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Abstract

This work aims to understand how, in terms of
training dynamics, scaling up language model
size yields predictable loss improvements. We
find that these can be tied back to loss decel-
eration: an abrupt slowdown in the rate of
loss improvement early in training, character-
ized by piece-wise linear behaviour in log-log
space. Smoothly broken power laws allow us
to parametrically measure this transition and
express scaling improvements as a function of
(1) decreasing the loss at which deceleration
occurs, and (2) improving the log-log rate of
loss improvement after deceleration. We hy-
pothesize and validate zero-sum learning (ZSL)
as a mechanistic explanation of loss decelera-
tion that sheds new light on how scaling im-
proves loss by mitigating this transition. In
ZSL, per-token gradients become systemati-
cally opposed, leading to degenerate training
dynamics where loss can’t improve on one set
of tokens without degrading on another; bot-
tlenecking the rate at which overall loss can
improve. In contrast to previous work on ex-
plaining scaling laws, ZSL is grounded in train-
ing dynamics and might potentially be targeted
directly to improve loss independent of scale.

1 Introduction

What mechanisms underlie scaling laws?

Increasing language model (LM) size empirically
improves cross-entropy loss with power-law be-
haviour, accurately extrapolated across several or-
ders of magnitude with scaling laws (Kaplan et al.,
2020). Despite their predictive capabilities, scal-
ing laws offer limited explanatory power as to the
underlying mechanism (Stumpf and Porter, 2012);
i.e. they do not explain how scaling improves loss.
This question is of particular interest because, by
identifying and understanding such a mechanism
(Glennan and Illari, 2017), we may become able
to target it directly and improve models indepen-
dent of scale. While several recent works have

sought to explain scaling laws based on notions of
e.g. intrinsic model capacity (Sharma and Kaplan,
2022), data distribution properties (Michaud et al.,
2023), or asymptotic behaviour (Bahri et al., 2024),
mechanistic explanations that can inform new ap-
proaches and drive principled progress (beyond
resource-intensive scaling) remain under-explored.
In particular, little is known about the changes in
training dynamics that underlie scaling improve-
ments, which our work addresses.

Loss deceleration underlies scaling laws.

We find that scaling improvements can be explained
in terms of training dynamics via loss decelera-
tion, a phenomenon where rates of loss improve-
ment slow down abruptly with piecewise-linear
loss curves in log-log space. Importantly, decel-
eration can be measured parametrically and used
to decompose scaling improvements in terms of
deceleration mitigation, specifically (1) decreases
in loss at deceleration, and (2) increases in log-log
rates of loss improvement after deceleration. A
mechanistic explanation of deceleration (and of the
mitigating effects of scale) therefore becomes an
explanation for how scaling improves loss. The
piecewise linear nature of deceleration suggests
and indeed turns out to be a qualitative transition
in training dynamics that explains deceleration. To
the best of our knowledge, deceleration and the
underlying transition in training dynamics has not
been identified or addressed in relevant prior works
on e.g. loss plateaus (Yoshida and Okada, 2020),
learning curve shapes (Hutter, 2021; Viering and
Loog, 2022), or LM saturation (Godey et al., 2024;
Mircea et al., 2024). In light of this, we propose a
mechanistic explanation of loss deceleration (and
of the mitigating effects of scale) to shed new light
on how scaling improves language models in terms
of training dynamics.

A mechanistic explanation of deceleration.
We hypothesize that deceleration occurs when per-



example gradients become systematically opposed,
leading to degenerate zero-sum learning training
dynamics; i.e. where loss can’t be improved on one
set of examples without degrading on another, thus
bottlenecking the rate at which overall loss can im-
prove. We verify this hypothesis against alternative
explanations, characterizing and validating the pro-
posed mechanism with a complementary empirical
and theoretical results. As a mechanistic explana-
tion (Kaplan and Craver, 2011), zero-sum learning
describes how the training dynamics of individual
examples (i.e. their loss and gradients) behave and
interact with one another to produce loss decel-
eration. This approach of understanding learning
dynamics from the perspective of per-example gra-
dient alignment and opposition is similar to Mircea
et al. (2024), but otherwise under-explored outside
of tangential areas of research on e.g. improving
multi-task learning (Liu et al., 2021), or charac-
terizing outliers in SGD (Rosenfeld and Risteski,
2023). Importantly, we believe zero-sum learning
and systematic gradient opposition can potentially
be mitigated directly to improve loss independent
of scale. To better guide future work in this direc-
tion, we build on our findings and analyses to gain
new understanding into how scaling improves loss
by mitigating deceleration.

Summary of findings and contributions In Sec-
tion 2 we identify loss deceleration as a novel qual-
itative transition in LM training dynamics. In par-
ticular, we show how scaling improvements can
be explained in terms mitigating deceleration. In
Section 3, we propose and validate a mechanistic
explanation of deceleration based on destructive in-
terference between per-example gradients and loss
improvements. Lastly, in Section 4, we connect
these mechanisms to scaling improvements, show-
ing how they are mitigated in ways that could be
targeted directly and independent of scale.

Methodology We adapt the training setup of
Groeneveld et al. (2024) and scaling experiments of
Kaplan et al. (2020), training and analyzing models
between 14M and 472M parameters'. Details on
training and model analyses are in Appendix A.

2 Loss deceleration in language models

Characterizing loss deceleration.
We find that LM loss curves typically exhibit an
'Code and artefacts, particularly model and optimizer

checkpoints and logs across training, will be made available
at the following https url to enable future work.
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Fig. 1: Loss curves exhibit deceleration early in training
(grey fill), and can be parametrically described with a
one-break BNSL (Eqn. 1). The resulting BNSL fits
are shown in bold, with the underlying piecewise-linear
components shown as dashed lines. We also include
the OLMo 1B and 7B models (Groeneveld et al., 2024),
showcasing similar behaviour at larger scales.

abrupt slow down in the rate of loss improvements
early during training, in a transition we refer to
as loss deceleration. Notably, we see in Fig. 1
that loss deceleration is characterized by piecewise-
linear behaviour in log-log space, consistent across
different model scales and training setups, suggest-
ing a qualitative transition in training dynamics.
An important observation from Fig. 1 is that loss
improvements from scaling can be framed in terms
of mitigating this transition, i.e. by improving:
(1) the loss at which deceleration occurs; and
(2) the log-log loss slope after deceleration.
This suggests that, by understanding the mecha-
nism underlying loss deceleration (and the miti-
gating effects of scale), we can shed light on how
scaling improves loss in terms of training dynamics.
Such an understanding could in turn inform meth-
ods that directly target and mitigate deceleration
independent of scale. However, to study how scale
mitigates deceleration, we must first measure it.

Measuring loss deceleration with BNSL.

In measuring loss deceleration, we want to capture
the log-log piecewise-linear behaviour observed in
Fig. 1 and quantify how it changes with scaling.



Luckily, this type of function can be parametrically
described and fit with smoothly broken power laws
such as BNSL (Caballero et al., 2023), particularly
in the simplified one-break form:

L(t) —a= (bt~) (1 + (t/dl)l/fl)_cuc1 , (D

where L(t) is the loss at step ¢, and the remaining
variables are the parameters being fit: a represents
the irreducible loss; b the y-axis intercept L(0); co
the log-log slope of the first linear segment; c; the
difference between the slope of the second segment
and the first; d; the step at which the break occurs;
and f; the smoothness of the transition between
segments. However, these parameters provide lim-
ited insight into how deceleration relates to loss.

Quantifying the effect of deceleration on loss.
For a more interpretable but nevertheless quantifi-
able connection between deceleration and loss, we
can tease out the linear segments underlying Eqn. 1.
Concretely, an estimate ﬁT of the loss L7 at step
T > d; can be expressed?in terms of three mea-
surements grounded in BNSL parameters:

log(Lt) = log (Lg) — 74log (T/t4) (2)
Ly =Ly(ts/T)"

tq = dj, the step where deceleration occurs, or
where the two segments intersect;

Lg = bd;~°, the loss where deceleration occurs,
or where the two segments intersect;

rq4 = ¢ + c1, the log-log rate of loss improve-
ment after deceleration, or the negative log-
log slope of the second segment.

Intuitively, we see that final loss is fundamentally
a function of L4, rg4, t4; such that scaling improve-
ments can be explained solely in terms of increased
rq and decreased L4, t;. These measurements
are reported in Table 1, where we indeed observe
monotonic improvements in Ly, rq and ¢4 with in-
creased model size>. We also confirm that Ly is a
valid approximation, typically within 1% of L.
Crucially, these are interpretable measurements
of loss deceleration, allowing us to naturally de-
scribe and reason about scaling improvements in
terms of training dynamics. For example, Eqn. 2
forms the basis of a novel scaling law functional
form, with improved explanatory power as a result
2See Appendix A.2 in (Caballero et al., 2023).

30ne notable outlier is ¢4 in OLMo-7B, likely attributable
to OLMo-7B using a warmup of 5,000 rather than 2,000 steps.

Table 1: Loss deceleration measurements from Eqn. 2:
larger models have lower L4, t4 and higher r4.

Model VLy Ltq 1ra Ly Ly
14M 4.05 5900 0.013  3.86 3.88
37M 3.60 5900 0.016  3.39 3.40
78M 3.38 5900 0.020  3.14 3.15
144M 3.25 6000 0.023 298 2.99
285M 3.14 5300 0.025  2.85 287
472M 3.16 4600 0.035  2.77 2.80
OLMo-1B 2.86 3700 0.034  2.39 2.40
OLMo-7B 2.64 4600 0.053  2.04 2.03

of being grounded in these interpretable quantities.
While beyond the scope of this paper, we include
preliminary results in Appendix C.2.

More generally, these results suggest that a mech-
anistic explanation of loss deceleration as a transi-
tion in training dynamics (and of what determines
the values of Lg4, r4, and tg4; i.e., when does this
transition happen and how severe is it?) can also
account for final loss and thus shed light on how
scaling improves performance in language models.

3 Explaining Loss Deceleration

The log-log piecewise-linear behaviour of loss de-
celeration suggests that a qualitative change in
training dynamics underlies the abrupt slowdown
in loss improvements. Our goal in this section is
to characterize this transition in training dynamics
as a mechanistic explanation for loss deceleration.
By “mechanistic explanation”, we mean identify-
ing and formalizing an underlying mechanism as
defined in Glennan and Illari (2017) and Section 1.
To this end, we propose and verify the hypothe-
sis that loss deceleration is a transition in training
dynamics characterized by and resulting from zero-
sum learning and systematic gradient opposition.

Zero-sum learning (ZSL) describes degenerate
training dynamics where loss improvements in one
set of examples are increasingly offset by loss
degradation in another set of examples, bottleneck-
ing overall loss improvements. Intuitively, this
is a mechanistic explanation of how per-example
changes in loss interact to produce the abrupt slow-
down in overall loss improvements seen in deceler-
ation. An alternative (but not mutually-exclusive)
explanation is that the magnitude of per-example
changes in loss decreases across examples. We
show in Section 3.1 that ZSL is indeed responsible
for loss deceleration.



Systematic gradient opposition (SGO) de-
scribes degenerate training dynamics where per-
example gradients become increasingly opposed.
As a result, under first-order training dynamics®,
a step of gradient descent fundamentally cannot
improve loss on one set of examples without harm-
ing it on another. Intuitively, this is a mechanistic
explanation of how per-example gradients interact
to produce ZSL. We show in Section 3.2 that SGO

is indeed responsible for ZSL.

Notation Let ¢; denote loss for token ¢ in dataset
D, with overall loss L = ), ¢;/|D|. Conversely,
change in loss between steps ¢1, t2 is denoted as
AifL => Aifﬁi /|D|. To reduce notation clutter,
t1,to are sometimes omitted when evident from
context or not relevant.

3.1 Zero-Sum Learning (ZSL)

Measuring ZSL with destructive interference
To measure zero-sum learning, we define destruc-
tive interference in per-token loss improvements
A/; as the proportion with which they cancel out
in overall loss improvements AL = ). A¢;/|D|,
with respect to an ideal scenario where there is no
interference AL* = ), |Al;|/|D|:
AL* —|AL] 1 1> Al
AL* > 1AL
Intuitively, as ZSL increases and per-token loss
improvements cancel out in larger proportions,
D(AY) increases and approaches 1 with complete

ZSL. Conversely, as ZSL decreases, D(A() de-
creases and approaches 0 with no ZSL.

D(AY) = 3)

Validating that ZSL occurs with deceleration.
In Fig. 2, we measure D(AZ%/) throughout train-
ing. We observe that ZSL exhibits a sharp increase,
beginning just before deceleration, then converging
towards its maximum. One important considera-
tion is that these measurements are based on A%/
to smooth out noise from loss oscillations on too-
small timescales. In practice, we find that D(Ai%)
is mitigated as the number of steps 2 —%; increases,
such that Fig. 2 is effectively under-reporting the
rate at which ZSL increases (Appendix C.3).
These results confirm that ZSL indeed occurs
with loss deceleration, but are not sufficient evi-
dence that ZSL is the underlying mechanism. The
following sections will demonstrate how, in terms
of per-token loss behaviour, deceleration is driven
by ZSL rather than the alternative explanation.

*i.e. well approximated by a first-order Taylor expansion.
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Fig. 2: ZSL throughout training, as measured by de-
structive interference in per-token loss improvements.
Deceleration co-occurs with a sharp increase in ZSL.

Quantifying the role of ZSL in deceleration.

In terms of per-token loss improvements A/;, loss
deceleration can occur for two (non mutually ex-
clusive) reasons: (1) A/¢; increasingly cancel one
another out due to ZSL; or (2) A¥; increasingly
shrink in magnitude across tokens. Destructive
interference D(A{) in Eqn. 3 captures (1); while
average magnitude M (A/) in Eqn. 4 captures (2):

MVAVZ
M(M):Zzu‘)' | )

Importantly, we can express the absolute change in
loss |AL| in terms of these two quantities:

IAL| = E’Z'DA’&’ = M(A0)(1 — D(AL)) (5)

If loss is monotonically decreasing, |AL| corre-
sponds to overall loss improvements, such that we
can effectively quantify and disentangle the relative
contributions of increasing D (A/) from decreasing
M (AZ) in loss deceleration.

Showing ZSL is responsible for deceleration.

In Fig. 3, we plot model training trajectories with
respect to the terms in Eqn. 5. This allows us to
visually determine and quantify how increases in
D(AY) map to decreases in |AL]; i.e. the contri-
bution of ZSL to loss deceleration. Notably, we
see that during and after deceleration, reductions in
|AL| are largely attributable to changes in D rather
than M. Concretely, we know from Eqn. 5 that
the observed reduction in M during deceleration,
from 0.75 to 0.5, corresponds to a 1.5x reduction
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Fig. 3: Disentangling the relative contributions of in-
creased ZSL (D(AY)) and decreased token-level loss
improvements (M (A?)) towards decreased overall loss
improvements (|AL|). Model training trajectories, plot-
ted with respect to these values, show that ZSL domi-
nates decreases in |AL| after deceleration.

in |AL|. In contrast, the increase in D observed in
that same period, from 0.5 to 0.95, corresponds to
a 10x reduction in loss improvements.

More generally, we see that as D increases and
approaches 1.0, the required increase in M to main-
tain |[AL| explodes such that ZSL effectively bot-
tlenecks loss improvements and leads to decelera-
tion. These results corroborate that, while decreas-
ing magnitude across per-token loss improvements
plays a role in deceleration, the effect of ZSL is al-
most an order of magnitude greater and effectively
bottlenecks loss improvements.

3.2 Systematic Gradient Opposition (SGO)

Measuring SGO with destructive interference
To measure gradient opposition, we can adapt
Eqn. 3 for coordinate-level destructive interference
between per-token gradient vectors:

5 _ o 122 Vel
Dvst) =1 >i [Volil ©

Typically, we report D(Vy/) as the average over
parameters. Similarly to ZSL and Eqn. 3, D(Vy/)
approaches 1.0 as SGO increases, and approaches
0.0 as SGO decreases. D(Vyl) can equivalently
be viewed as destructive interference between
gradient vectors as measured by L'-norm: 1 —
\VoLll,/ > :lIVeli]l,. While we could define a
similar measure based on L2-norm, we found that
this penalizes orthogonality and becomes biased
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Fig. 4: Gradient destructive interference (averaged over
parameters) converges to a maximum with deceleration.

towards 1.0 at high dimensions, even in cases of
no gradient opposition.

Validating that SGO occurs with ZSL.

As in Section 3.1, we first attempt to falsify our
hypothesis that SGO is responsible for ZSL by ver-
ifying if they co-occur. We find in Fig. 4 that SGO
(as measured by D(Vy/) in Eqn. 6) converges to
a maximum at the same time as deceleration and
the previously observed increase in ZSL. Surpris-
ingly, we find that gradient opposition is quite high
even at the start of training. However, as we saw
in Eqn. 5 and Fig. 3, increasing D(Vy/) beyond
0.9 can rapidly decrease the magnitude of VgL by
several orders of magnitude.

Relating SGO to ZSL in first-order dynamics.
While we now know that SGO converges with ZSL,
this does not necessarily imply that SGO is respon-
sible for ZSL. To address this, we will show how
near-complete SGO where D(Vy¢) — 1.0 fun-
damentally causes ZSL under first-order training
dynamics. By first-order dynamics, we mean that
weight updates Af are sufficiently small such that
changes in overall or per-token loss are approx-
imable by first-order Taylor expansions AL, Al;:

AL=A0-VoL=3,Al;/|D| (1)
Al; = AG -Vl



In such cases, ZSL is intrinsically a result of de-
structive interference in A8 - Vg/; across tokens:

. 57, A0 - Vol

Unfortunately, Eqn. 8 does not necessarily imply
that gradient opposition results in ZSL. For in-
stance, directions of high opposition in per-token
gradients Vy¢; may be orthogonal to a weight up-
date A, such that they are nullified when Vg/; is
projected onto A#. Conversely, two gradients Vy/;,
Vl; with no destructive interference may result
in ZSL if e.g. A0 is aligned with Vyl; — Vyl;.
In light of this, we want to disentangle ZSL in
Eqn. 8 that is attributable to update-gradient align-
ment independent of gradient opposition, from ZSL
attributable to gradient opposition specifically.

To this end, we adapt Eqn. 5 and Eqn. 6 to de-
compose the overall gradient as VgL = +M (1—
5), where D is a vector of gradient coordinate-
wise destructive interference, and M is a vector of
average coordinate-wise gradient magnitude (with
+M as a compact notation for M sign(V,L)).
This lets us rewrite Eqn. 8 while factoring out de-
pendence on gradient opposition via D:

- |AG - +M(1— D)
D(Al) =1 -
(A6) AN

()]

A9 £M — AG- LMD
>i |A0 - Vgl

Because D € [0, 1] we can rewrite the numerator as
|AQ-+M|—|Af-+M D|. We can then decompose
dot products into their corresponding vector norms
and cosine similarities to obtain Eqn. 10—an inter-
pretable decomposition of Eqn. 8 that isolates the
effect of update-gradient alignment into C,, and
the effect of gradient opposition into Cy:

DAl =1-C,+C, (10)

|| £M]|| cos(A9, £M)|
YV | cos(AG, VL))

Cu € [0,1]

_ |-£M D|| cos(A8, £M D)|
©o= >l V||| cos(A8, Vi) € [0,C,]

Intuitively, 1 — C, capture destructive interference
in the case there is no coordinate-level gradient
opposition (i.e. VgL = +M ) such that ZSL is
entirely attributable to update-gradient alignment.
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Fig. 5: Per-token loss landscapes at step ¢ along A;6.
Dashed vertical lines indicate 6;1 = 0; + A.6. Tokens
which improve in loss after the update are indicated in
green, and tokens which degrade are indicated in red

This quantity is an upper bound on Cy, which in
turn captures the effect of gradient opposition on
ZSL not already accounted for by C,,. In particular,
as D approaches 1, we see that C'; approaches
Cy., and D(A?) approaches 1.0 irrespective of C,,.
In other words, systematic gradient opposition as
D(Vyt) — 1.0 across parameters implies ZSL in
a first-order approximation of loss improvements.

Testing the first-order dynamics assumption.
Our hypothesis relies on the assumption that Ar
is a valid approximation of A¢ such that destruc-
tive interference in A¢ is reflective of destruc-
tive interference in A¢. To validate our hypoth-
esis, we must therefore validate this assumption.
However, computing Vy¢; and the corresponding
Al; = AG - Vgl for each token is intractable.
Instead, to empirically measure Al, we com-
pute 1D cross-sections of per-token loss land-
scapes by evaluating model checkpoints along in-
crements of their next weight update Af, with
O(a) = 0 + aA0/||AF||, « € [-10,10]. This
allows us to tractably measure A as a lineariza-

tion around v = 0 where Al(a) = « (zemiﬂe")
A sample of 1,000 such per-token loss landscapes
is shown in Fig. 5, with the complete set in Ap-
pendix C.4. Generally, these appear linear in the
vicinity of weight updates, suggesting that actual
changes in per-token losses A{ are well captured
by their first-order approximation A,

However, to more quantifiably verify that this
indeed is the case, we measure and plot the Pearson
correlation coefficient between A¢ and A¢ through-
out training in Fig. 6. We find strong correlation
after deceleration where we observe ZSL and SGO,




validating our hypothesis by validating the under-
lying assumption of first-order dynamics on which
our reasoning depends.

Ruling out the role of progressive sharpening.
As an alternative explanation for ZSL, one might
consider progressive sharpening (Cohen et al.,
2022; Rosenfeld and Risteski, 2023) where A#f
might overshoot local minima for some examples
but not others. Surprisingly, and perhaps counter to
conventional wisdom, we observe in Appendix C.5
that loss landscapes instead become significantly
flatter with deceleration; following an initial phase
of high sharpness before deceleration.

To quantify this observation, we measure the
sharpness of loss landscapes along update direc-
tions, throughout training. Specifically, we fit a
quadratic to the loss landscape cross-section, using
the second order term as a measure of sharpness.
In Fig. 7, we see the same trend, with sharpness
peaking and immediately begin decreasing before
deceleration. While the relationship between loss
sharpness and zero-sum learning and systematic
gradient opposition was outside the scope of this
work, it appears there might be an interesting con-
nection.

4 Explaining Scaling Improvements

In Section 2 we showed how scaling improves loss
by mitigating loss deceleration, specifically by de-
creasing the loss Lg and step ¢4 at which it occurs,
and increasing the subsequent log-log rate of loss
improvement r4 (Table 1). Conversely, in Section 3
we proposed a mechanistic explanation of loss de-
celeration based on interactions at the levels of per-
example loss improvements, and of per-example
gradients. Specifically, we showed that loss deceler-
ation is a transition in training dynamics character-
ized by the emergence of near-complete destructive
interference in per-example gradients and loss im-
provements; i.e. SGO and ZSL. In this section, we
will attempt to connect these findings, and shed
light on how scaling mitigates deceleration based
on the underlying mechanisms we identified.

Decomposing loss improvements.

Similar to Section 3.2, we decompose the first-
order Taylor expansion for changes in loss from
Eqn. 7 into interpretable components that enable a
finer-grained analysis of training dynamics, specifi-
cally the cosine similarity and L? norms of weight
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Fig. 6: Correlation between Af and it’s first-order ap-
proximation A/ is close to 1.0 at deceleration.
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Fig. 7: Sharpness decreases with loss deceleration.

updates A6 and gradients VyL:

AL = ||A8]|2||VoL]||2 cos(A0,VeL)  (11)

We show these values across training steps and
model scales in Fig. 8, and will discuss their inter-
pretation in the following sections.

4.1 Improving Loss Before Deceleration (1)

Surprisingly, we find in Table 2 that most of the
scaling improvements in loss at deceleration L are
already established by step ¢ = 32. From Eqn. 11

Table 2: Scaling improvements in loss at deceleration
L, are established early during training.

Loss Improvement t=32 t=4096 t=8192
14M — 3™ 0.76 0.43 0.45
3™ — 78M 0.29 0.20 0.21
78M — 144M 0.15 0.12 0.12
144M — 285M 0.15 0.11 0.11
285M — 472M 0.05 0.06 0.07
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Fig. 8: First-order approximation of loss improvements
with terms from Eqn. 11 plotted throughout training.
Note that because log(AL) is a sum of the log of its
terms, the shared log-scale allows us to easily gauge
how different terms contribute to changes in AL.

and Fig. 8, the underlying reason becomes appar-
ent. Scaling models improves AL primarily by im-
proving gradient norms ||V L||2 in the beginning
of training. Beyond ¢t = 32, the effects of scal-
ing become less significant, with improvements in
AL and ||V L||2 orders of magnitude smaller and
eventually reversed leading up to deceleration. In
contrast, scaling degrades gradient-update align-
ment — cos(Af, VgL), and results in consistent
but relatively insignificant improvements in || Af||2.
These effects are trivially explained by an increased
number of parameters and appear unrelated to de-
celeration, however it remains an open question
how similar effects can be achieved independent of
scale.

4.2 Improving Loss After Deceleration (r;)

We see in Fig. 2 that post-deceleration ZSL is miti-
gated by scaling model size, which we know results
in greater loss improvements from Eqn. 5 that can
explain how scaling improves r4. Unfortunately,
the way in which scaling reduces ZSL after decel-
eration is not as immediately obvious.

We see in Fig. 4 that gradient destructive in-
terference (averaged across parameters) actually
becomes more pronounced with larger models.
However, 99% destructive interference in a 14M-
dimensional gradient does not have the same effect
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Fig. 9: Histograms of gradient destructive interference.
Deceleration happens between steps 4096 and 8192.

as in a 144M-dimensional gradient. In particular,
the latter will have more degrees of freedom along
which shared gradient directions can exist between
tokens. Indeed, we find in Fig. 9 that, especially
after deceleration, larger models have more param-
eters with lower destructive interference. This can
explain why larger models have lower ZSL after
deceleration, and thus improved r,.

5 Conclusion and outlook

In this work we proposed and validated a mech-
anistic explanation of scaling laws grounded in
training dynamics. Specifically, we identified loss
deceleration as a novel transition in training dy-
namics that can explain scaling improvements in
quantifiable but interpretable terms, such that an ex-
planation of deceleration becomes an explanation
of scaling improvements. To this end, we proposed
zero-sum learning and systematic gradient oppo-
sition as the mechanisms underlying deceleration,
validating these against alternate hypotheses with
empirical and theoretical analyses. Lastly, we re-
visit scaling improvements from the perspective
of these mechanisms and show how scaling im-
proves loss by mitigating zero-sum learning and
systematic gradient opposition.

Our analyses and results suggest that these could
potentially be mitigated directly to improve loss
independent of scale, laying a foundation for fu-
ture research. Furthermore, our approach of study-
ing per-example gradient dynamics is an under-
explored area of research that can shed new light
on learning dynamics, scaling, and generalization
more broadly.



Limitations

Comprehensiveness of experimental settings.
Scaling laws are a general phenomenon observed
across tasks, model architectures, parameters, and
evaluation measures. However, this work only
considers the scaling of cross-entropy loss with
model size in transformer-based language models
on typical webscale text. While we replicate our
experiments across variants of this general setting
(e.g. with and without learning rate decay in Ap-
pendix C.1), we do not generalize our findings
to different settings. While this lies beyond the
scope of our original research question and the
prior works on which we build, verifying how our
findings generalize across different settings is an
important area of future work.

Characterizing the effects of hyperparameters
on deceleration. Our model training runs make
use of the optimal hyperparameter configurations
identified by Kaplan et al. (2020) and Groeneveld
et al. (2024) on which we base our experiments
and training setups. This was motivated by two
factors: limiting the computational cost of hyper-
parameter search, and conducting experiments and
analyses consistent with prior works. However, an
important gap that results from this is an unclear
understanding of how loss deceleration and the as-
sociated measurements in Table 1 change with dif-
ferent hyperparameter configurations. For example,
we found in Section 2 that differences in number of
warmup steps between publicly available OLMo-
1B and 7B models seem to have an important effect.
Furthermore, OLMo-1B and 7B use different se-
quence lengths and batch sizes to (Kaplan et al.,
2020) and our experiments which prioritize compu-
tational efficiency over downstream performance.
While deceleration appears consistent across these
variations, it is not clear to what extent improve-
ments in the 1B and 7B models are due to increased
scale as opposed to these differences in hyperpa-
rameters. While beyond the scope of our original
research question, these questions present an im-
portant opportunity for future research.

Accounting for SGO in both M (A/) and D(AY).
In Section 3.1 and Eqn. 5 we showed that ZSL
as measured by D(A/) is primarily responsible
for deceleration, while decreases in average per-
token loss improvements M (A/) played an non-
negligble but less significant role. However, our
analysis of SGO (Section 3.2) only considers

D(AY) and ZSL, while it likely also has an ef-
fect on M (A{) via its effect on optimizer steps Af.
However, these effects are likely highly dependent
on the optimizer and its configuration, and likely
not generalizable in the scope of our research ques-
tion; hence why we chose to abstract away A6 in
our analysis. Nevertheless, this a salient gap in our
analysis that should be further explored.

Reconciling single step and multi step train-
ing dynamics. The connection between the be-
haviour of gradients (SGO) and loss (ZSL and loss
deceleration) can be made more precise. In particu-
lar, our gradient analysis only reflects single-step
training dynamics, while ZSL and loss improve-
ments appear to depend on interactions across mul-
tiple optimization steps (see Appendix C.3). Un-
derstanding the effect of multi step interaction is a
natural next step for this research.

Negative societal impacts or ethical concerns.
Our work focuses on understanding existing and
well-established methods, and does not meaning-
fully contribute to any negative societal impacts or
ethical concerns beyond what is typically associ-
ated with language modeling research. In principle,
by focusing our analysis on a single metric (cross-
entropy loss), this could lead to over-optimizing
that metric at the expense of other real-world con-
cerns. While this work is at too early a stage for this
to pose a meaningful risk, it is important to keep
in mind as a limitation in interpreting our findings
and building new methods on top of them.
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A Methodology

A.1 Language model pretraining

For our experiments, we adapt the OLMo code-
base (licensed under Apache-2.0) and train vari-
ants of OLMo with the publicly available train-
ing dataset of OLMo-7B-0724 (Groeneveld et al.,
2024). Model dimensions and learning rates are
based on (Kaplan et al., 2020) and shown in Table 3,
labeled with (rounded) total parameter counts. For
pretraining, we again adapt the experimental setup
of (Kaplan et al., 2020), training with a batch size
of 0.5M tokens for 2! steps. However, instead of
a cosine learning rate decay, we adopt the trape-
zoidal learning rate from (Hégele et al., 2024) with
a learning rate warmup to the values in TableFig. 3
in the first 2,000 steps and no cooldown in the
218 steps considered. Note that the OLMo-1B and
OLMo-7B models are those trained by (Groeneveld
et al., 2024) and could not included in our analy-
sis of ZSL because of insufficient checkpointing
frequency before deceleration.

Code and artefacts, particularly model and op-
timizer checkpoints and logs across training, will
be made available at the following https url under
Apache-2.0 license to enable future research in this
direction. In our experiments, we used a variety
of computational resources which are recorded in
the logs we make available. Generally, we per-
formed distributed training 4-32 L.40 GPUs or 4
H100 GPUs, with smaller models pretraining re-
quiring on the order of 10 GPU hours, and the
largest 472M requiring on the order of 1000 GPU
hours.

A.2 Language model analyses

During training, we checkpoint the model and opti-
mizer every 2¢ steps with i € [0, 18]. Our analyses
of ZSL and gradient opposition are done on these
checkpoints after pretraining. Methodological de-
tails regarding e.g. precision or batch size are kept
consistent with pretraining to obtain representative
results. All of our evaluations are conducted on the
C4 validation set from (Magnusson et al., 2023),
using the tokenizer from (Groeneveld et al., 2024),
consistent with pretraining.

A.3 Additional Details on Fitting BNSL to
Loss Curves

Fitting We adapt the methodology for fitting
Eqn. 1 published by Caballero et al. (2023)
at https://github.com/ethancaballero/
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broken_neural_scaling_laws. We include the
code implementation below. Empirically, we had
to implement the following changes to improve
stability:

* Assume a = 0 and remove it from the opti-
mization procedure.

* Fit the function in log-log space instead of
manually scaling b and d; (note that data-
points sampled uniformly along = will result
in a data imbalance when fitting in log-log
space; to mitigate this we also subsample dat-
apoints uniformly in log space). also made
it necessary to subsample our fitting data uni-
formly in log-space to limit skewing from re-
sudata imbalances)

 Estimate initial parameters instead of running
a bruteforce gridsearch.

Smoothing The loss curves we fit are batch
losses logged at every step during training. Because
training is single-epoch, i.e. online, these losses
are effectively a noisy measurement of the true val-
idation loss. However, we found that this noise
(characterized by oscillations in loss at too-small
timescales) leads to severe instability with the orig-
inal methodology published by (Caballero et al.,
2023). To smooth these curves, we use LSMA,, a
logarithmic variant of the simple moving average
that we found to work well for fitting noisy log-log
loss curves with high fidelity. Notably, LSMA nat-
urally handles the increasing timescales at which
loss oscillations occur as number of training steps
increase. We found k£ = 1.2 to work sufficiently
well as shown in Fig. 10.

t
1
LSMA;, (L) =70 Z Ly (12)
s=p(t)

p(t) = floor(t/k)

Results and validation We report the resulting
parameters and error measurements from fitting
Eqn. 1 in Table 4, finding that parameter standard
deviation is typically on the order of 1%, while root
standard log error (RSLE) is on the order of 0.01,
comparable with values reported by Caballero et al.
(2023). These results suggest that loss deceleration
is reliably measurable with BNSL.


https://github.com/ethancaballero/broken_neural_scaling_laws
https://github.com/ethancaballero/broken_neural_scaling_laws
https://github.com/ethancaballero/broken_neural_scaling_laws
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Table 3: Model and Optimizer Parameters for Different Runs

Model size  14M 3™ 78M 144M 285M 472M OLMo-1B OLMo-7B
d_model 256 512 768 1024 1536 2048 2048 4096
mlp_dim 256 512 768 1024 1536 2048 16384 22016
n_heads 4 8 12 16 16 16 16 32
n_layers 4 8 12 16 16 16 16 32
peak_1r 1.3E-3 9.7E-4 8.0E-4 6.8E-4 5.7E-4 4.9E-4 4.0E-4 3.0E-4
warmup 2,000 2,000 2,000 2,000 2,000 2,000 2,000 5,000
Table 4: BNSL parameters and root-standerd log error if resulting fit (RSLE).

Model b co c1 log(dy) f1 RSLE
14M 18.42+0.16 0.17£0.00 -0.16+0.00 8.68=+0.02 0.204£0.03 0.011
37M 19.64 £0.23 0.20£0.00 —-0.18+£0.00 8.68+0.03 0.244+0.03 0.015
78M 20.66 £0.25 0.214+0.00 —-0.19+£0.00 &8.6940.03 0.29+0.03 0.014
144M 20.31 £0.26 0.214+0.00 —-0.19£0.00 &8.714+0.03 0.34+0.03 0.015
285M 20.85 +£0.30 0.224+0.00 —0.20£0.00 &8574+0.03 0.44+0.03 0.013
472M 21.16 £0.32 0.234+£0.00 —-0.19+£0.00 &8444+0.03 0.39+0.04 0.014
OLMo-1B 2597 +0.38 0.274+0.00 —-0.23+£0.00 8.224+0.03 0.76 £0.02 0.008
OLMo-7B  27.49 £0.48 0.284+0.00 —-0.22+0.00 8.444+0.04 0.76£0.03 0.008

import numpy as np

import scipy

def log_1b_bnsl(xlog, b, c@, c1, dilog, f1):

ylog_pred = np.log(b) - c@xxlog - (clxfl)*np.log(l+np.exp((xlog-dilog)/f1))
return ylog_pred
def fit_1b_bnsl(x: np.ndarray, y: np.ndarray, dli_est: float = 6000):
# initialize parameters with reasonable values (for stability)
dllog = np.log(dl_est)
xlog = np.log(x)
ylog = np.log(y)
dl_idx = np.argmin(np.abs(xlog - dllog))
c@ = -np.mean((ylogl[@:d1_idx] - ylog[1:d1_idx+1]1) \
/ (xlogl[@:d1_idx] - xlog[1:d1_idx+11))

cl = -np.mean((ylogl[di_idx:-2] - ylog[dl_idx+1:-1]) \
/ (xlogldl_idx:-2] - xlogldi_idx+1:-11))
cl = cl - co
b = ylog[0] + c@*xxlog[0]
# fit parameters with scipy
po = [b, co, c1, dilog, 0.3]
popt, pcov = scipy.optimize.curve_fit(
log_1b_bnsl,
xlog, ylog,
po=po,

method="dogbox "',
)

return popt, pcov

Code 1: Code for fitting one-break BNSL.
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B Related works

This work connects several existing areas of re-
search. In particular, several recent works attempt
to explain scaling laws, typically from the perspec-
tive of intrinsic model capacity, long-tailed data dis-
tributions, and asymptotic behaviour (e.g. Hutter,
2021; Sharma and Kaplan, 2022; Michaud et al.,
2023; Bahri et al., 2024; Bordelon et al., 2024).
In contrast, our goal is to identify a mechanism
grounded in training dynamics that can be targeted
independent of scale. The mechanism we identify,
loss deceleration, is to the best of our knowledge
not addressed in relevant prior works on e.g. loss
plateaus (Yoshida and Okada, 2020), learning curve
shapes (Viering and Loog, 2022), or LM saturation
(Godey et al., 2024; Mircea et al., 2024). Lastly, the
study of training dynamics based on per-example
gradient interactions remains under-explored, with
related tangential works on e.g. improving multi-
task learning (Liu et al., 2021), or characterizing
outliers in SGD (Rosenfeld and Risteski, 2023).

Explaining scaling laws Several works have pro-
posed different explanations for neural scaling laws
such as (Kaplan et al., 2020; Hoffmann et al., 2022;
Caballero et al., 2023; Hagele et al., 2024; Tis-
sue et al., 2024; Everett et al., 2024). Notably,
(Bahri et al., 2024) explain scaling laws in terms of
asymptotic behaviour, identifying variance-limited
regimes based on concentration around infinite lim-
its, and resolution-limited regimes based on dis-
tances between train and test data points on their
manifold (see also (Sharma and Kaplan, 2020)).
(Atanasov et al., 2024) analytically explain power-
law scaling in high-dimensional ridge regression
with tools from random matrix theory. (Michaud
et al., 2023) propose a "quantization model of neu-
ral scaling”, whereby power law scaling is a result
of (1) language models improving loss by learning
discrete capabilities from their demonstration in
data, (2) larger models being able to learn more
capabilities, and (3) rarer capabilities improve loss
by smaller and smaller amounts due to their van-
ishing frequency. Similarly, (Hutter, 2021) show
how power law scaling with data can arise from
long-tail feature distributions.

Improving language models independently of
scaling Recent work on e.g. data pruning (Mar-
ion et al., 2023; Sorscher et al., 2022) model distil-
lation (Allen-Zhu and Li, 2023; Team et al., 2024)
and model pruning (Raposo et al., 2024) show that
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improvements predicted from scaling can (up to a
point) be realized without scaling. This suggests
that scaling may indirectly improve loss by its ef-
fect on training dynamics, and that similar effect-
s/improvements can be obtained without necessar-
ily scaling.

Gradient opposition From the perspective of
training dynamics, Rosenfeld and Risteski, 2023
discuss the effect of outlier samples with opposing
gradients. In the context of multi-task learning, sev-
eral works have proposed approaches to mitigate
gradient opposition between tasks, e.g. (Parascan-
dolo et al., 2020; Yu et al., 2020; Liu et al., 2021).
Gradient opposition between tokens in language
modeling has, to the best of our knowledge, not
been characterized. Related but distinct, is the work
of (Mircea et al., 2024) characterizes opposition
within token gradients rather than between.

Loss deceleration and learning curves To the
best of our knowledge, the loss deceleration transi-
tion we identify and characterize in this work has
not been previously established or explained. We
refer the reader to (Viering and Loog, 2022) for
a comprehensive review of learning curve shapes,
as well as (Hutter, 2021) and (Yoshida and Okada,
2020) as examples of attempting to explain features
in a learning curve.



C Additional Results

C.1 Consistency of Loss Deceleration
Findings with Learning Rate Decay
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101 102 10% 10* 10° 106
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Fig. 11: Loss curves and BNSL fits when training with
cosine Ir decay.

Our main results are for training runs where
learning rate was warmed up and held constant,
in line with Higele et al. (2024) and Wen et al.
(2024). However, typically scaling experiments
have been conducted with learning rate decay. In
particular, Hoffmann et al. (2022) note that con-
sistently decaying to 0.1 of the peak learning rate
as an important difference to Kaplan et al. (2020),
leading to different compute-optimal scaling. To
rule out this potential confound, we replicate our
experiments with a cosine learning rate decay in
line with Hoffmann et al. (2022) (and Groeneveld
et al. (2024)), leaving all else equal.

Fig. 1 is replicated in Fig. 11, with similar re-
sults and quality of fits. Table 4 is replicated in
Table 6 with again similar results, and generally
smaller values for ¢y, log (d;), and f;. Lastly, Ta-
ble 1 is replicated in Table 5, where we see that Ly
resulting from the BNSL fit is increased, but this
is offset by improved 74 and 4, leading to better
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Table 5: Deceleration measurements with Ir decay.

Model Ly g ta Ly L
14M 408 0.016 5198  3.83 3.86
37M 3.65 0.023 5029  3.34 3.36
78M 3.45 0.029 4808  3.07 3.09
144M 3.35 0.036 4712 290 2.92
285M 3.28 0.040 3921 277 2.78
472M 3.24 0.045 3653  2.68 2.69
OLMo-1B 289 0.035 3106  2.39 2.38
OLMo-7B  2.66 0.054 3885  2.03 2.02

final loss. This improvement in final loss appears
to increase with model size, suggesting a comple-
mentary mechanism by which scale improves loss
under learning rate decay, which is not accounted
for by our principal findings.

C.2 Language Model Scaling Law Grounded
in Loss Deceleration

Defining and fitting a scaling law grounded in
loss deceleration

Let L (N, T) be a scaling law for language model
loss L, where N is the number of model parame-
ters and 7' is number of training steps (with dataset
size D =T - B for batch size B, i.e. single-epoch
training). Recall from Eqn. 2 that an estimate of
the loss L can be expressed in terms of the follow-
ing parameters: (1) the number of steps at which
deceleration occurs t,4; (2) the loss at which decel-
eration occurs Lg; and (3) the log-log rate of loss
improvement after deceleration r4. These parame-
ters, shown in Table 1, are dependent on IV, such
that we can define a scaling law L (N, T') grounded
in loss deceleration as follows:

L(N,T)=Lq(N)-tyg(N)+™) . 7ralN) (13)

In Fig. 12, we observe, with the admittedly lim-
ited datapoints from our experiments, that L; and
rq seem to exhibit power law scaling. In contrast,
tq appears to scale linearly if the outlier value for
OLMo-7B, which is likely a result of being trained
with 5,000 warmup steps instead of 2,000, is omit-
ted. This suggests that warmup steps, among po-
tentially other hyperparameters, have an important
role not accounted for here. However, these re-
sults are preliminary and intended more as an ex-
ploratory proof of concept, included here for com-
pleteness, rather than a key result or claim of the
paper. We leave the costly task of conducting suffi-
cient training runs to more adequately validate this
functional form for future work.



Li— (1.12-10%) - N-006 rg=(2.52-10°4) - N0 ty= 5461 — N - 2.46-10 "
%1072 = 107
[ ] '
401 |
54 / 35
3.84 ‘\\ ’," *e®
3.6 1 \‘\ l". 5.0 1 ‘\\
\\ 4+ ;’ ‘\
3.4 N / .
- LN - 4 —ard \
- \ Hig Y4 FA0 \
39 ® \ 51 ! ||
L é\. i ’I 1
\ S 10 !
3.0 ‘\\\ i ”’o ‘\|
251 N T 3.5 1 !
R !
2.6 N é i
0 08 0 105 107
Model size Model size Model size
Fig. 12: Power law and linear scaling in deceleration parameters.
Table 6: BNSL parameters and error when training with cosine Ir decay.
Model b Co C1 log (dl ) fl RSLE
14M 18.32+0.16 0.18+0.00 —-0.16=+0.00 8.56=+0.02 0.16+0.03 0.012
37T™M 19.60 £0.22 0.20£0.00 —-0.17£0.00 8.524+0.02 0.18£0.03 0.014
78M 20.67+0.24 0.21£0.00 —-0.18+0.00 8.48+0.02 0.224+0.03 0.014
144M 20.31+0.25 0.21£0.00 —0.18+0.00 8.46+0.03 0.244+0.03 0.014
285M 20.87+0.28 0.22+£0.00 —-0.18+0.00 8.27£0.03 0.31+0.03 0.013
472M 21.30+0.29 0.23£0.00 —0.18+0.00 8.20£0.03 0.314+0.03 0.013
OLMo-1B  26.53 £0.42 0.28£0.00 —-0.24+0.00 8.04+0.03 0.76+0.02 0.008
OLMo-7B  28.14£0.54 0.29£0.00 —-0.23+0.00 8.26+0.04 0.78+0.03 0.008
1.0 "‘::;‘W 10 g 10 i
8
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Fig. 13: Single-step ZSL in Train and Eval. batches.
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C.3 Effect of Increasing Steps on ZSL

Destructive interference is mitigated by increas-
ing number of steps. While the experiments
and results in Section 3.1 consider the change
in loss between steps ¢ and 2¢, our initial ex-
periments were based on checkpoints for steps
[1,2,...,10,20,...,100,200,...,1000] and so
on. When plotting D(A/;) between these check-
points in Fig. 14, we can see that D(A/;) in-
creases much more rapidly leading up to decel-
eration, when compared to Fig. 2. However, we
also observe abrupt drops and subsequent rises in
D(AUY;) after the number of steps between check-
points is increased by a factor of 10. These results
highlight that ZSL actually increases leading up to
rather than after deceleration, but is mitigated by
increasing number of steps.

1.0 1
— 10M
— 1 3IM
— 74M
0.8 150M
Decel.
0.6 1
\E
ad
Q
0.4 4
ool N
0.0

100 102 100 10° 10
Train steps

Fig. 14: Effect of number of steps (between changes
in loss) on ZSL. Measurements are based on steps
1,2,...,10,20,...,100,200,...,1000] and so on.
Drops in D(A;) correspond to points where steps be-
tween checkpoints increases by an order of magnitude.
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C.4 Per-token loss landscape cross-sections
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Fig. 15: Sampled per-token loss landscape cross-sections across model sizes and train steps

Across model sizes (columns) and train steps (rows), we plot loss landscape cross-sections along increments of the
weight update A at step ¢. The actual stepsize is indicated with a dotted vertical line. We plot AL rather than L,
which has the same geometry but allows more easily distinguishing loss improvements from degradations. Lines are
colored in green or red depending on whether the loss (respectively) improved or deteriorated at the actual stepsize.
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C.5 Opverall loss landscape cross-sections throughout training
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0 0 0
(1A (1A [1A0]2
Fig. 17: Overall loss landscapes (cross section along Af), visualized throughout training

We plot overall loss landscape cross sections across model sizes and train steps. Similar to Appendix C.4, we plot
AL which has equivalent geometry to L but allows better distinguishing loss improvements from loss degradations.
AL is additionally indicated with a symlog colorscale, with loss improvements being red. Loss deceleration is
approximately indicated with two lines at £ = 4096 and ¢t = 8192. We observe that loss landscapes sharpen leading
up to deceleration, but flatten significantly afterwards; with this trend being more pronounced in larger models.
Furthermore, loss landscapes along A# appear much sharper in the beginning of training for larger models.
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Fig. 18: Overall loss landscapes (cross section along Af), visualized throughout training (zoomed in) We plot
the same data as in Fig. 17, but zoomed into a narrower range.
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