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Abstract

This work aims to understand how, in terms of001
training dynamics, scaling up language model002
size yields predictable loss improvements. We003
find that these can be tied back to loss decel-004
eration: an abrupt slowdown in the rate of005
loss improvement early in training, character-006
ized by piece-wise linear behaviour in log-log007
space. Smoothly broken power laws allow us008
to parametrically measure this transition and009
express scaling improvements as a function of010
(1) decreasing the loss at which deceleration011
occurs, and (2) improving the log-log rate of012
loss improvement after deceleration. We hy-013
pothesize and validate zero-sum learning (ZSL)014
as a mechanistic explanation of loss decelera-015
tion that sheds new light on how scaling im-016
proves loss by mitigating this transition. In017
ZSL, per-token gradients become systemati-018
cally opposed, leading to degenerate training019
dynamics where loss can’t improve on one set020
of tokens without degrading on another; bot-021
tlenecking the rate at which overall loss can022
improve. In contrast to previous work on ex-023
plaining scaling laws, ZSL is grounded in train-024
ing dynamics and might potentially be targeted025
directly to improve loss independent of scale.026

1 Introduction027

What mechanisms underlie scaling laws?028

Increasing language model (LM) size empirically029

improves cross-entropy loss with power-law be-030

haviour, accurately extrapolated across several or-031

ders of magnitude with scaling laws (Kaplan et al.,032

2020). Despite their predictive capabilities, scal-033

ing laws offer limited explanatory power as to the034

underlying mechanism (Stumpf and Porter, 2012);035

i.e. they do not explain how scaling improves loss.036

This question is of particular interest because, by037

identifying and understanding such a mechanism038

(Glennan and Illari, 2017), we may become able039

to target it directly and improve models indepen-040

dent of scale. While several recent works have041

sought to explain scaling laws based on notions of 042

e.g. intrinsic model capacity (Sharma and Kaplan, 043

2022), data distribution properties (Michaud et al., 044

2023), or asymptotic behaviour (Bahri et al., 2024), 045

mechanistic explanations that can inform new ap- 046

proaches and drive principled progress (beyond 047

resource-intensive scaling) remain under-explored. 048

In particular, little is known about the changes in 049

training dynamics that underlie scaling improve- 050

ments, which our work addresses. 051

Loss deceleration underlies scaling laws. 052

We find that scaling improvements can be explained 053

in terms of training dynamics via loss decelera- 054

tion, a phenomenon where rates of loss improve- 055

ment slow down abruptly with piecewise-linear 056

loss curves in log-log space. Importantly, decel- 057

eration can be measured parametrically and used 058

to decompose scaling improvements in terms of 059

deceleration mitigation, specifically (1) decreases 060

in loss at deceleration, and (2) increases in log-log 061

rates of loss improvement after deceleration. A 062

mechanistic explanation of deceleration (and of the 063

mitigating effects of scale) therefore becomes an 064

explanation for how scaling improves loss. The 065

piecewise linear nature of deceleration suggests 066

and indeed turns out to be a qualitative transition 067

in training dynamics that explains deceleration. To 068

the best of our knowledge, deceleration and the 069

underlying transition in training dynamics has not 070

been identified or addressed in relevant prior works 071

on e.g. loss plateaus (Yoshida and Okada, 2020), 072

learning curve shapes (Hutter, 2021; Viering and 073

Loog, 2022), or LM saturation (Godey et al., 2024; 074

Mircea et al., 2024). In light of this, we propose a 075

mechanistic explanation of loss deceleration (and 076

of the mitigating effects of scale) to shed new light 077

on how scaling improves language models in terms 078

of training dynamics. 079

A mechanistic explanation of deceleration. 080

We hypothesize that deceleration occurs when per- 081
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example gradients become systematically opposed,082

leading to degenerate zero-sum learning training083

dynamics; i.e. where loss can’t be improved on one084

set of examples without degrading on another, thus085

bottlenecking the rate at which overall loss can im-086

prove. We verify this hypothesis against alternative087

explanations, characterizing and validating the pro-088

posed mechanism with a complementary empirical089

and theoretical results. As a mechanistic explana-090

tion (Kaplan and Craver, 2011), zero-sum learning091

describes how the training dynamics of individual092

examples (i.e. their loss and gradients) behave and093

interact with one another to produce loss decel-094

eration. This approach of understanding learning095

dynamics from the perspective of per-example gra-096

dient alignment and opposition is similar to Mircea097

et al. (2024), but otherwise under-explored outside098

of tangential areas of research on e.g. improving099

multi-task learning (Liu et al., 2021), or charac-100

terizing outliers in SGD (Rosenfeld and Risteski,101

2023). Importantly, we believe zero-sum learning102

and systematic gradient opposition can potentially103

be mitigated directly to improve loss independent104

of scale. To better guide future work in this direc-105

tion, we build on our findings and analyses to gain106

new understanding into how scaling improves loss107

by mitigating deceleration.108

Summary of findings and contributions In Sec-109

tion 2 we identify loss deceleration as a novel qual-110

itative transition in LM training dynamics. In par-111

ticular, we show how scaling improvements can112

be explained in terms mitigating deceleration. In113

Section 3, we propose and validate a mechanistic114

explanation of deceleration based on destructive in-115

terference between per-example gradients and loss116

improvements. Lastly, in Section 4, we connect117

these mechanisms to scaling improvements, show-118

ing how they are mitigated in ways that could be119

targeted directly and independent of scale.120

Methodology We adapt the training setup of121

Groeneveld et al. (2024) and scaling experiments of122

Kaplan et al. (2020), training and analyzing models123

between 14M and 472M parameters1. Details on124

training and model analyses are in Appendix A.125

2 Loss deceleration in language models126

Characterizing loss deceleration.127

We find that LM loss curves typically exhibit an128

1Code and artefacts, particularly model and optimizer
checkpoints and logs across training, will be made available
at the following https url to enable future work.
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Fig. 1: Loss curves exhibit deceleration early in training
(grey fill), and can be parametrically described with a
one-break BNSL (Eqn. 1). The resulting BNSL fits
are shown in bold, with the underlying piecewise-linear
components shown as dashed lines. We also include
the OLMo 1B and 7B models (Groeneveld et al., 2024),
showcasing similar behaviour at larger scales.

abrupt slow down in the rate of loss improvements 129

early during training, in a transition we refer to 130

as loss deceleration. Notably, we see in Fig. 1 131

that loss deceleration is characterized by piecewise- 132

linear behaviour in log-log space, consistent across 133

different model scales and training setups, suggest- 134

ing a qualitative transition in training dynamics. 135

An important observation from Fig. 1 is that loss 136

improvements from scaling can be framed in terms 137

of mitigating this transition, i.e. by improving: 138

(1) the loss at which deceleration occurs; and 139

(2) the log-log loss slope after deceleration. 140

This suggests that, by understanding the mecha- 141

nism underlying loss deceleration (and the miti- 142

gating effects of scale), we can shed light on how 143

scaling improves loss in terms of training dynamics. 144

Such an understanding could in turn inform meth- 145

ods that directly target and mitigate deceleration 146

independent of scale. However, to study how scale 147

mitigates deceleration, we must first measure it. 148

Measuring loss deceleration with BNSL. 149

In measuring loss deceleration, we want to capture 150

the log-log piecewise-linear behaviour observed in 151

Fig. 1 and quantify how it changes with scaling. 152
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Luckily, this type of function can be parametrically153

described and fit with smoothly broken power laws154

such as BNSL (Caballero et al., 2023), particularly155

in the simplified one-break form:156

L(t)− a =
(
bt−c0

) (
1 + (t/d1)

1/f1
)−c1f1

, (1)157

where L(t) is the loss at step t, and the remaining158

variables are the parameters being fit: a represents159

the irreducible loss; b the y-axis intercept L(0); c0160

the log-log slope of the first linear segment; c1 the161

difference between the slope of the second segment162

and the first; d1 the step at which the break occurs;163

and f1 the smoothness of the transition between164

segments. However, these parameters provide lim-165

ited insight into how deceleration relates to loss.166

Quantifying the effect of deceleration on loss.167

For a more interpretable but nevertheless quantifi-168

able connection between deceleration and loss, we169

can tease out the linear segments underlying Eqn. 1.170

Concretely, an estimate L̂T of the loss LT at step171

T > dt can be expressed2in terms of three mea-172

surements grounded in BNSL parameters:173

log(L̂T ) = log (Ld)− rd log (T/td) (2)174

L̂T = Ld (td/T )
rd175

td = d1, the step where deceleration occurs, or176

where the two segments intersect;177

Ld = bdt
−c0 , the loss where deceleration occurs,178

or where the two segments intersect;179

rd = c0 + c1, the log-log rate of loss improve-180

ment after deceleration, or the negative log-181

log slope of the second segment.182

Intuitively, we see that final loss is fundamentally183

a function of Ld, rd, td; such that scaling improve-184

ments can be explained solely in terms of increased185

rd and decreased Ld, td. These measurements186

are reported in Table 1, where we indeed observe187

monotonic improvements in Ld, rd and td with in-188

creased model size3. We also confirm that L̂T is a189

valid approximation, typically within 1% of LT .190

Crucially, these are interpretable measurements191

of loss deceleration, allowing us to naturally de-192

scribe and reason about scaling improvements in193

terms of training dynamics. For example, Eqn. 2194

forms the basis of a novel scaling law functional195

form, with improved explanatory power as a result196

2See Appendix A.2 in (Caballero et al., 2023).
3One notable outlier is td in OLMo-7B, likely attributable

to OLMo-7B using a warmup of 5,000 rather than 2,000 steps.

Table 1: Loss deceleration measurements from Eqn. 2:
larger models have lower Ld, td and higher rd.

Model ↓ Ld ↓ td ↑ rd L̂T LT

14M 4.05 5900 0.013 3.86 3.88
37M 3.60 5900 0.016 3.39 3.40
78M 3.38 5900 0.020 3.14 3.15
144M 3.25 6000 0.023 2.98 2.99
285M 3.14 5300 0.025 2.85 2.87
472M 3.16 4600 0.035 2.77 2.80

OLMo-1B 2.86 3700 0.034 2.39 2.40
OLMo-7B 2.64 4600 0.053 2.04 2.03

of being grounded in these interpretable quantities. 197

While beyond the scope of this paper, we include 198

preliminary results in Appendix C.2. 199

More generally, these results suggest that a mech- 200

anistic explanation of loss deceleration as a transi- 201

tion in training dynamics (and of what determines 202

the values of Ld, rd, and td; i.e., when does this 203

transition happen and how severe is it?) can also 204

account for final loss and thus shed light on how 205

scaling improves performance in language models. 206

3 Explaining Loss Deceleration 207

The log-log piecewise-linear behaviour of loss de- 208

celeration suggests that a qualitative change in 209

training dynamics underlies the abrupt slowdown 210

in loss improvements. Our goal in this section is 211

to characterize this transition in training dynamics 212

as a mechanistic explanation for loss deceleration. 213

By “mechanistic explanation”, we mean identify- 214

ing and formalizing an underlying mechanism as 215

defined in Glennan and Illari (2017) and Section 1. 216

To this end, we propose and verify the hypothe- 217

sis that loss deceleration is a transition in training 218

dynamics characterized by and resulting from zero- 219

sum learning and systematic gradient opposition. 220

Zero-sum learning (ZSL) describes degenerate 221

training dynamics where loss improvements in one 222

set of examples are increasingly offset by loss 223

degradation in another set of examples, bottleneck- 224

ing overall loss improvements. Intuitively, this 225

is a mechanistic explanation of how per-example 226

changes in loss interact to produce the abrupt slow- 227

down in overall loss improvements seen in deceler- 228

ation. An alternative (but not mutually-exclusive) 229

explanation is that the magnitude of per-example 230

changes in loss decreases across examples. We 231

show in Section 3.1 that ZSL is indeed responsible 232

for loss deceleration. 233
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Systematic gradient opposition (SGO) de-234

scribes degenerate training dynamics where per-235

example gradients become increasingly opposed.236

As a result, under first-order training dynamics4,237

a step of gradient descent fundamentally cannot238

improve loss on one set of examples without harm-239

ing it on another. Intuitively, this is a mechanistic240

explanation of how per-example gradients interact241

to produce ZSL. We show in Section 3.2 that SGO242

is indeed responsible for ZSL.243

Notation Let ℓi denote loss for token i in dataset244

D, with overall loss L =
∑

i ℓi/|D|. Conversely,245

change in loss between steps t1, t2 is denoted as246

∆t2
t1
L =

∑
i∆

t2
t1
ℓi/|D|. To reduce notation clutter,247

t1, t2 are sometimes omitted when evident from248

context or not relevant.249

3.1 Zero-Sum Learning (ZSL)250

Measuring ZSL with destructive interference251

To measure zero-sum learning, we define destruc-252

tive interference in per-token loss improvements253

∆ℓi as the proportion with which they cancel out254

in overall loss improvements ∆L =
∑

i∆ℓi/|D|,255

with respect to an ideal scenario where there is no256

interference ∆L∗ =
∑

i |∆ℓi|/|D|:257

D(∆ℓ) =
∆L∗ − |∆L|

∆L∗ = 1− |∑i∆ℓi|∑
i |∆ℓi|

(3)258

Intuitively, as ZSL increases and per-token loss259

improvements cancel out in larger proportions,260

D(∆ℓ) increases and approaches 1 with complete261

ZSL. Conversely, as ZSL decreases, D(∆ℓ) de-262

creases and approaches 0 with no ZSL.263

Validating that ZSL occurs with deceleration.264

In Fig. 2, we measure D(∆2t
t ℓ) throughout train-265

ing. We observe that ZSL exhibits a sharp increase,266

beginning just before deceleration, then converging267

towards its maximum. One important considera-268

tion is that these measurements are based on ∆2t
t ℓ269

to smooth out noise from loss oscillations on too-270

small timescales. In practice, we find that D(∆t2
t1
ℓ)271

is mitigated as the number of steps t2−t1 increases,272

such that Fig. 2 is effectively under-reporting the273

rate at which ZSL increases (Appendix C.3).274

These results confirm that ZSL indeed occurs275

with loss deceleration, but are not sufficient evi-276

dence that ZSL is the underlying mechanism. The277

following sections will demonstrate how, in terms278

of per-token loss behaviour, deceleration is driven279

by ZSL rather than the alternative explanation.280

4i.e. well approximated by a first-order Taylor expansion.
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Fig. 2: ZSL throughout training, as measured by de-
structive interference in per-token loss improvements.
Deceleration co-occurs with a sharp increase in ZSL.

Quantifying the role of ZSL in deceleration. 281

In terms of per-token loss improvements ∆ℓi, loss 282

deceleration can occur for two (non mutually ex- 283

clusive) reasons: (1) ∆ℓi increasingly cancel one 284

another out due to ZSL; or (2) ∆ℓi increasingly 285

shrink in magnitude across tokens. Destructive 286

interference D(∆ℓ) in Eqn. 3 captures (1); while 287

average magnitude M(∆ℓ) in Eqn. 4 captures (2): 288

M(∆ℓ) =

∑
i |∆ℓi|
|D| (4) 289

Importantly, we can express the absolute change in 290

loss |∆L| in terms of these two quantities: 291

|∆L| = |∑i∆ℓi|
|D| = M(∆ℓ)(1−D(∆ℓ)) (5) 292

If loss is monotonically decreasing, |∆L| corre- 293

sponds to overall loss improvements, such that we 294

can effectively quantify and disentangle the relative 295

contributions of increasing D(∆ℓ) from decreasing 296

M(∆ℓ) in loss deceleration. 297

Showing ZSL is responsible for deceleration. 298

In Fig. 3, we plot model training trajectories with 299

respect to the terms in Eqn. 5. This allows us to 300

visually determine and quantify how increases in 301

D(∆ℓ) map to decreases in |∆L|; i.e. the contri- 302

bution of ZSL to loss deceleration. Notably, we 303

see that during and after deceleration, reductions in 304

|∆L| are largely attributable to changes in D rather 305

than M . Concretely, we know from Eqn. 5 that 306

the observed reduction in M during deceleration, 307

from 0.75 to 0.5, corresponds to a 1.5x reduction 308
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Fig. 3: Disentangling the relative contributions of in-
creased ZSL (D(∆ℓ)) and decreased token-level loss
improvements (M(∆ℓ)) towards decreased overall loss
improvements (|∆L|). Model training trajectories, plot-
ted with respect to these values, show that ZSL domi-
nates decreases in |∆L| after deceleration.

in |∆L|. In contrast, the increase in D observed in309

that same period, from 0.5 to 0.95, corresponds to310

a 10x reduction in loss improvements.311

More generally, we see that as D increases and312

approaches 1.0, the required increase in M to main-313

tain |∆L| explodes such that ZSL effectively bot-314

tlenecks loss improvements and leads to decelera-315

tion. These results corroborate that, while decreas-316

ing magnitude across per-token loss improvements317

plays a role in deceleration, the effect of ZSL is al-318

most an order of magnitude greater and effectively319

bottlenecks loss improvements.320

3.2 Systematic Gradient Opposition (SGO)321

Measuring SGO with destructive interference322

To measure gradient opposition, we can adapt323

Eqn. 3 for coordinate-level destructive interference324

between per-token gradient vectors:325

D⃗ (∇θℓ) = 1− |∑i∇θℓi|∑
i |∇θℓi|

(6)326

Typically, we report D(∇θℓ) as the average over327

parameters. Similarly to ZSL and Eqn. 3, D(∇θℓ)328

approaches 1.0 as SGO increases, and approaches329

0.0 as SGO decreases. D(∇θℓ) can equivalently330

be viewed as destructive interference between331

gradient vectors as measured by L1-norm: 1 −332

∥∇θL∥1/
∑

i∥∇θℓi∥1 . While we could define a333

similar measure based on L2-norm, we found that334

this penalizes orthogonality and becomes biased335
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Fig. 4: Gradient destructive interference (averaged over
parameters) converges to a maximum with deceleration.

towards 1.0 at high dimensions, even in cases of 336

no gradient opposition. 337

Validating that SGO occurs with ZSL. 338

As in Section 3.1, we first attempt to falsify our 339

hypothesis that SGO is responsible for ZSL by ver- 340

ifying if they co-occur. We find in Fig. 4 that SGO 341

(as measured by D(∇θℓ) in Eqn. 6) converges to 342

a maximum at the same time as deceleration and 343

the previously observed increase in ZSL. Surpris- 344

ingly, we find that gradient opposition is quite high 345

even at the start of training. However, as we saw 346

in Eqn. 5 and Fig. 3, increasing D(∇θℓ) beyond 347

0.9 can rapidly decrease the magnitude of ∇θL by 348

several orders of magnitude. 349

Relating SGO to ZSL in first-order dynamics. 350

While we now know that SGO converges with ZSL, 351

this does not necessarily imply that SGO is respon- 352

sible for ZSL. To address this, we will show how 353

near-complete SGO where D(∇θℓ) → 1.0 fun- 354

damentally causes ZSL under first-order training 355

dynamics. By first-order dynamics, we mean that 356

weight updates ∆θ are sufficiently small such that 357

changes in overall or per-token loss are approx- 358

imable by first-order Taylor expansions ∆̃L, ∆̃ℓi: 359

∆̃L = ∆θ · ∇θL =
∑

i ∆̃ℓi / |D| (7) 360

∆̃ℓi = ∆θ · ∇θℓi 361
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In such cases, ZSL is intrinsically a result of de-362

structive interference in ∆θ · ∇θℓi across tokens:363

D(∆̃ℓ) = 1− |∑i∆θ · ∇θℓi|∑
i |∆θ · ∇θℓi|

(8)364

Unfortunately, Eqn. 8 does not necessarily imply365

that gradient opposition results in ZSL. For in-366

stance, directions of high opposition in per-token367

gradients ∇θℓi may be orthogonal to a weight up-368

date ∆θ, such that they are nullified when ∇θℓi is369

projected onto ∆θ. Conversely, two gradients ∇θℓi,370

∇θℓj with no destructive interference may result371

in ZSL if e.g. ∆θ is aligned with ∇θℓi − ∇θℓj .372

In light of this, we want to disentangle ZSL in373

Eqn. 8 that is attributable to update-gradient align-374

ment independent of gradient opposition, from ZSL375

attributable to gradient opposition specifically.376

To this end, we adapt Eqn. 5 and Eqn. 6 to de-377

compose the overall gradient as ∇θL = ±M⃗(1−378

D⃗), where D⃗ is a vector of gradient coordinate-379

wise destructive interference, and M⃗ is a vector of380

average coordinate-wise gradient magnitude (with381

±M⃗ as a compact notation for M⃗ sign(∇θL)).382

This lets us rewrite Eqn. 8 while factoring out de-383

pendence on gradient opposition via D⃗:384

D(∆̃ℓ) = 1− |∆θ · ±M⃗(1− D⃗)|∑
i |∆θ · ∇θℓi|

(9)385

= 1− |∆θ · ±M⃗ −∆θ · ±M⃗D⃗|∑
i |∆θ · ∇θℓi|

386

Because D⃗ ∈ [0, 1] we can rewrite the numerator as387

|∆θ ·±M⃗ |−|∆θ ·±M⃗D⃗|. We can then decompose388

dot products into their corresponding vector norms389

and cosine similarities to obtain Eqn. 10—an inter-390

pretable decomposition of Eqn. 8 that isolates the391

effect of update-gradient alignment into Cu, and392

the effect of gradient opposition into Cg:393

D(∆̃ℓ) = 1− Cu + Cg (10)394

Cu =
∥±M⃗∥| cos(∆θ,±M⃗)|∑
i∥∇ℓi∥| cos(∆θ,∇ℓi)|

∈ [0, 1]395

Cg =
∥±M⃗D⃗∥| cos(∆θ,±M⃗D⃗)|∑

i∥∇ℓi∥| cos(∆θ,∇ℓi)|
∈ [0, Cu]396

Intuitively, 1− Cu capture destructive interference397

in the case there is no coordinate-level gradient398

opposition (i.e. ∇θL = ±M⃗ ) such that ZSL is399

entirely attributable to update-gradient alignment.400

Fig. 5: Per-token loss landscapes at step t along ∆tθ.
Dashed vertical lines indicate θt+1 = θt +∆tθ. Tokens
which improve in loss after the update are indicated in
green, and tokens which degrade are indicated in red

This quantity is an upper bound on Cg, which in 401

turn captures the effect of gradient opposition on 402

ZSL not already accounted for by Cu. In particular, 403

as D⃗ approaches 1, we see that Cg approaches 404

Cu, and D(∆̃ℓ) approaches 1.0 irrespective of Cu. 405

In other words, systematic gradient opposition as 406

D(∇θℓ) → 1.0 across parameters implies ZSL in 407

a first-order approximation of loss improvements. 408

Testing the first-order dynamics assumption. 409

Our hypothesis relies on the assumption that ∆̃ℓ 410

is a valid approximation of ∆ℓ such that destruc- 411

tive interference in ∆̃ℓ is reflective of destruc- 412

tive interference in ∆ℓ. To validate our hypoth- 413

esis, we must therefore validate this assumption. 414

However, computing ∇θℓi and the corresponding 415

∆̃ℓi = ∆θ · ∇θℓi for each token is intractable. 416

Instead, to empirically measure ∆̃ℓ, we com- 417

pute 1D cross-sections of per-token loss land- 418

scapes by evaluating model checkpoints along in- 419

crements of their next weight update ∆θ, with 420

θ(α) = θ + α∆θ/∥∆θ∥, α ∈ [−10, 10]. This 421

allows us to tractably measure ∆̃ℓ as a lineariza- 422

tion around α = 0 where ∆̃ℓ(α) = α
(
ℓθ+ϵ−ℓθ

∥ϵ∥

)
. 423

A sample of 1,000 such per-token loss landscapes 424

is shown in Fig. 5, with the complete set in Ap- 425

pendix C.4. Generally, these appear linear in the 426

vicinity of weight updates, suggesting that actual 427

changes in per-token losses ∆ℓ are well captured 428

by their first-order approximation ∆̃ℓ. 429

However, to more quantifiably verify that this 430

indeed is the case, we measure and plot the Pearson 431

correlation coefficient between ∆ℓ and ∆̃ℓ through- 432

out training in Fig. 6. We find strong correlation 433

after deceleration where we observe ZSL and SGO, 434
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validating our hypothesis by validating the under-435

lying assumption of first-order dynamics on which436

our reasoning depends.437

Ruling out the role of progressive sharpening.438

As an alternative explanation for ZSL, one might439

consider progressive sharpening (Cohen et al.,440

2022; Rosenfeld and Risteski, 2023) where ∆θ441

might overshoot local minima for some examples442

but not others. Surprisingly, and perhaps counter to443

conventional wisdom, we observe in Appendix C.5444

that loss landscapes instead become significantly445

flatter with deceleration; following an initial phase446

of high sharpness before deceleration.447

To quantify this observation, we measure the448

sharpness of loss landscapes along update direc-449

tions, throughout training. Specifically, we fit a450

quadratic to the loss landscape cross-section, using451

the second order term as a measure of sharpness.452

In Fig. 7, we see the same trend, with sharpness453

peaking and immediately begin decreasing before454

deceleration. While the relationship between loss455

sharpness and zero-sum learning and systematic456

gradient opposition was outside the scope of this457

work, it appears there might be an interesting con-458

nection.459

4 Explaining Scaling Improvements460

In Section 2 we showed how scaling improves loss461

by mitigating loss deceleration, specifically by de-462

creasing the loss Ld and step td at which it occurs,463

and increasing the subsequent log-log rate of loss464

improvement rd (Table 1). Conversely, in Section 3465

we proposed a mechanistic explanation of loss de-466

celeration based on interactions at the levels of per-467

example loss improvements, and of per-example468

gradients. Specifically, we showed that loss deceler-469

ation is a transition in training dynamics character-470

ized by the emergence of near-complete destructive471

interference in per-example gradients and loss im-472

provements; i.e. SGO and ZSL. In this section, we473

will attempt to connect these findings, and shed474

light on how scaling mitigates deceleration based475

on the underlying mechanisms we identified.476

Decomposing loss improvements.477

Similar to Section 3.2, we decompose the first-478

order Taylor expansion for changes in loss from479

Eqn. 7 into interpretable components that enable a480

finer-grained analysis of training dynamics, specifi-481

cally the cosine similarity and L2 norms of weight482
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Fig. 6: Correlation between ∆ℓ and it’s first-order ap-
proximation ∆̃ℓ is close to 1.0 at deceleration.
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Fig. 7: Sharpness decreases with loss deceleration.

updates ∆θ and gradients ∇θL: 483

∆̃L = ∥∆θ∥2∥∇θL∥2 cos(∆θ,∇θL) (11) 484

We show these values across training steps and 485

model scales in Fig. 8, and will discuss their inter- 486

pretation in the following sections. 487

4.1 Improving Loss Before Deceleration (Ld) 488

Surprisingly, we find in Table 2 that most of the 489

scaling improvements in loss at deceleration Ld are 490

already established by step t = 32. From Eqn. 11

Table 2: Scaling improvements in loss at deceleration
Ld are established early during training.

Loss Improvement t = 32 t = 4096 t = 8192

14M → 37M 0.76 0.43 0.45
37M → 78M 0.29 0.20 0.21
78M → 144M 0.15 0.12 0.12
144M → 285M 0.15 0.11 0.11
285M → 472M 0.05 0.06 0.07
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Fig. 8: First-order approximation of loss improvements
with terms from Eqn. 11 plotted throughout training.
Note that because log(∆̃L) is a sum of the log of its
terms, the shared log-scale allows us to easily gauge
how different terms contribute to changes in ∆̃L.

491
and Fig. 8, the underlying reason becomes appar-492

ent. Scaling models improves ∆̃L primarily by im-493

proving gradient norms ∥∇θL∥2 in the beginning494

of training. Beyond t = 32, the effects of scal-495

ing become less significant, with improvements in496

∆̃L and ∥∇θL∥2 orders of magnitude smaller and497

eventually reversed leading up to deceleration. In498

contrast, scaling degrades gradient-update align-499

ment − cos(∆θ,∇θL), and results in consistent500

but relatively insignificant improvements in ∥∆θ∥2.501

These effects are trivially explained by an increased502

number of parameters and appear unrelated to de-503

celeration, however it remains an open question504

how similar effects can be achieved independent of505

scale.506

4.2 Improving Loss After Deceleration (rd)507

We see in Fig. 2 that post-deceleration ZSL is miti-508

gated by scaling model size, which we know results509

in greater loss improvements from Eqn. 5 that can510

explain how scaling improves rd. Unfortunately,511

the way in which scaling reduces ZSL after decel-512

eration is not as immediately obvious.513

We see in Fig. 4 that gradient destructive in-514

terference (averaged across parameters) actually515

becomes more pronounced with larger models.516

However, 99% destructive interference in a 14M-517

dimensional gradient does not have the same effect518
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Fig. 9: Histograms of gradient destructive interference.
Deceleration happens between steps 4096 and 8192.

as in a 144M-dimensional gradient. In particular, 519

the latter will have more degrees of freedom along 520

which shared gradient directions can exist between 521

tokens. Indeed, we find in Fig. 9 that, especially 522

after deceleration, larger models have more param- 523

eters with lower destructive interference. This can 524

explain why larger models have lower ZSL after 525

deceleration, and thus improved rd. 526

5 Conclusion and outlook 527

In this work we proposed and validated a mech- 528

anistic explanation of scaling laws grounded in 529

training dynamics. Specifically, we identified loss 530

deceleration as a novel transition in training dy- 531

namics that can explain scaling improvements in 532

quantifiable but interpretable terms, such that an ex- 533

planation of deceleration becomes an explanation 534

of scaling improvements. To this end, we proposed 535

zero-sum learning and systematic gradient oppo- 536

sition as the mechanisms underlying deceleration, 537

validating these against alternate hypotheses with 538

empirical and theoretical analyses. Lastly, we re- 539

visit scaling improvements from the perspective 540

of these mechanisms and show how scaling im- 541

proves loss by mitigating zero-sum learning and 542

systematic gradient opposition. 543

Our analyses and results suggest that these could 544

potentially be mitigated directly to improve loss 545

independent of scale, laying a foundation for fu- 546

ture research. Furthermore, our approach of study- 547

ing per-example gradient dynamics is an under- 548

explored area of research that can shed new light 549

on learning dynamics, scaling, and generalization 550

more broadly. 551
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Limitations552

Comprehensiveness of experimental settings.553

Scaling laws are a general phenomenon observed554

across tasks, model architectures, parameters, and555

evaluation measures. However, this work only556

considers the scaling of cross-entropy loss with557

model size in transformer-based language models558

on typical webscale text. While we replicate our559

experiments across variants of this general setting560

(e.g. with and without learning rate decay in Ap-561

pendix C.1), we do not generalize our findings562

to different settings. While this lies beyond the563

scope of our original research question and the564

prior works on which we build, verifying how our565

findings generalize across different settings is an566

important area of future work.567

Characterizing the effects of hyperparameters568

on deceleration. Our model training runs make569

use of the optimal hyperparameter configurations570

identified by Kaplan et al. (2020) and Groeneveld571

et al. (2024) on which we base our experiments572

and training setups. This was motivated by two573

factors: limiting the computational cost of hyper-574

parameter search, and conducting experiments and575

analyses consistent with prior works. However, an576

important gap that results from this is an unclear577

understanding of how loss deceleration and the as-578

sociated measurements in Table 1 change with dif-579

ferent hyperparameter configurations. For example,580

we found in Section 2 that differences in number of581

warmup steps between publicly available OLMo-582

1B and 7B models seem to have an important effect.583

Furthermore, OLMo-1B and 7B use different se-584

quence lengths and batch sizes to (Kaplan et al.,585

2020) and our experiments which prioritize compu-586

tational efficiency over downstream performance.587

While deceleration appears consistent across these588

variations, it is not clear to what extent improve-589

ments in the 1B and 7B models are due to increased590

scale as opposed to these differences in hyperpa-591

rameters. While beyond the scope of our original592

research question, these questions present an im-593

portant opportunity for future research.594

Accounting for SGO in both M(∆ℓ) and D(∆ℓ).595

In Section 3.1 and Eqn. 5 we showed that ZSL596

as measured by D(∆ℓ) is primarily responsible597

for deceleration, while decreases in average per-598

token loss improvements M(∆ℓ) played an non-599

negligble but less significant role. However, our600

analysis of SGO (Section 3.2) only considers601

D(∆ℓ) and ZSL, while it likely also has an ef- 602

fect on M(∆ℓ) via its effect on optimizer steps ∆θ. 603

However, these effects are likely highly dependent 604

on the optimizer and its configuration, and likely 605

not generalizable in the scope of our research ques- 606

tion; hence why we chose to abstract away ∆θ in 607

our analysis. Nevertheless, this a salient gap in our 608

analysis that should be further explored. 609

Reconciling single step and multi step train- 610

ing dynamics. The connection between the be- 611

haviour of gradients (SGO) and loss (ZSL and loss 612

deceleration) can be made more precise. In particu- 613

lar, our gradient analysis only reflects single-step 614

training dynamics, while ZSL and loss improve- 615

ments appear to depend on interactions across mul- 616

tiple optimization steps (see Appendix C.3). Un- 617

derstanding the effect of multi step interaction is a 618

natural next step for this research. 619

Negative societal impacts or ethical concerns. 620

Our work focuses on understanding existing and 621

well-established methods, and does not meaning- 622

fully contribute to any negative societal impacts or 623

ethical concerns beyond what is typically associ- 624

ated with language modeling research. In principle, 625

by focusing our analysis on a single metric (cross- 626

entropy loss), this could lead to over-optimizing 627

that metric at the expense of other real-world con- 628

cerns. While this work is at too early a stage for this 629

to pose a meaningful risk, it is important to keep 630

in mind as a limitation in interpreting our findings 631

and building new methods on top of them. 632
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A Methodology857

A.1 Language model pretraining858

For our experiments, we adapt the OLMo code-859

base (licensed under Apache-2.0) and train vari-860

ants of OLMo with the publicly available train-861

ing dataset of OLMo-7B-0724 (Groeneveld et al.,862

2024). Model dimensions and learning rates are863

based on (Kaplan et al., 2020) and shown in Table 3,864

labeled with (rounded) total parameter counts. For865

pretraining, we again adapt the experimental setup866

of (Kaplan et al., 2020), training with a batch size867

of 0.5M tokens for 218 steps. However, instead of868

a cosine learning rate decay, we adopt the trape-869

zoidal learning rate from (Hägele et al., 2024) with870

a learning rate warmup to the values in TableFig. 3871

in the first 2,000 steps and no cooldown in the872

218 steps considered. Note that the OLMo-1B and873

OLMo-7B models are those trained by (Groeneveld874

et al., 2024) and could not included in our analy-875

sis of ZSL because of insufficient checkpointing876

frequency before deceleration.877

Code and artefacts, particularly model and op-878

timizer checkpoints and logs across training, will879

be made available at the following https url under880

Apache-2.0 license to enable future research in this881

direction. In our experiments, we used a variety882

of computational resources which are recorded in883

the logs we make available. Generally, we per-884

formed distributed training 4-32 L40 GPUs or 4885

H100 GPUs, with smaller models pretraining re-886

quiring on the order of 10 GPU hours, and the887

largest 472M requiring on the order of 1000 GPU888

hours.889

A.2 Language model analyses890

During training, we checkpoint the model and opti-891

mizer every 2i steps with i ∈ [0, 18]. Our analyses892

of ZSL and gradient opposition are done on these893

checkpoints after pretraining. Methodological de-894

tails regarding e.g. precision or batch size are kept895

consistent with pretraining to obtain representative896

results. All of our evaluations are conducted on the897

C4 validation set from (Magnusson et al., 2023),898

using the tokenizer from (Groeneveld et al., 2024),899

consistent with pretraining.900

A.3 Additional Details on Fitting BNSL to901

Loss Curves902

Fitting We adapt the methodology for fitting903

Eqn. 1 published by Caballero et al. (2023)904

at https://github.com/ethancaballero/905

broken_neural_scaling_laws. We include the 906

code implementation below. Empirically, we had 907

to implement the following changes to improve 908

stability: 909

• Assume a = 0 and remove it from the opti- 910

mization procedure. 911

• Fit the function in log-log space instead of 912

manually scaling b and d1 (note that data- 913

points sampled uniformly along x will result 914

in a data imbalance when fitting in log-log 915

space; to mitigate this we also subsample dat- 916

apoints uniformly in log space). also made 917

it necessary to subsample our fitting data uni- 918

formly in log-space to limit skewing from re- 919

sudata imbalances) 920

• Estimate initial parameters instead of running 921

a bruteforce gridsearch. 922

Smoothing The loss curves we fit are batch 923

losses logged at every step during training. Because 924

training is single-epoch, i.e. online, these losses 925

are effectively a noisy measurement of the true val- 926

idation loss. However, we found that this noise 927

(characterized by oscillations in loss at too-small 928

timescales) leads to severe instability with the orig- 929

inal methodology published by (Caballero et al., 930

2023). To smooth these curves, we use LSMAk, a 931

logarithmic variant of the simple moving average 932

that we found to work well for fitting noisy log-log 933

loss curves with high fidelity. Notably, LSMA nat- 934

urally handles the increasing timescales at which 935

loss oscillations occur as number of training steps 936

increase. We found k = 1.2 to work sufficiently 937

well as shown in Fig. 10. 938

LSMAk (Lt) =
1

t− p(t)

t∑
s=p(t)

Ls (12) 939

p(t) = floor(t/k) 940

Results and validation We report the resulting 941

parameters and error measurements from fitting 942

Eqn. 1 in Table 4, finding that parameter standard 943

deviation is typically on the order of 1%, while root 944

standard log error (RSLE) is on the order of 0.01, 945

comparable with values reported by Caballero et al. 946

(2023). These results suggest that loss deceleration 947

is reliably measurable with BNSL. 948

12
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Table 3: Model and Optimizer Parameters for Different Runs

Model size 14M 37M 78M 144M 285M 472M OLMo-1B OLMo-7B

d_model 256 512 768 1024 1536 2048 2048 4096
mlp_dim 256 512 768 1024 1536 2048 16384 22016
n_heads 4 8 12 16 16 16 16 32
n_layers 4 8 12 16 16 16 16 32
peak_lr 1.3E-3 9.7E-4 8.0E-4 6.8E-4 5.7E-4 4.9E-4 4.0E-4 3.0E-4
warmup 2,000 2,000 2,000 2,000 2,000 2,000 2,000 5,000

Table 4: BNSL parameters and root-standerd log error if resulting fit (RSLE).

Model b c0 c1 log(d1) f1 RSLE

14M 18.42± 0.16 0.17± 0.00 −0.16± 0.00 8.68± 0.02 0.20± 0.03 0.011
37M 19.64± 0.23 0.20± 0.00 −0.18± 0.00 8.68± 0.03 0.24± 0.03 0.015
78M 20.66± 0.25 0.21± 0.00 −0.19± 0.00 8.69± 0.03 0.29± 0.03 0.014
144M 20.31± 0.26 0.21± 0.00 −0.19± 0.00 8.71± 0.03 0.34± 0.03 0.015
285M 20.85± 0.30 0.22± 0.00 −0.20± 0.00 8.57± 0.03 0.44± 0.03 0.013
472M 21.16± 0.32 0.23± 0.00 −0.19± 0.00 8.44± 0.03 0.39± 0.04 0.014

OLMo-1B 25.97± 0.38 0.27± 0.00 −0.23± 0.00 8.22± 0.03 0.76± 0.02 0.008
OLMo-7B 27.49± 0.48 0.28± 0.00 −0.22± 0.00 8.44± 0.04 0.76± 0.03 0.008

1949
2 import numpy as np950
3 import scipy951
4952
5 def log_1b_bnsl(xlog , b, c0, c1, d1log , f1):953
6 ylog_pred = np.log(b) - c0*xlog - (c1*f1)*np.log(1+np.exp((xlog -d1log)/f1))954
7 return ylog_pred955
8956
9 def fit_1b_bnsl(x: np.ndarray , y: np.ndarray , d1_est: float = 6000):957

10 # initialize parameters with reasonable values (for stability)958
11 d1log = np.log(d1_est)959
12 xlog = np.log(x)960
13 ylog = np.log(y)961
14 d1_idx = np.argmin(np.abs(xlog - d1log))962
15 c0 = -np.mean((ylog [0: d1_idx] - ylog [1: d1_idx +1]) \963
16 / (xlog [0: d1_idx] - xlog [1: d1_idx +1]))964
17 c1 = -np.mean((ylog[d1_idx :-2] - ylog[d1_idx +1: -1]) \965
18 / (xlog[d1_idx :-2] - xlog[d1_idx +1: -1]))966
19 c1 = c1 - c0967
20 b = ylog [0] + c0*xlog [0]968
21969
22 # fit parameters with scipy970
23 p0 = [b, c0, c1, d1log , 0.3]971
24 popt , pcov = scipy.optimize.curve_fit(972
25 log_1b_bnsl ,973
26 xlog , ylog ,974
27 p0=p0,975
28 method='dogbox ',976
29 )977
30978
31 return popt , pcov979

Code 1: Code for fitting one-break BNSL.
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B Related works980

This work connects several existing areas of re-981

search. In particular, several recent works attempt982

to explain scaling laws, typically from the perspec-983

tive of intrinsic model capacity, long-tailed data dis-984

tributions, and asymptotic behaviour (e.g. Hutter,985

2021; Sharma and Kaplan, 2022; Michaud et al.,986

2023; Bahri et al., 2024; Bordelon et al., 2024).987

In contrast, our goal is to identify a mechanism988

grounded in training dynamics that can be targeted989

independent of scale. The mechanism we identify,990

loss deceleration, is to the best of our knowledge991

not addressed in relevant prior works on e.g. loss992

plateaus (Yoshida and Okada, 2020), learning curve993

shapes (Viering and Loog, 2022), or LM saturation994

(Godey et al., 2024; Mircea et al., 2024). Lastly, the995

study of training dynamics based on per-example996

gradient interactions remains under-explored, with997

related tangential works on e.g. improving multi-998

task learning (Liu et al., 2021), or characterizing999

outliers in SGD (Rosenfeld and Risteski, 2023).1000

Explaining scaling laws Several works have pro-1001

posed different explanations for neural scaling laws1002

such as (Kaplan et al., 2020; Hoffmann et al., 2022;1003

Caballero et al., 2023; Hägele et al., 2024; Tis-1004

sue et al., 2024; Everett et al., 2024). Notably,1005

(Bahri et al., 2024) explain scaling laws in terms of1006

asymptotic behaviour, identifying variance-limited1007

regimes based on concentration around infinite lim-1008

its, and resolution-limited regimes based on dis-1009

tances between train and test data points on their1010

manifold (see also (Sharma and Kaplan, 2020)).1011

(Atanasov et al., 2024) analytically explain power-1012

law scaling in high-dimensional ridge regression1013

with tools from random matrix theory. (Michaud1014

et al., 2023) propose a "quantization model of neu-1015

ral scaling", whereby power law scaling is a result1016

of (1) language models improving loss by learning1017

discrete capabilities from their demonstration in1018

data, (2) larger models being able to learn more1019

capabilities, and (3) rarer capabilities improve loss1020

by smaller and smaller amounts due to their van-1021

ishing frequency. Similarly, (Hutter, 2021) show1022

how power law scaling with data can arise from1023

long-tail feature distributions.1024

Improving language models independently of1025

scaling Recent work on e.g. data pruning (Mar-1026

ion et al., 2023; Sorscher et al., 2022) model distil-1027

lation (Allen-Zhu and Li, 2023; Team et al., 2024)1028

and model pruning (Raposo et al., 2024) show that1029

improvements predicted from scaling can (up to a 1030

point) be realized without scaling. This suggests 1031

that scaling may indirectly improve loss by its ef- 1032

fect on training dynamics, and that similar effect- 1033

s/improvements can be obtained without necessar- 1034

ily scaling. 1035

Gradient opposition From the perspective of 1036

training dynamics, Rosenfeld and Risteski, 2023 1037

discuss the effect of outlier samples with opposing 1038

gradients. In the context of multi-task learning, sev- 1039

eral works have proposed approaches to mitigate 1040

gradient opposition between tasks, e.g. (Parascan- 1041

dolo et al., 2020; Yu et al., 2020; Liu et al., 2021). 1042

Gradient opposition between tokens in language 1043

modeling has, to the best of our knowledge, not 1044

been characterized. Related but distinct, is the work 1045

of (Mircea et al., 2024) characterizes opposition 1046

within token gradients rather than between. 1047

Loss deceleration and learning curves To the 1048

best of our knowledge, the loss deceleration transi- 1049

tion we identify and characterize in this work has 1050

not been previously established or explained. We 1051

refer the reader to (Viering and Loog, 2022) for 1052

a comprehensive review of learning curve shapes, 1053

as well as (Hutter, 2021) and (Yoshida and Okada, 1054

2020) as examples of attempting to explain features 1055

in a learning curve. 1056
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C Additional Results1057

C.1 Consistency of Loss Deceleration1058

Findings with Learning Rate Decay1059
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Fig. 11: Loss curves and BNSL fits when training with
cosine lr decay.

Our main results are for training runs where1060

learning rate was warmed up and held constant,1061

in line with Hägele et al. (2024) and Wen et al.1062

(2024). However, typically scaling experiments1063

have been conducted with learning rate decay. In1064

particular, Hoffmann et al. (2022) note that con-1065

sistently decaying to 0.1 of the peak learning rate1066

as an important difference to Kaplan et al. (2020),1067

leading to different compute-optimal scaling. To1068

rule out this potential confound, we replicate our1069

experiments with a cosine learning rate decay in1070

line with Hoffmann et al. (2022) (and Groeneveld1071

et al. (2024)), leaving all else equal.1072

Fig. 1 is replicated in Fig. 11, with similar re-1073

sults and quality of fits. Table 4 is replicated in1074

Table 6 with again similar results, and generally1075

smaller values for c1, log (d1), and f1. Lastly, Ta-1076

ble 1 is replicated in Table 5, where we see that Ld1077

resulting from the BNSL fit is increased, but this1078

is offset by improved rd and td, leading to better1079

Table 5: Deceleration measurements with lr decay.

Model Ld rd td L̂T LT

14M 4.08 0.016 5198 3.83 3.86
37M 3.65 0.023 5029 3.34 3.36
78M 3.45 0.029 4808 3.07 3.09
144M 3.35 0.036 4712 2.90 2.92
285M 3.28 0.040 3921 2.77 2.78
472M 3.24 0.045 3653 2.68 2.69

OLMo-1B 2.89 0.035 3106 2.39 2.38
OLMo-7B 2.66 0.054 3885 2.03 2.02

final loss. This improvement in final loss appears 1080

to increase with model size, suggesting a comple- 1081

mentary mechanism by which scale improves loss 1082

under learning rate decay, which is not accounted 1083

for by our principal findings. 1084

C.2 Language Model Scaling Law Grounded 1085

in Loss Deceleration 1086

Defining and fitting a scaling law grounded in 1087

loss deceleration 1088

Let L (N,T ) be a scaling law for language model 1089

loss L, where N is the number of model parame- 1090

ters and T is number of training steps (with dataset 1091

size D = T ·B for batch size B, i.e. single-epoch 1092

training). Recall from Eqn. 2 that an estimate of 1093

the loss L can be expressed in terms of the follow- 1094

ing parameters: (1) the number of steps at which 1095

deceleration occurs td; (2) the loss at which decel- 1096

eration occurs Ld; and (3) the log-log rate of loss 1097

improvement after deceleration rd. These parame- 1098

ters, shown in Table 1, are dependent on N , such 1099

that we can define a scaling law L (N,T ) grounded 1100

in loss deceleration as follows: 1101

L (N,T ) = Ld (N) · td (N)rd(N) · T -rd(N) (13) 1102

In Fig. 12, we observe, with the admittedly lim- 1103

ited datapoints from our experiments, that Ld and 1104

rd seem to exhibit power law scaling. In contrast, 1105

td appears to scale linearly if the outlier value for 1106

OLMo-7B, which is likely a result of being trained 1107

with 5,000 warmup steps instead of 2,000, is omit- 1108

ted. This suggests that warmup steps, among po- 1109

tentially other hyperparameters, have an important 1110

role not accounted for here. However, these re- 1111

sults are preliminary and intended more as an ex- 1112

ploratory proof of concept, included here for com- 1113

pleteness, rather than a key result or claim of the 1114

paper. We leave the costly task of conducting suffi- 1115

cient training runs to more adequately validate this 1116

functional form for future work. 1117
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Fig. 12: Power law and linear scaling in deceleration parameters.

Table 6: BNSL parameters and error when training with cosine lr decay.

Model b c0 c1 log(d1) f1 RSLE
14M 18.32± 0.16 0.18± 0.00 −0.16± 0.00 8.56± 0.02 0.16± 0.03 0.012
37M 19.60± 0.22 0.20± 0.00 −0.17± 0.00 8.52± 0.02 0.18± 0.03 0.014
78M 20.67± 0.24 0.21± 0.00 −0.18± 0.00 8.48± 0.02 0.22± 0.03 0.014
144M 20.31± 0.25 0.21± 0.00 −0.18± 0.00 8.46± 0.03 0.24± 0.03 0.014
285M 20.87± 0.28 0.22± 0.00 −0.18± 0.00 8.27± 0.03 0.31± 0.03 0.013
472M 21.30± 0.29 0.23± 0.00 −0.18± 0.00 8.20± 0.03 0.31± 0.03 0.013

OLMo-1B 26.53± 0.42 0.28± 0.00 −0.24± 0.00 8.04± 0.03 0.76± 0.02 0.008
OLMo-7B 28.14± 0.54 0.29± 0.00 −0.23± 0.00 8.26± 0.04 0.78± 0.03 0.008
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Fig. 13: Single-step ZSL in Train and Eval. batches.
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C.3 Effect of Increasing Steps on ZSL1118

Destructive interference is mitigated by increas-1119

ing number of steps. While the experiments1120

and results in Section 3.1 consider the change1121

in loss between steps t and 2t, our initial ex-1122

periments were based on checkpoints for steps1123

[1, 2, . . . , 10, 20, . . . , 100, 200, . . . , 1000] and so1124

on. When plotting D(∆ℓi) between these check-1125

points in Fig. 14, we can see that D(∆ℓi) in-1126

creases much more rapidly leading up to decel-1127

eration, when compared to Fig. 2. However, we1128

also observe abrupt drops and subsequent rises in1129

D(∆ℓi) after the number of steps between check-1130

points is increased by a factor of 10. These results1131

highlight that ZSL actually increases leading up to1132

rather than after deceleration, but is mitigated by1133

increasing number of steps.1134

Fig. 14: Effect of number of steps (between changes
in loss) on ZSL. Measurements are based on steps
[1, 2, . . . , 10, 20, . . . , 100, 200, . . . , 1000] and so on.
Drops in D(∆ℓi) correspond to points where steps be-
tween checkpoints increases by an order of magnitude.
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C.4 Per-token loss landscape cross-sections 1135

Fig. 15: Sampled per-token loss landscape cross-sections across model sizes and train steps
Across model sizes (columns) and train steps (rows), we plot loss landscape cross-sections along increments of the
weight update ∆θ at step t. The actual stepsize is indicated with a dotted vertical line. We plot ∆L rather than L,
which has the same geometry but allows more easily distinguishing loss improvements from degradations. Lines are
colored in green or red depending on whether the loss (respectively) improved or deteriorated at the actual stepsize.
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Fig. 16: Sampled per-token loss landscape cross-sections across model sizes at the start of training
We plot the same data as in Fig. 15, but focused on the beginning of training (before deceleration).
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C.5 Overall loss landscape cross-sections throughout training 1136
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Fig. 17: Overall loss landscapes (cross section along ∆θ), visualized throughout training
We plot overall loss landscape cross sections across model sizes and train steps. Similar to Appendix C.4, we plot
∆L which has equivalent geometry to L but allows better distinguishing loss improvements from loss degradations.
∆L is additionally indicated with a symlog colorscale, with loss improvements being red. Loss deceleration is
approximately indicated with two lines at t = 4096 and t = 8192. We observe that loss landscapes sharpen leading
up to deceleration, but flatten significantly afterwards; with this trend being more pronounced in larger models.
Furthermore, loss landscapes along ∆θ appear much sharper in the beginning of training for larger models.
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Fig. 18: Overall loss landscapes (cross section along ∆θ), visualized throughout training (zoomed in) We plot
the same data as in Fig. 17, but zoomed into a narrower range.
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