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ABSTRACT

Attention mechanisms have advanced state-of-the-art deep learning models for
many machine learning tasks. Despite significant empirical gains, there is a lack of
theoretical analyses on their effectiveness. In this paper, we address this problem
by studying the sample complexity and loss landscape of attention-based neural
networks. Our results show that, under mild assumptions, every local minimum of
the attention model has low prediction error, and attention models require lower
sample complexity than models without attention. Besides revealing why popular
self-attention works, our theoretical results also provide guidelines for designing
future attention models. Experiments on various datasets validate our theoretical
findings.

1 INTRODUCTION

Significant research in machine learning has focused on designing network architectures for superior
performance, faster convergence and better generalization. Attention mechanisms are one such design
choice that is widely used in many natural language processing and computer vision tasks. Inspired
by human cognition, attention mechanisms advocate focusing on relevant regions of input data to
solve a desired task rather than ingesting the entire input.

Several variants of attention mechanisms have been proposed, and they have advanced the state of the
art in machine translation (Bahdanau et al., 2014; Luong et al., 2015; Vaswani et al., 2017), image
captioning (Xu et al., 2015), video captioning (Pu et al., 2018), visual question answering (Zhou
et al., 2015; Lu et al., 2016), generative modeling (Zhang et al., 2018), etc. In computer vision,
spatial/spatiotemporal attention masks are employed to focus only on relevant regions of images/video
frames for underlying downstream tasks (Mnih et al., 2014). In natural language tasks, where input-
output pairs are sequential data, attention mechanisms focus on the most relevant elements in the
input sequence to predict each symbol of the output sequence. Hidden state representations of a
recurrent neural network are typically used to compute these attention masks.

Substantial empirical evidence on the effectiveness of attention mechanisms motivates us to study
the problem from a theoretical lens. To this end, it is important to understand the loss landscape and
optimization of neural networks with attention. Analyzing the loss landscape of neural networks is an
active ongoing research area, and it can be challenging even for two-layer neural networks (Poggio
& Liao, 2017; Rister & Rubin, 2017; Soudry & Hoffer, 2018; Zhou & Feng, 2017; Mei et al.,
2018b; Soltanolkotabi et al., 2017; Ge et al., 2017; Nguyen & Hein, 2017a; Arora et al., 2018).
Convergence of gradient descent for two-layer neural networks has been studied in Allen-Zhu et al.
(2019); Mei et al. (2018b); Du et al. (2019). Ge et al. (2017) shows that there is no bad local minima
for two-layer neural nets under a specific loss landscape design. These works reveal the importance
of understanding loss landscape of neural networks.

Unfortunately, these results cannot be directly applied for attention mechanisms. In attention models,
the network structure is different, and the attention introduces additional parameters that are jointly
optimized. To the best of our knowledge, there is no existing work analyzing the loss landscape
and optimization of attention models. In this work, we present theoretical analysis of self-attention
models (Vaswani et al., 2017), which uses correlations among elements of input sequence to learn an
attention mask.
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We summarize our work as follows. We carefully analyze attention mechanisms on the loss landscape
in Sections 3 and 4. In Section 3, we show that, under mild assumptions, every stationary point of
attention models achieves a low generalization error. Section 4 studies other properties of attention
models on the loss landscapes. After the loss landscape analyses, we discuss how our theoretical
results can guide the practitioners to design better attention models in Section 5. Then we validate
our theoretical findings with experiments on various datasets in Section 6. Section 7 includes a few
concluding remarks. Proofs and more technical details are presented in the appendix.

2 ATTENTION MODELS

Attention mechanisms are modules that help neural networks focus only on relevant regions of input
data to make predictions. To compare attention model with non-attention model, we first introduce a
two-layer non-attention model as the baseline model. The network architecture consists of a linear
layer followed by rectified linear units (ReLU) as a non-linear activation function, and a second
linear layer. Denote the weights of the first layer byw(1) ∈ Rp×d, the weights of the second layer by
w(2) ∈ Rd, and the ReLU function by φ(·). Then the response function for the input x ∈ Rp can be
written as y = w(2)Tφ(〈w(1),x〉). We call the above function “baseline model" since it does not
employ any attention.

To study such mechanisms, we mainly focus on analyzing the most popular self-attention model. In
this paper, we consider two types of self-attention model.

For the first type of self-attention model, we consider attention weights that are determined by a
function f(x): y = w(2)Tφ(〈w(1),x� f(x)〉) where f(·) is a known mapping function from Rp
to Rp, representing the attention weight of each feature with any given x. This model is a prototype
version of transformer model (Vaswani et al., 2017), with a pre-determined function as attention
weights.

Second, we introduce a more practical self-attention setup, which is the transformer model proposed
in Vaswani et al. (2017). To mimic the NLP task, we set the input xi = (x1

i , . . . ,x
p
i ) ∈ Rt×p,

where xji ∈ Rt, are t-dimensional vectors. Intuitively, each xi corresponds to independent sentences
for i = 1, . . . , n, and xji ’s are fixed dimensional vector embedding of each word in sentence xi.
wQ,wK ∈ Rdq×t are query and key weight matrices, and wV ∈ Rdv×t is the value matrix. For
each input xi, the key is calculated as: Ki = (wKxi)

T ∈ Rp×dq ; For zth vector in the input,
the query vector is computed as: Qz

i = (wQxzi )
T ∈ R1×dq for z = 1, . . . , p. The value matrix

V = wV xi ∈ Rdv×p. Then the self-attention w.r.t to the zth vector in the input xi is computed as:

a
self(z)
i (xzi ,w

Q,wK) = softmax(
Qz
iK

T
i√

dq
) (1)

for z = 1, . . . , p. And aselfi = (a
self(1)
i , . . . ,a

self(p)
i ). This self-attention vector represents the

interaction between different words in each sentence. The value vector for each word in the sentence
xzi can be calculated as V z

i = V a
self(z)
i ∈ Rdv . This value vector is then passed to a 2-layer MLP

parameterized by w(1) ∈ Rpdv×d and w(2) ∈ Rd×1, resulting in the following general model:

yi = w(2)Tφ(〈w(1), vec(wV xia
self
i )〉) + εi (2)

where vec(·) represents the vectorization of a matrix, and εi are i.i.d sub-Gaussian error.

3 SAMPLE COMPLEXITY ANALYSES

In this section, we focus on analyzing the loss landscape for the the self-attention model as introduced
in Section 2. In Section 3.1, we consider the sample complexity of the model with known attention
weight function f(x). In Section 3.2, we consider transformer self-attention model, in which the
attention weight function is also need to be learnt. Section 3.3 discusses the sample complexity result
for multi-layer self-attention model.

To avoid the non-differentiable point of ReLU φ, we use the softplus activation function φτ0(x),
i.e., φτ0(x) = 1

τ0
log(1 + eτ0x) Note φτ0 converges to ReLU as τ → ∞ (Glorot et al., 2011). All
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theoretical results we derived with φτ0(x) holds for any arbitrarily large τ0. For ease of notation, we
still use φ(x) to denote the softplus function.

In this paper, we focus on the regression task which minimizes the following loss function:L =
E(x,y)∼D‖h(x)− y‖22, where h(x) is the defined baseline/attention models. Our theory can be easily
extended to classification tasks as well.

3.1 ASYMPTOTIC PROPERTY OF SELF-ATTENTION MODEL WITH KNOWN WEIGHT FUNCTION

We start with a self-attention model with known attention function f(·) . The objective function is:

min
w

1

2n

n∑
i=1

(w(2)Tφ(〈w(1),xi � f(xi)〉)− yi)2 (3)

where ‖f(x)‖2 = 1, as the sum one attention weights.

Before proceeding, we introduce three major assumptions for our analysis: (A1): Model output y
can be specified by a two-layer neural network with attention model structure; (A2): The Attention
weights are mainly contributed by top several masks; (A3): Hidden layers of the network are
sufficiently overparameterized such that they have sufficient expressiveness to predict y.

For space consideration, we provide the detailed justification of these assumptions and explain
why they can be intuitively summarized as (A1)-(A3) in the Appendix (A.1). Specifically, (A1) is
supported by previous works. For (A2) and (A3), we verify them both theoretically and empirically in
Appendix Section A.1 and in our experiments Section 6. In short, (A2) naturally holds since softmax
function in attention model helps us to obtain a concentrated attention weights instead of evenly
spread out weights; (A3) naturally holds for overparameterized neural networks. More details can be
found in Appendix Section A.1. In the following, we present their mathematical presentations.

Let φ(〈w(1),x� f(x)〉) represents the d-dimensional random vector of hidden units with network
weights w(1). For any vector z1 and z2, we denote var(z1|z2) as the covariance matrix of residual
z1 after taking linear regression on z2. The explicit form can be represented as var(z1|z2) =
Σz1z1 − Σz2z1Σ

−1
z1z1Σz1z2 , where Σz1z2 represents the cross-covariance matrix of vector z1 and

z2. The explicit derivation can be found on page 176 of Izenman (2013). In our setting, z1 =
φ(〈w(1)?,x� f(x)〉, and z2 = φ(〈w(1),x� f(x)〉.

(A1) There exists a set of parameters (w(1)?,w(2)?) such that yi = w(2)?Tφ(〈w(1)?,xi�f(x)〉)+
εi for i = 1, 2, ...n, where εi’s follow the sub-Gaussian distribution subG(0, C2

3 ) and xi ⊥⊥ εi.
(A2) For anyxi, we order the attention weights f(xi) in descending order as f(xi)(1), . . . ,f(xi)(p).

There exist positive integer 0 < s0 < p and 0 < τ < 1, such that largest s0 attention weights
fs0 = {f(xi)(1), . . . ,f(xi)s0} satisfies ‖fs0‖2 ≥ 1− τ .

(A3) For γ > 0, λmax(V ar(φ(〈w(1)?,xi � f(x)〉)|φ(〈w(1),x � f(x)〉)) = o(γ2) as n &
k4

γ2 log( kγ )(pd+ d) and n→∞ for a constant k which satisfies k <
√
s0 + τ

√
p.

Other than these three major assumptions, we also assume the regularity assumption (B1): the model
samples xi’s are i.i.d. with maximum bound; network weightsw(1) andw(2) have bounded `2 norms,
denoted by C1 and C2, respectively; and the output y is centralized. The regularity assumption (B1)
is standard in the literature, which will be justified in the Appendix (A.2). Given these assumptions,
we show that the sample complexity bound of attention model:

Theorem 1. (Sample complexity for attention model) Under (A1)–(A3) and regularity assumption
(B1), for any γ > 0 and s0 s.t. k .

√
s0 + τ

√
p, given the sample size

n &
(
√
s0 + τ

√
p)4η2

γ2
log(

(
√
s0 + τ

√
p)η

γ
)(pd+ d)

where η = C2
1C2. with probability converging to 1, any stationary point (w̃(1), w̃(2)) of the objective

function (3) satisfies that: E(w̃(2)T φ(〈w̃(1),x� f(x)〉)− E(y|x))2 . γ2.
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The proof sketch and complete proof are provided in Appendix Section E. To explicitly compare the
sample complexity bound of our attention model with non-attention model, we provide the following
corollary for sample complexity bound of baseline model. We just need to set s0 = 0 and τ = 1 in
Theorem 1, fixing all attention weights to be equal, then the model is the baseline one as follows.
Corollary 1. (Sample complexity for non-attention model) Under (A1)–(A3) and regularity as-
sumption (B1), for non-attention model with f(xj) = 1/

√
p for all features xj ∈ x, given the sample

size:

n &
p2η2

γ2
log(

pη

γ
)(pd+ d)

where η = C2
1C2. With probability converging to 1, any stationary point (w̃(1), w̃(2)) of the objective

function (3) satisfies that: E(w̃(2)T φ(〈w̃(1),x� f(x)〉)− E(y|x))2 . γ2.

There is an important message from the comparison of Theorem 1 and Corollary 1. The corresponding
sample complexity bound from Corollary is in higher order than the sample complexity in Theorem 1.
This fact can be observed as follows. We can see the effect of concentration in attention models from
Theorem 1. In Theorem 1, the sample complexity bound is proportional to (

√
s0 + τ

√
p)4. When

the attention is sufficiently concentrated, it means that we have a much lower order of s0 � p and
τ → 0, then our sample complexity will be significantly reduced.

Also from the sample complexity bound of Theorem 1, up to a log term, prediction error γ is
proportional to n−1/2, which is the optimal rate of convergence in regression. In Imaizumi &
Fukumizu (2018) and similar works, they showed the generalization error convergence rate is O(n−t)
where 0 < t < 1/2. These facts all imply that the bound is tight in aspect of sample size compared
with existing works.

3.2 ASYMPTOTIC PROPERTY OF SELF-ATTENTION MODEL WITH UNKNOWN WEIGHT
FUNCTION

In this section, we extend our analyses to the transformer self-attention model introduced in Section
2.

Theorem 1 implies that if the self-attention mask can be precisely computed with f(x), we can derive
its sample complexity bound. However, the function f(·) is not necessarily known, and needs to be
learned in real-world applications. Therefore, the transformer self-attention setup is more desired in
real-world settings. It provides a concrete model to learn the parameter of attention weight function.
Denoting w = (w(1),w(2),wQ,wK ,wV ), the two-layer self-attention model can be formulated as:

min
w

1

2n

n∑
i=1

(w(2)Tφ(〈w(1), vec(wV xia
self
i )〉)− yi)2 (4)

We now introduce necessary assumptions.

(A4) For each column aselfi , we order the entries of aselfi in descending order as aselfi(1) , . . . ,a
self
i(p) .

There exist positive integer 0 < s0 < p and 0 < τ < 1, such that the largest s0 attention weights
aselfi(leading) = {aselfi(1) , . . . ,a

self
i(s0)
} satisfies ‖aselfi(leading)‖2 ≥ 1− τ .

(A5) Denote Φ? = φ(〈w(1)?, vec(wV ?xia
self?
i )〉), and Φ = φ(〈w(1), vec(wV xia

self
i )). For any

γ > 0 we have λmax(V ar(Φ?|Φ)) = o(γ2). as n & k2dvd
γ2 log(

(k+
√
pt)

γ ) and n→∞.

where similar to (A1), (w(1)?,w(2)?,wV ?,aself?) correspond to the true parameter set such that

yi = w(2)?Tφ(〈w(1)?, vec(wV ?xia
self?
i )〉) + εi. (5)

(A4) and (A5) are parallel to (A2) and (A3), assuming the attention weights are focused on s0
items, and a sufficient expressive power of Φ. Furthermore, sparse transformer Child et al. (2019),
sparsemax attention model Martins & Astudillo (2016) and local attention model Luong et al. (2015)
can be regraded as a special case of the assumption with τ = 0, in which we only consider attention
weights between partial locations instead of all locations. We further verify this assumption in our
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experiments that s0 � p and τ → 0. Other regularity assumptions on feature and parameter space are
similar with the ones in Theorem 1. We denote is as (B2): The `2 norm bound forw(1),w(2),wK and
wQ are, respectively, C1, C2, C5, and C6, and the `1 column norm of wV is C8. They are presented
in Appendix (A.3). Now we provide sample complexity bound for transformer self-attention models:
Theorem 2. (Sample complexity for transformer self-attention model) Under (A4), (A5) and regu-
larity assumptions (B2), for any γ > 0 and s0 s.t k . s0, given the sample size:

n &
(
√
s0 + τ

√
p)2 +

√
pt)2pdvdη

2
a

γ2
log(

((
√
s0 + τ

√
p)2 +

√
pt)ηaηb

γ
)

where ηa = C2
1C2C8 and ηb = C5 + C6, with probability tending to 1,

any stationary point (w̃(1), w̃(2), w̃Q, w̃K) of the objective function (4) satisfies that:
E(w̃(2)Tφ(〈w̃(1), vec(wV xia

self
i )〉)− E(y|x))2 . γ2.

There are two important messages from Theorem 2. First, theorem 2 shows that, with the help
of self-attention, we can achieve consistent predictions under a more expressive class of models
(equation 5), which is analyzed in Yun et al. (2019). Non-attention model does not have consistency
for this class of models. To train a non-attention model on data with self-attention structure, more
layers and larger network parameter size are required to reduce such bias. Second, we can see the
help of concentrating the attention in designing transformer model. Similar to Theorem 1, we see the
sample complexity bound is proportional to (

√
s0 + τ

√
p)4. Therefore, a properly small s0 and τ can

significantly reduce the sample complexity of self-attention models. Later in our experiment, we show
that it is exactly what is happening in the real transformer model. Our theorem also answers why the
self-attention design with softmax function can effectively helps us achieve better prediction results.
What’s more, it also explains the effectiveness of sparse design in attention model. Sparse attention is
one special case of our concentration condition with τ = 0. There has been work showing that sparse
attention weights can significantly reduce computational cost and improve the performance, and it
is verified in sparse transformer,local attention model and sparsemax attention models(Child et al.,
2019; Luong et al., 2015; Martins & Astudillo, 2016).

3.3 MULTI-LAYER SELF-ATTENTION MODELS AND RECURRENT ATTENTION MODELS

Theorems 1 and 2 can be extended to multi-layer neural nets. Due to page limit, the rigorous definition,
notations, assumptions and statements of Theorem 3 are deferred to Appendix Section A.4. Here we
provide a plain statement of it as follows.
Theorem 3. Given the overparameterized and regularity condition, for any given generalization error
level gamma, with high probability, a multi-layer self-attention model can achieve a generalization
error smaller than γ, given the sufficient large sample size.

Our analyses can be also extended to recurrent attention models, following the recurrent attention
setup in Luong et al. (2015). The analysis on recurrent attention model is deferred to Appendix
Section B due to page limits.

4 NON-LINEARITY, FLATNESS OF MINIMA AND SMALL SAMPLE SIZE

In this section, we further investigate several additional properties on how attention mechanisms
improve the landscape of neural networks and keep the nice properties of baseline models in aspects
of reducing unnecessary non-linear regions, sharpness of local minimum and it doesn’t affect the loss
landscape in small sample case.

4.1 ON THE NUMBER OF LINEAR REGIONS

We first study how attention mechanisms affect the number of linear regions (Montufar et al., 2014) in
a wide two-layer neural network with attention of known attention weight function, when the number
of hidden units is larger than the number of non-zero weights in f(x). This result shows how the
sparsity/concentration of attention weights effects the non-linearity of loss landscape.
Theorem 4. Assume ‖f(x)‖0 = s0, which is the sparsity of the attention mask matrix, and the
number of units in the hidden layer n1 > s0. Then the maximal number of linear regions of the
function by a two-layer attention model with ReLU activation function, is lower bounded by bn1

s0
cs0 .
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In general, we see the bound of attention model is smaller than the one of baseline model. The
corresponding plots on bounds can be found in appendix Section C.1. The result implies that, when
appropriate attention mechanism is used, the reduction of number of linear regions leads to a simpler
landscape, yet the approximation error remains small.

4.2 ON FLATNESS/SHARPNESS OF MINIMA

Many recent works, such as Keskar et al. (2016), argue that flatter local minimum tends to generalize
well. However, in a recent study, Dinh et al. (2017) observes that by scale transformation, the minima
which are observationally equivalent, can be arbitrarily sharp, and the operator norm of a Hessian
matrix can also be arbitrarily large. We show that this fact also holds for the self-attention mechanism,
if no `2 norm bound on parameter (w̃(1), w̃(2)) is imposed. Here we introduce the definition of
ε-flatness as in Hochreiter & Schmidhuber (1997).
Definition 1. Given ε > 0, a minimum θ, and loss L, C(L,θ, ε) is the largest connected set
containing θ such that ∀θ′ ∈ C(L,θ, ε), L(θ

′
) ≤ L(θ) + ε, and its volume is called the ε-flatness.

In the following Theorem, we analyze the flatness of stationary point for self-attention model.
Theorem 5. Consider the two-layer ReLU neural network with self-attention mechanism as
stated in Section 3.2: yi = w(2)?Tφ(〈w(1)?, vec(wV xia

self
i )〉), and a minimum θ =

(w̃(1), w̃(2),wV ,wQ,wK) satisfying that w̃i 6= 0 for i = (1), (2), V,Q,K. For any ε > 0,
C(L,θ, ε) has an infinite volume, and for any M > 0, we can find a stationary point such that the
largest eigenvalue of∇2L(θ) is larger than M.

Theorem 5 indicates that property on flatness of minima is maintained when attention mechanism is
applied. Furthermore, `2 norm bound helps remove sharp minima which are bad in generalization. It
also coincides with our theoretical and empirical result that a flat minimum are expected to generalize
better in general (Keskar et al., 2016). We also dicuss the loss landscape of attention model under
small sample size. The results are deferred to Appendix Section C.3.

5 GUIDANCE ON IMPROVING THE ARCHITECTURE OF ATTENTION MODELS

In this section, we provide insights into future attention model design through our analyses.

Regularization: Our analyses suggest proper regularization is helpful in training an attention model.
We can see that `2 norm bound C1, C2 play an important role in sample complexity bound. It implies
that an `1 and `2 regularization on network weights w(1) and w(2) are effective in reducing the
sample complexity. In Theorem 5, we also find that imposing constraints and regularization on
network weights help remove sharp minima and keep flat minima with good generalization.

Concentration on attention: From the discussion of Theorem 1, Theorem 2 and Corollary 1, we
conclude that a proper concentration design with small s0 and τ can significantly reduce sample
complexities. Our analysis show that the soft-max design concentrate attention on limited number of
entries, which help reduce the sample complexity. In different problems, we can further concentrate
the attention by adjusting the temperature of the softmax function. The smaller the temperature, more
concentrated the attention weights are.

Overparameterization in query/key weights From our analyses, we can see that as dq , the dimen-
sion of key and query matrices, increases, the sample complexity will not increase significantly. It
indicates that we can obtain high expressive power in attention model through overparameterization
in query and key matrices to increase expressiveness, without hurting sample complexity.

6 EXPERIMENTS

In this section, we validate our theoretical findings empirically. This section is divided into the
following parts: (1) Verification of concentration assumption (A2) and (A4) on Portuguese to English
translation task. (2) Ablation study on the IMDB reviews dataset, showing the effectiveness of
attention, regularization, and attention-concentration on self-attention and recurrent attention models.
(3) Experiments on a constructed noisy-MNIST dataset using self-attention models.
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Experiment 1: Concentration of top attentions

To verify that our key assumptions/observations (A2) and (A4) hold in the real-world task, we
investigate the distribution of attention weights in the transformer model on the tasks of translating
Portuguese to English as proposed in Vaswani et al. (2017). Then we randomly select the trained
attention weights vector for 100000 different words in training samples. For each attention weight
vector with sentence length pi, we calculate the `2 norm of largest b√pie number of attention weights.
We find the top b√pie weights on average contribute to 90.9% of attention weights, very close to 1.
The histogram is plotted as follows Figure 1. We see that most of sum weights are close to 1. The
result indicates that the largest b√pie attention weights contribute to most of the attention weights.
It indicates that our assumption (A2) and (A4) hold with reasonably small s0 � p and τ , such as
s0 = b√pe.

Figure 1: Distribution of `2
norm of top b√pie of attention
weights

Experiment 2: Ablation study on self-attention and recurrent
attention on the IMDB reviews dataset:

We consider the problem of sentiment classification on an IMDB
reviews dataset (Maas et al., 2011). The task is to classify the senti-
ment of a sentence as either a positive or negative one. We zero-pad
all our sentences to make their length equal to the sentence length
130. For every input word, we train their embeddings with random
initialization (of dimension 100) which is then passed to the neural
network. Hence, the dimension of input is 130 × 100. We con-
sider baseline 2-layer MLP, and then consider adding self-attention,
weight regularization and tempered softmax function into the model
to verify our theoretical analysis and corresponding guidance in
Section 5.

Baseline model: To train the baseline model, we first flatten the
input one large vector of dimension 130× 100 and pass it to a 1-hidden layer MLP with h hidden
units. The model is trained using binary cross entropy loss.
Self-attention model: For self-attention model, the dimensions of query, key and value matrices are
wQ ∈ R100×100, wK ∈ R100×100, wV ∈ R100×130, respectively. We first compute the attention
mask aselfi as per equation 1 (aselfi ∈ R130×130). Using this attention mask, the attended feature
is then computed as fatt = wV xia

self
i . The feature vector fatt ∈ R100×130. We then flatten this

attended feature and then pass it through a 1-hidden layer MLP with h hidden units.
Regularization: We impose a 10−4 `1 regularization on both w1 and w2.
Tempered Softmax: We calculate the attention weights as a

self(z)
i (xzi ,w

Q,wK) =

softmax(
5∗Qz

iK
T
i√

dq
). We multiply the inner product by 5(or temperature as 1/5). Thus, the softmax

operator pushes the small attention weights close to zero while retaining all large attention weights. In
this way, it achieves higher level of concentration of attention weights, comparing with the standard
softmax function based attention.
Optimization: All models were initialized randomly with Xavier initialization. Binary cross-entropy
loss was used to train the models. All models were trained using Adam optimizer with a learning rate
10−3.

To test the sample complexity, we vary the number of training samples in each experiment, train
all models and compute the performance on the test set. We varied the fraction of training samples
from 1k to 10k of the training data. Each experiment was repeated for 10 replications, and mean and
standard deviation was reported in Table 1.

Table 1: Testing accuracy of self-attention ablation study on the IMDB reviews dataset.

Training sample size 1k 3k 5k 10k
Baseline 0.692 (0.016) 0.809 (0.016) 0.821 (0.015) 0.842 (0.006)
Baseline+regularization 0.737 (0.009) 0.823 (0.010) 0.837 (0.005) 0.841 (0.005)
Self Attention 0.806 (0.007) 0.821 (0.012) 0.832(0.007) 0.861 (0.004)
Self Attention+regularization 0.809 (0.011) 0.838 (0.011) 0.853(0.002) 0.865 (0.006)
Self Attention+tempered 0.798 (0.010) 0.830 (0.010) 0.840(0.009) 0.864 (0.011)
Self Attention+regularization+tempered 0.817 (0.010) 0.843 (0.010) 0.856 (0.013) 0.868 (0.007)
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Recurrent attention experiments: Beyond self-attention, we also provide an ablation study on
recurrent attention model, verifying the superiority of recurrent attention model, as our analysis in
the Appendix B.

(1) RNN baseline: The baseline here is a bi-directional RNN attention model with LSTM cell size
32, and we put the final output of RNN into a 2-hidden layer MLP with hidden units 64 and 20
separately to return the final prediction. (2) Recurrent attention: For recurrent attention, we design
the structure the same as Luong et al. (2015). (3) Regularization: We impose the `1 regularization
of 10−4 on network weights in the attention layer. Here we reported the test accuracy results in the
following Table 2.

Table 2: Testing accuracy of recurrent attention ablation study on the IMDB reviews dataset.

Training sample size 1k 3k 5k 10k
RNN Baseline 0.776 (0.023) 0.804 (0.009) 0.823 (0.006) 0.829 (0.015)
RNN Baseline+regularization 0.777 (0.012) 0.806 (0.010) 0.814 (0.008) 0.832 (0.007)
Recurrent Attention 0.789 (0.010) 0.821 (0.007) 0.820 (0.009) 0.835 (0.008)
Recurrent Attention+regularization 0.792 (0.010) 0.817 (0.009) 0.834 (0.009) 0.862 (0.002)

From the experiment results, we see significant effect of regularization and softmax temperature in
self-attention model, and we also see regularization also helps in the recurrent attention model. They
all coincide with our theoretical findings.

Experiment 3: Self-attention on Noisy-MNIST dataset

To prove the applicability of our analyses, we further verify the effectiveness of attention on image
classification task. We construct a noisy MNIST dataset based on the original MNIST dataset. For
each original 28× 28 image, we separate a 56× 56 image into 16 square grids, and put the whole
digit image randomly into 4 neighboring grids. Finally we generate all other grids with uniform
random variables. Examples of our generated dataset are provided in Figure 2.

Figure 2:
Noisy MNIST
dataset

We consider three models here. (1) CNN: We consider a standard 2-layer Convolu-
tional neural networks with fillter size 64, kernel size 3∗3 and max pooling size 2∗2,
following a hidden fully-connected layer with size 128. (2) Self-attention-CNN
We fit a 2-layer convolutional network with filter size 64, kernel size 3 ∗ 3 with a
max pooling size 2 ∗ 2, obtaining a 1600-dimensional embedding for each of 16
square grids. Then treat these embedding of 16 grids as "16 words embedding"
in a sentence, fitting it into equation 2 as our experiment 2. (3) Equal weight
self-attention-CNN: The model structure is the same as model 2, with fixing the
attention weights between all grids are the same. Model (3) is designed as an alter-
native baseline guaranteeing that the improvement of model 2 is from the attention
block instead of the model structure. The testing accuracy of three models are
reported in Table 3. Model 1 has 5558k number of parameters, and model 2 has
only 670k number of parameters. This fact also guarantees that the superiority of our model is not
from training a bigger model.

Table 3: Testing accuracy of self-attention on the Noisy MNIST dataset

Sample size n=5k n=20k n=60k
CNN 0.874(0.001) 0.944(0.002) 0.965(0.002)
Self-attention-CNN 0.970(0.003) 0.993(0.000) 0.996(0.000)
Equal weight self-attention CNN 0.900(0.001) 0.927(0.041) 0.900(0.029)

From the table, we see that Attention-CNN model achieves almost perfect testing accuracy as
the original MNIST dataset. Although equal-attention CNN has the same expressiveness power,
its performance is much worse than attention-CNN model. Again, It shows the usefulness of
concentrating self-attention weights properly in the task.

7 CONCLUSIONS

In this paper, we study the loss landscape of neural networks on attention models, and show that
attention mechanisms help reduce the sample complexity and achieve consistent predictions in the

8
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large sample regime. Besides theoretical analyses of loss landscape, empirical studies validate our
theoretical findings. Based on our analyses, we discuss how regularization, concentration on attention,
and overparameterization in attention weight matrices can further improve the attention model.
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APPENDIX

In this appendix, Section A presents detailed theorem assumptions and their justifications; Section B
presents the theorem of sample complexity bounds for recurrent attention models; Section C presents
details on results in Section 4 of main paper. Section D presents a key lemma of sample complexity
bound on attention model with fixed attention masks for all samples; Finally, we provide proofs in
section E.

A THEOREM ASSUMPTIONS

In this section, we provide more rigorous presentations on the standard assumptions of Theorems 1-3
and further justify these assumptions.

A.1 JUSTIFICATION OF ASSUMPTIONS

Here we justify (A1) to (A3) for Theorem 1, and explain why they can be intuitively summarized as
in the main paper. (A1) assumes the expectation of output y can be specified by a two-layer neural
network with attention model structure. It has been studied that general bounded functions with a
Fourier representation on [−1, 1] can be well approximated by the defined two-layer network (Barron
& Klusowski, 2018). Specific to attention models, Yun et al. (2019) prove the strong expressiveness
of transformer type self-attention model give sufficient large network. Therefore it is very mild to
assume attention model can identify the mean of output y.

(A2) assumes that the attention mask is mostly concentrated on the largest s0 attention weights. This
assumption is naturally satisfied due to the softmax function in the self-attention equation. Softmax
function makes attention weight proportion to the exponential of the inner product of query and key
vectors. This fact significantly enlarges the difference between the inner products, and makes the
attention weights do not evenly spread out over all other entries, but only a few of them. Empirically,
we verify that this assumption is satisfied in real-world transformer translation task in our experiments.
Please check experiment 1 in Section 6 for more details on the distribution of attention weights in
Portuguese to English translation. It shows that this assumption is well satisfied.

(A3) assumes that {φ1...d(〈w(1),xi � f(x)〉)} obtain sufficient expressiveness to predict the output
y when sample size is sufficiently large. In an overparameterized network with large d, we know
{φ1...d(〈w(1),xi�f(x)〉)} have up to 2d number of linear regions over n samples. And (A2) assumes
these linear regions space all directions of φ(〈w(1)?,xi�f(x)〉) up to a o(γ) term. It says that given
the 2d linear regions and strong expressiveness of {φ1...d(〈w(1), x� f(x)〉)}, the residual vector is a
o(γ) term with respect to all directions in Rd. This assumption is parallel to the full column rank
condition in (Nguyen & Hein, 2017b), where we essentially assume in overparameterized network,
the linear combination spans all directions in Rp. Allen-Zhu et al. (2019) also shows the fact in their
Lemma B.1 and Corollary B.2 that in overparameterized networks, in every small region of parameter
space, there exists set of parameters with good prediction. And it leads to a good landscape in each
neighborhood. These results all indicate that it is reasonable to assume sufficient expressiveness
of φ(〈w(1),x� a〉) in overparameterized networks as n → ∞. What’s more, with required large
sample size, we can also straightforwardly evaluate this assumption by checking whether these
φ(〈w(1),x� a〉) spread out the whole space and their linear combinations have good estimation on
y. All these results guarantee that (A3) can be achieved in overparameterized networks. We also
empirically validate (A3) by computing the largest eigenvalue of such conditional covariance in (A3).
We generate a two-layer network under self-attention model (4) with n = 500, d = 256, p = 2142,
dv = 100. We choose the set of parameter same with our experiment setup in Section 6, and hidden
layers are sufficient overparameterized with p = 2142. Then we compute the empirical conditional
covariance λ̂max(V ar(φ(〈w(1)?,xi � f(x)〉)|φ(〈w(1),x � f(x)〉)) = 3.13 ∗ 10−8. This result
indicates that the largest eigenvalue term λmax(V ar(φ(〈w(1)?,xi � f(x)〉)|φ(〈w(1),x� f(x)〉))
is small enough to be assumes as o(γ2) as in (A3).
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A.2 REGULARITY ASSUMPTIONS OF THEOREM 1

In section 3, we described the regularity assumptions of Theorem 1 in words. Here we provide
rigorous mathematical representations of these assumptions in the following (A1.1) to (A1.3).

(A1.1) xi are i.i.d and ‖xi‖∞ < Cx for any i = 1, . . . , n.

(A1.2) There exist C1, C2, Cλ such that λmax(Σφ) ≤ Cλ, ‖w(1)‖F < C1 and ‖w(2)‖2 <
C2 for any w(1), w(2) ∈ S.

(A1.3) E(w(2)φ(〈w(1),x� f(x)〉)) = E(y) = 0.

(A1.1) to (A1.3) are standard assumptions for parameter and feature space. (A1.1) and (A1.2) require
upper bounds on the input xi and `2 bound for network weights. It is a standard assumption in
landscape analysis (Mei et al., 2018a;b), and also it is crucial to remove sharp minima which may
not generalize well (Keskar et al., 2016; Dinh et al., 2017).(See discussions after Theorem 4). These
assumptions can be achieved through regularization.

(A1.3) can always be achieved by making the data centered.

A.3 ASSUMPTIONS OF THEOREM 2

Similarly, for transformer-type self-attention, we also provide similar assumptions (A2.1) and (A2.2)
as follows:

(A2.1): (A1.2) holds with Σφ = cov(φ(〈w(1)?, vec(wV xia
self(z)
i )). Further there exist

C5,C6 and C7 such that ‖wQ‖F ≤ C5, ‖wK‖F ≤ C6, ‖wV ‖F ≤ C7, and ‖wV ‖1 =
max

i=1,...,dv

∑p
j=1w

V
ij ≤ C8. And ‖Qz

iK
T
i ‖2 ≥ C9 for i = 1, . . . , n.

(A2.2) There exists a set of parameters (a?,w(1)?,w(2)?) such that yi =

w(2)?Tφ(〈w(1)?, vec(wV xia
self(z)
i )〉) + εi, where aself is calculated by (1); εi ∼

subG(0, C2
4 ) for i = 1, 2, ...n, with xi ⊥⊥ εi. And the output y is centered as (A6).

These assumptions are all parallel to (A3) to (A6).

A.4 DETAILS ABOUT THEOREM 3

We consider a D-layer network with self-attention structure. We denote the kth self-attention
layer follows gk(xk−1g ) = wk2φ(〈wk1 ,wV xk−1g aself 〉)), where xk−1g is the output of (k − 1)th

self-attention layer, with wV ∈ Rdv×t, xk−1g ∈ Rt×dk−1 , aself ∈ Rdk−1×dk−1 , wk1 ∈ Rdv×qk
and wk2 ∈ Rdk×qk . aself is calculated in the same way with two-layer self-attention net-
works. Then we have the final output h(x) = wD2φ(〈wD1 , vec(wV xD−1g aself 〉)), where
xD−1g = (gD−1(· · · g1(x)), and wD1 ∈ R1×dv , wD2 ∈ Rdk . In this way, the network calcu-
lates self-attention D times and finally produce the final prediction. It is worth mentioning that, to
obtain a scalar prediction in regression model, we flatten the value matrix of the last layer as in
the two-layer model. We still denote u = wD2φ(〈wD1 , vec(wV xD−1g aself 〉))− E(y|x). Then the
necessary assumptions parallel to (A2) are as follows:

(A6) There exists integer k and r such that k ∈ {1, . . . , D} and r ∈ {1, 2}, such that
cov(∇h(wkr ), u) ≥ cγ2) for some constant c, and such that ‖∇h(wkr )‖2 ≤ ck.

This Theorem also requires mild regularity conditions as follows:

• (A3.1) All weights wkj for k = 1, . . . , D and j = 1, 2 satisfy ‖wkj‖2 ≤ C10. And we
assume the prediction is centered, i.e. E(u) = 0.

• (A3.2) There exists a set of parameters (w(1)?,w(2)?) such that yi =
wD2φ(〈wD1 , vec(wV xD−1g aself 〉)) + εi as defined, where εi ∼ subG(0, C2

4 ) for
i = 1, 2, ...n, with xi ⊥⊥ εi. And the output y is centered as (A6).
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The following theorem provides sample complexity bound of multi-layer self-attention model:
Theorem 3 Under (A6) and regularity assumptions (A3.1) and (A3.2), dself is the total number
of parameters in all value, query, key matrices. Then for any γ > 0, given the sample size:
n & log( ckγ )(dself+D(dk+dv)qk), where ck is the Lipschitz constant of∇h(wkr ). With probability
tending to 1, any stationary point (w̃(1), w̃(2), w̃Q, w̃K) satisfies that: E(h(x)− E(y|x))2 . γ2.

Because multi-layer self-attention models include a large parameter set with complicated gradients,
the assumptions are not as intuitive as the two-layer model. But the main assumptions are parallel,
such that in an overparameterized network, ∇h(w) spans almost all directions, and some of them
are correlated with the bias term u. The results show that mainly the size of network parameters
determines the sample complexity bound. It implies that an efficient architecture design is critical
in reducing the sample complexity. For multi-layer cases, the regular assumptions are stated as
following (A3.1) and (A3.2).

B RECURRENT ATTENTION MODEL

In this section, we consider analyzing the sample complexity bound for representative recurrent
attention framework in Bahdanau et al. (2014). In the recurrent attention network, we follow the
setting in self-attention model, such that xi = (x1

i , . . . ,x
p
i ) ∈ Rt×p, corresponding to p words with

t-dimensional embedding. And x is the population version of xi. Then the generative model can be
represented as:

yi = w(2)T 〈w(1),

p∑
j=1

a(xi)jx
j
i 〉+ εi

Analogous to NLP setting, a(xi) is a unknown function mapping xi to a t-dimensional vector, where
a(xi)j represents the effect of the jth word in the sentence for point i. Then following the RNN
setup in Bahdanau et al. (2014), using data features themselves as their annotations, then for time
stamp k = 1, . . . , T , The recurrent attention model estimates for kth time stamp ak(xi) as follows:

sk = f(sk−1, ck−1); ekj = score(sk−1,x
j
i )

αkj =
ekj∑p
j=1 ekj

; ck =

p∑
j=1

αkjx
j
i

y
(k)
i = w(2)Tφ(〈w(1), ck〉)

where score(·) is the score function representing how well the inputs around position j and the output
at position i match. It can either be a dot product or a MLP. y(k)i is the prediction in kth time stamp.
And we denote a(xi)j = αTj , as the attention mask for the final time stamp. And f(·) is the function
to update sk. Suppose the parameter set inside these two functions are wa and wf with number of
parameters as da and df accordingly. Here we show that when these two functions are expressive
enough, recurrent attention networks also have sample complexity bound parallel to self-attention
models. Here we introduce necessary assumptions.

(A7) When T is sufficiently large, the output y can be predicted by the two-layer network
with an independent sub-Gaussian error with variance σ2, i.e, there exists a set of pa-
rameters (w(1)?,w(2)?) such that yi = w(2)?Tφ(〈w(1)?,

∑p
j=1 a(xi)jx

j
i 〉) + εi, where

εi ∼ subG(0, C2
4 ) for i = 1, 2, ...n, with xi ⊥⊥ εi.

(A8) Suppose (A2) holds when we substitute x� f(x) with
∑p
j=1 a(xi)jx

j
i .

(A9) We assume ‖wa‖2 ≤ C8 and ‖wf‖2 ≤ C9.

(A7) to (A9) are parallel to the assumptions in the self-attention case. They can be justified similar to
them, which is discussed in Section B of Appendix. When T is large, recurrent attention models can
represent a wide class of attentions weights. Thus we assume yi can be expressed by such recurrent
attention models.

Now we can provide the following sample complexity bound.
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Theorem 6. Under (A7) to (A9), for any γ > 0, suppose

n &
C2

1C
2
xη

2

γ2
log(

ηC8C9

γ
)(td+ d+ da + df )

where η = C1C2Cx, such that if there exist stationary point(s), then with probability tending to 1,
any stationary point (w̃(1), w̃(2), w̃f , w̃a) satisfies the following prediction error bound:

E(w̃(2)φ(〈w̃(1),

p∑
j=1

a(xi)jx
j
i 〉)− E(y|x))2 . γ2

Theorem 6 provides a sample complexity bound for recurrent attention networks. The bound holds
under expressiveness assumption (A7). It also shows a trade-off of expressiveness and sample
complexity. When the number of parameters is too large, the sample complexity will be too large;
When the number of the parameters is too small, we don’t have enough expressiveness to achieve
consistency. If f(·) and a(·) are properly selected, they will be sufficiently expressive to obtain good
stationary points, and also the number of parameters dw and df will not be too large. In this way,
an ideal sample complexity bound to these good stationary points can be achieved as Theorem 7
says. However, with an over-complicated design in these functions, the sample complexity bound
will be large; With an over-simple design, such good stationary points don’t exist. It is parallel to a
trade-off between approximation error and estimation error in learning theory. The theory implies a
good design of the recurrent structure will help achieve an optimal sample complexity in recurrent
attention model.

C APPENDIX FOR SECTION 4

C.1 DISCUSSION OF THEOREM 4

Figure 3: Number of linear regions in
log scale v.s. sparsity

For illustration, the linear region bounds under different
sparsity levels are plotted in Figure 1. The top red line
is for baseline model with p = 100, and other lines are
bounds for attention model with different sparsity level s0.

In a sufficiently wide network, bn1

s0
cs0 is much smaller

than bn1

p c
p. Then, (n1

s0
)s0 ≤ (n1

p )p holds as long as n1 ≥
exp(p log p−s0 log s0

p−s0 ). Given p log p−s0 log s0
p−s0 ≤ p

p−s0 log p,
since p

p−s0 is close to p when s0 is relatively small, the
result still holds when n1 is larger than the order of p.
For illustration, the linear region bounds under different
sparsity levels are plotted in Figure 1. The top red line
is for baseline model with p = 100, and other lines are
bounds for attention model with different sparsity level
s0. In general, we see the bound of attention model is
smaller than the one of baseline model. The result implies
that, when appropriate attention mechanism is used, the
reduction of number of linear regions leads to a simpler
landscape, yet the approximation error remains small. We
interpret that attention mechanisms help us reduce unnecessary non-linearity inside the landscape.

C.2 DISCUSSION OF THEOREM 5

Theorem 5 indicates that property on flatness of minima is maintained when attention mechanism is
applied, and there exist good sharp minima, coinciding with the observation in Dinh et al. (2017).
However, there is no guarantee that all sharp minima are good in generalization. Revisiting our
analysis in Section 3, the restriction on the parameter space helps remove these sharp minima.
Specifically, we provide upper bounds on the `2 norm of (w(1),w(2)). These constraints restrict
the parameter space and remove all sharp minima which we construct in the proof of Theorem 5.
In these constructed sharp minima, α1 or α2 goes to infinity, and `2 norm bound guarantee that
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it cannot happen. In these constructed sharp minima, `2 norm bound guarantees that it cannot
happen. Practically, `2 norm bounds can be achieved through a proper `2 regularization, which
will be discussed in Section 5. It also coincides with our theoretical and empirical result that a flat
minimum are expected to generalize better in general (Keskar et al., 2016).

C.3 SMALL SAMPLE SIZE

In this section, we study the local minimum of wide neural networks in small sample regime. (Nguyen
& Hein, 2017b) proves that a two-layer neural network model can always achieve perfect empirical
estimation error when the sample size is small. Here, we extend this result for self-attention model.

Theorem 7. For self-attention model in Sec 3.2, if rank(φ(〈w̃(1), vec(wV xia
self
i )〉)i=1,2,..n) = n.

Then every stationary point (w̃(1), w̃(2), w̃V , w̃Q, w̃K) of object function (4) is a global minima.

rank(φ(〈w̃(1),xi � a〉)i=1,2,..n) = n is a mild assumption in a wide network with over-
parameterization. We can see that as long as we choose the number of units d to be larger than n,
the linear dependence of 〈w(1),xi � a〉i=1,2,..n holds with measure zero. In other words, almost
surely this matrix has full column rank n. Thus after the nonlinear activation, the full column rank
still holds almost surely. This assumption is similar to the condition in Theorem 3.8 of Nguyen &
Hein (2017b), where they assume the number of units in some layer is larger than the sample size.
When the sample size is smaller than the number of units in the network, this theorem holds for the
network without attention. It has been proved by Nguyen & Hein (2017b) and Soudry & Carmon
(2016) under different conditions.

D LEMMA: MODELS WITH A FIXED ATTENTION MASK

In this section, we introduced a attention model with fixed attention mask, as a fundamental building
block of attention mechanisms. In the fixed-mask attention model, we consider a dataset D =
{xi, yi}Ni=1, xi ∈ Rp, yi ∈ R, where the output yi depends only on certain regions of input xi, i.e.,
yi = f?(a? � xi), where a? is an unknown fixed attention mask, and f?(.) is the ground-truth
function that is used to generate the dataset and the vector a? ∈ [0, 1]p. The set of entries {a?i |a?i 6= 0}
corresponds to the relevant region of the input, while the complementary set {a?i |a?i = 0} corresponds
to the irrelevant region.

The following Lemma 1 on the sample complexity of attention model with fixed attention mask, is
not only an important building block of the proof of Theorem 1 but also provides helpful insights
for understanding attention mechanisms and revealing the main idea of our proof. With the sparsity
structure of attention mask a, attention mechanisms constrain parameters in a smaller space, thus
they reduce the variability of the empirical landscape, and also reduce the covering number of
parameter space. These results lead to a lower sample complexity compared with the baseline model
not employing attention. Similar to Corollary 1 result, it is straightforward to calculate the sample
complexity bound for the baseline model(not employing attention). To achieve the same error bound,
we substitute s0 with p in the bound, and this results in a much larger sample complexity bound.

The attention model we use can be written as:

f(x) = w(2)Tφ(〈w(1),x� a〉) (6)

The assumptions for analyzing this model is the same as the assumptions of Theorem 1(A1 to A3 and
A1.1 to A1.3), where we substitute f(x) by a in all assumptions with ‖a‖0 ≤ s0. For clarity, we
state them here explicitly:

(A.L.1) There exists a set of parameters (w(1)?,w(2)?) such that yi =
w(2)?Tφ(〈w(1)?,xi � a〉) + εi for i = 1, 2, ...n, where εi’s follow the sub-Gaussian
distribution subG(0, C2

3 ) and xi ⊥⊥ εi.
(A.L.2) ‖a‖0 ≤ s0 with at most s0 non-zero weights.

(A.L.3) For any γ > 0, λmax(V ar(φ(〈w(1)?,xi � a?〉)
|φ(〈w(1),x� a〉)) = o(γ2) as n & k2

γ2 log( kγ )(pd+ d) and n→∞.

(A.L.4) xi are i.i.d and ‖xi‖∞ < Cx for any i = 1, . . . , n.
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(A.L.5) There exist C1, C2, Cλ such that λmax(Σφ) ≤ Cλ, ‖w(1)‖F < C1 and ‖w(2)‖2 <
C2 for any w(1), w(2) ∈ S.

(A.L.6) E(w(2)φ(〈w(1),x� a〉)) = E(y) = 0.

Lemma 1. Under (A.L.1) to (A.L.6), then for any γ > 0 and s0 such that k . O(s0), suppose

n &
s20C

2
1C

2
xη

2

γ2
log(

s0η

γ
)(pd+ p+ d)

where η = C1C2Cx. Then with probability tending to 1, any stationary point (ã, w̃(1), w̃(2)) of the
objective function (4) satisfies the following prediction error bound:

E(w̃(2)Tφ(〈w̃(1),x� ã〉)− E(y|x))2 . γ2 (7)

E PROOFS

In this section, we first provide a proof sketch for Theorem 1 for readers to understand the high-lelvel
idea. Then we provide proofs of all our theorems. Lemma 1, Theorem 1, Theorem 2, Theorem 3 and
Theorem 7 are proved in similar manners. For Theorem 1, Theorem 2 and Theorem 3, we omit the
exact same part of the proof as Lemma 1.

E.1 PROOF SKETCH OF THEOREM 1

Proof Sketch: We target at proving that under our assumptions and required sample size, all local
minimum must have prediction ability as good as global minimum up to γ2. The proof can be
divided into two major steps. First, we show that for all parameter sets with bad prediction, their
φ(w(1),xi � a) term must be correlated with the bias E(y|xi)−E(w(2))φ(w(1),xi � a). It leads
to a large magnitude of population gradient with respect to w(2). Second, we construct an ε-cover
of parameter sets (w(1),w(2)) to show that sample gradients converge to population gradient, such
that sample gradient with respect to w(2) is also away from zero. Thus these parameter sets with bad
prediction cannot be local minimum. And we conclude that all local minimum must have prediction
as good as global minimum up to O(γ2). The complete proof is provided in the Appendix Section E.

E.2 PROOF OF LEMMA 1

Proof. As described in the proof intuition, the proof is divided into two steps. First we study the
lower bound of population risk gradient ‖Ex,y(∇Rn(w(2)))‖2; In step 2 we study the convergence
of ‖∇Rn(w(2))‖2 to the population gradient ‖Ex,y(∇Rn(w(2)))‖2. We further separate these two
steps into three lemmas.

Lemma 1.1 proves the first step, we study the landscape of population risk, showing that with
high probability, we know the population risk with respect to x and y ‖Ex,y(∇Rn(w(2)))‖2 is
large; Lemma 1.2 and Lemma 1.3 prove the second step. Specifically, in part (b), we consider the
convergence of population risk only taking expectation on y, Ey(∇Rn(w(2))). In part (c), finally we
consider the convergence of empirical risk gradient∇Rn(w(2)) to Ey(∇Rn(w(2))).

We introduce necessary notations beforehand. To emphasize the role of x and y separately, here
we denote R(w(1),w(2),a) = Ey(Rn(w(1),w(2),a)), which is the expectation of the empirical
loss gradient with respect to y, treating x as random, and ∇R(w) as corresponding derivatives.
And we denote Ex(∇R(w(1),w(2),a)) = Ex,y(∇Rn(w(1),w(2),a)), which is the expectation of
the empirical loss function with expectation to both x and y. In the proof, we may use o(γ) for
vector/matrix case. In these cases, it means that every element in vector/matrix is o(γ).

Lemma 1.1 Under the assumption of Lemma 1, when equation 7 is violated, with probability going
to 1 that, the population risk gradient with respect to w(2) satisfies that:

‖Ex,y(∇Rn(w(2)))‖2 ≥ O(γ)
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Proof: We denote:
u = w(2)φ(〈w(1),x� a〉)− E(y|x) (8)

and ui as the version with the specified sample index. Then the derivatives of population risk with
the expectation to y can be presented as follows:

∇R(w(2)) =
1

n

n∑
i=1

uiφ(〈w(1),xi � a〉)

∇R(w(1)) =
1

n

n∑
i=1

ui(xi � a)(w(2) � φ
′
(〈w(1),xi � a〉))T

∇R(a) =
1

n

n∑
i=1

ui(xi � (w(1)T (w(2) � φ
′
(〈w(1),xi � a〉)))

By (A.L.1), we know that E(yi|xi) = w(2)?Tφ(〈w(1)?,xi � a?〉). Therefore when
(a,w(1),w(2)) = (a?,w(1)?,w(2)?), all the ui’s are zero, and all the gradients with expectations
to x and y are zero. Thus for any true set of parameter (a?,w(1)?,w(2)?), they have zero gradient
expectations automatically. And the key of our proof is showing that with high probability, any
parameter (a,w(1),w(2)) cannot be stationary point if E(|w̃(2)φ(〈w̃(1),x� ã〉)− E(y|x)|2) ≥ γ2,
because their gradients w.r.t to w(2) must be bounded away from zero.

In the following section, we prove Lemma 1.1 by showing that if E(u2) ≥ γ2, we must have
‖E(∇R(w(1)))‖2 ≥ O(γ). We prove it by contradiction.

In this proof, we denote r = cov(E(y|x), φ(〈w(1),x � a〉)) ∈ Rd, and the covariance matrix for
φ(〈w(1),x� a〉) as:

(Σφ)ij = cov(φi(〈w(1),x� a〉), φj(〈w(1),x� a〉))

If we have ‖E(∇R(w(2)))‖2 = o(γ), i.e.

‖cov(u, φ(w(1),xi � a))‖2 = o(γ),

and plug it into cov((w(2))Tφ(〈w(1),x� a〉), φ(〈w(1),x� a〉)) = r + o(γ), we have:

‖Σφw
(2) − r‖2 = ‖cov(w(2))Tφ(〈w(1),x� a〉)− E(y|x), φ(〈w(1),x� a〉))‖2

= ‖cov(u, φ(w(1),xi � a))‖2 = o(γ)

Since we know the true mean y can be specified by a true set of parameter (w(1)?),w(2)?,a?), and
we denote that the covariance matrix for φ(〈w(1)?,x� a?〉) as:

(Σφ)?ij = cov(φi(〈w(1)?,x� a?〉), φj(〈w(1)?,x� a?〉))

And we denote the cross-covariance matrix of vector φi(〈w(1)?,x�a?〉) and vector φj(〈w(1),x�a〉)
as:

(Σc)
?
ij = cov(φi(〈w(1)?,x� a?〉), φj(〈w(1),x� a〉))

Then with zero expectation on E(y|x) and E(w(2)Tφ(w(1),xi � a)) we have:

E(u2) = var(E(y|x)−w(2)Tφ(w(1),xi � a))

= var(E(y|x)) + var(w(2)Tφ(w(1),xi � a))− 2cov(E(y|x),w(2)Tφ(w(1),xi � a))

= var(w(2)?Tφ(〈w(1)?,x� a?〉)) + var(w(2)Tφ(w(1),xi � a))

− 2cov(w(2)?Tφ(〈w(1)?,x� a?〉),w(2)Tφ(w(1),xi � a))

= w(2)?TΣ?
φw

(2)? − 2w(2)?TΣ?
cw

(2) + rTΣφr + cλo(γ
2)

= w(2)?TΣ?
φw

(2)? − 2w(2)?TΣcΣ
−1
φ Σcw

(2)? +w(2)?TΣcΣ
−1
φ Σcw

(2)? + cλo(γ)

= w(2)?T (Σ?
φ −ΣcΣ

−1
φ Σc)w

(2)? + cλo(γ
2)
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where Σ?
φ − ΣcΣ

−1
φ Σc is exactly the residual of covariance matrix after taking regression on

{φ1...d(〈w(1),x� f(x)〉)}, as we defined in (A.L.3).(Page 176 of Izenman (2013))

w(2)?T (Σ?
φ −ΣcΣ

−1
φ Σc)w

(2)? is a quadratic form of that conditional variance matrix. By (A.L.5),
we know its largest eigenvalue λmax(Σ?

φ −ΣcΣ
−1
φ Σc) = o(γ). Finally we obtain that:

E(u2) = ‖E(∇R(w(2)))‖2 + cλo(γ
2)

≤ ‖w(2)?‖22 ∗ λmax(Σ?
φ −ΣcΣ

−1
φ Σc) + cλo(γ

2)

= o(γ2)

By contradiction, we conclude that if E(u2) ≥ γ2, we must have ‖E(∇R(w(2))‖2 ≥ O(γ). Here
we finish the proof of Lemma 1.1.

Lemma 1.2 Under the assumption of Lemma 1, when equation 7 is violated, the risk gradient ofw(2)

with expectation to y satisfies:

‖Ey(∇Rn(w(2)))‖2 ≥ O(γ)

proof: In Lemma 1.1 we have shown that in population level, all parameter sets with bad prediction
has a large magnitude of E(∇R(w(2))). In Lemma 1.2, we use ε-cover technique to bound the gap
between∇R(w(2))(recall that∇R(w(2)) is short notation of Ey(∇Rn(w(2)))) and E(∇R(w(2))).

Our parametersw(1),w(2) and a are inside the `2 ballsBd(0, C1),Bp×d(0, C2) andBp(0, s20), where
Bp(c, r2) represents a p-dimensional `2 with center c and radius r. By Lemma 5.2 in Vershynin
(2010), the ε-covering number Nε1 ,Nε2 ,Nε3 for these three balls are upper bounded by:

Nε1 ≤ (3C1/ε)
d, Nε2 ≤ (3C2/ε)

pd, Nε3 ≤ (3s20/ε)
p

Then we know the joint 3ε-covering number for the union of all three parameters N3ε satisfies
that N3ε ≤ Nε1Nε2Nε3 . For the ease of notation, we denote θ = (a,w(1),w(2)). Let Θε =
{θ1, · · · ,θNε} be a corresponding cover with N3ε elements. Following the ε-covering we construct
for (w(1),w(2),a) separately, we can always find Θε such that for any feasible θ, there exists
j ∈ [N ] such that max(‖w(1)

(j) −w
(1)‖2, ‖w(2)

(j) −w
(2)‖2, ‖a(j) − a‖2) ≤ ε. In this proof, we use

parenthesis subscription (j) to represent the jth element in the cover, to distinguish it from other
subscriptions.

By triangle inequality, we have:

‖∇R(w(2))‖2 ≥ ‖∇R(w
(2)
(j))‖2 − ‖∇R(w(2))−∇R(w

(2)
(j))‖2 (9)

Therefore, we only need to bound both parts on the r.h.s of equation 9. We start with the first term
‖∇R(w

(2)
(j))‖2. To achieve this, we first bound the gradient term vi = uiφ(w(1),xi � a). For any

fixed parameter set, we calculate:

‖vi‖22 . (C2‖φ(w(1),xi � a)‖2)2‖φ(w(1),xi � a)‖22

Here we denote ‖w(1)‖1,active as the `1 norm ofw(1) on active features, i.e. on the feature such that
its attention weight a is not zero, and from the sparsity condition we know that there are at most s0
such nonzero elements in x� a. Combining with the `2 bound of w(2), we apply Cauchy-Schwarz
inequality:

‖φ(w(1),xi � a)‖2 ≤ max{|x� a|}‖w(1)‖1,active =
√
s0CxC1

It implies:

‖vi‖22 . (C2‖φ(w(1),xi � a)‖2)2‖φ(w(1),xi � a)‖22 = O(s20C
4
1C

2
2C

4
x) (10)

From Lemma 1.1, we know there exists a constant c such that ‖Ex(∇R(w(2)))‖2 ≥ cγ for some
constant c. We denote ξ2 = s20C

4
1C

2
2C

4
x. Then we apply Hoeffding bound on the `2 norm of
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Ex(∇R(w
(2)
(j))), with the upper bound of it as O(σ2). Denoting ∇R(w

(2)
(j)) as the gradient with

respect to jth parameter set in ε-cover for j ∈ {1, . . . , Nε}:

P (‖∇R(w
(2)
(j))− Ex(∇R(w

(2)
(j)))‖2 ≥

cγ

3
) . exp(−nc

2γ2

ξ2
)

Then by union bound, over all Nε elements in Θε:

P (∃j ∈ [Nε], ‖∇R(w
(2)
(j))‖2 ≥

2cγ

3
) & 1−Nε exp(−nc

2γ2

ξ2
)

Secondly we analyze ‖∇R(w(2))−∇R(w
(2)
(j))‖2 term. Here we use ui to represent the prediction

error for ith instant with respect to parameter (a,w(1),w(2)), and use ui(j) to represent the term
with respect to the parameter from jth element in ε-cover set. By triangle inequality, we have:

‖∇R(w(2))−∇R(w(2)

(j))‖2 ≤
2

n
‖

n∑
i=1

(uiφ(〈w(1),xi � a〉)− ui(j)φ(〈w(1)

(j) ,xi � a(j)〉))‖2

.
2

n
(‖

n∑
i=1

(ui − ui(j))φ(〈w(1),xi � a〉)‖2 + ‖
n∑

i=1

ui(j)(φ(〈w(1),xi � a〉)− φ(〈w(1)

(j) ,xi � a(j)〉))‖2)

. s0C
2
XC

2
1C2ε

We choose ε = cγ
3s0C2

xC
2
1C2

, and plug back above results into equation 9, then at least with probability

1−O(Nε exp(−n c
2γ2

ξ2 )), we have ‖∇R(w(2))‖2 > cγ
3 . Therefore we can choose:

n &
σ2

c2γ2
log(

s0C1C2Cx
cγ

)(pd+ p+ d)

such that Nε exp(−n c
2γ2

ξ2 ) = o(1). Finally we can conclude that with probability 1− on(1), for any
(a,w(1),w(2)) such that E(w̃(2)φ(〈w̃(1),x� ã〉)− E(y|x))2 ≥ γ, we have ‖∇R(w(2))‖2 > cγ

3 .

Lemma 1.3 Under the assumption of Lemma 1, when equation 7 is violated, with probability going
to 1 that, the empirical risk gradient with respect to w(2) satisfies that:

‖∇Rn(w(2))‖2 ≥ O(γ)

Proof: So far in Lemma 1.2, we have shown that for population risk with respect to y, with high
probability, all the parameter sets with poor prediction in expectation, i.e E(u2) ≥ O(γ2), their
population risk gradient with expectation to y must be away from zero. Now we move forward to
show that empirical risk ‖∇Rn(w(2))‖2 converges to ‖∇R(w(2))‖2. In aspect of w(2), they can be
represented as:

∇Rn(w(2))−∇R(w(2)) =
1

n

n∑
i=1

εiφ(〈w(1),xi � a〉)

With (A.L.1), we know that εi ∼ subG(0, C2
3 ), thus 1

n

∑n
i=1 εi = O( 1√

n
) by C.L.T, combining

the bound for φ(〈w(1),xi � a〉) we have derived in the proof of Lemma 1.2, with sample size
n & ξ2

c2γ2 log( s0C1C2Cx
cγ )(pd+ p+ d), conclude that with probability 1− op(1):

‖∇Rn(w(2))−∇R(w(2))‖2 ≤
cγ

6
(11)

(12)

Recalling part (a), under the first case that w.h.p ‖∇R(w(2))‖2 ≥ cγ
3 for any parameter

(a,w(1),w(2)) with ‖w(2)φ(〈w(1),X � a〉) − E(y|X)‖2 ≥ γ. Combining this with (11), we
conclude that for any positive constant γ > 0, with required sample size, with high probability that
‖∇Rn(w(2))‖2 > 0, thus they cannot be stationary solution for our loss function.
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In other words, under our assumptions, all the stationary points (ã, w̃(1), w̃(2)) in our programming
satisfy the prediction error upper bound rate γ w.h.p, when sample size:

n &
s20η

2

c2γ2
log(

s0η

cγ
)(pd+ p+ d)

E.3 PROOF OF THEOREM 1

Proof. Theorem 1 can be proved following the same manner as Lemma 1, substituting a by f(x),
only changing two bounds. Here we specify these two different bounds with Lemma 1. First
difference is the bound of ‖φ(〈w(1),xi � f(x)〉)‖2 in Lemma 1.2, and the second is the ε-cover
number in Lemma 1.2.

By assumption (A2), we denote f(x)lead = {f(x)(1), . . . ,f(x)(s0)} as the top s0 leading attention
weights such that ‖f(x)lead‖2 ≥ 1− τ . And ‖f(x)sub‖ as the other p− s0 attention weights and
it satisfies ‖f(x)sub‖2 ≤ τ as ‖f(x)‖2 = ‖f(x)lead‖2 + ‖f(x)sub‖2 = 1. We denote xlead and
w

(1)
lead as the features and network weights corresponding to leading attention weights, and xsub,

w
(1)
sub as the features and network weights corresponding to other attention weights.

Parallel to Lemma 1.2, we just need to adjust the bound of φ(〈w(1),xi � f(x)〉) term as:

‖φ(〈w(1),xi � f(x)〉)‖2 = ‖φ(〈w(1)
lead,xlead � f(x)lead〉+ 〈w(1)

sub,xsub � f(x)sub)〉‖2
≤
√

2(‖φ(〈w(1)
lead,xlead � f(x)lead〉)‖2 + ‖φ(〈w(1)

sub,xsub � f(x)sub〉)‖2

The two terms in the last inequality can be bounded by Cauchy-Schwarz inequality separately:

‖φ(〈w(1)
lead,xlead � f(x)lead〉)‖2 ≤ ‖w(1)‖2‖xlead � f(x)lead‖2

≤ ‖w(1)‖2‖xlead‖2‖f(x)lead‖2 ≤ C1 ∗
√
s0 ∗ Cx ∗ (1− τ) ≤

√
s0C1Cx

And

‖φ(〈w(1)
sub,xsub � f(x)sub〉)‖2 ≤ ‖w(1)‖2‖xsub � f(x)sub‖2

≤ ‖w(1)‖2‖xsub‖2‖f(x)sub‖2 ≤ C1 ∗
√
p ∗ Cx ∗ τ = τ

√
pC1Cx

Combining both inequalities, we have:

‖φ(〈w(1),xi � f(x)〉)‖2 ≤
√

2(
√
s0 + τ

√
p)C1Cx (13)

Further we have

‖vi‖22 . (C2‖φ(〈w(1),xi � f(x)〉)‖2)2‖φ(〈w(1),xi � f(x)〉)‖22 = (
√
s0 + τ

√
p)4C4

1C
2
2C

4
x
(14)

Second, in this case, since f(x) is not optimized together, but calculated from x instead. We don’t
have to consider the ε-cover number for a in the maximum operator. Therefore the new ε-cover
number for w(1) and w(2) are upper bounded as:

Nε1 ≤ (3C1/ε)
d, Nε2 ≤ (3C2/ε)

pd

Substituting the new ε-cover bound to the theorem, we obtain the final sample complexity bound:

n &
(
√
s0 + τ

√
p)4η2

γ2
log(

s0η

γ
)(pd+ d)
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E.4 PROOF OF THEOREM 2

Proof. Theorem 2 can be proved following the same manner as Lemma 1, substituting a by aself ,
only changing several bounds. Here we specify the differences with Lemma 1.

Finally, we obtained a new ε-covering bound accordingly:

Nε1 ≤ (3C1/ε)
d, Nε2 ≤ (3C2/ε)

pdvd, Nε3 ≤ (3C5/ε)
tdq , Nε4 ≤ (3C6/ε)

tdq , Nε5 ≤ (3C7/ε)
tdv ,

where N = Π5
i=1Nεi .

Then, the new vi terms parallel to Lemma 1.2 is:

vi = uiφ(〈w(1), vec(wV xia
self
i )〉)

where ui = (w(2)Tφ(〈w(1), vec(wV xia
self
i )) − E(yi|xi). Under assumptions, using the same

argument as Lemma 1.1 and Theorem 1 under overparameterized network, we have that, there exists
a constant c such that either ‖E(∇R(w(2))‖2 ≥ cγ.

In the case when ‖E(∇R(w(2))‖2 ≥ cγ. Here we derive the new bound of ‖v‖22 with respect to x.
We have:

‖vi‖22 . (C2‖φ(〈w(1), vec(wV xia
self
i )〉)‖2)2‖φ(〈w(1), vec(wV xia

self
i )〉)‖22

Then we derive the bound of ‖φ(〈w(1), vec(wV xia
self
i )〉)‖2. Using our assumption (A4):

‖aselfi(lead)‖2 ≥ 1 − τ , following the same steps as derived in equation 13, we define aselflead and

aselfsub as top s0 leading attention weights and other following attention weights. Then we have:

‖φ(〈w(1), vec(wV xia
self
i )〉)‖2 ≤ ‖w(1)‖2‖‖wV ‖2‖xi � aselfi ‖2

≤
√

2C1C8(‖〈xlead � aselflead〉‖2 + ‖xsub � aselfsub 〉‖2)

≤
√

2(
√
s0 + τ

√
p)C1C8

Finally we obtain:

‖vi‖22 . (C2‖φ(〈w(1), vec(wV xia
self
i )〉)‖2)2‖φ(〈w(1), vec(wV xia

self
i )〉)‖22 = 4(

√
s0 + τ

√
p)4C4

1C
2
2C

4
8C

4
x

Denoting ξ2 = (
√
s0 + τ

√
p)4C2

1C
2
8C

2
x, parallel to Theorem 3, applying Hoeffding bound and union

bound:

P (∃j ∈ [Nε], ‖vj‖2 ≤
2cγ

3
) . Nε exp(−nc

2γ2

ξ2
)

Second, we bound ‖∇R(w(2))−∇R(w(2))(j)‖2 term. The attention weight gap is bounded as:

‖Qz
iK

T
i −Qz

i(j)K
T
i(j)‖max = ‖(xzi )T ((wQ)Twk)xi − (xzi )

T (wQ
(j)w

k
(j)xi‖max

. t(C5 + C6)C2
xε

With this bound, we know aself(z)i is Lipschitz function under assumption (A9) such that ‖Qz
iK

T
i ‖2

has lower bounded. Recall the softmax function for vector β is defined as:

softmax(β) =
exp(β)∑p
i=1 exp(βi)

It is Lipschitz continuous on β when
∑p
i=1 exp(βi) has a lower bound, which is satisfied by (A2.1).

Thus the bound can be derived as:

‖aself(z)i − aself(z)i(j) ‖2 . ‖softmax(
Qz
iK

T
i√

dk
)− softmax(

Qz
i(j)K

T
i(j)√

dk
)‖2

.
√
pt(C5 + C6)C2

xε
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With these bounds, we have:

‖∇R(w(2))−∇R(w(2))j‖2

≤ 1

n
‖

n∑
i=1

ui(j)φ(〈w(1), vec(wV xia
self
i )〉)− ui(j)φ(〈w(1)

(j) , vec(w
V xia

self
i(j) )〉)‖2

.
1

n
(‖

n∑
i=1

(ui − ui(j))φ(〈w(1), vec(wV xia
self
i ))‖2

+ ‖
n∑
i=1

ui(j)(φ(〈w(1),wV xia
self
i )− ui(j)φ(〈w(1)

(j) , vec(w
V
(j)xia

self
i(j) )))‖2)

. ((
√
s0 + τ

√
p)2tC2

1C
2
2C

2
8C

2
xε+

√
ptC1C2C8(C5 + C6)C2

xε

. ((
√
s0 + τ

√
p)2 +

√
pt)(C1C2C8(C1C2C8 + (C5 + C6))ε

Recall that ui(j) and ai(j) are corresponding to the jth element in the epsilon cover. Denote ξ =

((
√
s0 + τ

√
p)2 +

√
pt)(C1C2C8(C1C2C8 + (C5 + C6)), and we choose ε = cγ

ξ , and combine the

above results. Then at least with probability 1−O(Nε exp(−n c
2sγ2

ξ2 )), we have ‖∇R(w(2))‖2 > γ
3 .

Therefore we can choose n & ξ2

c2γ2 log(
((
√
s0+τ

√
p)2+

√
pt)C1C2C5C6C8Cx
c3γ )(pdvd+ d+ 2pdq), such

then Nε exp(−n c
2γ2

ξ2 ) = o(1). Thus with this required sample complexity, we have ‖∇R(w(2))−
E(∇R(w(2))‖2 ≤ 2cγ

3 .

Finally we conclude that with high probability, any parameter (w(1),w(2),w(v),w(k),w(q)) with
E(u2) ≥ γ, we have ‖∇R(w(2))‖2 > γ

3 . Then following the same empirical risk convergence
argument as Lemma 1.2, with high probability they cannot be stationary point. We conclude the
sample complexity bound as:

n &
(
√
s0 + τ

√
p)2 +

√
pt)2pdvdη

2
a

γ2
log(

((
√
s0 + τ

√
p)2 +

√
pt)ηaηb

γ
)

E.5 PROOF OF THEOREM 3

Proof. Under assumption (A3.1), we know all input features and weights are bounded. Therefore we
know ‖∇f(wkr )‖2 is a Lipschitz continuous function on all parameters, and we denote its Lipschitz
constant ck. For wkr , we can derive that:

∇R(wkr ) =
1

n

n∑
i=1

ui∇h(wkr )

Under (A6), if we have E(h(x)− E(y|x))2 & γ2, then:

‖E(∇R(wkr ))‖2 = ‖cov(∇h(wkr ),u)‖2 & O(γ)

Then similar with Theorem 1 and 2, we construct an ε-cover over all parameters θ :=
(wk1 ,wk2 ,wV ,wQ,wK), and we denote it as {θ1, . . . ,θN} such that for any feasible parame-
ter, there exist j ∈ [N ] such that the maximum `2 distance to θj is smaller than ε. By calculating the
number of parameters in all matrices in θ, we have

log(Nε) =
1

ε
O(dself +

k∑
i=1

(dk + dv)qk)

Denoting ∇R(wkr
(j)) as the gradient with respect to jth parameter set in ε-cover for j ∈ {1, . . . , Nε}:

P (‖∇R(wkr
(j))− Ex(∇R(wkr

(j))‖2 ≥
cγ

3
) . exp(−nc

2γ2

c2k
)
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By union bound, we have:

P (∃j ∈ [Nε], ‖∇R(w
(2)
(j))‖2 ≥

2cγ

3
) . Nε exp(−nc

2γ2

c2k
)

Secondly we analyze ‖∇R(wkr ) − ∇R(wkr
(j))‖2 term. As we have shown that the gradient is

Lipschitz continuous, thus we have:

‖∇R(wkr )−∇R(wkr
(j))‖2 ≤ cKε

We choose ε = cγ
3cK

, then at least with probability 1−O(Nε exp(−n c
2γ2

cK
)), we have ‖∇R(w(2))‖2 >

cγ
3 . Therefore we can choose n & log( ckγ )(dself + D(dk + dvqk)), such that Nε exp(−n c

2γ2

c2k
) =

o(1). Finally we can conclude that with probability 1 − on(1), for any (a,w(1),w(2)) such that
E(w̃(2)φ(〈w̃(1),x � ã〉) − E(y|x))2 ≥ γ, we have ‖∇R(w(2))‖2 > cγ

3 . Then following the
convergence of empirical risk procedure of Lemma 1.2, we show with probability going to 1 such
that ‖∇Rn(w(2))‖2 > 0 and all parameters with prediction error O(γ) cannot be stationary point as
long as n & log( ckγ )(dself +D(dk + dvqk)). Thus we complete the proof.

E.6 PROOF OF THEOREM 4

Proof. First with ‖f(x)‖0 = s0, we know all the inputs xi with corresponding ai = 0, will be
inactive in the network. We can omit all these inactive inputs. Then we split n1 units into s0
group, with bn1

s0
c number of units in each group, and discard the leftover units. s0 different groups

correspond to s0 active inputs with non-zero attention weight.

Inside each group, for example in jth group, denoting q = bn1

s0
c, we choose the input weights and

biases for i = 1, 2, · · · , q as:
h1(x) = max{0,wjx},
h2(x) = max{0, 2wjx− 1},

...
hq(x) = max{0, 2wjx− (q − 1)}

here we assignwj to be a row vector with jth variable equal to 1 and all other entries to be 0. And in
the second layer, we choose w(2) = (w3, · · · ,w3), where
w3 = (1,−1, 1, · · · , (−1)q+1), corresponding to h1 to hq in each group. Then the designed network
has q linear regions inside each group, giving by the intervals:

(−∞, 0], (0, 1], (1, 2], · · · , [q − 1,∞)

Each of these intervals has a subset that is mapped by w3h(x) onto the interval (0,1).Montufar et al.
(2014) Therefore the total number of linear regions is lower bounded by bn1

s0
cs0 .

E.7 PROOF OF THEOREM 5

Proof. Here we define an α scale transformation such that:

Tα : (w(1),w(2)) 7→ (αw(1), α−1w(2))

And all the value,query and key matrices remain the same. Then we know the Jacobian determinant
for Tα = α(pdv−1)d. Since pdvd ≥ d, as we assign α→∞, such that the Jacobian determinant goes
to infinity, and the volume of C(L,θ, ε) goes to infinity.

For the Hessian matrix, we still assume a positive diagonal element δ > 0 in w(1). Simi-
larly we have the Frobenius norm ‖∇2L(Tα(θ))‖F of

∇2L(Tα(θ)) =

[
α−1I 0

0 αI

]
∇2L(θ)

[
α−1I 0

0 αI

]
is lower bounded by α−2δ. When we choose sufficient small α, we have the biggest eigenvalue of
∇2L(Tα1,α2

(θ)) is larger than any constant M . Therefore there exists a stationary point such that
the operator norm for Hessian is arbitrary large.
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E.8 PROOF OF THEOREM 6

Proof. First, we obtained new ε-covering bound for the parameter set (w(2),w(1),wf ,wa):

Nε1 ≤ (3C1/ε)
d, Nε2 ≤ (3C2/ε)

td, Nε3 ≤ (3C8/ε)
da , Nε4 ≤ (3C9/ε)

df ,

And Nε ≤ Π4
i=1Nεi Similar to Theorem 1, we denote

u = (w(2)Tφ(〈w(1),

p∑
j=1

a(xi)x
j
i )− E(y|x)) (15)

Then the derivatives of population risk with expectation to y can be presented as follows:

∇R(w(2)) =
1

n

n∑
i=1

uiφ(〈w(1),

p∑
j=1

a(xi)x
j
i )

And also, the new vi term is: vi = uiφ(〈w(1)
j ,
∑p
j=1 a(xi)x

j
i 〉). Following (A15) and same

procedure as Lemma 1.1, we have ‖E(∇R(w(2))‖2 ≥ cγ. we have new bound of ‖v‖22 with respect
to x is upper bounded by σ2 = t2C4

1C
2
2C

2
8C

2
9C

4
X with normalized attention weight. Same argument

follows for the case when ‖E(∇R(w(1))k‖2 ≥ cγ. Then following the same approach as Theorem 1
and 2, we obtain the sample complexity bound:

n &
σ2

c2γ2
log(

tC1C2C8C9Cx
c3γ

)(d+ td+ df + da)

E.9 PROOF OF THEOREM 7

Proof. Here we only consider the derivatives with respect tow(1) andw(2), they can be presented as
follows:

∇Rn(w(2)) =
1

n

n∑
i=1

uiφ(〈w(1), vec(wV xia
self
i )〉)

∇Rn(w(1)) =
1

n

n∑
i=1

ui(vec(w
V xia

self
i ))(w(2) � φ

′
(〈w(1), vec(wV xia

self
i ))T

By assumption, rank(φ(〈w(1), vec(wV xia
self
i )〉)i=1,...,n) = n. Solving the linear system, we must

have ui = 0 for any i = 1, 2, ..., n to satisfy that ∇Rn(w̃(2)) = 0. Thus we know that the loss is
exactly zero inside sample. Thus it must be a global minimum.

F FIXED ATTENTION MASK EXPERIMENTS ON NOISYMNIST

In this additional experiments, another variant of NoisyMNIST dataset is constructed where the
images of digits from the MNIST dataset are embedded in noise, as shown in Figure (a). Then we
compare a two-layer MLP baseline model (in blue) with a global (fixed) attention model proposed in
Supplemental D (in red). Fig (b) shows a plot of epochs v.s. test loss while Fig (c) shows a plot of
epochs v.s. test accuracy. We observe that the global attention model obtains lower loss values and
higher test accuracy with fewer epochs. Again it verifies the superiority of attention weights are from
the effect of concentrating attention weights.

25



Under review as a conference paper at ICLR 2021

(a)

(b) (c)
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