
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WHY LESS IS MORE (SOMETIMES):
A THEORY OF DATA CURATION

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper introduces a theoretical framework to resolve a central paradox in
modern machine learning: When is it better to use less data? This question has
become critical as classical scaling laws suggesting “more is more” (Sun et al.,
2025) are challenged by methods like LIMO (“less is more”) and s1 (Ye et al.,
2025; Muenighoff et al., 2025), which achieve superior performance with small,
aggressively curated datasets. Here, we study data curation strategies where an
imperfect oracle selects the training examples according to their difficulty and
correctness. Our results provide exact scaling law curves for test error under both
label-agnostic and label-aware curation rules, revealing when and why keeping
only a subset of data can improve generalization. In contrast to classical scaling
laws, we show that under certain conditions, small curated datasets can outper-
form full datasets, and we provide analytical conditions for this by deriving precise
phase transition curves tied to data size and quality. We validate these theoretical
claims with empirical results on ImageNet, confirming our predictions about when
curation improves accuracy and can even mitigate model collapse. Furthermore,
our framework provides a principled explanation for the contradictory curation
strategies recently observed in LLM mathematical reasoning.

1 INTRODUCTION

Despite remarkable advances in large language models (LLMs) and other foundation models, train-
ing them remains highly inefficient, often requiring hundreds of billions of tokens. A key reason
lies in how training data is used: standard loss functions treat all examples equally, regardless of
their informativeness. Yet not all data points contribute equally to learning; while some accelerate
progress, others are redundant or even detrimental (Sorscher et al., 2022). This inefficiency moti-
vates the exploration of principled data curation strategies.

Recent empirical successes highlight the promise of aggressive data curation. Methods such as
LIMO (Less Is More) (Ye et al., 2025) and s1 (Muennighoff et al., 2025) show that curating compact
sets of valid and challenging examples can dramatically improve reasoning performance, often with
a fraction of the original data. These results stand in contrast to the traditional scaling law perspective
(Kaplan et al., 2020; Hoffmann et al., 2022), which suggests that simply increasing dataset size
should monotonically improve generalization. The apparent contradiction between “less is more”
and “more is more” (Sun et al., 2025) raises a fundamental question: under what conditions does
data curation help, and when does full-data training remain optimal?

In this work, our goal is not to propose another heuristic curation method, but rather to build a
principled theoretical framework that explains why and when such strategies succeed. We analyze
high-dimensional binary classification under pruning oracles that filter examples based on difficulty
and correctness. Our theory provides exact scaling laws for test error, revealing sharp phase tran-
sitions tied to dataset size, label quality, and oracle reliability. These results establish conditions
under which keeping only the hardest or easiest examples outperforms training on the full dataset.
Crucially, we show how strategic curation can mitigate model collapse (Shumailov et al., 2024;
Dohmatob et al., 2024a), where iterative self-training on noisy or synthetic data leads to catastrophic
degradation.
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Main Contributions:

• We develop a precise theoretical framework for data curation in high-dimensional learning,
deriving exact scaling laws that characterize the effect of data pruning on generalization.

• We demonstrate that, under realistic compute or label-quality constraints, strategically pruned
datasets can outperform full datasets, thereby bending classical scaling laws.

• We empirically confirm our theoretical predictions on ImageNet and connect them to recent
large-scale results in LLM reasoning, providing a rigorous justification for why methods like
LIMO and s1 succeed.

• We show analytically that data curation can avert model collapse under label shift, establishing
phase boundaries where uncurated training diverges while curated training remains stable.

Together, these results reframe data curation not as a heuristic preprocessing step, but as a principled
tool for stable and efficient learning.

2 SETUP FOR THEORETICAL ANALYSIS

To formally analyze when “less is more” versus when “more is more”, we must first establish a
precise mathematical setting, which is rich enough to capture the complexity of the problem, but
simple enough to be analytically tractable. This section defines our data generation process, the
model we analyze, and, most importantly, the key quantities that will allow us to distinguish between
different learning regimes: the quality of the data generator and the quality of the pruning oracle.

2.1 DATA, MODEL, AND ASSUMPTIONS

Data Distributions. Let Pw,A denote the probability distribution on Rd × R given by:

(x, y) ∼ Pw,A iff x ∼ N (0, A), y = sign(x⊤w). (1)

The training dataset consists of n i.i.d. pairs (xi, yi) from a distribution Pg = Pwg,Cg , where wg ∈
Rd and Cg ∈ Rd×d are the weights/labeling vector and the covariance matrix for the generative
distribution (the “generator”). The true test data distribution is, however, P∗ = Pw∗,Σ, where w∗ ∈
Rd and Σ ∈ Rd×d are the true weights and covariance. In general, we consider wg ̸= w∗ (i.e., label
shift) and Cg ̸= Σ (i.e., covariate shift).

The Model. Consider a vector ŵ ∈ Rd defined as the solution to the convex optimization problem:

minimize
1

n

n∑
i=1

piℓ(x
⊤
i w; yi) +

λ

2
∥w∥2, over w ∈ Rd. (2)

Here, ℓ(z; y) := (z − y)2/2 is the squared L2 loss, λ > 0 is a regularization parameter, and
pi ∈ {0, 1} indicates if an example is kept. The downstream classifier is x 7→ sign(x⊤ŵ). The
first-order condition for optimality in Eqn (2) gives the solution:

ŵ = RX⊤DY/n, with R := (S + λId)
−1 and S := X⊤DX/n, (3)

where X ∈ Rn×d is the design matrix, Y ∈ Rn is the label vector, and D is a diagonal matrix with
Dii := pi, indicating which examples are present.

Object of Study: High-Dimensional Test Error Our goal is to characterize the classification test
error, Etest(ŵ) := P(sign(x⊤ŵ) ̸= y), in the high-dimensional proportionate scaling limit:

n, d → ∞, d/n → ϕ ∈ (0,∞). (4)

For simplicity of presentation of our main theoretical results and insights, we limit the analysis to
the isotropic setting where the covariance matrices are identity matrices, i.e., Cg = Σ = Id. More
general results are deferred to the appendix. Thus, our focus here is on label shift, where the labels
from the generator Pg might deviate from the ground-truth labels from P∗.
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2.2 DATA CURATION RULES

Label-Agnostic Curation. First, we consider a setting where an example (xi, yi) is retained based
only on its features xi, via a pruning function q : R → {0, 1} and an oracle pruning vector wo ∈ Rd:

pi = q(x⊤
i wo). (5)

This rule uses the function q to select examples based on their projection onto the oracle vector wo.
For instance, common strategies like “keep easy” and “keep hard” correspond to choosing q(t) :=
1[|t| ≥ α] to retain large-margin examples (far from the decision boundary) and q(t) := 1[|t| ≤ α]
to retain small-margin examples (close to the decision boundary), respectively. The notion of an
example’s difficulty is thus determined by the oracle wo, and the threshold α > 0 controls the
proportion of data kept. This captures the setting considered in (Sorscher et al., 2022).

Label-aware Curation. We also analyze a more realistic rule where the oracle filters for the cor-
rectness of the corresponding label as well. Here, an example (xi, yi) is kept if its label yi matches
the oracle’s label yoi and it is deemed interesting by q:

pi = 1 iff yi = yoi and q(x⊤
i wo) = 1, (6)

where yoi := sign(x⊤
i wo) is the label according to the pruning oracle (not revealed to the learner!).

In the practical setting of LIMO (Ye et al., 2025) and s1 (Muennighoff et al., 2025) methods, the
pruning function q might capture other heuristic rules which decides if an example is sufficiently
diverse or interesting to be retained in the curated dataset.

Desiderata: Importantly, our setup posits that the machine learner can only query the curation
rule by submitting input/label pairs (xi, yi) and obtaining bits pi ∈ {0, 1}, but has no access to
the underlying pruning direction wo, nor the oracle labels yoi = sign(x⊤

i wo).

Remark 1. The setups in Feng et al. (2024) and Firdoussi et al. (2024) are a special case of Eqn (6).
This occurs when the difficulty-based pruning is ignored (q ≡ 1), meaning the curation rule retains
an example if and only if its label yi matches the oracle’s label yoi .

Pruning Ratio. The fraction of data retained for learning is the pruning ratio, p := P(pi = 1).
Out of n original examples, approximately np survive curation. A small p corresponds to aggressive
pruning, while p → 1 means no data is removed.

2.3 QUANTIFYING GENERATOR AND PRUNING ORACLE QUALITY

The following constants play a crucial role in our theory. They measure the geometric alignment
between the generator (the labeler of the training data, wg), the oracle (the pruner, wo), and the
ground truth (the true labeler of the test data, w∗):

ρ :=
w⊤

g Cw∗

∥wg∥C∥w∗∥C
, ρ∗ :=

w⊤
o Cw∗

∥wo∥C∥w∗∥C
, ρg :=

w⊤
o Cwg

∥wo∥C∥wg∥C
, τ :=

ρg√
1− ρ2g

. (7)

Here, ∥w∥C :=
√
w⊤Cw is the Mahalanobis norm induced by the covariance matrix C.

Geometrically, ρ, ρ∗, and ρg are the cosines of the angles between their respective vector pairs,
while τ is the cotangent of the angle between the pruner (wo) and the generator (wg).

Crucially, ρ and ρ∗ directly quantify the performance of the generator and the pruner. Their test
errors are given by the simple relationship:

Etest(wg) = (1/π) arccos ρ and Etest(wo) = (1/π) arccos ρ∗.

Note that arccos has range [0, π]. These constants have the following interpretation for our analysis:

• Generator Quality (ρ): When ρ → 1, the generator is excellent, which we call a strong
generator. When ρ < 1 corresponding to label shift, it is a weak generator.

• Oracle Quality (ρ∗): When ρ∗ → 1, the pruning oracle is excellent and aligns well with the
ground truth.

The triplet (ρ, ρg, ρ∗) will appear in our analytical descriptions of the limiting test error Etest(ŵ).

3
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3 MAIN THEORY: WHEN TO PRUNE AND WHEN TO SCALE

We established a precise mathematical framework in Section 2, defining key quantities such as the
data distribution, model, and curation rules. In this section, we use this framework to develop a core
theory that explains when and why data pruning can improve performance by deriving exact scaling
laws for test error under different data curation strategies. As we will demonstrate, our theory shows
precisely how the optimal pruning strategy changes as a function of ρ.

For simplicity, we present our main results for the isotropic setting where Σ = Cg = Id and the
pruning direction wo has unit norm. General results are in the appendix.
Assumption 1 (Symmetric Pruning Functions). q is a symmetric binary-valued measurable func-
tion, i.e., q(t) = q(−t) ∈ {0, 1} for all t ∈ R. Q denotes the collection of all such functions.

This is a common setup that includes rules based on the absolute value of margins, such as keeping
the ”easiest” or ”hardest” examples (Sorscher et al., 2022).

3.1 SETTING #1: LABEL-AGNOSTIC DATA CURATION

We first consider label-agnostic pruning, where the decision to keep an example (xi, yi) depends
only on the features xi, as in Eqn (5). For any pruning function q ∈ Q, we define four key constants
that capture its effect on the learning dynamics:

p := E [q(G)], γ := E [q(G)G2], β := 2E [q(G)φ(τG)] , β̃ := 2E [q(G)Φ (τG)G] , (8)

where φ and Φ are the pdf and cdf respectively of a standard Gaussian variable G ∼ N (0, 1). Note
that p = p(q) defined above is just the average fraction of data kept by the pruning strategy in
Eqn (5).

The following theorem provides our first main result: an exact analytical formula for the test error.
Theorem 1 (Exact Test Error). In the asymptotic limit Eqn (4), the test error of the model ŵ from
Eqn (3) is given by,

Etest(ŵ) →
1

π
arccos(|m0|/

√
ν0), where (9)

m0 := ωm(−λ) + ω̃m̃(−λ), ν0 := pϕm′(−λ) + r′(−λ)− 2ϕm′(−λ)r(−λ)

1 + ϕm(−λ)
, (10)

with ω := (ρ− ρgρ∗), ω̃ := β̃ρ∗, (11)

where m, m̃, and r are functions explicitly determined by the constants in Eqn (8). In particular, m
is the Stieltjes transform of a Marchenko-Pastur law, ”deformed” by pruning. Details in appendix.

This theorem provides the machinery to analyze any pruning strategy q, and isolate its effect on the
dynamics of the classification test error curve. This impact is entirely captured by the scalars p, γ, β,
and β̃. Now, we use this tool to characterize the optimal choice of q.

Sketch of Proof of Theorem 1. The full proof is given in the appendix, and relies on the construction
of suitable deterministic equivalents for the resolvent matrix R defined in Eqn (3) and its square R2.
This allows us to calculate the limiting distribution of the “margin” yx⊤ŵ at a random test point
x ∼ N (0, Id), and then the test error Etest(ŵ) := P(yx⊤ŵ < 0). Our approach follows random
matrix theory (RMT) techniques which are now prevalent in machine learning theory (Couillet &
Liao, 2022; Firdoussi et al., 2024).

Optimal Pruning Strategy. In the asymptotic limit Eqn (4), let F (q) be an error functional repre-
senting the limiting test error for a given strategy q in the data-rich, unregularized regime:

F (q) := lim
ϕ→0

lim
λ→0

lim
d,n→∞, d/n→ϕ

Etest(ŵ), (12)

where ŵ = ŵ(q, n, d, λ, ρ∗, . . .) is the estimator Eqn (3) fitted on a version of the training dataset
Dn pruned with the pruning strategy q.

The following theorem shows how the minimizer of F (q) changes based on the generator quality ρ.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Theorem 2 (Optimal Pruning Strategy). Suppose that the pruning direction wo has a positive pro-
jection along the generator direction wg (ρg > 0) and fix the pruning ratio p ∈ (0, 1]. Let Qp be the
set of strategies that keep a fraction p of the data.

(A) If the generator is excellent (ρ → 1) and the pruner is excellent (ρ∗ → 1), then the ”keep hard”
(KH) strategy uniquely minimizes the test error F (q) over Qp.

(B) If the generator is poor (ρ < 1) but the pruner is excellent (ρ∗ → 1), then the ”keep easy” (KE)
strategy uniquely minimizes the test error F (q) over Qp.

Part (A) shows that for a strong model/generator that has already mastered the task, performance
is refined by focusing on difficult examples—a ”less is more” (Ye et al., 2025) approach. Part
(B) captures the opposite scenario: for a weak model/generator, the best strategy is to keep easy
examples. This latter case is particularly relevant for mitigating model collapse, where a model
trained on its own imperfect outputs acts as a poor generator (Shumailov et al., 2024; Dohmatob
et al., 2025). Also see Appendix C.

3.2 SETTING #2: LABEL-AWARE DATA CURATION

We now extend our analysis to the pruning rule from Eqn (6), inspired by methods like LIMO (Ye
et al., 2025) and s1 (Muennighoff et al., 2025). Here, an example is kept only if an oracle deems its
label to be correct and it satisfies the difficulty-based rule. This requires modifying the definitions
of our key constants from Eqn (8). Set zi := x⊤

i wg , zoi := x⊤
i wo, and fi := piyi, where pi ∈ {0, 1}

is as defined in Eqn (6). The said modifications are:

p := P(pi = 1), γ := E[(yoi )2pi], β := E[
∂fi
∂zi

], β̃ := E[
∂fi
∂zoi

]. (13)

Expectations are over the training data and derivatives are in the distribution-theoretic sense. Explicit
formulae for the above constants are provided in the appendix for a general pruning strategy q ∈ Q.
Theorem 3 (Test Error for Label-aware Curation). In the asymptotic limit Eqn (4), the test error
Etest(ŵ) for label-aware curation is given by the same formula as in Theorem 1, but using the
modified constants from Eqn (13).

Refer to the appendix for full proofs, various corollaries and their phenomenological implications.

4 BRIDGING THEORY AND PRACTICE

Our theoretical framework provides a clear principle: the optimal data curation strategy is not uni-
versal but depends on the interplay between the generator’s quality (ρ), the pruner’s quality (ρ∗),
their alignment (ρg), and the amount of available data (n). In this section, we first validate our pre-
dictions in a controlled synthetic environment. We then use these validated principles as a lens to
interpret and unify real-world results in LLM mathematical reasoning and ImageNet classification.
For a comprehensive set of validations, please see Figure 4 and Appendix B.

4.1 THEORY PREDICTION: THE INTERPLAY OF GENERATOR QUALITY AND DATA SCALE

We simulate four distinct learning regimes in a 2x2 grid to characterize the test error as we vary
the generator’s quality (ρ) and the amount of available data (n). The left column shows a strong
generator (ρ = 1), while the right shows a poor generator (ρ < 1). The top row represents a
small-n regime, and the bottom represents a large-n regime.

In each setting, we compare a strategic “keep hard” pruning strategy against a baseline “random”
selection of the same size, where the pruner is uninformative1. Figure 1 plots the test error, showing
the match between our theoretical predictions and the empirical results.

The results reveal a clear pattern for when to prune. In three of the four regimes, the test error
is minimized when the pruning fraction p = 1, confirming the “more is more” (Sun et al., 2025)
principle. This holds true when:

1For the “keep hard” strategy, we set ρg = 0.5 and ρ∗ = ρ. The “random” strategy uses an orthogonal
pruner where ρ∗ = ρg = 0.
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Figure 1: Theory Prediction across four key regimes. Test error as a function of fraction of data
kept (p = 1 means keeping all the data) for “keep hard” and “random” pruning. Solid lines are
theoretical predictions; dashed lines are empirical results with error bars. The plot reveals that a
“more is more” strategy (optimal error at p=1) is the default, holding true for small datasets (top
row) or a poor generator (right column). The bottom-left quadrant shows the crucial exception:
only when data is abundant and the generator is strong does the ”less is more” principle apply, with
aggressive pruning yielding the lowest error.

• The amount of data is small (top row, both poor and strong generators).

• The generator is poor, even with abundant data (bottom right).

However, the bottom-left quadrant reveals the critical exception. When the data is abundant and
the generator is strong (ρ = 1), the error is minimized at p ≪ 1. This confirms the “less is more”
principle: in this specific regime, curating a small set of hard examples is the optimal strategy.

4.2 RECONCILING RECENT FINDINGS IN LLM MATH REASONING

Our framework can interpret and unify seemingly contradictory findings in LLM mathematical rea-
soning. The following results are aggregated from existing literature and our theory provides a novel
explanation for why different curation strategies succeed under different conditions. In this context,
the generator (wg) is the base LLM that produces reasoning traces, and its quality (ρ) reflects its
proficiency on a specific slice of the test data.

Recent methods like LIMO and s1 show that ”less is more”: aggressive curation of high-quality,
difficult examples improves average performance on the AIME benchmark (Table 1). However, a
paradox emerges when evaluating only on the hardest AIME questions: here, ”more is more” holds
true, and performance scales with the number of training examples (Table 2).

Our theory resolves this cleanly:

• For Average Performance, the base LLM is a strong generator (high ρ) for the majority of
problems. As predicted by our theory, the optimal strategy is to aggressively prune and ”keep
hard” examples to refine its already strong capabilities.

6
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Table 1: AIME 2024 (Average Performance) re-
ported in Muennighoff et al. (2025); Ye et al.
(2025).

Training Data Size Pass@1 (%)
0 (Base Qwen2.5 32B) 16.5
114k (Openthinker) 50.2
59k (curated in s1) 53.3
1k (curated from pool of 59k) 56.7

Table 2: AIME (Hard-Level Questions) perfor-
mance reported in Sun et al. (2025).

Training Data Size Avg@8 (%)
0 (Base Qwen2.5 32B) 1.0
1k from OpenR1-Math 28.4
2k examples 35.4
10k examples 52.1
114k (Openthinker) 47.9
1M (Openthinker2) 64.9

• For Hard Performance, the same LLM is a weak generator (low ρ) relative to this diffi-
cult data slice. In this regime, our theory correctly predicts that a ”more is more” approach
is superior, as the model needs a larger dataset to build foundational skills for these novel
problems.

The optimal strategy is not universal; it depends on the generator’s capability relative to the target
task’s difficulty.

4.3 CURATION ON IMAGENET: DATA SCALE AND MODEL COLLAPSE

We demonstrate that the same principles apply to large-scale vision tasks. We use a pre-trained
model as both the generator (wg) and pruner (wo) to create and select from a pseudo-labeled dataset.
The strength of this generator is controlled by the size (n) of its initial training set.

Optimal Strategy Depends on Data Scale. As predicted, the initial data size dictates the best
pruning strategy. Figure 2 shows a clear crossover point:

• Small n (Weak Generator): When trained on only 160K examples, the ”keep easy” strategy
is more effective.

• Large n (Strong Generator): When trained on 1.2M examples, the ”keep hard” strategy
becomes superior, achieving performance close to a model trained on ground-truth labels.

0.2 0.4 0.6
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Keep Hard
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Figure 2: The optimal curation strategy depends on the data scale in ImageNet. A clear
crossover point emerges as we vary the initial dataset size n, shifting the optimal strategy from
”keep easy” to ”keep hard” as the generator model becomes stronger.

Strategic Pruning Prevents Model Collapse. This principle is vital for stability in iterative train-
ing. We simulate model collapse by repeatedly re-training on the model’s own pseudo-labels. Figure
3 shows that while training on all data causes performance to degrade, applying the ”keep hard”
strategy at each step stabilizes performance and effectively prevents collapse. This demonstrates
that principled curation is crucial not only for one-shot efficiency but also for long-term stability in
self-improvement loops.
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Figure 3: Strategic pruning prevents model collapse. Over multiple rounds of pseudo-labeling,
training on all examples leads to performance degradation. In contrast, selectively training on only
hard, valid examples consistently preserves performance across rounds.

5 RELATED WORK

Beating Neural Scaling Laws. The award-winning work of Sorscher et al. (2022) show that prun-
ing a training set with margin-based difficulty scores can bend neural scaling curves, delivering
higher accuracy with fewer samples. More recent methods in reasoning and program-synthesis
tasks—LIMO (Ye et al., 2025) and S1 (Muennighoff et al., 2025) report an even more drastic pic-
ture: a compact set of challenging, high-quality examples drives larger gains than indiscriminate data
expansion. In these pipelines the inputs (questions) are human-curated, while the outputs (answers
or solutions) are generated by a large model such as R1 (Guo et al., 2025). We provide theoretical
justification for the improved scaling behavior and systematically study a simpler, yet analogous,
setup through controlled experiments on ImageNet (Deng et al., 2009).

Model Collapse. Advances in generative models have led to synthetic data becoming widespread
online, where it now irreversibly blends into training corpora. Recent studies have highlighted the
potential for dramatic deterioration in downstream models, a phenomenon known as “model col-
lapse” (Shumailov et al., 2023). Empirical studies have demonstrated this issue in various settings
(Hataya et al., 2023; Martı́nez et al., 2023a;b; Bohacek & Farid, 2023; Briesch et al., 2023). Syn-
thetic data can exacerbate biases via feedback loops (Taori & Hashimoto, 2023; Wyllie et al., 2024),
narrow content diversity (Padmakumar & He, 2024; Guo et al., 2023), and distort underlying distri-
butions (LeBrun et al., 2021).

Theoretical analysis also examines the effects of iterative training on self-generated data (Alemo-
hammad et al., 2023; Bertrand et al., 2023; Dohmatob et al., 2024a; Seddik et al., 2024). Notably,
Dohmatob et al. (2024b) warns that model collapse signifies a break in customary neural scaling
laws (Kaplan et al., 2020; Hoffmann et al., 2022), where increasing synthesized data volume does
not enhance performance as effectively as scaling with human-generated data. As a result, recent
works have focused on avoiding or correcting synthetic data to prevent model collapse. Gillman
et al. (2024) propose using a correction function informed by expert knowledge to modify the syn-
thesized data. Alemohammad et al. (2024) leverage a model trained on synthetic data as negative
guidance for diffusion models. Zhang et al. (2024) employ the confidence score and an AI detec-
tion classifier to discard synthesized data. In contrast, we propose leveraging the synthesized data
through strategic selection techniques.

We also note the approach proposed by Gerstgrasser et al. (2024), which suggests accumulating
multiple versions of the training dataset over time so that their union, unlike the latest version alone,
retains crucial information about the ground truth distribution of the data. While this is an interesting
direction, we believe it may face practical limitations as both models and datasets continue to scale
over time.

Building on the recent works of Feng et al. (2024); Firdoussi et al. (2024) which assume a pruning
oracle that can only guess which examples from the training data have correct labels, we propose
and analyze a more general setup covering oracles which can also assess the difficulty of example.
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Benefits of Synthesized Data. Synthetic data holds great potential, as it is much easier and cheaper
to scale compared to human-labeled data. Numerous empirical studies have demonstrated the ben-
efits of synthesized data across a wide range of settings. Common practices include cases where
the downstream task slightly differs from that of the data-generating model (Cheng et al., 2024),
where the generating model is significantly stronger than the consuming one (Hemmat et al., 2025),
or when better prompt engineering and external information are utilized (Shin et al., 2023; Hemmat
et al., 2023; Nalela, 2025). Data selection is already employed in some domains, particularly in
code generation and mathematics, where natural verifiers such as compilers, solutions, or heuristic
verifiers exist. For instance, Haluptzok et al. (2022) generate synthesized code and filter out incor-
rect samples. Ulmer et al. (2024) use conversational metrics to filter synthetic dialogue data. Trinh
et al. (2024) utilize a symbolic deduction engine to verify correct solutions for Olympiad geometry
problems. Setlur et al. (2024) apply a final answer verifier to distinguish between good and bad
synthetic data. Although verifiers are used in these cases, their effects on performance have not been
systematically explored, especially in terms of how different types of verifiers influence outcomes.

6 CONCLUDING REMARKS

We put forward a principled view of aggressive data curation, demonstrating that the striking results
from systems like LIMO and s1 are not coincidences but follow from fundamental properties of
learning with pruned data. By supplying a clean theoretical lens—validated on synthetic data and
ImageNet, and shown to explain phenomena in LLMs—we give practitioners a clearer picture of
when to discard data and why this can stabilize training and improve generalization. In doing so, we
shift the focus from a ”more is always better” mindset toward a more evidence-based, data-centric
workflow.

Furthermore, our framework explains how principled curation can mitigate model collapse Shu-
mailov et al. (2024), a phenomenon characterized by a shift in scaling laws Dohmatob et al.
(2024b;a; 2025). By revealing the stabilizing role of a strong pruning oracle, our findings also
provide a theoretical basis for recent empirical successes in this area Feng et al. (2024).

Limitations. While our framework provides a unifying perspective, we acknowledge its limita-
tions. Our core theory assumes a high-dimensional Gaussian feature model and binary classifica-
tion, whereas real-world data is structured, multi-class, and often curated online. We do not address
non-linear predictors, the effects of multi-epoch optimization, or the interplay between pruning and
active learning.

Future Directions. We see three immediate avenues for extending this work:

(i) Analysis of non-linear models. Extending the theory to neural networks in the kernel
regime, i.e., random-feature and kernel regimes—or to the infinite-width neural tangent ker-
nel—would bridge the gap to practical deep learning architectures. Such an analysis can still
be carried out using RMT ideas. Less obvious is analyzing the feature-learning regime (e.g.,
SGD on moderately parametrized networks). Here, the analysis becomes significantly more
difficult and we can no longer rely on classical RMT. This is an interesting future direction.

(ii) Adaptive curation loops. Incorporating iterative re-scoring and re-training would capture the
feedback dynamics used in modern self-distillation and RLHF pipelines.

(iii) Broader evaluation. Testing theory-guided pruning on diverse modalities (text, code, speech)
and assessing its impact on fairness, privacy, and energy consumption will clarify when and
how “less is more” in large-scale ML.

We hope this work provides a rigorous starting point for these efforts and for the principled design
of future data-centric training pipelines.

9
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Appendix for “Why Less is More (Sometimes): A Theory of Data
Curation”
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A EXPERIMENTAL DETAILS FOR IMAGENET

We now provide details for the experimental results presented in Section 4.3 of the manuscript.

A.1 DATASET

All experiments are conducted on the ImageNet-1K (Deng et al., 2009) dataset, which contains
approximately 1.2 million training images and 50,000 validation images across 1,000 classes. For
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experiments with reduced dataset sizes, we use random subsampling to generate smaller training
sets at various fractions (e.g., 50%, 25%, 12.5%) of the full dataset.

A.2 MODEL ARCHITECTURE

We use the Vision Transformer (ViT-B/16) (Dosovitskiy et al., 2020) as our primary backbone,
implemented via the MMPretrain framework (Contributors, 2023). The model uses a patch size of
16 and an input resolution of 224× 224. We apply a drop path rate of 0.1 and label smoothing with
a smoothing value of 0.1 in the classification head. During training, we apply data augmentation
techniques including Mixup (α = 0.8) and CutMix (α = 1.0).

A.3 TRAINING SETUP

All models are trained using the AdamW optimizer. The learning rate is scaled with global batch size
according to the linear scaling rule. For ViT experiments, the base learning rate is 1×10−4× batch size

256 ,
with a weight decay of 0.3, ϵ = 1× 10−8, and β = (0.9, 0.95).

To ensure fairness across dataset sizes, we adjust the number of training epochs inversely propor-
tional to the dataset fraction, so that the total number of iterations remains constant.

Training is performed on 4 nodes, each with 8 NVIDIA H100 GPUs (total 32 GPUs), using Py-
Torch’s Distributed Data Parallel (DDP) via SLURM. The batch size per GPU is 128. We use
synchronized batch normalization and standard augmentations including random resized crops, hor-
izontal flips, RandAugment, and random erasing. Models are evaluated on the standard ImageNet-
1K validation set using top-1 accuracy.

B EMPIRICAL CONFIRMATION OF OUR THEORETICAL FORMULAE

.

We validated our framework through extensive simulations and comparison with theory, summarized
in Figure 4. Synthetic datasets were generated under the model of Section 2, with d = 200, varying
sample size n, pruning fraction p, and generator angle ρ. Logistic regression with λ = 10−6 was
trained on curated subsets, and error was measured as the angular deviation between learned and
true weights.

Coverage. We tested 15 parameter settings (n ∈ {500, 1000, 2000}, p ∈ {0.2, 0.5, 0.8}, ρ ∈
{0, π/12, π/6, π/4}, keep-easy vs. keep-hard), spanning both typical and extreme regimes.

Agreement. Theoretical and empirical results matched closely: mean relative error 1.8%, all
< 5%. Bland–Altman analysis showed mean difference 0.0019 with 95% limits of agreement
[−0.0039, 0.0077].

Sweeps and Landscapes. Parameter sweeps confirmed that theory captures observed non-
monotonic pruning effects, power-law scaling with n, and angular dependence. Two-dimensional
landscapes (sample size × pruning fraction) showed near-identical patterns, with maximum absolute
differences < 0.01.

Statistical Checks. Empirical error distributions (50 runs) centered tightly around theoretical pre-
dictions, and theory lay within 95% confidence intervals across all tested settings.

Robustness. Agreement held across configurations, including edge cases (ρ = 0, extreme prun-
ing), indicating the framework captures the essential mechanisms.

Implication. These results establish that our theory accurately predicts generalization under prun-
ing in high-dimensional linear classification, providing a reliable tool for analyzing and optimizing
data curation strategies.
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Figure 4: Validation of theoretical error predictions against empirical simulations. (A) Scatter
plot of theory vs. empirical error across 15 configurations, with diagonal = perfect agreement. (B–
D) Parameter sweeps for pruning fraction, sample size, and generator angle. (E) Configuration-wise
comparisons. All results use logistic regression with λ = 10−6.

B.1 EXPERIMENTS FOR LABEL-AGNOSTIC CURATION RULE EQN (5)

As promised in the main manuscript, Figure 5 presents results on toy data, with curation done
according to the label-agnostic rule Eqn (5).
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(a) Beating scaling laws.
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(b) Mitigating model collapse due to label shift.

Figure 5: Effect of Label-agnostic curation rule Eqn (5) as proposed in (Sorscher et al., 2022).

B.2 WHICH IS BETTER, ”KEEP EASY EXAMPLES” OF ”KEEP HARD EXAMPLES”?

See Figures 6 and 7.

The data is Gaussian, generated according to Eqn (1) with C = Id (covariance matrix of samples,
under the generators distribution) and Σ = Id (ground-truth covariance matrix). The sample size n
sweeps the range 10 through 106 in log-scale, while the input dimension fixed to d = 200. The data
curation is done according to the Label-aware rule Eqn (6). The estimator ŵ defined in Eqn (3) is
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Figure 6: Beating scaling laws. Solid lines are experiments; broken lines are our theoretical pre-
dictions (Theorem 1 and Theorem 3). For this experiment, the angle between generator labeling
vector wg is perfect, i.e wg = w∗, the ground-truth. Notice the perfect agreement between theory
and experiment.

computed using Scipy’s linear algebra functions operations (from the ”linalg” module therein), with
regularization parameter fixed at λ = 10−6. The classification test error Etest is defined as:

Etest(ŵ) := E [ℓ0/1(sign(x
⊤ŵ), y)] = P(sign(x⊤ŵ) ̸= y). (14)

.

The pruning direction wo in Eqn (6) is chosen to make an angle θ = 0 (perfect pruning direction) or
θ = π/10 (poor pruning direction) with the ground-truth labeling vector w∗ = (1, 0, . . . , 0).

For Figure 5(a) (”beating neural scaling laws”), the labeling vector wg ∈ Rd for the generator
equals that of the ground-truth. Thus, the generator is taken to be perfect, a setting also considered
in (Sorscher et al., 2022).

For Figure 5(b) (”mitigating model collapse”), the generator is imperfect: its labeling vector wg

makes an angle π/5 with the ground-truth w∗. This imperfection simulates the model collapse
phenomenon (Shumailov et al., 2024; Dohmatob et al., 2024a;b; Feng et al., 2024; Dohmatob et al.,
2025).

C RESULTS IN THE REGRESSION SETTING

C.1 THEORETICAL SETUP

As promised in the main paper, we now turn to the case of regression, where the label variable y in
the data distribution Eqn (1) is now given by

y = x⊤w∗ + η, (15)
where η ∼ N (0, σ2) is a noise variable independent of the covariates x. The test error of the
estimator ŵ is now measured by

Ereg(ŵ) := E(x,y)∼P∗ [(x
⊤ŵ − x⊤w∗)

2]− σ2. (16)
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Figure 7: Mitigating model collapse. Solid lines are experiments; broken lines are our theoretical
predictions (Theorem 1 and Theorem 3). For this experiment, the angle between generator labeling
vector wg and ground-truth w∗ is π/20, thus simulating an imperfect generator. Notice the perfect
agreement between theory and experiment.

C.2 MAIN RESULT FOR REGRESSION

Define the following auxiliary quantities

w
/
/
g := (w⊤

g wo)wo, w
⊥
g := wg − w

/
/
g, ϵ := wg − w∗, a := ϵ⊤w⊥

g , b := ϵ⊤w
/
/
g, c

2 := ∥ϵ∥2. (17)

Thus, w
/
/
g is the component of wg pointing in the direction of the pruning vector wo and wg is the

perpendicular component. c2 measures the disparity between the generative and the ground-truth
labeling vectors wg and w∗ respectively. It is clear that

∥w
/
/
g∥2 = ρ2g∥wg∥2, ∥w⊥

g ∥2 = (1− ρ2g)∥wg∥2, (18)

a = ∥w⊥∥2 − ∥wg∥(ρ− ρgρ∗), b = ∥w/
/∥2 − ∥wg∥ρgρ∗, (19)

where ρ, ρg , and ρ⋆ are as defined in Eqn (8).

The following is one of our main contributions.

Theorem 4. In the limit Eqn (4), the regression test error of the model ŵ defined in Eqn (3) is
given by

Ereg(ŵ) → B + V + c2 − 2λ · (m(−λ)a+ m̃(−λ)b),

with B := λ2 ·
(
m′(−λ)∥w⊥

g ∥2 + m̃′(−λ)∥w
/
/
g∥2
)
, V := σ2ϕm̄′(−λ).

(20)

Universality. Note that for a fixed pruning rate p ∈ (0, 1] and pruning direction wo, the specific
choice of pruning strategy q ∈ Q used only enters the picture via γ = γ(q), defines in Eqn (8). Two
pruning strategies with the same value of γ induces exactly the same test error dynamics Ereg in the
high-dimensional limit Eqn (4).
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Unregularized Regime. We now consider our theory in the limit λ → 0, in which case the esti-
mator ŵ defined in Eqn Eqn (3) reduces to the least-squares estimate for w∗, namely ŵ = X ′†Y ′,
where (X ′, Y ′) is the pruned training dataset, i.e the nonzero rows of (DX,DY ).

Corollary 1. In the limit Eqn (4) then λ → 0, it holds that Ereg → L, where

(A) If ϕ < p, then L =
σ2ϕ

p− ϕ
+ c2.

(B) If ϕ > p, then with c0 := 1− p/ϕ and c1 = γ/ϕ+ c0 = 1− (p− γ)/ϕ, we have

L =
σ2

ϕ− p
+ (∥w⊥

g ∥2 + ∥w
/
/
g∥2/c1)c0 + c2 − 2 (a+ b/c1) c0.

Note that when p = 1 (corresponding to no pruning), the above result recovers one of the main
results of Dohmatob et al. (2025), namely, their Corollary 1.

The following result is yet another important consequence.

Corollary 2. In the noiseless setting σ = 0, the following hold:

lim
ϕ→0

lim
λ→0

lim
d,n→∞
d/n→ϕ

Ereg(ŵ) = ∥w∗ − wg∥2 = c2 ∀p ∈ (0, 1],

lim
ϕ→0

inf
p∈(0,1]

lim
λ→0

lim
d,n→∞
d/n→ϕ

Ereg(ŵ) =

{
∥w∗ − w

/
/
g∥2 < c2, if ∥w∗ − w

/
/
g∥2 < c2 < ∥w∗ − w⊥

g ∥2,
c2, otherwise

Thus, pruning provably mitigates model collapse, under the sufficient condition

∥w∗ − w
/
/
g∥ < ∥w∗ − wg∥ < ∥w∗ − w⊥

g ∥.

Note that if ∥w∗∥2 = 1 and ∥wg∥2 = r2, then c2 = ∥w∗ − wg∥2 = 1 + r2 − 2rρg . Furthermore, if
ρ∗ = 1 (i.e wo = w∗), then ∥w∗ − w

/
/
g∥2 = ∥w∗ − ρgw∗∥2 = (1− ρg)

2.

Keep if |yi − x⊤
i w∗|2

C.3 OPTIMAL PRUNING IN REGRESSION SETTING

Consider a sub-collection of parametrized pruning strategies constructed as follows. For any p, u ∈
[0, 1], define qp,u ∈ Q by

qp,u(t) :=

{
0, if a(p, u) < |t| ≤ b(p, u),

1, otherwise,
(21)

with a(p, u) := Φ−1((1 + (1− u)p)/2), b(p, u) := Φ−1(1− pu/2). (22)

Thus, qp,u is the indicator function of the disjoint union of 3 intervals: [−a(p, u), a(p, u)], and two
”tails” (−∞,−b(p, u)) and (b(p, u),∞). Such a pruning strategy selects a mixture of ”very easy”
training examples (corresponding to neighborhood of 0) and ”very hard” examples (corresponding
to tails). The parameter p controls the proportion of training data that survives pruning, i.e we have
p(qp,u) = p, while the parameters u controls the fraction thereof which are ”very hard”.

Theorem 5. For any pruning strategy q ∈ Q, there exist p, u ∈ [0, 1] such that pruning strategy
qp,u induces the the same regression test error Ereg(ŵ) for the estimator ŵ define in Eqn Eqn (3) as
pruning with q. In particular, the optimal pruning strategy has the form qp,u.
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(a) Test error vs original dataset size n. We plot the regression test error Ereg as a function of the
original/unpruned dataset size d and report result for different rates of pruning (per thousand exam-
ples). Solid lines correspond to experiments while broken lines correspond to the analytic expression
provided by Theorem 4. Notice the perfect match between theoretical predictions and experiment.
We see that it is optimal it is optimal consider and unregularized model (small λ) and discard almost
all training data!
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(b) Test error vs pruned dataset size m = np. We plot test error as a function of the pruned dataset
size m actually used to fit the model, the point being to control for the amount of compute. Once
again, we see that it is optimal to discard almost all training data. However, optimal regularization is
no longer zero; for nonzero λ, the error might eventually increase with m.

Figure 8: Mitigating model collapse via pruning in regression setting. Different colors correspond
to different levels of pruning where we keep only the hardest/most informative examples (xi, yi)
with the largest value of the projection of the features |x⊤

i wo| along the pruning direction wo.
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D MAIN INGREDIENTS OF PROOFS

D.1 DETERMINISTIC EQUIVALENT FOR THE RESOLVENT MATRIX R

Definition 1 (Deterministic Equivalents). Given a sequence of random N ×N matrices (RN )N , a
deterministic equivalent thereof is a sequence of deterministic N ×N matrices (RN )N such that

trAN (RN −RN )
a.s→ 0, (23)

for all sequences of N ×N matrices (AN )N with bounded Frobenious norm.

Let Π (resp. Π⊥ = Id − Π) be the projection onto the span (resp. orthogonal complement of the
span) of wo. Define the following auxiliary vectors and scalars

v = Σ1/2wo, v1 =
v⊤wo

∥wo∥
, v⊥ = Π⊥v. (24)

Note that v⊥ is (d− 1)-dimensional and ∥v⊥∥ =
√
∥v∥2 − v21 .

Henceforth we make the replacement z = −λ < 0, so that the resolvent matrix R now writes

R = R(z) := (X⊤DX/n− zId)
−1, (25)

where we recall that D is the n × D diagonal matrix appearing in Eqn (3), with Dii = pi, the
prune/no prune bit for the ith training example. Let δ(z) be the unique positive solution to the
fixed-point equation

m(z) = d−1 tr R̄b(z), δ(z) = n−1 trCR̄b(z), R̄b(z) =

(
E
[

pi
1 + piδ(z)

]
C − zId

)−1

. (26)

Note that the inner expectation evaluates to

E
[

pi
1 + piδ(z)

]
=

p

1 + δ(z)
=: t(z),

and so R̄b(z) = (t(z)C − zId)
−1. Observe that R̄b(z)(t(z)C − zId) = Id, and so t(z)CR̄b(z) =

Id + zR̄b(z). We deduce that

t(z)δ(z) = n−1 tr t(z)CR̄b(z) = n−1 tr(Id + zR̄b(z)) = ϕ · (1 + zm(z)) .

Thus, the equations defining m(z) and δ(z) can be rewritten as

m(z) = d−1 tr(t(z)C − zId)
−1, (27)

t(z) =
p

1 + δ(z)
, (28)

ϕ · (1 + zm(z)) = t(z)δ(z) = t(z)

(
p

t(z)
− 1

)
= p− t(z). (29)

Solving for ϕzm(z) in terms of t(z) in the last equation gives

ϕzm(z) =
pδ(z)

1 + δ(z)
− ϕ = p− ϕ− p

1 + δ(z)
= p− ϕ− t(z).

Plugging this into the first equation gives the following fixed-point equation for t(z)

p− ϕ− t(z) = zn−1 tr(t(z)C − zId)
−1. (30)

The following result shows that R̄ is a deterministic equivalent for R.
Proposition 1. Recall the function t(z) as the unique positive solution to the equation Eqn (30).
Then,

R ≃ R̄, with R̄ = C−1/2(m̌(z)Π⊥ + m̃(z)Π)C−1/2, (31)

where m̌(z) :=
1

t(z)− z
, m̃(z) :=

1

s(z)− z
, s(z) :=

γ

p
t(z). (32)
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D.2 THE ISOTROPIC CASE

Consider the special case where the covariance matrix is C = Id. Fix an L2-regularization parameter
λ > 0 and pruning rate p ∈ [0, 1].
Lemma 1. For every z = −λ < 0, m(z) is the unique positive solution to the fixed-point equation
Eqn (34), and is given explicitly by formula

m(z) =
p− ϕ− z −

√
(p− ϕ− z)2 − 4ϕz

2ϕz
. (33)

Alternatively, m(z) defined in Eqn (33) unique positive solution to the fixed-point equation:

1

m
= −z +

p

1 + ϕm
, with z := −λ. (34)

Thus Lemma 1 shows that m(z) is the Stieltjes transform of the limiting spectral density of the
resolvent matrix R appearing in Eqn (3), and has the property (among many others) that d−1 trR →
m(z) in the limit Eqn (4). It represents a somewhat distorted Marchenko-Pastur law; indeed, the
classical MP corresponds to p → 1 (i.e. no pruning).

Furthermore, it is not hard to see that

m̄(z) ≡ m(z) ≡ δ(z)/ϕ (35)

in this case.

Proof of Lemma 1. Indeed, observe that in the isotropic case the equation Eqn (30) reduces to p −
ϕ− t(z) = ϕz/(t(z)− z), or equivalently

0 = ϕz + (t(z)− p+ ϕ)(t(z)− z) = t(z)2 − (p− ϕ+ z)t(z) + pz.

The discriminant of this quadratic equation evaluates to

(p− ϕ+ z)2 − 4pz = (p− ϕ− z + 2z)2 − 4pz

= (p− ϕ− z)2 + 4z2 + 4z(p− ϕ− z)− 4pz

= (p− ϕ− z)2 − 4ϕz,

and so because z = −λ < 0, the positive solution is

t(z) =
p− ϕ+ z +

√
(p− ϕ− z)2 − 4ϕz

2
. (36)

We deduce that

m(z) =
1

t(z)− z
=

(
p− ϕ− z +

√
(p− ϕ− z)2 − 4ϕz

2

)−1

= 2 ·
p− ϕ− z −

√
(p− ϕ− z)2 − 4ϕz

(p− ϕ− z)− ((p− ϕ− z)2 − 4ϕz)

=
p− ϕ− z −

√
(p− ϕ− z)2 − 4ϕz

2ϕz
,

which is precisely the formula given in Eqn (34).

Spectral Functions. Define the following auxiliary functions:

m̄(z) := zm(z), s(z) :=
γ

1 + ϕm(z)
, m̃(z) :=

1

s(z)− z
, r(z) := β2m(z) + β̃2m̃(z), (37)

where the constants β̃ and β are as defined in Eqn (8). Notice that r is (proportional to) a convex
combination of m and m̃.

We will be needing the derivatives of m′, m̄′, m̃′, and r′. This is the purpose of the next lemma.
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Lemma 2. We have the following identities:

m′(z) =
m(z)2

1− (1 + m̄(z))2ϕ/p
, m̄′(z) =

p

(z + ϕm̄(z))2/m̄(z)2 − pϕ
=

p

(ϕ+ 1/m(z))2 − pϕ
,

m̃′(z) = m̃(z)2
(

γϕm′(z)

(1 + ϕm(z))2
+ 1

)
, r′(z) = β2m′(z) + β̃2m̃′(z).

The following result then follows directly from Proposition 1.
Corollary 3. In the isotropic setting, we have the following deterministic equivalents:

R ≃ R̄, with R̄ = m(z)Π⊥ + s(z)Π, (38)

R2 ≃ m′(z)Π⊥ + m̃′(z)Π. (39)

where m̃(z) := 1/(s(z)− z), s(z) = γ/(1 + ϕm(z)), and γ ≥ 0 is as given in Eqn (8).

D.3 TEST ERROR REPRESENTATION: THE CLASSIFICATION SETTING

WLOG, suppose henceforth that w̄g := C1/2wg , w̄o := C1/2wo, and w̄∗ := C1/2w∗ are unit
vectors in Rd. Let u = w̄o and let v be its completion to an orthonormal basis for the span of w̄o

and w̄g (if w̄o and w̄g are parallel, i.e if ρg = ±1, we simply set v = 0). Define c ∈ Rd by

c := E[piyixi], (40)

for a random training data point (xi, yi) ∼ Pg and corresponding selection/no select bit pi ∈ {0, 1}
(e.g, pi is as given in Eqn (5) in the case of label-agnostic data curation and Eqn (6) in the case of
Label-aware data pruning).

Also define p = p(q) ∈ [0, 1] and γ = γ(q) ≥ 0 by

p = E[pi], γ := E[(x⊤
i wo)

2pi]. (41)

Lemma 3. It holds that c = β1C
1/2u + β2C

1/2v, with the βk’s as given in Table 3. Also, the
constants p and γ defined in Eqn (41) are as given in the table.

Curation p(q) γ(q) β2(q) β1(q)

Label-agnostic E[q(G)] E[q(G)G2] 2E[q(G)φ(τG)] 2E[q(G)Φ(τG)G]

Label-aware E[q(G)Φ(τ |G|)] E[q(G)Φ(τ |G|)G2] E[q(G)φ(τG)] E[q(G)Φ(τ |G|)|G|]

Table 3: Fundamental constants. Here, q ∈ Q is any even/symmetric pruning function and G ∼
N (0, 1), with pdf φ and cdf Φ. Recall that τ := ρg/

√
1− ρ2g , and we use the identification β → β2,

β̃ → β1. Note that taking q ≡ 1 on the second row corresponds to the setup of Feng et al. (2024)
and Firdoussi et al. (2024).

We are now ready to state our main results, which is a generalization of Theorem 1 and 3.
Proposition 2. Let c ∈ Rd be as defined in Eqn (40). For a random test point (x, y) ∼ P∗, we have
the following high-dimensional representation (where G1 and G2 are iid from N (0, 1)):

yx⊤ŵ
L→ m|G1|+

√
ν −m2G2, with (42)

m ≃ m0

1 + δ
, m0 :=

c⊤R̄Σw∗

∥Σ1/2w∗∥
, (43)

ν ≃ ν0
(1 + δ)2

, ν0 :=
p

n
tr ΣC ′ + c⊤Σ′c− 2c⊤R̄c

1 + δ

1

n
tr ΣC ′, (44)

R̄ := E[R], C ′ := E[RCR], Σ′ := E[RΣR], (45)
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where δ = δ(−λ) > 0 is as defined by the fixed-point equations Eqn (26).

Furthermore, it holds that

Etest(ŵ) := P(yx⊤ŵ ≤ 0) → 1

π
arccos(|m0|/

√
ν0). (46)

Remark 2. Note that the above result is valid for any curation strategy which maps easy training
example (xi, yi) to a prune/no prune bit pi ∈ {0, 1}, in an iid fashion. The choices Eqn (5) (label-
agnostic) and Eqn (6) (Label-aware) are but particular cases.

E PROOF OF PROPOSITION 2

For a random test point (x, y) ∼ P∗, we can write

yx⊤ŵ = yz⊤Σ1/2ŵ = sign(z⊤Σ1/2w∗)z
⊤Σ1/2ŵ.

Write Σ1/2ŵ = αΣ1/2w∗ + r, where r = Σ1/2ŵ − αΣ1/2w∗ and α ≥ 0 is to be determined.
Observe that r is perpendicular to Σ1/2w∗ iff r⊤Σ1/2w∗ = ŵ⊤Σw∗ − α∥Σ1/2w∗∥2 = 0 iff

α = ŵ⊤Σw∗/∥Σ1/2w∗∥2. (47)

With this choice of α, one computes

yx⊤ŵ = αyz⊤Σ1/2w∗ + yz⊤r. (48)

Because r is perpendicular to Σ1/2w∗, we know that the above is a sum of two independent random
variables.

For the first summand in Eqn (48), observe that

yz⊤Σ1/2w∗ = yx⊤w∗ = sign(x⊤w∗)x
⊤w∗ = |x⊤w∗|,

which has the same distribution as |G| for G ∼ N(0, w⊤
∗ Σw∗).

For the second summand, it has distribution N (0, ∥r∥2) with ∥r∥2 = ∥Σ1/2ŵ∥2 − α2∥Σ1/2w∗∥2.

E.1 ASYMPTOTICS OF ∥Σ1/2ŵ∥2

Now, one computes

ŵ =
1

n

∑
i

piyiRxi =
1

(1 + δ)n

∑
i

piyiR−ixi.

We deduce that

(1 + δ)2n2∥Σ1/2ŵ∥2 = n
∑
i

pix
⊤
i R−iΣR−ixi +

∑
i,j, j ̸=i

pipjyiyjx
⊤
i R−iΣR−jxj .

Now, observe that

1

n2

∑
i

pix
⊤
i R−iΣR−ixi =

1

n2

∑
i

tr(pixix
⊤
i R−iΣR−i)

≃ 1

n2

∑
i

tr(E[pixix
⊤
i R−iΣR−i])

=
p

n
trCR−iΣR−i

≃ p

n
tr ΣC ′.
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For two distinct sample indices i, j ∈ [n], we have

R−i = R−ij −
1/n

1 + δ
R−ijxjx

⊤
j R−ij ,

R−iΣR−j = (R−ij −
1/n

1 + δ
R−ijxjx

⊤
j R−ij)Σ(R−ij −

1/n

1 + δ
R−ijxix

⊤
i R−ij)

= R−ijΣR−ij −
1/n

1 + δ
R−ijΣR−ijxix

⊤
i R−ij −

1/n

1 + δ
R−ijxjx

⊤
j R−ijΣR−ij

+
1/n2

(1 + δ)2
R−ijxjx

⊤
j R−ijΣR−ijxix

⊤
i R−ij

and so

E[pipjyiyjx⊤
i R−iΣR−jxj ] = A1 −A2 −A3 +A4, where

A1 := E[pipjyiyjx⊤
i R−ijΣR−ijxj ],

A2 :=
1/n

1 + δ
E[pipjyiyjx⊤

i R−ijΣR−ijxix
⊤
i R−ijxj ],

A3 =
1/n

1 + δ
E[pipjyiyjx⊤

i R−ijxjx
⊤
j R−ijΣR−ijxj ],

A4 =
1/n2

(1 + δ)2
E[pipjyiyjx⊤

i R−ijxjx
⊤
j R−ijΣR−ijxix

⊤
i R−ij ]

By symmetry, it is clear that A4 = 0. In order to compute A2 and A3, we shall need the following
result which can be obtained by applying Wick’s identity (aka Anderson-Isserlis arguments).
Lemma 4. Let x and z be iid N (0, C) and let g : Rd → R be an odd function. Define c := E[g(x)x].
Then, for possibly random random d× d matrices A and B independent of x and z,

E[g(x)g(z)x⊤Az | A] = c⊤Ac,

E[g(x)g(z)(x⊤Az)(x⊤Bx) | A,B] = tr(BC)c⊤Ac+ 2c⊤ACBc,

E[g(x)g(z)(x⊤Az)(x⊤Bz)2 | A,B] = tr(BC)2c⊤Ac+ 4 tr(BC)c⊤ACBc+ 2c⊤ACBCBc.

Applying the first part of the lemma with A = RΣR gives A1 ≃ c⊤Σ′c, where Σ′ := E[RΣR].
Applying the second part of the lemma with A = R−ij ≃ R and B = R−ijΣR−ij ≃ RΣR gives

A3 = A2 ≃ 1

1 + δ

1

n

(
tr(ΣC ′)c⊤Rc+ 2c⊤RCRΣRc

)
≃ 1

1 + δ

1

n
tr(ΣC ′)c⊤Rc ≃ c⊤R̄c

1 + δ

1

n
tr ΣC ′.

We deduce that

∥Σ1/2ŵ∥2 ≃ 1

(1 + δ)2

(
p

n
tr ΣC ′ + c⊤Σ′c− 2c⊤R̄c

1 + δ

1

n
tr ΣC ′

)
=: ν. (49)

E.2 ASYMPTOTICS OF α

Mean. One computes

∥Σ1/2w∗∥2Eα = Eŵ⊤Σw∗ ≃ 1

1 + δ
E
1

n

∑
i

piyix
⊤
i R−iΣw∗

≃ 1

1 + δ
E[piyix⊤

i R−iΣw∗]

=
1

1 + δ
E[piyixi]

⊤E[R−i]Σw∗

≃ c⊤R̄Σw∗

1 + δ
.
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Variance. On the other hand, observe that

∥Σ1/2w∗∥4α2 = (ŵ⊤Σw∗)
2 = ŵ⊤Σw∗w

⊤
∗ Σŵ.

So, applying Eqn (49) with Σ replaced with the rank one matrix Σw∗w
⊤
∗ Σ and Σ′ replaced with

RΣw∗w
⊤
∗ ΣR, we get

∥Σ1/2w∗∥4Eα2 = E[ŵ⊤Σw∗w
⊤
∗ Σŵ] ≃

1

(1 + δ)2
E[c⊤RΣw∗w

⊤
∗ ΣRc] ≃ 1

(1 + δ)2
(c⊤R̄Σw∗)

2,

where we have ignored all trace terms which are now of order 1/n (negligible). The RHS of the
above display coincides with the square of the estimate for ∥Σ1/2w∗∥2E[α] provided earlier. We
deduce that the variance of α vanishes, and so

α ≃ Eα ≃ c⊤R̄Σw∗

(1 + δ)∥Σ1/2w∗∥2
=:

m

∥Σ1/2w∗∥
.

Combining with 48 and Eqn (49) completes the proof of the first part of Proposition 2, namely the
convergence Eqn (42).

E.3 ASYMPTOTICS OF CLASSIFICATION TEST ERROR

In the asymptotic limit Eqn (4), one may use the representation Eqn (42) to write

limEtest(ŵ) = limP(yx⊤ŵ ≤ 0)

= P(m|G1|+
√

ν −m2G2 ≤ 0)

= P(
G2

|G1|
≤ − m√

ν −m2
)

= P(
G2

G1
≤ − |m|√

ν −m2
)

=
1

2
+

1

π
arctan(−|m|/

√
ν −m2)

=
1

π
arccos(|m|/

√
ν) =

1

π
arccos(|m0|/

√
ν0),

as claimed. Note that, we have used the fact that G2/G1 is standard Cauchy random variable, for
independent G1, G2 ∼ N (0, 1). This completes the proof Proposition 2.

F PROOF OF PROPOSITION 1

Using Theorem 4 of (Liao & Mahoney, 2021) (and the proof thereof) combined with some basic
algebraic manipulations, we can write

R ≃ R̄, (50)

where R̄−1 = C1/2E
[

pi
1 + piδ(z)

(Π⊥ + (Πxi)(Πxi)
⊤)

]
C1/2 − zId, (51)

for a random training example (xi, yi) ∼ Pg from the generator, and corresponding prune/no prune
bit pi. The matrix C is the covariance matrix of xi. Since pi is Bernoulli with mean p := P(pi = 1),
it is clear that

E
[

pi
1 + piδ(z)

]
=

p

1 + δ(z)
:= t(z).

This further gives

R̄−1 = t(z)C1/2Π⊥C1/2 − zId + C1/2ΠKΠC1/2,

with K := E
[

pi
1 + piδ(z)

uu⊤
]
,

(52)

where u := Σ−1/2xi ∼ N (0, Id) and v := C1/2wo.
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Now, to determine the matrix K, we first rewrite u = (u/
/
, u⊥) and v = (v1, v⊥), where

u/
/
:=

u⊤wo

∥wo∥
∈ R, v1 :=

v⊤wo

∥wo∥
∈ R, (53)

u⊥ := Π⊥u ∈ Rd−1, v⊥ := Π⊥v ∈ Rd−1. (54)

The advantage of this representation is that:

• u⊥ and v⊥ are orthogonal to wo.
• u/

/
and u⊥ are statistically independent.

• u/
/

has distribution N (0, 1).

• u⊥ has distribution N (0, Id−1).

Combining with the fact that due to the evenness of the pruning function q (in Eqn (5), Eqn (6), etc.),
the distribution of (xi, yi, pi) doesn’t change if xi is replaced by −xi (so that E [piuiuj ] = 0 for all
i ̸= j), we get:

K = s(z)Π + s⊥(z)Π
⊥,

where s(z) := E[hiG
2
1], s⊥(z) := E[hiG

2
⊥]

hi :=
pi

1 + piδ(z)
, (G1, G⊥) ∼ N (0, I2).

Combining with Eqn (52), we get

R̄−1 = C1/2(a(z)Id + b(z)Π)C1/2, (55)

where a(z) = t(z)− z, t(z) =
p

1 + δ(z)
, b(z) = s(z)− t(z). (56)

Now, using the Matrix-Inversion Lemma, one can obtain R̄ from R̄−1 as follows:

C1/2R̄C1/2 = (a(z)Id+b(z)Π)−1 =
1

a(z)

(
Id −

b(z)/a(z)

b(z)/a(z) + 1
Π

)
=

1

a(z)
Π⊥+

1

b(z) + a(z)
Π.

It suffices to notice that 1/(b(z)+ a(z)) = 1/(s(z)− z) = m̃(z) and 1/a(z) = m̌(z) by definition,
and the result follows.

G PROOF OF THEOREM 1, THEOREM 3, AND COROLLARIES

Theorem 1 and Theorem 3 are direct consequences of Proposition 2, where we use the deterministic
equivalents provided in Corollary 3, to considerably simplify the resulting formulae. Corollary 1 is
a consequence of Theorem 1 and limiting behavior of the spectral functions given in Eqn 37.

G.1 PROOF OF THEOREM 1 AND THEOREM 3

Set z = −λ. Also recall that c = β1u + β2v, where u, v, β1, and β2 are as in Lemma 3. Note
that we have the identification β = β2 and β̃ = β1. We know from Proposition 1 that R ≃ R̄ =
m(z)Π⊥ + m̃(z)Π, where Π = uu⊤. One computes

m0 = (w∗/∥w∗∥)⊤R̄c =
1

∥w∗∥
w⊤

∗
(
m(z)Π⊥ + m̃(z)Π

)
(β1u+ β2v),

=
1

∥w∗∥
w⊤

∗ (β1m̃(z)u+ β2m(z)v) ,

Moreover, on computes w⊤
∗ u/∥w∗∥ = ρ∗ by definition, and

w⊤
∗ v

∥w∗∥
=

(wg − (w⊤
g wo)wo)

⊤w∗/∥w∗∥
∥wg − (w⊤

g wo)wo∥
=

w⊤
g w∗/∥w∗∥ − ρg∥wg∥(w⊤

o w∗/∥w∗∥)

∥wg∥
√
1− ρ2g

=
ρ− ρgρ∗√
1− ρ2g

=
cos θ − cos θg cos θ∗

sin θg
= sin θ∗ cos ξ =

√
1− ρ2∗ cos ξ =: ω/β2,
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where we have used the identity cos θ = cos θg cos θ∗ + sin θg sin θ∗ cos ξ, known as the Spherical
Law of Cosines. Putting things together gives m0 ≃ ωm(z) + ω̃m̃(z) as claimed.

Likewise, one computes

1

n
tr ΣC ′ =

1

n
trR2 ≃ 1

n
tr
(
m′(z)Π⊥ + m̃′(z)Π

)
≃ ϕm′(z),

c⊤R̄c = c⊤
(
m(z)Π⊥ + m̃(z)Π

)
c = (β1u+ β2v)

⊤(m̃(z)Π +m(z)Π⊥)(β1u+ β2v)

= β2
2m(z) + β2

1m̃(z) = β2m(z) + β̃2m̃(z) =: r(z),

c⊤Σ′c = c⊤E [R2]c ≃ c⊤
(
m′(z)Π⊥ + m̃′(z)Π

)
c = β2m′(z) + β̃2m̃′(z) = r′(z).

We deduce that ν = ν0/(1 + δ)2, where

ν0 =
p

n
tr ΣC ′ + c⊤Σ′c− 2c⊤R̄c

1 + δ

1

n
trCΣ′

≃ p

n
trR2 + r′(z)− 2r(z)

1 + δ(z)

1

n
trR2 = pϕm′(z) + r′(z)− 2r(z)ϕm′(z)

1 + ϕm(z)
.

the result then follows from Proposition 2.

G.2 PROOF OF COROLLARY 1

As usual, set z := −λ < 0.

(A) For ϕ < p, it is easy to see from formula Eqn (33) and Lemma 2 that in the limit z → 0, one has

m(z) → 1

p− ϕ
,

m̄(z) → 0,

m̃(z) → p/γ

p− ϕ
,

m′(z) → p

(p− ϕ)3
,

m̄′(z) → 1

p− ϕ
,

m̃′(z) → p/γ2

(p− ϕ)3
(p(p− ϕ) + ϕγ) =

p

(p− ϕ)3
(
(p− ϕ)p/γ2 + ϕ/γ

)
,

m′(z)

1 + ϕm(z)
→ 1

(p− ϕ)2
.

Furthermore, with m0 and ν0 as defined in Theorem 1, one computes

r(z) = β2m(z) + β̃2m̃(z) → β2 1

p− ϕ
+ β̃2 p/γ

p− ϕ
=

r0
p− ϕ

,

r′(z) = β2m′(z) + β̃2m̃′(z) → β2 · p

(p− ϕ)3
+ β̃2 · p/γ2

(p− ϕ)3
(p(p− ϕ) + ϕγ) =

r′0
(p− ϕ)3

,

where r0 and r′0 are as defined in the claim. We deduce that m0/
√
ν0 −m2

0 = a/
√
b− a2 and the

result follows from Theorem 1.

(B) Now consider the case ϕ > p. Observe that m0 =
√
ν0 −m2

0 = −zm0/
√
z2 − z2m2

0. On the
other hand, from Eqn (33) we know that

−zm(z) =

√
(p− ϕ− z)2 − 4ϕz − (p− ϕ− z)

2ϕ
(57)
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Combining with Lemma 2, we deduce the following limits

−zm(z), z2m′(z) → c0 := 1− p/ϕ > 0,

m̄′(z) → p/ϕ

ϕ− p
,

−zm̃(z), z2m̃′(z) → c0
γ/ϕ+ c0

,

−zm′(z)

1 + ϕm(z)
→ 1

ϕ
.

Furthermore, one computes

−zr(z) = β2
2 · (−zm(z)) + β2

1 · (−zm̃(z)) = β2
2c0 + β2

1

c0
γ/ϕ+ c0

=: c0r0,

z2r′(z) = β2
2z

2m′(z) + β2
1z

2m̃(z) = β2
2c0 + β2

1

c0
γ/ϕ+ c0

= c0r0,

−zm0 =
√
2/π · (−zm(z)ω − zm̃(z)ω̃) →

√
2/πc0 · (ω + ω̃/(γ/ϕ+ c0)) := a,

z2ν0 = pϕz2m′(z) + z2r′(z)− 2ϕ
−zm′(z)

1 + ϕm(z)
· (−zr(z))

→ pϕc0 + r0c0 − 2r0c0 = c0 · (pϕ− r0) =: b.

We deduce that
m0/

√
ν0 = −za/

√
z2b = a/

√
b,

and the result follows from Theorem 1.

G.3 PROOF OF THEOREM 2

Taking the limit ϕ → 0 in Corollary 1, we have

r′0 → p · (β2 + β̃2p2/γ2), b → β2 + β̃2p2/γ2

p2
, a → ω + ω̃p/γ

p
,

a/
√
b → ω/p+ ω̃/γ√

β2/p2 + β̃2/γ2

=
(β/p)

√
1− ρ2∗ cos ζ + (β̃/γ)ρ∗√
β2/p2 + β̃2/γ2

=
j
√
1− ρ2∗ cos ζ + 1√

j2 + 1
,

with j = j(q) :=
γ(q)β(q)

pβ̃(q)
> 0.

where we recall that ω = β
√
1− ρ2∗ cos ζ and ω̃ = β̃ρ∗.

Part (A). Taking ρ∗ = 1, meaning that pruning is done along the ground-truth, gives

a/
√
b = 1/

√
j2 + 1.

From Corollary 1, we see that the limiting value of Eclf (ŵ), i.e the functional F defined in Eqn (12),
is an increasing function of the ratio j(q). The proof is completed by invoking Lemma 5 which
establishes that iqKH(p) (resp. qKE(p)) is the unique minimizer (resp. maximizer) of the ratio j(q)
over q ∈ Qp.

Part (B). On the other hand, taking ρ = 1 gives ρg = ρ∗, ζ = 0, ω = β
√

1− ρ2g . We get a > 0,
and

a/
√
b →

j
√
1− ρ2∗ + ρ∗√
j2 + 1

.

It is easy to show that the RHS is strictly decreasing function of j. As with part (A), the proof is
completely by invoking Lemma 5 to extremize the ratio j = j(q).
Lemma 5. Suppose ρg > 0. For any fixed pruning strategy p ∈ (0, 1], ignoring null-sets, the unique
maximizer (resp. minimizer) of the ratio j(q) over Qp := {q ∈ Q | p(q) = p} is the ”keep hard
examples” pruning strategy qKH(p) (resp. the ”keep easy examples” pruning strategy qKE(p)).
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Proof. Clearly, there is a bijective correspondence between Qp and the collection Sp of Borell
subsets S ⊆ R of Gaussian measure equal to p, and verifying the symmetry condition −S = S.
This correspondence is simply S 7→ 1S , the indicator function of S. Furthermore, for any S ∈ Sp,
one can write

γ(1S) = 2F0(S+), β̃(1S) = 2F1(S+), β(1S) = 2F2(S+),with

S+ := S ∩ (0,∞), Fk(T ) :=

∫
T

fk(t)φ(t)dt,

f0(t) := t2, f1(t) := (2Φ(τt)− 1)t, f2(t) := φ(τt), τ := ρg/
√

1− ρ2g.

Define ap, bp > 0 such that the sets Ip := {t ∈ R | |t| ≥ ap} and Jp := {t ∈ R | |t| ≤ bp} both
have Gaussian measure p. We shall show that over the collection Tp of Borell subsets of (0,∞)
with Gaussian measure equal to m = p/2, the functional T 7→ F0(T )F2(T ) is minimized (resp.
maximized) by J+

p := [ap,∞) (resp. I+p := [0, bp]), while modulo null sets, and F1 is uniquely
maximized (resp. minimized) by J+

p (resp. I+p ).

Step 1: Reduction to Integration w.r.t Lebesgue Measure. For any t > 0 and u ∈ [0, 1/2], define

M(t) := µ([0, t]), N(u) := M−1(u).

Under the change of variable t = N(u), one has

Fk(T ) = F̄k(M(T )), where F̄ (U) :=

∫
U

gk(u)du, gk := fk◦N, and M(T ) := {M(t) | t ∈ T}.

Thus, the minimizers (resp. maximizers) of F over T ∈ Tp are of the form N(U) where U min-
imizes (resp. maximizes) F̄ (U) := F̄0(U)F̄1(U)/F̄2(U) over Borell sets U ⊆ (0, 1/2) verify-
ing |U | = m. Let us show that modulo null sets, F̄ is minimized by (0,m] and maximized by
(1/2−m, 1/2) where m := p/2 ∈ (0, 1/2).

For any r ≥ 0, consider the equivalent linear-fractional program

min
r≥0, U⊆(0,1/2)

rF̄1(U)

F̄2(U)
subject to |U | = m, F̄0(U) ≤ r. (58)

Step 2: Dinkelback re-Parametrization. For fixed r ≥ 0, consider the change of variable λ =
F̄1(U)/F̄2(U), and define

v(λ) := max
U⊆(0,1/2)

F̄1(U)− λF̄2(U) subject to |U | = m, F̄0(U) ≤ r. (59)

The ”Dinkelbach trick” tells us that λ∗ = maxU F̄1(U)/F̄2(U) iff v(λ∗) = 0.

Now, the Lagrangian for the auxiliary problem is given by

L(U, λ, η, ζ) = F̄1(U)− λF̄2(U) + η · (r − F̄0(U)) + ζ · (m− |U |)

=

∫
U

H(u, λ, η, ζ)du+ ηr + ζm, with H(u, λ, η, ζ) := g1(u)− λg2(u)− ηg0(u)− ζ.

The first-order optimality conditions of U can then be expressed as

H(u, λ, η, ζ)

{
≥ 0, if u ∈ U,

≤ 0, otherwise.
(60)

Step 3: Shape Analysis. Now, under the assumption that ρg > 0, the functions f0 and f1 (therefore
g0 and g2) are increasing and g1 (therefore g1) is decreasing. Thus, for any λ, η ≥ 0, the function
u 7→ H(u, λ, η, ζ) is a non-increasing function, for any feasible λ, η, ζ. A non-increasing function
crosses zero at most once. We deduce that the optimal U must be of the form [b, 1/2), modulo a null
set. The condition |U | = m forces b = 1/2 − m. We conclude that [1/2 − m, 1/2) is the unique
minimizer of F̄ .

Similarly, one shows that [0,m] is the unique maximizer of F̄ .
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H PROOF OF THEOREM 4 (REGRESSION ANALYSIS)

H.1 A MODIFIED BIAS-VARIANCE DECOMPOSITION

We start with the following general bias-variance decomposition for the regression test error.
Proposition 3. The regression test error of the estimator ŵ defined in Eqn Eqn (3) is given exactly
by

Ereg(ŵ) = λ2E [w⊤
g RΣRwg] + σ2E

1

n
trSR2Σ+ c2 − 2λE [w⊤

g RΣϵ], (61)

where ϵ := wg − w∗, c2 := ϵ⊤Σϵ, and S and R are the random matrices defined in Eqn Eqn (3).

The first two terms in the above sum correspond to bias and variance if we had wg = w∗, i.e if we
had no label-shift; the last two terms in red are a correction to take into account label shift.

H.2 PROOF OF THEOREM 4

Now, from Proposition 1 with Σ = Id, we have the following deterministic equivalents:

R ≃ m(z)Π⊥ + m̃(z)Π,

SR− Id = zR ≃ zm(z)Π⊥ + zm̃(z)Π,

R2 =
∂

∂z
R ≃ m′(z)Π⊥ + m̃′(z)Π,

SR2 =
∂

∂z
SR ≃ (m(z) + zm′(z))Π⊥ + (m̃(z) + zm̃′(z))Π

= (m(z) + zm′(z))Id + (m̃(z)−m(z) + zm̃′(z)− zm′(z))Π.

Furthermore, notice that because Π is a fixed-rank (in fact rank-1) matrix, so is SΠΣ, and so
E (1/n) trSΠΣ → 0 in the limit n → ∞. Thus, in view of using Proposition 3, one computes

E [w⊤
g RΣRwg] = w⊤

g E [R2]wg = m′(z)∥w⊥
g ∥2 + m̃′(z)∥w

/
/
g∥2,

E
1

n
trSR2Σ ≃ ϕ · E 1

d
trSR2Σ ≃ ϕ · (m(z) + zm′(z)) = ϕm̄′(z),

E [w⊤
g RΣϵ] = E [w⊤

g Rϵ] ≃ ϵ⊤(m(z)w⊥
g + m̃(z)w

/
/
g).

Putting things together then gives

Ereg(ŵ) ≃ λ2 ·
(
m′(−λ)∥w⊥

g ∥2 + m̃′(−λ)∥w
/
/
g∥2
)
+ σ2ϕm̄′(−λ)

+ ∥ϵ∥2 − 2λϵ⊤(m(−λ)w⊥
g + m̃(−λ)w

/
/
g)

= λ2 ·
(
m′(−λ)∥w⊥

g ∥2 + m̃′(−λ)∥w
/
/
g∥2
)
+ σ2ϕm̄′(−λ)

+ c2 − 2λ · (m(−λ)a+ m̃(−λ)b) with a := ϵ⊤w⊥
g , b := ϵ⊤w

/
/
g and c2 := ∥ϵ∥2,

which proves Theorem 4.

H.3 PROOF OF COROLLARY 2

The first equation follows by taking the limit ϕ → 0+ in part (A) of Corollary 1. For the second
equation, note that in the limit Eqn (4) Corollary 1 gives Ereg ≃ L = c2 + L0, with

L0 = L0(ϕ, p) :=

{
0, if ϕ < p,

c0D + c0
c1
E, if ϕ > p,

where D := ∥w⊥
g ∥2 − 2a, E := ∥w

/
/
g∥2 − 2b, and we recall that

c0 := 1− p/ϕ, c1 := γ/ϕ+ c0 = 1− (p− γ)/ϕ, γ = p+ 2αφ(α), α = Φ−1(1− p/2).
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Now, on the second branch, one computes

γ′ :=
∂γ

∂p
= α2,

∂L0

∂p
= −D

ϕ
− E

γ + (ϕ− p)γ′

(ϕ− (p− γ))2
= −D

ϕ
− E

γ + (ϕ− p)α2

(ϕ− (p− γ))2
,

One can further show the Hessian of L0 is nonnegative everywhere provided E > 0, and so every
stationary point is a global minimum, provided it lies in the interval (0, ϕ). Expanding to first order
in p, observe that if t := −D/E > 0, then we have a unique stationary point p0 = p0(ϕ). By the
way, observe that D+c2 = ∥w∗−w

/
/
g∥2 and E+c2 = ∥w∗−w⊥

g ∥2, where c2 := ∥w∗−wg∥2 as usual,

and so the condition D < 0 < E is equivalent to the condition ∥w∗ − w
/
/
g∥2 < c2 < ∥w∗ − w⊥

g ∥2
in the statement of the result being proved. Further, one can show that for small ϕ,

p0/ϕ ≃
√
t/
√
2 log 1/ϕ, (γ(p0)− p0)/ϕ ≃

√
t
√

2 log 1/ϕ. (62)
See Lemma 6. It is clear that p0 ≪ ϕ because log 1/ϕ ≫ 1 for small ϕ, and so p0 is on the second
branch of the definition of L0(ϕ, p), and must therefore be a global min of L0 the interval (0, ϕ).

Moreover, one has (still in the limit ϕ → 0+)
log 1/ϕ → ∞, c(p0) = 1−p0/ϕ → 1, c1(p0) = 1+(γ(p0)−p0)/ϕ → ∞, c0(p0)/c1(p0) → 0,

and so limϕ→0+ L(ϕ, p0(ϕ)) = c2 + limϕ→0+ L0(ϕ, p0(ϕ)) = D + c2 = ∥w∗ − w
/
/
g∥2 < c2.

Lemma 6. Let t and p0 be as in the proof of Corollary 2. For ϕ → 0+, it holds that

p0 ≃
√
t/
√
2 log 1/ϕ, (γ(p0)− p0)/ϕ ≃

√
t
√
2 log 1/ϕ. (63)

Proof. The idea is to argue that p must be small, and so we must have α large and γ ≫ 0. One
then considers the simplified equation D · (ϕ+ γ(p))2 + Eϕ2α(p)2 = 0, which can be solved as a
function p0(ϕ) of ϕ using Lambert-W function. Finally, since ϕ is small pϕ, we can further drop the
Lambert-W function and ultimately get p0 ≃

√
t/
√
2 log 1/ϕ.

H.4 PROOF OF PROPOSITION 3

As usual, set z := −λ so that R = (S − zId)
−1. Observe that the estimator given in Eqn Eqn (3)

can be written as ŵ = RSwg+RX⊤D∆/n, where ∆ := Y −Xwg ∈ Rn is the vector of epistemic
label noise, which is independent of the design matrix X , and has distribution N (0, σ2In). We may
then decompose the regression test error of ŵ as follows:

Ereg(ŵ) = E [(x⊤ŵ − y)2]− σ2 = E [(x⊤ŵ − x⊤w∗)
2] = E

[
∥ŵ − w∗∥2Σ

]
= E

[
∥RSwg +RX⊤D∆/n− w∗∥2Σ

]
,

= E
[
∥RSwg − w∗∥2Σ

]
+ E

[
∥RX⊤D∆/n∥2Σ

]
,

= E
[
∥RSwg − wg + wg − w∗∥2Σ

]
+ σ2E

1

n2
trDXRΣRX⊤D

= E
[
∥RSwg − wg∥2Σ

]
+ σ2E

1

n
trSR2Σ+ trΣ∆+ 2E [w⊤

g (SR− Id)Σϵ]

= z2E [w⊤
g RΣRwg] + σ2E

1

n
trSR2Σ+ ϵ⊤Σϵ+ 2zE [w⊤

g RΣϵ],

where we have used the elementary identity SR− Id = zR.

I PROOF OF THEOREM 5 (OPTIMAL PRUNING IN REGRESSION SETTING)

Note that the pruning strategy q only enters the picture via the parameter p(q) := E [q(G)] and
γ(q) := E [q(G)G2].
Definition 2. Let Q be the set of all admissible pruning strategies satisfying Assumption 1, and for
any subset of H of Q, define Spec(H) ⊆ [0, 1]2 as follows:

Spec(H) := {(p(q), γ(q)) | q ∈ H}. (64)
Thus, Spec(H) collects all possible values of p and γ attainable by some pruning strategy q ∈ H.
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Let Q∗ := {qp,u | (p, u) ∈ [0, 1]2} ⊆ Q, where qp,u is as defined in Eqn (21). The next result gives
us a tractable description of Spec(Q). In particular, it proves Theorem 5.
Proposition 4. We have the following analytic descriptions for Spec(Q):

Spec(Q) = Spec(Q∗), (65)
Spec(Q) = {(p, γ) | 0 ≤ p ≤ 1, γmin(p) ≤ γ ≤ γmax(p)}, (66)

where γmin(p) := p− 2αmin(p)φ(αmin(p)), with αmin(p) := Φ−1((1 + p)/2), (67)

γmax(p) := p+ 2αmax(p)φ(αmax(p)), with αmax(p) := Φ−1(1− p/2). (68)

Geometrically, Spec(Q) is thus the lens-like region between graphs of the functions γmin and γmax.

Proof. Recall the functions αmin(p) := Φ−1((1 + p)/2), αmax(p) := Φ−1(1− p/2), γmin(p) :=
p− 2αmin(p)φ(αmin(p)) and γmax(p) := p+ 2αmax(p)φ(αmax(p)) introduced in the lemma.

First note that any q ∈ Q is the indicator function of a disjoint union of intervals A = ∪I∈II such
that I ∈ I iff −I ∈ I, where −I := {−t | t ∈ I}. Now, for any p ∈ [0, 1], the minimum (resp.
maximum) feasible value for γ(q) over the surface {q ∈ Q | p(q) = p} is γmin(p) (resp. γmax(p))
and it is attained by taking the ”keep easy” pruning strategy q(t) := 1|t|≤αmin(p) (resp. ”keep hard”
pruning strategy q(t) := 1|t|≥αmax(p)). See Lemma 7. Therefore, we must have

Spec(Q) := {(p(q), γ(q)) | q ∈ Q} ⊆ {(p, γ) | p ∈ [0, 1], γ ∈ Γ(p)},
where we recall that Γ(p) := [γmin(p), γmax(p)].

We now show the other direction of the set inclusion above. Given γ ∈ Γ(p), we must construct
q ∈ Q such that p(q) = p and γ(q) = γ. Indeed, for any u ∈ [0, 1], define qu ∈ Q as the indicator
function of the union of the intervals Iu := {t ∈ R | |t| ≤ a(u)} and Ju := {t ∈ R | |t| > b(u)},
where a(u) := αmin((1−u)p) and b(u) := αmin(pu). It is easy to verify that b(u) ≥ a(u). Indeed,
because Φ−1 is non-decreasing, we know from the definition of αmax and αmin functions that

αmax(pu) ≥ αmin((1−u)p) ⇐⇒ 1−pu/2 ≥ (1+(1−u)p)/2 ⇐⇒ (1+p)/2 ≤ 1 ⇐⇒ p ≤ 1.

If follows that Iu and Ju are disjoint and so

qu(t) = 1Iu∪Ju = 1Iu + 1Ju ,

It is easy to verify that p(qu) = pu+ (1− u)p = p and

γ(qu) = p− 2a(u)φ(a(u)) + 2b(u)φ(b(u)).

Observe that u 7→ γ(qu) increases continuously from γmin(p) at u = 0 to γmax(p) for u = 1. It
follows from the Intermediate Value Theorem that there exists u0 ∈ [0, 1] such that γ(qu0

) = γ. It
suffices to take q = qu0

.

Finally, Spec(Q) = Spec(Q∗) follows directly from the construction of qu.

Lemma 7. For any p ∈ [0, 1], we have the following.

(A) The minimum of γ(q) over all q ∈ Q is given by

γmin(p) = p− αmin(p)φ(αmin(p)), with αmin(p) := Φ−1((1 + p)/2), (69)

and is attained by setting q(t) ≡ 1|t|≤αmin(p).

(B) The maximum of γ(q) over all q ∈ Q is given by

γmax(p) = p+ αmax(p)φ(αmax(p)), with αmax(p) := Φ−1(1− p/2). (70)

and is attained by setting q(t) = 1|t|>αmax(p).

J PROOFS OF LEMMAS

J.1 PROOF OF LEMMA 2

The formula for m′(z) from differentiating through Eqn (34) w.r.t z, and then doing some basic al-
gebraic manipulations. All the other formulae for m̄′(z), m̃(z), and r′(z) follow from the definition
of the quantities and the chain rule.
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K PROOF OF LEMMA 7

(A) Every q ∈ Q is the indicator function of some measurable A ⊆ R. We wish to maximize
γ(q) =

∫
A
t2φ(t)dt over A, subject to p(q) =

∫
A
φ(t)dt = p. The Lagrangian is

L(A, λ) =

∫
A

t2φ(t)dt+ λ ·
(
p−

∫
A

φ(t))dt

)
=

∫ ∞

−∞
(t2 − λ)1A(t)φ(t)dt+ pλ.

Since φ(t) > 0 for all t, it is clear that the integrand is minimized by taking

1A(t) =

{
1, if t2 > λ

0, otherwise.

Thus, by the Rearrangement inequality (for measures), it is optimal to take A = (−∞,
√
λ) ∪

(
√
λ,∞) for some λ ≥ 0. The constraint

∫
A
φ(t)dt = p then gives

√
λ = Φ−1((1 + p)/2) =: αmin(p).

(B) Analogous arguments.

L PROOF OF LEMMA 3

L.1 NON-LIMO CASE

Let us prove the formula for β1 and β2 given in the first row of Table 3. Consider F = sign(U)q(V ),
where U = Z⊤w̄g and V := Z⊤w̄o, for Z ∼ N (0, Id). Note that we can write C−1/2c = E[FZ].
By Stein’s lemma, we have C−1/2c = aw̄g + bw̄o, where

a := E[
∂F

∂U
], b := E[

∂F

∂V
]. (71)

By direct computation, one has
∂F

∂U
= 2δ(U)q(V ), (72)

∂F

∂V
= sign(U)q′(V ), (73)

in the distribution-theoretic sense. Thus, one computes
E[δ(U)q(V )] = φ(0)E[q(V ) | U = 0] = φ(0)E[q(V ) | U = 0] = φ(0)E[q(G)]

= φ(0)

∫ ∞

−∞
q(σt)φ(t)dt =

φ(0)

σ

∫ ∞

−∞
q(t)φ(t/σ)dt

=
1

σ
E[q(G)φ(τG)],

where we have used the fact that

φ(τt)φ(t) =
1√
2π

φ(t
√
τ2 + 1) = φ(0)φ(t/

√
1− ρ2) = φ(0)φ(t/σ).

We deduce that a = (2/σ)E[q(G)φ(τG)].

On the other hand, for any s ∈ R, one computes
E[sign(U)δ(V − s)] = φ(s)E[sign(U) | V = s]

= φ(s)(P(U ≥ 0 | V = s)− P(U < 0 | V = s)).

But, conditioned on V = s the distribution of U is N (ρgs, σ
2), where σ :=

√
1− ρ2g . We deduce

that P(U ≥ 0 | V = s) = P(N (0, σ2) ≥ −ρgs) = P(N (0, σ2) ≤ ρgs) = Φ(τs). Like-
wise, P(U < 0 | V = s) = P(N (0, σ2) < −ρgs) = Φ(−τs) = 1 − Φ(τs). We deduce that
E[sign(U)δ(V − s)] = φ(s)(2Φ(τs)− 1), and so

E[sign(U)q′(V ) | V = s] =

∫
q′(s)(2Φ(τs)− 1)φ(s)dx = E[q′(G)(2Φ(τG)− 1))]

= 2E[q′(G)Φ(τG)]− E[q′(G)] = 2E[q′(G)Φ(τG)],
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where we have used the evenness of q to write E[q′(G)] = E[Gq(G)] = 0. We deduce that

a = 2σ−1E[q(G)φ(τG)], b = 2E[q′(G)Φ(τG)]. (74)

Lets write C−1/2c = aw̄g + bw̄o = β̃u + βv, where u = w̄o and v is an unit-vector perpendicular
to u but in the plane spanned by w̄o and w̄g . It is easy to see that

v =
w̄g − ρgu

∥w̄g − ρgu∥
=

w̄g − ρgu√
1− 2ρ2g + ρ2g

=
w̄g − ρgu

σ
.

We deduce that

β = c⊤v = (w̄⊤
g v)a = σa = 2E[q(G)φ(τG)] =: β2, (75)

β̃ = c⊤u = b+ ρga = 2E[q′(G)Φ(τG)] + 2τE[q(G)φ(τG)]. (76)

To match the formulae for β1 and β2 given in Table 3, we must now show that E[q′(G)Φ(τG)] =

E[q(G)Φ(τG)G]−τE[q(G)φ(τG)] and conclude that β̃ = β1. To this end, write E[q′(G)Φ(τG)] =
E[q′(G)f(G)], where f(t) := Φ(τG). By Stein’s lemma (Gaussian integration by parts), we have

E[q′(G)f(G)] = E[q(G)(Gf(G)− f ′(G))] = E[q(G)(GΦ(τG)− τφ(τG))]

= E[q(G)Φ(τG)G]− τE[q(G)φ(τG)],

as claimed.

Computing p and γ. We now compute the pruning ratio by definition as p := E[pi] = E[q(V )] =
E[q(G)] and γ = E[(x⊤

i wo)
2pi] = E[q(V )V 2] = E[q(G)G2] for G ∼ N (0, 1). This matches the

formulae given in the first row of Table 3.

L.2 LIMO CASE

Let us now prove the formula for β1 and β2 given in the second row of Table 3. Here F :=
sign(U)q(V )H(UV ), where H is the Heaviside step function with the convention H(0) = 1/2.
Now, one computes

∂F

∂U
= 2δ(U)q(V )H(UV ) + sign(U)q(V )V δ(UV ), (77)

∂F

∂V
= sign(U)q′(V )H(UV ) + sign(U)q(V )Uδ(UV ),

= sign(U)q′(V )H(UV ) + |U |q(V )δ(UV ) (78)

Computing the a coefficient. One computes

E[δ(U)q(V )H(UV )] = φ(0)E[δ(U)q(V )H(0) | U = 0] =
φ(0)

2
E[q(V ) | U = 0]

= . . . =
1

2σ
E[q(G)φ(τG)].

On the other hand, using the well-known identity

δ(xy) = δ(y)/|x|+ δ(x)/|y|,

one computes

E[sign(U)q(V )V δ(UV )] = E[sign(U)q(V )V δ(V )/|U |] + E[sign(U)q(V )V δ(U)/|V |]
= E[(1/U)q(V )V δ(V )︸ ︷︷ ︸

=0

] + E[sign(U)δ(U) sign(V )q(V )]

= φ(0)E[sign(V )q(V ) | U = 0] = 0,

where the last step is because t 7→ sign(t)q(t) is an odd function, and the distribution of V condi-
tioned on U = 0 is N (0, σ2) which is symmetric around the origin. We deduce that

a = σ−1E[q(G)φ(τG)]. (79)
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Computing the b coefficient. For any s ∈ R,

E[sign(U)q′(V )H(UV ) | V = s]

= q′(s)φ(s)E[sign(U)1sU≥0 | V = s]

= q(s)φ(s) (P(U ≥ 0, sU ≥ 0 | V = s)− P(U < 0, sU ≥ 0 | V = s)) .

Now, since the distribution of U conditioned on V = s is N (ρgs, σ
2), we have

P(U ≥ 0, sU ≥ 0 | V = s) =

{
P(U ≥ 0 | V = s) = Φ(τs), if s ≥ 0,

P(U = 0 | V = s) = 0, if s < 0,

P(U < 0, sU ≥ 0 | V = s) =

{
P(U < 0, U ≥ 0 | V = s) = 0, if s ≥ 0,

P(U < 0 | V = s) = Φ(−τs), if s < 0.

Therefore, E[sign(U)q′(V )H(UV ) | V = s] = q′(s) sign(s)φ(s)Φ(τ |s|), and we conclude that

E[sign(U)q′(V )H(UV )] = E[q′(G)Φ(τ |G|) sign(G)],

with G ∼ N (0, 1). Define h(t) := Φ(τ |t|) sign(t). It is clear that

h′(t) = 2δ(t)Φ(τ |t|) + τφ(τ |t|) = 2δ(v)Φ(0) + τφ(τt) = δ(v) + τφ(τt).

Gaussian integration by parts then gives

E[q′(G)Φ(τ |G|) sign(G)] = E[q′(G)h(G)] = E[q(G)(Gh(G)− h′(G))]

= E[q(G)Φ(τ |G|)|G|]− τE[q(G)φ(τG)]− φ(0)q(0).

But q′ is odd (because q is even), and also t 7→ Φ(τ |t|) is obviously even. We deduce that
E[sign(U)q′(V )H(UV )] = 0. Likewise, using the identity δ(UV ) = δ(V )/|U | + δ(U)/|V |, one
computes

E[|U |q(V )δ(UV )] = E[q(V )δ(V )] + E[|U |q(V )δ(U)/|V |]
= φ(0)q(0) + E[|U |δ(U)︸ ︷︷ ︸

0

q(V )/|V |] = φ(0)q(0).

We deduce that b = E[q(G)Φ(τ |G|)|G|]− τE[q(G)φ(τG)]. Therefore, writing C−1/2c = β̃u+βv
as before, we have

β = σa = E[q(G)φ(τG)] =: β2,

β̃ = b+ ρgb = E[q(G)Φ(τ |G|)|G|] =: β1,

which are precisely the formulae given in Table 3.

Computing p and γ. We now compute the pruning ratio p := E[pi] = E[q(V )H(UV )] and
γ := E[(x⊤

i wo)
2pi] = E[V 2q(V )H(UV )] by definition of pi in Eqn (6). Now, for any s ∈ R, we

have

E[H(UV ) | V = s] =


P(U ≤ 0 | V = s) = Φ(−τs), if s < 0,

1/2, if s = 0,

P(U ≥ 0 | V = s) = Φ(τs), if s > 0

= Φ(τ |s|).
Integrating out s with density φ(s), we deduce that

p = E[q(G)Φ(τ |G|)], γ = E[q(G)Φ(τ |G|)G2],

as claimed.

M ANALYTIC FORMULAE FOR p(q), γ(q), β(q), AND β̃(q)

Note that every symmetric pruning function q ∈ Q is the support function of sum T := −S ∪ S,
where S is (up to a null set) a countable union of closed intervals. We consider a subclass of
symmetric pruning functions corresponding to finite unions, i.e

q = 1T , with T = −S ∪ S, S = ∪k
j=1[aj , bj ], 0 ≤ a1 < b1 < a2 < . . . < ak < bk ≤ ∞. (80)
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The ”keep easy examples” (KE) and ”keep hard examples” (KH) pruning functions used in (Sorscher
et al., 2022) and defined defined below belong to this class k = 1 (for some α > 0):

qKE(t) := 1[|t| ≥ α], i.e qKE(t) = 1 if |t| ≥ α and qKE(t) = 0 otherwise, (81)
qKH(t) := 1[|t| ≤ α], i.e qKH(t) = 1 if |t| ≤ α and qKH(t) = 0 otherwise, (82)

where α > 0 which controls the proportion p = E[pi] of training data which survives the curation.

Since they correspond to taking S = [α,∞] and S = [0, α] respectively. The representation 80
also generalizes the setup of Feng et al. (2024) and Firdoussi et al. (2024) corresponds to q ≡ 1, i.e
S = [0,∞].

For any α ∈ [0,∞], define Ik(α) :=
∫ α

0
fk(x)φ(x)dx, where the functions fk are defined by

f1(x) := Φ(τx), f2(x) := φ(τx), f3(x) := xΦ(τx), f4(x) := x2Φ(τx).

As usual, φ and Φ are the standard normal pdf and cdf respectively.
Proposition 5. Consider a symmetric pruning function q of the form Eqn (80).

(A) For label-agnostic curation Eqn (5), it holds that

p(q) =

k∑
j=1

g(bj)− g(aj), with g(z) := 2Φ(z)− 1 (83)

γ(q) =

k∑
j=1

g(bj)− g(aj), with g(z) := 2(Φ(z)− zφ(z))− 1, (84)

β1(q) = ..., (85)

β2(q) = 2φ(0)σ

k∑
j=1

Φ(bj/σ)− Φ(aj/σ). (86)

(B) For Label-aware curation Eqn (6), it holds that

p(q) = 2

k∑
j=1

I1(bj)− I1(aj), (87)

γ(q) = 2

k∑
j=1

I4(bj)− I4(aj), (88)

β1(q) = 2
k∑

j=1

I3(bj)− I3(aj), (89)

β2(q) = 2

k∑
j=1

I2(bj)− I2(aj). (90)

Part (A) of the proof follows directly from Eqn (8). Part (B) of the proof is a consequence of the
identity

∫ b

a
h(x)dx ≡ I(b)−I(a), where I(α) :=

∫ α

0
h(x)dx, combined with the following lemma.

Lemma 8. For any α ∈ [0,∞), the following identities hold:

I1(α) = Φ(α)− 1/2− [Φ2(α, 0; ρ)− Φ2(0, 0; ρ)], (91)
I2(α) = σφ(0)[Φ(α/σ)− 1/2], (92)
I3(α) = τI2(α)− [φ(α)Φ(τα)− φ(0)/2], (93)

I4(α) = I1 − αφ(α)Φ(τα) + ρσ
[
φ(0)2 − φ(α)φ(τα)

]
. (94)

The results are extended to α = ∞ by noting that

lim
α→∞

αφ(α) = lim
α→∞

φ(α) = 0, lim
ρ→1

τI2(α) =
φ(0)

2
.
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