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Abstract

We present Saliency-driven Experience Replay - SER - a biologically-plausible
approach based on replicating human visual saliency to enhance classification
models in continual learning settings. Inspired by neurophysiological evidence
that the primary visual cortex does not contribute to object manifold untangling
for categorization and that primordial saliency biases are still embedded in the
modern brain, we propose to employ auxiliary saliency prediction features as a
modulation signal to drive and stabilize the learning of a sequence of non-i.i.d.
classification tasks. Experimental results confirm that SER effectively enhances the
performance (in some cases up to about twenty percent points) of state-of-the-art
continual learning methods, both in class-incremental and task-incremental settings.
Moreover, we show that saliency-based modulation successfully encourages the
learning of features that are more robust to the presence of spurious features
and to adversarial attacks than baseline methods. Code is available at: https:
//github.com/perceivelab/SER.

1 Introduction

Humans possess the remarkable capability to keep learning, with limited forgetting of past experience,
and to quickly re-adapt to new tasks and problems without disrupting consolidated knowledge.
Machine learning, on the contrary, has shown significant limitations when dealing with non-stationary
data streams with a limited possibility to replay past examples. The main reason for this shortcoming
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can be found in the inherent structure, organization and optimization approaches of artificial neural
networks, which differ significantly from how humans learn and how their neural connectivity is
built when accumulating knowledge over a lifetime. According to the Complementary Learning
Systems (CLS) theory [46, 33], the human ability to learn effectively may be due to the interplay
between two learning processes that originate, respectively, on the hippocampus and on the neocortex.
This theory has inspired several continual learning methods [29, 40, 28]. In particular, the recent
DualNet method [51] translates CLS concepts into a computational framework for continual learning.
Specifically, it employs two learning networks: a slow learner, emulating the memory consolidation
process happening in the hippocampus through contrastive learning techniques, and a fast learner,
that aims at adapting current representations to new observations. However, this strategy still
appears insufficient for addressing the problem of continual learning, because it starts from the
(possibly wrong) assumption that human neural networks directly process visual input with the
objective of performing categorization from early vision layers. On the contrary, neurophysiological
studies [19, 32] are in near universal agreement that the object manifolds conveyed to primary visual
cortex V1 (one of the earliest areas involved in vision) are as tangled as the pixel space. In other
words, the neurons of the earliest vision areas do not contribute to object manifold untangling for
categorization, but rather enforce luminance and contrast robustness [32]. This suggests that training
early neurons with a visual categorization objective — as done not only in DualNet, but in all existing
continual learning methods — is in stark contrast to the biological counterparts observed in primates.
Moreover, recent studies on the causes of forgetting in artificial neural networks showed that deeper
layers (i.e., closer to the output) are less stable in presence of task shifts [53], which is consistent
with the hypothesis that earlier layers do not bear specific categorization responsibilities.

Given these premises, it is peculiar that existing bio-inspired continual learning methods tend to ignore
all upstream neural processes underlying visual categorization, such as visual saliency processes.
Indeed, the ability to select relevant visual information appears to be the hallmark of human/primate
cognition. Moreover, recent findings in cognitive neuroscience have shown that the visual attention
priorities of human hunter-gatherer ancestors are still embedded in the modern brain [48]: humans
pay attention faster to animals than to vehicles, although we now see more vehicles than animals. This
primordial saliency bias embedded in human brains suggests that the neuronal circuits of the ventral
visual pathway are somehow inherited, as a form of genetic legacy from ancestral experience, and
tend to remain stable over time — thus not subject to forgetting, though we have long stopped hunting
to survive. Interestingly, we observed the same forgetting-free behavior for saliency prediction on
artificial neural networks. Fig. 1 shows the trend of the similarity [10] metric for a saliency prediction
model trained in a continual learning scenario, and compares it to the accuracy of a classification
model under the same settings. While classification accuracy drops as the classifier learns new classes,
the saliency metric remains stable, and even slightly improves.

τ1 τ5 τ10 τ15 τ20

Figure 1: Comparison of Forgetting-Free Saliency Prediction vs. Catastrophic Forgetting in
Classifiers and Activation Maps in Continual Learning Scenarios. (Left figure): The saliency
accuracy (measured by the similarity [10] score) of a saliency predictor trained in a continual learning
setting improves as more tasks are introduced, while the classification accuracy of a continual
classifier degrades over time, indicating that saliency detection remains i.i.d. even with non-i.i.d. data.
(Right figure): The top row shows activation maximization maps via GradCAM, which are prone to
catastrophic forgetting due to their dependence on the classifier. In contrast, the bottom row shows
saliency maps produced by the predictor, which remain stable and consistent over time.

From this observation, in this paper we propose SER, a Saliency-driven Experience Replay strategy
that employs visual saliency prediction [6] to drive the learning of a sequence of classification
tasks in a continual learning setting. To emulate what has been observed in primates, where visual
saliency modulates the firing rate of neurons that represent the attended stimulus at different stages of
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visual processing [63, 45], SER adopts a two-branch model: one branch performs visual saliency
prediction [37, 27, 20], and its responses modulate the features learned by a paired classification
model in the second branch.
While the SER strategy stands out in its approach, it’s important to note a similar category of
methodologies that utilize attribution maps (e.g., computed via GradCAM), also known as attention
maps, as a distilled form of classifier knowledge for future replay [61, 18, 22, 59, 3]. However,
saliency prediction maps are significantly different from attribution maps. Indeed, attribution
maps elucidate the inner workings of DNNs by highlighting relevant input features for predictions
and as such they suffer catastrophic forgetting (as shown in Fig. 1), while saliency maps, rooted in
neuroscience and human visual processing, aim to emulate how humans perceive and prioritize visual
information, and, most importanly, they are forgetting-free.

SER is model-agnostic and can be used in combination to any continual learning method. We
demonstrate that saliency modulation positively impacts classification performance in online continual
learning settings, leading to a significant gain in accuracy (up to 20 percent points) w.r.t. baseline
methods. We further demonstrate the usefulness of saliency modulation on different benchmarks
(including a challenging one that tackles fine-grained classification) and substantiate our claims
through a set of ablation studies. We finally show that saliency modulation, besides being biologically
plausible, leads to learn saliency-modulated features that are more robust to the presence of spurious
features and to adversarial attacks.

Figure 2: Architecture of the proposed Saliency-driven Experience Replay (SER) strategy.The
classification backbone is paired with a saliency prediction network that, given its capability of
being forgetting-free, aims at adjusting the learned classification features in order to mitigate overall
forgetting.

2 Related Work

Continual Learning (CL) [47, 16, 49] addresses the problem of catastrophic forgetting in neural
networks, wherein they tend to lose previously acquired knowledge when faced with shifts in input
data distribution. Various solutions have been proposed to address this, including the incorporation
of regularization terms [31, 74], specific architectural designs [60, 44], and rehearsal of previously
encountered data points [57, 55, 9]. However, the application of these solutions to real-world
scenarios is challenging due to evaluations often being based on unrealistic benchmarks [1, 65].
Online Continual Learning (OCL) [43] addresses this challenge by limiting multiple epochs on the
input stream, reflecting the realistic assumption that data points encountered in real-world settings
occur only once. To address this challenge, many strategies adopt a replay approach [54, 57]. Some
focus on memory management: GSS [2] optimizes the basic rehearsal formula to store maximally
informative samples, while HAL [14] identifies synthetic replay data points maximally affected by
forgetting. CoPE [15] employs class prototypes for gradual evolution of the shared latent space,
while ER-ACE [11]adjusts the cross-entropy loss asymmetrically to minimize task imbalance. Our
proposal adopts a remarkably different approach w.r.t. these classes of methods, in that we take
inspiration from cognitive neuroscience theory of learning and exploiting the features of a conjugate
forgetting-free task (i.e., saliency prediction) to modulate the responses of our OCL model. Doing so
produces a stabilizing effect on our model and makes it more resilient to forgetting.

An approach similar in the spirit to ours is [39] that leverages saliency prediction for exemplar-free
class incremental learning. To compensate for the absence of past task data, this methods relies on
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a pre-trained saliency detector, which remains frozen throughout the learning process, providing
guidance for attribution maps of the classification backbone. Consequently, it tackles the challenge of
forgetting by employing a pre-trained backbone to constrain feature drift. In contrast, SER operates
on a dynamic framework where the visual saliency network is continuously trained, showcasing
remarkable resistance to forgetting, while concurrently modulating the drift of classification features.
This approach offers a more flexible visual saliency-classification paradigm that adapts to any dataset
without external dependencies, as opposed to [39], which requires the use of a pre-trained saliency
detector trained on the same data distribution as the target data.

Another approach, similarly inspired by cognitive theories, is DualNet [51], which employs two
networks that loosely emulate how slow and fast learning work in humans. However, DualNet
employs contrastive learning on the slow network (the earliest layers of the model), while it seems
that object-identifying transformations happens later in the human visual system [19, 32]. Our
results, reported later, substantiate the suitability of our choice to use low-level processes, such as
saliency prediction, to drive continual learning tasks, rather than contrastive learning or classification
pre-training techniques as, respectively, in DualNet and TwF [8].

Though the concept of utilizing saliency prediction maps in online continual learning is relatively
new, recent trends have shown promising advancements in mitigating forgetting by encouraging
models to recall evidence for past decisions, stored as activation maps [22]. Specifically, [22, 59, 3]
employ attribution methods, such as Gradient-weighted Class Activation Mapping (Grad-CAM) [61],
to compute and store visual model explanations for each sample (or parts thereof) in the buffer and
ensures model consistency with previous decisions during the training phase. Similarly, Dhar [18]
adopts Grad-CAM, but it does not store any information, but it employs knowledge distillation on
the activation maps across consecutive tasks. However, as presented in the introduction, there is a
fundamental distinction between saliency maps and activation maps with the latter being subject to
forgetting, while the former not (Fig. 1).

Finally, our approach diverges from the recent trend in the continual learning (CL) field, which
primarily employs foundation models (mostly Vision Transformers, ViTs) and focuses on learning
prompts to mitigate forgetting [68, 67, 24, 62]. The main limitation of these methods is that they are
restricted to transformer-based architectures. In contrast, our strategy does not rely on any specific
model type, thereby enhancing its potential impact on real-world applications.

3 Method

3.1 Online Continual Learning

Following the recent literature, we pose OCL as a supervised image classification problem with
an online non-i.i.d. stream of data, where each training sample is only seen once. Although our
saliency-driven modulation does not require the presence or knowledge of task boundaries, in this
formulation and in our experiments we assume that these are given, to the benefit of any baseline
method enhanced by the proposed extension. More formally, let D = {D1, . . . ,DT } be a sequence
of data streams, where each pair (x, y) ∼ Di denotes a data point x ∈ X with the corresponding
class label y ∈ Y; the sample distributions (in terms of both the data point and the class label) differ
between separate streams Di and Dj — the sets of class labels in each stream are disjoint, though
both belong to the same domain Y . Given a classifier f : X → Y , parameterized by θ, the objective
of OCL is to train f on D, organized as a sequence of T tasks {τ1, . . . , τT }, under the constraint that,
at a generic task τi, the model receives inputs sampled from the corresponding data distribution, i.e.,
(x, y) ∼ Di, and sees each sample only once during the whole training procedure. The classification
model may optionally keep a limited memory buffer M of past samples, to reduce forgetting of
features from previous tasks. The model update step between tasks can be summarized as:

⟨f,θi−1,Di−1,Mi−1⟩ → ⟨f,θi,Mi⟩ (1)

where θi and Mi represent the set of model parameters and the buffer at the end of task τi, respectively.
For methods that do not exploit buffer, Mi = ∅,∀i.
The training objective is to optimize a classification loss over the sequence of tasks (without losing
accuracy on past tasks) by the model instance at the end of training:
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(2)argmin
θT

T∑
i =1

E(x,y) ∼Di

[
L
(
f (x;θT ) , y

)]
where L is a generic classification loss (e.g., cross-entropy), which a continual learning model
attempts to optimize while accounting for model plasticity (the capability to learn current task data)
and stability (the capability to retain knowledge of previous tasks) [47].

3.2 SER: Saliency-driven Experience Replay

Our method is grounded on the neurophysiological evidence that attention-driven neuronal firing rate
modulation is multiplicative and the scaling of neuronal responses depends on the similarity between
a neuron’s preferred stimulus and the attended feature [63, 45]. This hypothesis is translated into
a general artificial neural architecture, where we emulate the process of human selective attention
through a visual saliency prediction network [6] whose activations modulate, through multiplication,
neuron activations of a paired classification network at different stages of visual processing. Formally,
let S : X → S be a saliency prediction network, where X is the space of input images and S the
space of output saliency maps. Generally, if X = R3×H×W for RGB images, then S = RH×W ,
where each location of a map s ∈ S measures the saliency of the corresponding pixel in the RGB
space. We assume that S can be decomposed into two functions, an encoder E : X → H and a
decoder D : H → S, such that S (x) = D (E (x)), for x ∈ X . Then, given an online continual
learning problem with data stream D and set of classes Y , let C : X → Y be a classification network,
such that C and the saliency encoder E share the same architecture (with independent parameters).
An illustration of the proposed architecture is shown in Fig. 2.

At training time, both S and C observe the same data stream, from which pairs (x, y) of input data
and class label are iteratively sampled. Through the use of an external saliency oracle, we extend
each data sample to a triple (x, y, s), where s is the target saliency map associated to x. The oracle
can be either a set of ground-truth maps, when available, or pseudo-labels provided as the output of a
pre-trained saliency predictor (unrelated to S). We therefore proceed to optimize a multi-objective
loss function L = Ls + λLc, with λ being a weighing hyperparameter. Loss term Ls is computed
on the output of saliency predictor S, and compares the estimated saliency map S(x) with the
target s by means of the Kullback-Leibler divergence (commonly employed as a saliency prediction
objective [10, 20, 4, 69, 26]):

Ls =
∑
i

si log

(
si

Si(x) + ϵ
+ ϵ

)
(3)

with si and Si(x) iterating over map pixels in s and S(x), respectively. Loss term Lc encodes a
generic online continual learning objective, as introduced in Eq. 2. As the proposed approach is
method-agnostic, details on the formulation of Lc may vary.

In order to enforce selective attention-driven modulation of classification neuronal activations, we
leverage the architectural identity of saliency prediction encoder E and classifier C to alter the
feedforward pass of the latter, by multiplying pre-activation features in C by the corresponding
features in E, before applying a non-linearity and feeding them to the next layer of the network.
Formally, let us assume that the C and E networks consist of a sequence of layers {l1, l2, . . . , lL}.
Without loss of generality, let each layer li compute its output as zi = σ (Wizi−1), with σ being
an activation function, Wi the network-specific layer parameters (i.e., not shared between E and
C) and zi−1 the output of the previous layer (or the network’s input x, if appropriate). Then, let
us distinguish between features z

(s)
i and z

(c)
i , respectively representing the output of layer li by

the saliency prediction encoder S and the classifier C. We apply saliency-driven modulation by
modifying the computation of z(c)i as follows:

z
(c)
i = σ

(
W

(c)
i

(
z
(c)
i−1 ⊙ z

(s)
i−1

))
(4)

where ⊙ denotes the Hadamard product. Intuitively, the proposed approach encourages the classifica-
tion model to attend to “salient” features of the input, where the concept of saliency is generalized
from the pixel space to hidden representations. It is important to note that, at training time, gradient
descent optimization of Lc would also affect on the saliency encoder E. This is undesirable, as we
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previously showed (see Fig. 1) that saliency features are robust to task shifts, unlike classification
features: hence, in order to guarantee this property, we stop the gradient flow from Lc to parameters
in E, and use it to update the parameters of classifier C only.

In the above formulation, we assumed the presence of a classification network with fully-connected
layers; however, our method can be applied in an agnostic manner to any method employing, at least
in part, a feature extractor implemented as a neural network. As such, the proposed method can
be equally applied, for instance, both to end-to-end classification models (e.g., DER++ [9]) and to
approaches with a neural backbone that computes class-representative prototypes (e.g., CoPE [15]).

4 Performance Analysis

4.1 Experimental setup

Benchmarks. We build two OCL benchmarks by taking image classification datasets and splitting
their classes equally into a series of disjoint tasks:

• Split Mini-ImageNet [66, 13, 21, 17] that includes 100 classes from ImageNet, allowing for a
longer task sequence. For each class, 500 images are used for training and 100 for evaluation.

• Split FG-ImageNet1 [58] is a benchmark for fine-grained image classification that we use to test
CL methods on a more challenging task than traditional ones. It includes 100 classes of animals
extracted from ImageNet, belonging to 7 different species, reducing inter-class variability and
leading to harder tasks. Each class contains 500 samples for training and 50 for evaluation.

For both datasets, images are resized to 288×384 pixels and split into twenty 5-way tasks.

Baseline methods. We evaluate the contribution of the SER strategy when paired to a classification
network trained using several state-of-the-art continual learning approaches, including rehearsal and
non-rehearsal methods:

• DER++ [7]: a seminal work that combines rehearsal and knowledge distillation strategies for
supporting model plasticity while limiting forgetting.

• ER-ACE [11]: a variant of experience replay [54, 57] which aims to prevent imbalances due to the
simultaneous optimization of the current and past tasks by selectively masking softmax outputs.

• CoPE [15]: a prototype-based classifier with experience replay, whose careful update scheme
prevents sudden disruptions in the latent space during incremental learning.

• LwF [36]: a non-rehearsal method that enforces a model to preserve outputs of past model instances
on new samples to limit forgetting.

• oEWC [30]: a non-rehearsal method that mitigates forgetting by selectively limiting the changes
on weights that are most informative of past tasks.

Implementation details. We apply the SER strategy at five feature modulation points of ResNet-18’s
architecture, namely, the outputs of the first convolutional block and of the four main residual blocks.
In compliance with online learning, all models are trained for a single epoch, using SGD as optimizer,
with a fixed batch size of 8 both for the input stream and the replay buffer. Rehearsal methods are
evaluated with three different sizes of the memory buffer (1000, 2000 and 5000). When applying
SER, besides each method’s specific training objective, we also optimize the saliency prediction loss
Ls from Eq. 3, with λ = 1. Saliency is estimated using DeepGaze IIE network [37] as oracle.

When using SER, classifier C and saliency predictor S are identical ResNet-18 architectures, followed
— respectively — by a linear classification layer and a saliency map decoder (additional details are
provided in the supplementary materials). While C is trained from scratch, we employ a pre-trained
saliency predictor S, consistently with neuroscience evidence showing that humans have selective
attention already embedded in the brain [48]. For a fair comparison, in all our experiments feature
extraction backbones of baseline methods are initialized to the same pre-trained weights as S (except
where explicitly stated). Care was taken to ensure that the set of OCL classes C did not semantically
overlap with pre-training data, to prevent any contamination from the saliency predictor to the
classification task. Specifically, S was pre-trained for 20 epochs on a subset of 100 ImageNet classes
(disjoint from our two main benchmark datasets), using DeepGaze IIE as oracle. No class label
information was used at this stage. All experiments were conducted on a workstation with an 24-core

1https://www.kaggle.com/datasets/ambityga/imagenet100
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CPU, 500GB RAM, and an NVIDIA A100 GPU (40GB VRAM). Results are computed using the
Mammoth framework [9].

Metrics and evaluation. As a primary metric of OCL model performance, we report the final
average accuracy as 1

T

∑T
i=1 a

T
i , where aTi is the accuracy of the final model on the test set of task τi.

Accuracy aTi can be computed in a Class-Incremental Learning (Class-IL) or in a Task-Incremental
Learning (Task-IL) setting. In the latter, we assume that a task identifier is provided to the model at
inference time, simplifying the problem by restricting the set of class predictions for a given sample.
While Task-IL is often depicted as a trivial scenario in recent literature [23, 64, 2], we emphasize
its usefulness, as it isolates the effect of within-task forgetting from the model’s bias towards the
currently learned classes [71, 25, 7]. In the paper, we mainly report results in Class-IL, while the
results in Task-IL setting are given in the supplementary materials. Results are reported in term of
mean and standard deviation over five different runs.

4.2 Results

We first evaluate the contribution that saliency-driven modulation provides to state-of-the-art OCL
baselines. For each method, we compute Class-Incremental accuracy and compare to those obtained
when integrating SER, as described in Sec. 3. Since our strategy foresees two paired networks for
classification and saliency prediction, we also compare with similar multi-branch CL baselines:

• DualNet [51], mentioned in Sec. 1, employs a dual-backbone architecture to decouple incremental
classification (by a fast learner) from self-supervised representation learning [73] (by a slow
learner). We adapt SER to DualNet by replacing the slow learner and its training objective with
our saliency prediction backbone, forcing the fast learner to use saliency features for classification.

• TwF [8] employs a frozen pre-trained classification backbone to stabilize the learning of Class-
Incremental features, by means of an attention mechanism. To enable SER, the pre-trained
classification backbone and the feature distillation strategy are replaced with the saliency encoder,
and the features of the two backbones are combined through multiplication, as described in Sec. 3.

Results are reported in Table 1, showing a pattern of enhanced performance when integrating SER
up to 20 percent points. In terms of comparison against two-paired networks, integrating SER
outperforms both of them, suggesting that controlling learning through saliency leads to better
representation for classification than, for instance, contrastive learning (as done in DualNet) or feature
attention with a pre-trained backbone (as in TwF)2. This is inline with cognitive neuroscience [19, 35],
for which object identity-preservation, that also involves contrastive learning, happens mostly at
later layers (e.g., IT neurons), while selective attention (through visual saliency) acts during the
whole categorization process. Results for non-rehearsal methods are reported in the supplementary
materials.

4.3 Ablation Study

The proposed strategy is grounded on cognitive neuroscience literature, according to which selective
attention modulates neuronal responses of all layers involved in the categorization process, in a
multiplicative fashion. Our next experiments are meant to assess whether this hypothesis (i.e., feature
modulation through multiplication for all classification layers) is optimal also for artificial neural
networks, or if other integration modalities of saliency information may be equally effective. We
thus compare our SER strategy with the following baselines, all exploiting saliency information in
different ways:

• Saliency-based input modulation (SIM): the input image is multiplied by the corresponding
estimated saliency map (thus highlighting salient regions only).

• Saliency as additional input (SAI): we modify the classification network to receive as input a 4D
data tensor, with the saliency map concatenated to RGB channels.

• Learning saliency-based modulation (LSM): rather than multiplying classification features z(c)i−1

and saliency features z(s)i−1 (see Eq. 4), we feed them to convolutional layer with 1×1 kernel to

produce z
(c)
i , and let the model learn the corresponding parameters.

2We could not run TwF with buffer size of 5000, due to excessive computing requirements.
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Table 1: Class-Incremental accuracy of SOTA rehearsal-based methods with and without SER.

Model Split Mini-ImageNet Split FG-ImageNet

Joint 14.79±1.17 9.06±1.07

Fine-tune 3.43±0.35 2.43±0.81

Buffer size 1000 2000 5000 1000 2000 5000

DER++ 14.95±3.11 12.82±4.97 14.58±2.55 8.08±1.54 8.27±1.72 9.20±0.86

↪→SER 19.13±1.62 22.92±2.25 25.35±2.56 11.71±2.36 12.97±1.62 13.73±1.95

ER-ACE 20.86±3.69 24.93±3.20 26.31±5.22 14.28±0.96 16.45±1.24 18.21±3.45

↪→SER 27.48±2.83 33.09±1.28 35.58±1.79 20.03±3.13 23.80±2.11 28.68±0.50

CoPE 21.58±1.60 23.58±4.39 24.77±3.56 16.45±1.38 16.81±0.83 17.77±2.02

↪→SER 26.66±2.22 33.35±4.67 45.04±2.44 18.17±2.79 27.14±1.62 34.34±3.51

Dual-branch methods

TwF 23.78±1.67 29.05±2.02 – 15.32±2.59 18.72±1.75 –
↪→SER 28.36±3.72 35.55±0.61 – 20.04±1.63 22.54±2.20 –

DualNet 20.57±0.91 27.41±1.79 32.08±1.55 15.62±1.54 21.04±1.08 22.07±2.08

↪→SER 28.58±1.40 33.76±1.21 36.44±0.77 19.48±0.59 22.53±1.56 24.83±2.01

Split Mini-ImageNet Split FG-ImageNet

Figure 3: Comparison of SER to alternative saliency integration strategies. SIM modulates
input images by saliency maps. SAI provides saliency maps as an additional input channel to
the classification network. LSM merges classification and saliency features through a learnable
convolutional layer.

Fig. 3 reports the results of this analysis, using DER++ and ER-ACE as baseline methods, and
clearly indicates the superiority the SER strategy to other saliency integration variants. However, it
is interesting to note that saliency helps classification performance in all cases, demonstrating its
usefulness for continual learning tasks. We argue that this is due to the intrinsic nature of saliency
prediction, which we found to be i.i.d. with respect to the data stream.

We then investigate whether the impact of selective-driven modulation is uniform across the backbone
layers. To this aim, we define a positional binary coding scheme, controlling the application of
the SER strategy at the predefined points of the network (see Sect. 4.1): if position i of the coding
scheme is 1, then the i-th feature modulation point is enabled, i.e., features from the i-th block of
the classification network are multiplied by the features of the i-th block of the saliency network.
Results are reported in Table 2 for both DER++ and ER-ACE, and indicate that the best strategy is to
modulate the features of all classification layers through the corresponding saliency ones, similarly to
what neurophysiological evidence reports [63, 45].

4.4 Model Robustness

We finally assess the robustness of the SER strategy to spurious features and adversarial attacks.
Spurious features are information that correlates well with labels in training data. but not in test data
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Table 2: Performance comparison when applying SER to DER++ and ER-ACE at different layers
of the ResNet-18 backbone, with buffer size 2000 (Class-IL).

Split Mini-ImageNet Split FG-ImageNet

SER Scheme DER++ ER-ACE DER++ ER-ACE

1 1 1 0 0 12.97±2.62 23.72±0.77 6.54±0.67 18.08±0.96

1 1 1 1 0 17.46±1.02 26.44±2.33 8.77±1.45 16.55±2.55

1 1 1 1 1 22.92±2.25 33.09±1.28 12.97±1.62 23.80±2.11

(e.g., in a classification task between birds and dogs, training with yellow birds and black dogs only),
leading to low generalization [34]. This effect is exacerbated in continual learning settings, where the
covariate shift between train data and test data increases as new tasks come in. Thus, we measure
to what extent our SER strategy can mitigate the tendency of learning methods to exploit spurious
features to solve classification tasks. We crafted an ad-hoc benchmark consisting of ten classes from
ImageNet. For each class, we added a class signature for training images, leaving the test images
unaltered. In detail, we modified each training image by increasing the brightness of all pixels by
a class-dependent offset, computed as 5(c+ 1) (in a 0-255 brightness range), where c is a numeric
class label. We then define five continual learning tasks with two classes each. We then compare
ER-ACE to the corresponding SER-enabled variant and ground its performance with the one obtained
when it is trained with original images (i.e., without enforcing spurious features in the data). Results
in Table 3 show that SER effectively limits the possibility for the classifier to use spurious features,
resulting in a more robust and generalizing model. The drop of performance (about 22 percent points)
observed between training with the original data and training with data biased by spurious features is
almost completely recovered when SER is used.

Finally, we evaluate the robustness of SER against adversarial perturbations of the input space.
To this aim, we apply the Projected Gradient Descent (PGD) attack [42] with different ε values
(determining the strength of the attack) and compare the average performance drop experienced by
ER-ACE, in its original version and when combined with SER. We conduct the evaluation on both
Split Mini-ImageNet and Split FG-ImageNet, repeating each experiment three times. As shown in
Figure 4, SER considerably improves model stability, counteracting perturbations by regularizing
classification features with saliency ones.

Supplementary materials include additional experiments: performance in Task-IL settings, results for
buffer-free methods, effect of pre-training on a pre-text task for the classifier and saliency predictor
backbones, and cost analysis showing training and inference times of our approach compared to
existing methods.

Method Class-IL Task-IL

ER-ACE 50.07±3.88 86.77±1.63

ER-ACESF 28.46±3.46 74.40±4.37

↪→SER 44.08±3.67 83.04±3.06

Figure 4: Robustness to adversarial attacks.
ER-ACE baseline drops even with small attacks,
while SER significantly enhances robustness.

Table 3: Effect of the SER strategy in the
presence of spurious features. The SF apex
shows training on a biased dataset with spurious
features.
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5 Conclusion

We presented SER, a biologically-inspired saliency-driven modulation strategy for online continual
learning, which regularizes classification features using visual saliency, effectively reducing for-
getting. The proposed approach, grounded on neurophysiological evidence, significantly improves
performance of state-of-the-art OCL methods, and has been shown to be superior to other multi-
branch solutions, either biologically-inspired (e.g., DualNet) or based on attention mechanisms (e.g.,
TwF). Our results confirm that adapting neurophysiological processes into current machine learning
techniques is a promising direction to bridge the gap between humans and machines.

Limitations and future works. In this work, we introduce the use of saliency maps as auxiliary
knowledge to mitigate forgetting in continual learning. This involves pre-training our saliency
predictor with an oracle, which could be in the form of either ground-truth maps or an external model
generating pseudo-labels. High-quality input images are necessary for producing meaningful saliency
maps, thus, datasets like CIFAR10/100 cannot be employed due to their lower resolution.
Although SER is model-agnostic, its formulation necessitates that the saliency encoder and the
classifier share identical architectures. To apply this to heterogeneous networks, we will explore
defining or learning mappings between activations at different network stages.

Finally, our finding that saliency prediction is i.i.d. with respect to classification distribution shifts
opens the door to investigating whether other low-level visual tasks share this property.
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A Supplementary Materials

A.1 Architectural Details of the Saliency Prediction Network

Figure SF-1: Overview of the Saliency Prediction Network used for our experiments

For our experiments we create an ad-hoc encoder-decoder saliency prediction network with skip
connections. This network uses a ResNet-18 as encoder as to be similar to the paired classifier, thus
easing the saliency-based modulation between the two branches.
The saliency decoder is instead broadly inspired by UNISAL[20]. We opted for UNISAL decoder
because of the low number of parameters it requires, which leads to a short runtime if compared
to other saliency models3. In particular, the decoder consists of a stack of pointwise convolutions
and deptwhise separable 3× 3 convolutions, interleaved with bilinear upsampling blocks until the
size of the original input image is recovered, while features from second and third residual blocks
of the Encoder are used as skip connections, through two modules named Skip-2 and Skip-4, to
fuse features extracted at different abstraction levels. The architecture of the proposed model is
illustrated in Fig. SF-1. Essentially, features from the bottleneck are upsampled with a factor α = 2
and concatenated with the output of Skip-2 module. The obtained features maps are upsampled
again with a factor β = 2 and concatenated with the output of Skip-4 module, while the number of
feature maps is progressively scaled from the original value of 512 to 64. One last 1× 1 convolution,
followed by an upsampling layer and logistic activation, reduces the feature maps to 1 and the spatial
sizes are restored to those of the input image. More details are reported in Table ST-1.

Table ST-1: Detailed input-output sizes of the Decoder of our Saliency Prediction Network
Saliency Model: Decoder

Name type kernel/(stride) Batch Norm Activation Input shape Output shape

Post-cnn SepConv2D 3× 3/(3, 3) Yes ReLU 512× 036× 048 512× 036× 048
Conv2D 3× 3/(1, 1) Yes — 512× 036× 048 256× 036× 048

Upsampling-1 Upsample α = 2 — — — 256× 036× 048 256× 072× 096

Skip-2 Conv2D 1× 1/(1, 1) Yes ReLU 256× 072× 096 512× 072× 096
Conv2D 1× 1/(1, 1) Yes — 512× 072× 096 512× 072× 096

Upsampling-2

Conv2D 1× 1/(1, 1) Yes ReLU 384× 072× 096 768× 072× 096
SepConv2D 3× 3/(1, 1) Yes ReLU 768× 072× 096 768× 072× 096

Conv2D 1× 1/(1, 1) Yes — 768× 072× 096 128× 072× 096
Upsample β = 2 — — — 768× 072× 096 128× 144× 192

Skip-4 Conv2D 1× 1/(1, 1) Yes ReLU 128× 144× 192 256× 144× 192
Conv2D 1× 1/(1, 1) Yes — 256× 144× 192 064× 144× 192

Post-Upsampling-2
Conv2D 1× 1/(1, 1) Yes ReLU 192× 144× 192 384× 144× 192

SepConv2D 3× 3/(1, 1) Yes ReLU 384× 144× 192 384× 144× 192
Conv2D 1× 1/(1, 1) Yes — 384× 144× 192 064× 144× 192

Fusion Conv2D 1× 1/(1, 1) — Sigmoid 064× 144× 192 001× 144× 192
Upsample γ = 2 — — — 001× 144× 192 001× 288× 384

3A comprehensive comparison between performance, number of parameters and execution runtime of the
most recent saliency models can be found at: https://mmcheng.net/videosal/
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A.2 Additional experiments

A.2.1 Additional Comparison with Recent CL methods

We further extend the performance analysis by comparing our SER strategy to other prominent CL
methods in the Class-Incremental Learning setting, including recent approaches explicitly designed
for Online CL, such as PEC [72] and OnPro [70]. As shown in Table ST-2, methods trained with
the SER strategy (last three rows, as previously presented in Table 1 of the main paper) outperform
existing methods by several percentage points, confirming the effectiveness of our approach compared
to recent OCL strategies.
We also report the results obtained with TASS [38], a prior work that share some similarities with our
SER method, as it introduced the use of attention maps in CL. However, these are significant differ-
ences between the two approaches. First, TASS employs a static, pre-trained saliency detector, which
does not showcase the forgetting-free capabilities of saliency prediction since it is not continuously
trained, unlike SER. Additionally, TASS is not designed for the OCL scenario, as it requires a large
number of training epochs per task (100) and, in its original implementation, uses 50% of the classes
in the first task.

Table ST-2: Comparison with SOTA methods, in terms of Class-IL final average accuracy (FAA).
Method Split Mini-ImageNet Split FG-ImageNet

Buffer-free methods

PEC [72] 14.87±0.15 12.58±0.54

TASS [38] 6.87±2.47 5.49±0.70

Rehearsal-based methods

Buffer size 1000 2000 5000 1000 2000 5000
ER [56] 14.51±5.55 16.85±2.32 19.73±1.48 10.41±0.07 6.67±0.89 10.00±1.98

A-GEM [12] 3.87±0.25 3.57±0.47 3.61±0.87 3.50±0.28 3.50±0.34 3.60±0.08

BiC [71] 7.50±1.11 9.36±0.03 9.53±1.39 4.87±0.52 4.73±1.43 4.65±0.32

FDR [5] 3.36±0.28 3.78±0.06 3.76±0.35 3.30±0.06 3.27±0.04 3.15±0.13

GEM [41] 5.45±0.14 5.92±1.10 5.76±0.51 3.17±0.10 2.59±0.13 3.43±0.04

GDumb [52] 16.14±0.48 24.12±0.96 38.67±0.04 11.95±0.16 19.29±1.74 32.19±1.51

GSS [2] 7.88±2.61 11.18±1.30 9.38±0.71 7.78±0.85 6.41±0.21 9.07±0.35

iCaRL [55] 15.64±0.13 15.81±0.53 14.58±1.58 8.97±0.66 9.32±0.03 8.84±0.76

LUCIR [25] 8.77±1.12 12.14±2.06 17.23±1.10 5.00±0.06 5.47±0.49 5.40±0.59

RPC [50] 17.14±3.77 20.08±1.09 21.00±0.46 9.96±0.99 9.32±0.71 9.29±1.12

OnPro [70] 19.34±0.26 24.29±0.67 32.23±0.51 11.73±0.30 15.63±0.13 19.95±0.66

DER++ + SER 19.13±1.62 22.92±2.25 25.35±2.56 11.71±2.36 12.97±1.62 13.73±1.95

ER-ACE + SER 27.48±2.83 33.09±1.28 35.58±1.79 20.03±3.13 23.80±2.11 28.68±0.50

CoPE + SER 26.66±2.22 33.35±4.67 45.04±2.44 18.17±2.79 27.14±1.62 34.34±3.51

A.2.2 Task-Incremental Learning setting performance

Table ST-3 reports the Task-Incremental accuracy of OCL baselines alone and when integrated with
SER.

A.2.3 SER with Buffer-free methods

In Table ST-4 we report the results for both Class-Incremental and Task-Incremental settings using
two common buffer-free methods: LwF [36] and oEWC [30]. Applying SER leads to performance
improvements in both cases. In this case, the improvements are more evident for Task-Incremental; a
marginal gain in Class-Incremental is also noticeable, though the low performance of the baseline
methods limits the room for improvements.
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Table ST-3: Task-Incremental accuracy of state-of-the-art methods with and without SER.

Model Split Mini-ImageNet Split FG-ImageNet

Joint 63.12±1.19 56.33±2.51

↪→SER 64.18±0.60 56.72±1.09

Fine-tune 34.08±2.28 28.81±1.66

↪→SER 57.07±3.44 51.24±2.36

Buffer size 1000 2000 5000 1000 2000 5000

DER++ 73.07±3.07 75.11±5.61 77.71±3.04 68.65±2.14 70.24±3.97 74.74±1.14

↪→SER 79.75±1.56 82.97±0.25 84.10±0.81 72.83±3.90 75.40±2.29 78.26±1.10

ER-ACE 71.00±3.21 75.60±3.47 77.17±4.08 66.27±0.92 69.09±3.15 70.88±5.72

↪→SER 77.51±2.72 82.22±0.96 83.56±1.55 73.08±2.14 75.60±2.28 79.46±0.56

CoPE 68.00±0.73 71.76±2.95 74.31±2.25 63.77±2.32 67.29±3.33 69.14±2.93

↪→SER 72.69±0.80 77.57±1.57 84.64±1.20 64.79±1.60 73.39±1.11 78.66±1.59

Dual-branch methods

TwF 73.57±1.27 78.38±1.66 – 64.32±5.18 72.15±2.82 –
↪→SER 79.28±2.24 82.98±0.85 – 71.35±1.70 73.34±2.94 –

DualNet 72.65±0.56 76.49±0.65 80.26±0.97 67.60±1.56 71.54±0.72 74.53±1.27

↪→SER 81.79±0.59 83.79±0.27 85.72±0.40 75.76±0.51 78.35±0.36 80.18±0.52

Table ST-4: Class-Incremental and Task-Incremental accuracy of non-rehearsal methods with
and without SER.

Model Split Mini-ImageNet Split FG-ImageNet
Class-IL Task-IL Class-IL Task-IL

Joint 14.79±1.17 63.12±1.19 9.06±1.07 56.33±2.51

↪→SER 16.26±0.30 64.18±0.60 9.51±0.93 56.72±1.09

Fine-tune 3.43±0.35 34.08±2.28 2.43±0.81 28.81±1.66

↪→SER 4.20±0.27 57.07±3.44 3.68±0.44 51.24±2.36

LwF 3.18±0.41 30.61±1.80 3.25±0.45 27.55±1.64

↪→SER 4.22±0.31 48.61±2.14 3.57±0.23 36.57±2.09

oEwC 2.68±0.24 24.10±1.55 2.38±0.23 24.98±1.15

↪→SER 3.08±0.31 35.33±3.18 2.55±0.55 26.02±1.64

A.2.4 Effect of classification pre-training

In Table 1 of the paper we have reported the results of our experiments when the classification
backbones of the baseline methods are initialized to the same weights as the saliency encoder, for
a fair comparison. In this section, in order to demonstrate generalization capabilities of the SER
strategy, and to ground our approach to the CL methods that exploit pre-training, we also compute
performance when the classifier backbone and saliency encoder are pre-trained on a classification
pre-text task (despite using classification-pretrained features appears to be in contrast to what it
happens in the human brain). Differently from what described in Sec. 4.1, here we use the same
disjoint subset of ImageNet classes to train the backbone of the classifier, then we initialize the
saliency encoder to the same weights. Also in this setting, methods combined to SER achieve better
results, as show in Table ST-5. However, the performance gain is lower than the one obtained with
saliency pre-training. This is possibly due the fact that classification pre-trained features are better
than saliency ones (as also evidenced by the general higher performance obtained with classification
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pre-training) and have reached their maximum capacity. These results confirm again the contribution
of the forgetting-free behaviour of the saliency prediction task to classification tasks.

Table ST-5: Class-IL and Task-IL performance when the classifier backbone and saliency
encoder are pre-trained on a classification task with classes different from those available in the
continual learning settings.

Model Split Mini-ImageNet Split FG-ImageNet
Buffer 1000 2000 5000 1000 2000 5000

CLASS-IL CLASS-IL

DER++ 30.35±0.74 30.96±0.59 32.55±1.47 15.76±0.58 16.61±0.26 16.83±0.44

↪→SER 31.20±2.39 33.91±2.31 37.91±1.07 17.06±1.51 20.43±2.11 22.53±0.82

ER-ACE 42.33±0.57 45.84±0.50 48.77±1.28 30.91±1.02 34.09±0.57 37.49±0.47

↪→SER 46.56±1.10 50.52±0.69 53.23±0.35 32.46±1.09 36.08±1.60 40.73±0.84

TASK-IL TASK-IL

DER++ 89.98±0.75 91.14±0.20 91.37±0.10 83.87±0.81 85.61±0.29 86.19±0.21

↪→SER 89.34±0.54 90.47±0.32 91.36±0.30 82.34±0.54 84.04±0.40 84.83±0.32

ER-ACE 88.28±0.50 90.14±0.05 91.23±0.13 82.83±0.40 85.39±0.38 87.29±0.08

↪→SER 89.99±0.46 90.83±0.20 91.84±0.08 82.94±1.15 84.25±0.95 86.51±0.25

A.2.5 Backbones Comparison

We performed other experiments including alternative backbones beyond the classical ResNet-18
to evaluate the generalization capability of SER across different architectures. Specifically, we
applied our SER strategy with ResNet-50, MobileNet V2, and DenseNet-121. For each backbone, we
compare the results obtained with the ER-ACE method with buffer size = 1000, in three scenarios:
when the backbone is trained from scratch, when it is fine-tuned, and when SER is applied. As
reported in Table ST-6, in all cases our SER approach leads to improved performance, thereby
demonstrating its effectiveness.

A.2.6 Saliency Prediction in CL settings

Figure SF-2: Saliency prediction accuracy, measured in terms of Similarity (SIM), Pearson’s
Correlation Coefficient (CC) and Kullback-Leibler divergence (KLD) metrics, in continual learning
settings on the Split Mini-ImageNet and Split FG-ImageNet benchmarks.

Table ST-6: Class-IL performance on ER-ACE using different backbones.

Split Mini-ImageNet
Backbone not pre-trained pre-trained ER-ACE+SER
ResNet18 15.71±0.76 20.86±3.69 27.48±2.83

ResNet50 13.38±1.41 20.34±2.72 32.16±1.23

MobileNet V2 12.76±0.54 16.55±0.69 17.77±0.41

DenseNet121 15.47±0.62 18.68±1.85 21.03±0.05
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We here report quantitative performance of estimated saliency in CL settings. Fig SF-2, in particular,
shows the forgetting-free behaviour of saliency predictions: Pearson’s Correlation Coefficient (CC),
Similarity (SIM) and Kullback-Leibler divergence (KLD) (metrics commonly employed for saliency
predictions [10] do not degrade with the number of CL tasks.

A.2.7 Cost Analysis

Table ST-7: Comparison of training and inference times and parameters between SER, DualNet
and TwF.

Metric DualNet [51] TwF [8] SER
Train params 16 M 58 M 23 M
Train time ∼ 6.5 h ∼ 3.0 h ∼ 1.0 h
Inference params 16 M 11 M 22 M
Inference time 3.45 ms 3.15 ms 7.50 ms

Table ST-8: Training time for the competitor methods, in their standard version, and when our SER
strategy is applied.

Model baseline + SER
LwF < 1.0 h ∼ 1.5 h
oEWC ∼ 1.0 h ∼ 1.5 h
DER++ ∼ 0.5 h ∼ 1.0 h
ER-ACE ∼ 0.5 h ∼ 1.0 h
CoPE ∼ 2.0 h ∼ 3.5 h

We perform cost analysis to assess the efficiency of our SER approach compared to existing methods
that employ two branches, i.e., TwF [8] and DualNet [51]. It is important to note that in a continual
learning settings, efficiency at training times might be more relevant than the one at inference times
as the main assumption is of a deep model that keeps training from an infinite stream of data. The
comparison is carried out using the ResNet18 backbone for all models. The results in Table ST-7
reveals that SER is much more efficient than DualNet and TwF at training time, while it shows higher
costs at inference time (but also an accuracy gain of ∼10 points).
Additionally, in Table ST-8 we report the training times of the baseline version of the competitor
methods, and when integrated with SER. Training time is approximately the same on both datasets, as
they consist of an equal overall number of images, and the size of the buffer has a negligible impact
on the training time.
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A.3 Reproducibility Details

A.3.1 Hyperparameter Search

In Tables ST-9 and ST-10 we show the best hyperparameters combinations for each method.

Table ST-9: Split Mini-ImageNet
Method Buffer Split-MiniImageNet
SGD – lr: 0.1
LwF – lr: 0.01 alpha: 3.0 softmax_temp: 2.0 wd: 0.0005
oEWC – lr: 0.03 e_lambda: 10 gamma: 1.0
DER++ 1000 lr: 0.01; alpha: 0.1; beta: 0.5;
DER++ 2000 lr: 0.01; alpha: 0.1; beta: 0.5;
DER++ 5000 lr: 0.01; alpha: 0.1 beta: 0.5
ER-ACE 1000 lr: 0.01; mom: 0 wd: 0
ER-ACE 2000 lr: 0.01; mom: 0 wd: 0
ER-ACE 5000 lr: 0.01; mom: 0 wd: 0
CoPE 1000 lr: 0.01; hidden_dim: 256; loss_T:0.05; p_momentum:0.9;
CoPE 2000 lr: 0.01; hidden_dim: 256; loss_T:0.05; p_momentum:0.9;
CoPE 5000 lr: 0.01; hidden_dim: 256; loss_T:0.05; p_momentum:0.9;
TwF 1000 lr: 0.01; der_alpha: 0.3; der_beta:0.9;
TwF 2000 lr: 0.01; der_alpha: 0.3; der_beta:0.9;
DualNet 1000 lr: 0.01; n_outer: 3; n_inner: 2; temp_reg = 2; alpha_reg: 10.0 slownet_beta: 0.05
DualNet 2000 lr: 0.01; n_outer: 3; n_inner: 2; temp_reg = 2; alpha_reg: 10.0 slownet_beta: 0.05
DualNet 5000 lr: 0.01; n_outer: 3; n_inner: 2; temp_reg = 2; alpha_reg: 10.0 slownet_beta: 0.05

Table ST-10: Split FG-ImageNet
Method Buffer Split FG-ImageNet
SGD – lr: 0.1
LwF – lr: 0.01 alpha: 3.0 softmax_temp: 2.0 wd: 0.0005
oEWC – lr: 0.03 e_lambda: 10 gamma: 1.0
DER++ 1000 lr: 0.01; alpha: 0.1; beta: 0.5;
DER++ 2000 lr: 0.01; alpha: 0.1; beta: 0.5;
DER++ 5000 lr: 0.01; alpha: 0.1 beta: 0.5
ER-ACE 1000 lr: 0.01; mom: 0 wd: 0
ER-ACE 2000 lr: 0.01; mom: 0 wd: 0
ER-ACE 5000 lr: 0.01; mom: 0 wd: 0
CoPE 1000 lr: 0.01; hidden_dim: 256; loss_T:0.05; p_momentum:0.9;
CoPE 2000 lr: 0.01; hidden_dim: 256; loss_T:0.05; p_momentum:0.9;
CoPE 5000 lr: 0.01; hidden_dim: 256; loss_T:0.05; p_momentum:0.9;
TwF 1000 lr: 0.01; der_alpha: 0.3; der_beta:0.9;
TwF 2000 lr: 0.01; der_alpha: 0.3; der_beta:0.9;
DualNet 1000 lr: 0.01; n_outer: 3; n_inner: 2; temp_reg = 2; alpha_reg: 10.0 slownet_beta: 0.05
DualNet 2000 lr: 0.01; n_outer: 3; n_inner: 2; temp_reg = 2; alpha_reg: 10.0 slownet_beta: 0.05
DualNet 5000 lr: 0.01; n_outer: 3; n_inner: 2; temp_reg = 2; alpha_reg: 10.0 slownet_beta: 0.05

A.3.2 Task sequence details

In Tables ST-11 and ST-12 we report the combination of class order and their division into tasks
employed in our experiments during the continual training. Each name corresponds to a different
synset of the ImageNet dataset.
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Table ST-11: Split-MiniImageNet
Task Synsets
τ1 n02091244 n01770081 n03207743 n01749939 n02110063
τ2 n02174001 n02165456 n02687172 n09246464 n02871525
τ3 n01855672 n03062245 n04149813 n04067472 n04522168
τ4 n02138441 n04509417 n04275548 n03888605 n01981276
τ5 n02091831 n03400231 n02219486 n02795169 n03773504
τ6 n03337140 n01558993 n03998194 n02129165 n03127925
τ7 n02457408 n02108915 n04389033 n04604644 n03908618
τ8 n02443484 n02116738 n03854065 n03544143 n09256479
τ9 n04251144 n02606052 n02113712 n02950826 n07747607
τ10 n02108551 n02108089 n07613480 n03527444 n02823428
τ11 n01532829 n02981792 n02120079 n03476684 n03047690
τ12 n02971356 n02074367 n06794110 n04612504 n03924679
τ13 n01910747 n02105505 n03584254 n03770439 n01930112
τ14 n04435653 n03347037 n03535780 n04243546 n04596742
τ15 n02099601 n04418357 n02089867 n03272010 n03220513
τ16 n04146614 n04443257 n02111277 n02747177 n04515003
τ17 n13054560 n01843383 n07584110 n13133613 n04258138
τ18 n03075370 n02966193 n03417042 n03146219 n03838899
τ19 n03775546 n03017168 n03980874 n02114548 n03676483
τ20 n01704323 n07697537 n02101006 n04296562 n02110341

Table ST-12: Split FG-ImageNet
Task Synsets
τ1 n01943899 n01753488 n01819313 n01601694 n01695060
τ2 n02028035 n01675722 n01498041 n01774750 n01608432
τ3 n01685808 n01978287 n01537544 n01742172 n01924916
τ4 n01829413 n01818515 n01494475 n01877812 n02027492
τ5 n02058221 n01491361 n01910747 n01729977 n02018207
τ6 n01824575 n01986214 n01860187 n01773797 n01630670
τ7 n01796340 n01687978 n01984695 n01729322 n01833805
τ8 n01776313 n01443537 n01560419 n02018795 n01985128
τ9 n01677366 n01755581 n01739381 n01770081 n02013706
τ10 n01978455 n02037110 n01514668 n01440764 n01855672
τ11 n01756291 n01770393 n01775062 n01632458 n01820546
τ12 n01496331 n01582220 n01734418 n01622779 n01632777
τ13 n01806143 n01773549 n01774384 n02077923 n01740131
τ14 n01484850 n01914609 n01665541 n01667778 n01847000
τ15 n01667114 n01728572 n01693334 n01843383 n01950731
τ16 n01514859 n02012849 n01773157 n01614925 n01795545
τ17 n01944390 n02011460 n01883070 n02002556 n01798484
τ18 n02051845 n01644900 n01531178 n01968897 n01698640
τ19 n01592084 n01955084 n01930112 n02007558 n01735189
τ20 n01751748 n01664065 n01749939 n02006656 n01828970
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims made in the abstract and the introduction are demonstrated experi-
mentally in the evaluation section.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper discusses the limitations of the work in the concluding section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The present work does not contain any theoretical result. Mathematical
formulas are used for explaining the method.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper includes every necessary piece of information to define the model,
data splits and training procedure in order to reproduce faithfully discussed results, including
the number of training epochs, learning rate and all hyperparamters. The source code will
be released upon acceptance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code will be released upon acceptance. The datasets used derive from
ImageNet; they are already public and available online.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The details necessary to faithfully reproduce our experiments (training pro-
cedure, optimizer, number of epochs, learning rate, etc.) are included in the paper. The
supplementary materials contain a list of hyperparameters for each method used in our work
and any other necessary details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Results are provided in terms of means and standard deviations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The system on which the experiments were conducted is described in the
paper. The execution times for main experiments are provided in Tables ST-7 and ST-8 of
the supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We reviewed and ensured that the present work respects the NeurIPS Code of
Ethics at each individual part.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We propose a learning scheme to reduce forgetting regardless of the down-
stream model and task, thus there is no impact to the society related to the method.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We did not use any LLM and Generative models. Furthermore all datasets
used for evaluation are opensource.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: References to every original owner/creator are added. Assets referenced are
shown in Table CL-1.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.

26



Table CL-1: Assets used and licence information.

Asset Type License Github / URL Citation/Reference

Mammoth code MIT aimagelab/mammoth [9]
UNISAL code Apache-2.0 rdroste/unisal [20]
Split-MiniImageNet data non-commercial research yaoyao-liu/mini-imagenet-tools [66]
Split-FG-ImageNet data non-commercial research https://www.kaggle.com/datasets/ambityga/imagenet100 [58]

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
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approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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