)$$

$$1968 \quad \beta_2(q) = 2\varphi(0)\sigma \sum_{j=1}^k \Phi(b_j/\sigma) - \Phi(a_j/\sigma). \quad (86)$$

1971 (B) For Label-aware curation Eqn (6), it holds that
 1972

$$1973 \quad p(q) = 2 \sum_{j=1}^k I_1(b_j) - I_1(a_j), \quad (87)$$

$$1976 \quad \gamma(q) = 2 \sum_{j=1}^k I_4(b_j) - I_4(a_j), \quad (88)$$

$$1979 \quad \beta_1(q) = 2 \sum_{j=1}^k I_3(b_j) - I_3(a_j), \quad (89)$$

$$1982 \quad \beta_2(q) = 2 \sum_{j=1}^k I_2(b_j) - I_2(a_j). \quad (90)$$

1985 Part (A) of the proof follows directly from Eqn (8). Part (B) of the proof is a consequence of the
 1986 identity $\int_a^b h(x)dx \equiv I(b) - I(a)$, where $I(\alpha) := \int_0^\alpha h(x)dx$, combined with the following lemma.
 1987

1988 **Lemma 8.** For any $\alpha \in [0, \infty)$, the following identities hold:
 1989

$$1990 \quad I_1(\alpha) = \Phi(\alpha) - 1/2 - [\Phi_2(\alpha, 0; \rho) - \Phi_2(0, 0; \rho)], \quad (91)$$

$$1991 \quad I_2(\alpha) = \sigma\varphi(0)[\Phi(\alpha/\sigma) - 1/2], \quad (92)$$

$$1992 \quad I_3(\alpha) = \tau I_2(\alpha) - [\varphi(\alpha)\Phi(\tau\alpha) - \varphi(0)/2], \quad (93)$$

$$1993 \quad I_4(\alpha) = I_1 - \alpha\varphi(\alpha)\Phi(\tau\alpha) + \rho\sigma [\varphi(0)^2 - \varphi(\alpha)\varphi(\tau\alpha)]. \quad (94)$$

1995 The results are extended to $\alpha = \infty$ by noting that
 1996

$$1997 \quad \lim_{\alpha \rightarrow \infty} \alpha\varphi(\alpha) = \lim_{\alpha \rightarrow \infty} \varphi(\alpha) = 0, \quad \lim_{\rho \rightarrow 1} \tau I_2(\alpha) = \frac{\varphi(0)}{2}.$$