Can large language models explore in-context?

Anonymous Authors'

Abstract

We investigate the extent to which contemporary
Large Language Models (LLMs) can engage in
exploration, a core capability in reinforcement
learning and decision making. We focus on na-
tive performance of existing LLMs, without train-
ing interventions. We deploy LLMs as agents in
simple multi-armed bandit environments, speci-
fying the environment description and interaction
history entirely in-context, i.e., within the LLM
prompt. We experiment with GPT-3.5, GPT-4,
and LLAMAZ2, using a variety of prompt designs,
and find that the models do not robustly engage in
exploration without substantial interventions: i)
Across all of our experiments, only one configura-
tion resulted in satisfactory exploratory behavior:
GPT-4 with chain-of-thought reasoning and an ex-
ternally summarized interaction history, presented
as sufficient statistics; ii) All other configurations
did not result in robust exploratory behavior, in-
cluding those with chain-of-thought reasoning but
unsummarized history. Although these findings
can be interpreted positively, they suggest that
external summarization—which may not be pos-
sible in more complex settings—is important for
obtaining desirable behavior from LLM agents.
We conclude that non-trivial algorithmic inter-
ventions, such as fine-tuning or dataset curation,
may be required to empower LLM-based decision
making agents in complex settings.

1. Introduction

In-context learning is an important emergent capability of
Large Language Models (LLMs) that enables one to use
a pre-trained LLM to solve a problem by specifying the
problem description and relevant data entirely in-context,
i.e., within the LLM prompt, with no updates to the LLM

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email @domain.com>.

Preliminary work. Under review by the 1st In-context Learning
Workshop at the International Conference on Machine Learning
(ICML). Do not distribute.

parameters (Brown et al., 2020). For example, one can
prompt an LLM with numeric covariate vectors and scalar
targets and subsequently obtain regression-style predictions
from the model by including new covariate vectors in the
prompt (Garg et al., 2022). Perhaps surprisingly, LLMs
are not explicitly trained for this behavior; instead the un-
derlying algorithms employed for in-context learning are
extracted from the training corpus and emerge at scale.

Since its discovery in the GPT-3 model (Brown et al., 2020),
in-context learning has been the subject of a growing body
of research. These works include theoretical investigations
into the underlying mechanisms (e.g., Xie et al., 2021;
Akytirek et al., 2022), empirical probes (e.g., Garg et al.,
2022; Kirsch et al., 2022), and works leveraging in-context
learning in applications (e.g., Xu et al., 2022; Som et al.,
2023; Edwards et al., 2023). This literature predominantly
studies in-context learning for prediction or supervised
learning tasks, and while theoretical progress is in its in-
fancy, our understanding of how to use in-context supervised
learning (ICSL) in practice is rapidly taking shape.

Although supervised learning is an important capability,
many applications demand the use of ML models for down-
stream decision making. Thus, in-context reinforcement
learning (ICRL) and sequential decision making is a natu-
ral next frontier. LLMs are already being used as decision
making agents in applications ranging from experimental
design in the natural sciences (Lee et al., 2023b) to game
playing (Shinn et al., 2023; Wang et al., 2023), but our
understanding—theoretically and operationally—of ICRL
is far less developed than for ICSL. To date, we lack a
systematic understanding as to whether LLMs can be con-
sidered general-purpose decision making agents.

Decision making agents must possess three core capabili-
ties: generalization (required for supervised learning), explo-
ration (making decisions that may be suboptimal in the short
term for the sake of gathering more information) and plan-
ning (to account for long-term consequences of decisions).
In this paper, we focus on exploration, the capability to de-
liberately gather information in order to evaluate alternatives
and reduce uncertainty. A recent series of papers (Laskin
et al., 2022; Lee et al., 2023a; Raparthy et al., 2023) demon-
strates in-context reinforcement learning behavior (includ-
ing exploration) in transformer models when they are ex-

Can large language models explore in-context?

plicitly trained to produce this behavior using data from
reinforcement learning agents or expert demonstrations on
related tasks. Such training tends to be laborious, expensive,
and possibly task-specific. In particular, these findings do
not shed light into whether exploratory behavior manifests
in general-purpose LL.Ms obtained via standard training
methods, which suggests the following basic question:

Do contemporary LLMs exhibit the capability to
explore in-context?

Contributions. We investigate this question by deploying
LLMs as agents in simple synthetic reinforcement learning
problems, namely multi-armed bandits (MABs) (Slivkins,
2019; Lattimore & Szepesvari, 2020), specifying the envi-
ronment description and interaction history entirely within
the LLM prompt. Multi-armed bandits are a classical and
well-studied type of RL problem that isolates the tradeoff
between exploration and exploitation, i.e., making the best
decision given the available data. They are also a funda-
mental building block toward general sequential decision
making; the ability to solve MABs is a prerequisite for
more challenging reinforcement learning tasks. Their sim-
plicity, centrality to RL, and focus on exploration versus
exploitation make MABs a natural choice for systematically
studying the in-context exploration abilities of LLMs.

We evaluate the in-context exploration behavior of GPT-3.5
(Brown et al., 2020), GPT-4 (OpenAl, 2023), and LLAMA2
(Touvron et al., 2023) in MAB environments, using a variety
of prompt designs. In our experiments, we find that only a
single configuration (i.e., a prompt design and LLM pair)
results in satisfactory exploratory behavior. All other con-
figurations exhibit exploration failures, failing to converge
to the best decision (arm) with significant probability. We
find that typically this happens due to suffix failures, where
the LLM fails to select the best arm even once after some
initial rounds (i.e., in some “time suffix”). This scenario is
reflected in Figure 1(a): in particular, GPT-4 with our basic
prompt design experiences a suffix failure in > 60% of the
replicates. An alternative failure mode we identify is where
the LLM behaves “uniformly”, selecting all arms near-
equally often and failing to narrow down to the better ones.

The single configuration thato succeeds in our experiments
involves a combination of GPT-4 and an “enhanced” prompt
that (a) provides a suggestive hint to explore, (b) externally
summarizes the history of interaction into per-arm averages,
and (c) asks the LLM to use zero-shot chain-of-thought
reasoning (Wei et al., 2022; Kojima et al., 2022). This
configuration is visualized in Figure 1(b). One can interpret
this finding positively: state-of-the-art LLMs do possess
the capability to robustly explore, provided that the prompt
is carefully designed to elicit this behavior. On the other
hand, we find that the same configuration without external

summarization fails, which leads to a negative interpretation:
LLMs may fail to explore in more complex environments,
where externally summarizing the history is a non-trivial
algorithm design problem.'

We conclude that while the current generation of LLMs can
perhaps explore in simple RL environments with appropri-
ate prompt engineering, training interventions—in the spirit
of Lee et al. (2023a); Raparthy et al. (2023)—may be re-
quired to endow LLMs with more sophisticated exploration
capabilities required for more complex settings.

Methodology. An underlying technical challenge in assess-
ing LLM capabilities and limitations is that one must search
a combinatorially large space of prompt designs while ob-
taining statistically meaningful results, all while meeting
the financial and computational constraints associated with
LLMs. Assessing in-context bandit learning is even more
challenging because (a) stochasticity in the environment
demands a high degree of replication for statistical signifi-
cance and (b) the sample complexity of learning/exploration
demands that even a single experiment involve hundreds or
thousands of LLM queries to obtain meaningful effect sizes
(i.e., separation between successful and failing methods).
To address these issues, our core technical contribution is
to identify surrogate statistics as diagnostics for long-term
exploration failure. The surrogate statistics we consider
characterize long-term exploration failure, yet can be mea-
sured at moderate scale with few replicates and short learn-
ing horizons, even when the standard performance measure
(namely, reward) is too noisy to be useful.

2. Experimental setup

Multi-armed bandits (MAB). We consider a basic multi-
armed bandit variant, stochastic Bernoulli bandits. There
are K possible actions (arms), indexed as [K] :=
{1,...,K}. Each arm ¢ is associated with mean reward
te € [0,1], which is unknown. An agent interacts with
the environment for 7" time steps, where in each time step
t € [T] the agent selects an arm a; € [K] and receives a
reward r, € {0,1} drawn independently from a Bernoulli
distribution with mean y,,. Thus, the MAB instance is de-
termined by the mean rewards {/i, : a € [K]} and the time
horizon T'. The goal is to maximize the total reward, which
roughly corresponds to identifying the best arm: an arm
with the highest mean reward. A key feature of the MAB
setup is that rewards for arms not chosen by the agent are not
revealed, so exploration is necessary to identify the best arm.

! E.g., if there are many arms, or if we are considering con-
textual bandits with many contexts, then we may only play each
arm (context-arm pair) a few times, so averaging reward separately
for each—as we do in our experiments—does not provide much
summarization. (See Appendix B for further discussion.)

Can large language models explore in-context?

Buttons, 5-arms, Delta=0.2
1.0 : : 0.8

1 1 1 0.60
TS B Greedy - TS GPT4
= UCB mmm GPT4 © o
$ 0.8 oo 1 > 5 — UCB — OPT
g I 306 N —_—
206 | | o
o : ! 204 (’— TS Greedy §1
w H H Y 0.50
S : : o — UCB —— GPT4 o
504 ' E] g
g A 8 &
s A 02 £ 045
+ 02 A £ F
. | :I i a
. i § H
0.0 L 4 & | 0.0 0.40
0 50 100 150 200 250 300 350 400 45 0 50 100 150 200 250 300 350 400 0 100 200 300 400 500
Plays of the best arm in rounds [0,500] Time step (t) Time step (t)
1.0 ‘ ‘ ‘ ‘ 0.8 0.60
TS mm Greedy - TS —— Greedy TS —— GPT4-CoT
0 0.8 mmm UCB mmm GPT4-CoT ® —— UCB —— GPT4-CoT ° —— UCB — OPT
g" T T i i go.s S 0.55 —— Greedy
S e S
gos A g 3
= ! ! ! i =
5 N e g
§os 1 2
"] ! . | ®
g el by =02 E
*02 | | : £ F
| I]]] 2
] %I 1 ! —
0.0 S me N)] : 0.01
0 25 50 75 100 125 150 175 0 20 40 60 80 100 120 140 160 0 25 50 75 100 125 150 175 200
Plays of the best arm in rounds [0,200] Time step (t) Time step (t)

Figure 1. Representative experiments: Two prompt configurations for GPT-4 on a 5-armed bandit problem, demonstrating exploration
failure (top) and success (bottom). The baselines are two standard bandit algorithms with performance guarantees, Upper Confidence
Bound (UCB) and Thompson Sampling (TS), as well as the GREEDY algorithm, which always chooses an arm with the best average
reward so far and is known to perform poorly. Visualizations are: (Left) histogram over replicates of the number of times the best arm is
chosen, (Center) for each t, we plot the suffix failure frequency, the fraction of replicates for which the best arm is never chosen after
time-step ¢, and (Right) camulative time-averaged rewards, averaged over replicates.

(a) Top row. GPT-4 with our basic prompt design with zero temperature. The experiment runs for 7' = 500 rounds, and is replicated
N = 20 times, varying environment randomness. This configuration exhibits highly bimodal behavior: a large (> 60%) fraction of
replicates choose the best arm only a handful of times and exhibit suffix failures, similar to GREEDY, and very unlike UCB and TS. This
is suggestive of a long term failure to explore and, indeed, this configuration underperforms substantially in terms of reward.

(b) Bottom row. GPT-4 with a suggestive framing, summarized history, and chain-of-thought with zero temperature. The experiment runs
for T" = 200 rounds and is replicated N = 40 times. This configuration exhibits a unimodal distribution of plays of the best arm, very
few suffix failures, and reward that is comparable to T'S.

We focus on MAB instances where the best arm has mean
reward pu* = 0.5 + A/2 for a parameter A > 0, while all
other arms have mean reward u = 0.5 — A/2 (so, A =
W — i is the gap between the best and the second-best arm).
The main instance we consider has K = 5 arms and gap
A = 0.2. We call this the hard instance, as we also consider
an easy instance with K = 4 and A = 0.5.

Prompts. We employ LLMs to operate as decision making
agents that interact with MAB instances by prompting them
with a description of the MAB problem (including the time
horizon T') and the history of interaction thus far. Our
prompt design allows several independent choices. First is
a “scenario”, which provides a grounding for the decision
making problem, positioning the LLM either a) as an agent
choosing buttons to press, or b) as a recommendation engine
displaying advertisements to users. Second, we specify a

2A larger gap A makes it easier to distinguish arms, while
smaller K means there are fewer alternatives to explore.

“framing” as either a) explicitly suggestive of the need to
balance exploration and exploitation, or b) neutral. Third,
the history can be presented as a) a raw list over rounds, or
it can b) be summarized via number of plays and average
rewards of each arm. Fourth, the requested final answer can
be a) a single arm, or b) a distribution over arms. Finally,
we either a) request the answer only, or b) also allow the
LLM to provide a ‘“chain-of-thought” (CoT) explanation.
Altogether, these choices lead to 2° = 32 prompt designs,
illustrated in Figure 2. More details about the prompt design,
including examples, are provided in Appendix D.

The most basic prompt design from the options above
uses the buttons scenario, neutral framing, and raw history,
and requests the LLM to return only an arm with no CoT.
Each of the five possible modifications to this prompt can
potentially help the LLM, and our experiments evaluate this.
For example, both the advertising scenario and suggestive
framing might help invoke the LLM’s knowledge of bandit
algorithms (as bandit algorithms are commonly used in

Can large language models explore in-context?

[buttons scenario][advertisements scenario]

——]

[neutral framing suggestive framing]

[description of multi-armed bandit problem]
[raw history][summarized history]

[——]

[return: action] return: distribution over actions

[final prompt: reply-only

] final prompt: chain-of-thought

Figure 2. Prompt designs; see Figure 11 for a more detailed view.
A prompt is generated by traversing the graph from top to bottom.

content recommendation). History summarization might
help if the LLM cannot reliably summarize history itself
(perhaps due to arithmetic errors®) and/or does not fully
realize that it should. Returning a distribution might help
if the LLM can identify a good distribution, but fails to
correctly sample from it. Finally, chain-of-thought is
known to help in a wide variety of LLM scenarios (Wei
et al., 2022; Malach, 2023), even when used in a zero-shot
manner (Kojima et al., 2022) as we do here.

Prompts are presented to each LLM using both system and
user messages (exposed by all three LLM APIs). The sys-
tem message presents information about the scenario and
framing and prompts the LLM about whether to use CoT
and whether (and how) to return a distribution. The user
message presents the history and reminds the LLM about
how to format its response. For GPT-4 only, we found that
prompting the LLM to use CoT in the system prompt did not
reliably elicit CoT outputs, so—for GPT-4 only—we also
consider a reinforced CoT prompt design that additionally
reminds the LLM to use CoT at the end of the user prompt.
See Appendix D for examples.

LLM configurations. We experiment with three LLMs:
GPT-3.5, GPT-4, and LLAMA2.* In addition to the prompt
variations above, we also consider two choices for the
temperature parameter, 0 and 1. A temperature of 0 forces
the LLM to be deterministic and therefore isolates the
“deliberate” exploration behavior of the LLM itself. A

3E.g., LLMs sometimes fail at basic arithmetic (Gao et al.,
2023; Liu et al., 2024), though this is likely to improve in the near
future via better training and/or integrating calculator-like tools.

4Specifically: GPT-3.5-TURBO-0613 (released 06/13/2023),
GPT-4-0613 (released 06/13/2023), and LLAMA2-13B-CHAT
quantized to 4-bits (Dettmers & Zettlemoyer, 2023).

temperature of 1 provides a source of external randomness
in the LLM responses, which may or may not result in
randomization among the arms. Allowing the LLM to return
a distribution instead of a single arm also provides external
randomness (as we sample from the returned distribution);
to isolate sources of randomness, we do not consider
temperature 1 with “return distribution” prompt designs.

We refer to the tuple (prompt design, temperature) as the
LLM configuration. We identify each configuration with a
S-letter “code” Ly Lo L3L4Ls5, with letters L; denoting the
choices:

e L;: ‘B’ or ‘A’ for, resp., buttons or advertisements
scenario;

e Ly: ‘N’ or ‘S’ for, resp., neutral or suggestive framing;
e L3: ‘R’ or ‘S’ for, resp., raw or summarized history;

e L, ‘C or ‘C’ or ‘N’ for, resp., chain-of-thought, rein-
forced CoT, or no CoT.

e L5:°0°,’1’ or ’D’ for, resp., temperature and returning
a distribution (with temperature 0).

We refer to “BNRNO” as the basic configuration going for-
ward. Most of our experiments consider the “buttons” sce-
nario, and we use the “advertisements” scenario primarily
as a robustness check.

For GPT-3.5 and LLAMA2, we do not consider reinforced
CoT as it is not required to reliably elicit CoT outputs; thus,
we have 48 configurations total for these two LLMs. For
GPT-4, we primarily used reinforced CoT, but did experi-
ment with some standard CoT prompt designs; thus, there
are 72 configurations total for GPT-4.

Baselines. For baselines, we consider two standard
MAB algorithms, UCB (Auer et al., 2002) and Thompson
Sampling (TS) (Thompson, 1933), which are optimal in
a certain theoretical sense and also reasonably effective
in practice. We also consider the GREEDY algorithm,
which does not explore and is known to fail.> While
all three baselines have tunable parameters, we perform
no parameter tuning (see Appendix A.l for a detailed
description of each algorithm with parameter settings).
In addition to these baselines, some of our experiments
include the the e-GREEDY algorithm® with various choices
of € to quantitatively demonstrate tradeoffs between
exploration and exploitation. We ran 1000 replicates

3In each round, GREEDY chooses an arm with the largest aver-
age reward so far. The algorithm is initialized with one sample of
each arm. It fails in that with constant probability, it never chooses
the best arm after initialization.

%¢-GREEDY is a standard MAB algorithm which in each round
chooses an arm uniformly at random with a given probability e,
and exploits (i.e., mimics GREEDY) otherwise.

Can large language models explore in-context?

for each baseline and each MAB instance (with rewards
realized independently across the replicates).

Scale of the experiments. Our main set of experiments
has time horizon 7' = 100. To account for randomness in
rewards (and possibly in the LLM, via temperature) we ran
N € {10, 20} replicates for each LLM configuration and
each bandit instance, with rewards generated independently
across the replicates. As a robustness check, we ran a single
experiment on GPT-4 with the basic configuration for 7' =
500 rounds (with N = 20), and obtained consistent/stronger
conclusions, depicted in Figure 1(a).

In more detail, for GPT-3.5 we used N = 20 replicates
across all 48 prompt configurations, resulting in ~ 200K
queries in total. GPT-4 was an order of magnitude more
expensive, considerably slower on throughput, and subject
to unpredictable throttling. As such, we only used N = 10
replicates across 10 representative prompt configurations.’
For additional robustness checks, we ran four GPT-4
configurations with T' = 200, two for N = 20 replicates
and two for N = 40 replicates. In total, this resulted in
~50K queries issued to GPT-4. LLAMA?2 was essentially
free from our perspective (since it was locally hosted), but
its performance was consistently sub-par; we limited our
experiments to the hard MAB instance, 32 configurations,
and N = 10 replicates.

We emphasize that bandit experiments with LLMs are
quite costly in terms of money and time. They take NV - T
LLM queries for each LLM configuration and each MAB
instance being tested. Both N and 7' must be relatively
large to obtain statistically meaningful results: N governs
the significance level and must be large to overcome
randomness in reward realizations, while 7" governs the
effect size and must be large so that good algorithms have
enough time to identify the optimal arm. Both issues are
more pronounced in harder MAB instances (many arms K
and/or small gap A), but exploration failures also tend to
be less frequent in (very) easy MAB instances.® Further, we
need to cover the space of possible prompt designs, which
is essentially infinitely large, to ensure that our findings do
not overfit to one particular design. Thus, ideally we would
take NV, T, the number of MAB instances, and the number
of prompts to be rather large, but doing so is not practically
feasible.” Instead, we use moderately small gap A = 0.2,
moderately large choices for N € {10,20} and T' = 100,

7Precisely, N = 10 for the buttons scenario, and N = 3 for
the robustness check with the advertisements scenario.

8For example, GREEDY always succeeds when the gap is A =
1, i.e., there is no noise, and trivially succeeds with probability at
least (1 + A)?/4 when the initial samples evaluate to 1 for the
good arm and O for the bad arm.

“Raw-history prompts and chain-of-thought outputs are partic-
ularly expensive, as LLM APIs bill per token.

Buttons, K=5, Delta=0.2, T=100

;.‘_E .eps=0495 TS
5061 * UcB
E ° e Greedy
° r ° Eps-Greedy
go04{ ® e GPT-35
g * Llama-2-13b
= . o2 o GPT-4
g | >
E o ° % ® o °
.. ° -

0.0 ‘e tesret e 2,

0.0 0.2 0.4 0.6 0.8 1.0

SuffFailFreq(T/2) (exploration fail)

Figure 3. Scatter plot summarizing all experiments with 7" = 100.
We plot suffix failures (expressed via SuffFailFreq(7/2)) vs.
uniform-like failures (expressed via K - MinFrac(7')). Each
LLM/configuration pair maps to a dot on this plane (some dots
may overlap). The GPT-4 configuration labeled with a star is
BSSCO, which is the only configuration that succeeds. We also
plot e-GREEDY, tracing out the different tradeoffs obtained for
different values of e.

and the prompt design space as described above.

As we will see below, these choices (specifically, N €
{10,20} and T' = 100 and A = 0.2) do not provide enough
statistical power to distinguish between successful and un-
successful methods based solely on accumulated rewards.
In lieu of further increasing the scale of the experiments,
which is not practically feasible, we rely on surrogate statis-
tics which can be detected at our moderate scale, and which
are highly suggestive of long-term/persistent exploration
failures. Our robustness checks with larger 7" and N, as
well as qualitative findings that we report below provide
supporting evidence for this methodology.

3. Experimental results

In this section, we present our experimental findings,
beginning with a summary in Section 3.1. In Section 3.2
we investigate failing LLM configurations in detail,
and in Section 3.3 we focus on the single successful
LLM configuration our experiments identified. Finally,
in Section 3.4 we attempt to diagnose the underlying causes
for exploration failures.

3.1. Overview

We find that all but one of the LLM configurations we con-
sider exhibit exploration failures, not converging to the best
arm with significant probability. This happens either due to
suffix failures, where the LLM never selects the best arm
after a small number of initial rounds, or (in a smaller num-

Can large language models explore in-context?

ber of configurations) due to uniform-like failures, where
the LLM selects all arms at an approximately uniform rate,
failing to eliminate poorly performing arms. The only one
exception is GPT-4 with the BSSCO configuration, i.e., with
the buttons scenario, suggestive framing, summarized his-
tory, reinforced CoT, and temperature 0.

We summarize our key findings in Figure 3 and Figure 5.
Figure 3 summarizes the main set of experiments (which
we recall consider the hard MAB instance), visualizing
each LLM configuration with a single point on a scatter
plot where the axes correspond to two surrogate statistics,
SuffFailFreq and MinFrac, which represent the strength
of the two failure modes (SuffFailFreq measures suffix
failures, and K - MinFrac measures uniform-like failures);
these statistics are described in detail in the sequel. Figure
5 displays SuffFailFreq, MinFrac, GreedyFrac (which
measures how similar a method is to GREEDY), and addi-
tional summary statistics for each of the GPT-4 configura-
tions in the main set of experiments. These statistics reveal
that all of the LLM configurations, except for GPT-4-BSSCO0
(the blue star in Figure 3), behave fundamentally differently
from the baseline algorithms UCB and TS, and we find that
these differences result in a large, persistent drop in perfor-
mance. Conversely, we find that GPT-4-BSSCO successfully
explores and (as a result) converges to the best arm.

3.2. Identifying failures

We now give a precise overview of the exploration failures
illustrated in Figure 3 and Figure 5, and provide additional
results and figures that illustrate failure in greater detail.
‘We focus on GPT-4, as we find that GPT-3.5 and LLAMA2
perform worse (and often much worse) in all experiments;
detailed results for GPT-3.5 and LLAMA2 are included
in Appendix E for completeness. We begin with detailed
background on the surrogate statistics, SuffFailFreq and
MinFrac, used to quantify failures in Figures 3 and 5 and
beyond, providing evidence that exploration failure—as
quantified by these statistics—results in a persistent drop
in performance.

Suffix failures. Most of the LLLM configurations we con-
sider exhibit highly bimodal behavior, whereby a large frac-
tion of the replicates choose the best arm very rarely, and a
few replicates converge to the best arm extremely quickly.
Consistent with this bimodal behavior, we observe a large
incidence of suffix failures, where the best arm is not se-
lected even once after a small number initial of rounds (i.e.,
in some “time suffix”). Suffix failures are suggestive of a
long-term failure to explore which cannot be improved by
running the algorithm for longer, because, without playing
the optimal arm, one cannot acquire information to learn
that it is indeed optimal. Such behaviors are qualitatively
similar to those of GREEDY and qualitatively very different

from those of UCB and Thompson Sampling.

Our surrogate statistic for measuring suffix failures is
defined as follows: For an experiment replicate R and
round ¢, let SuffFail(¢, R) be a binary variable that
is 1 if the best arm is never chosen in rounds [t,T].
Then let SuffFailFreq(t) := mean({SuffFail(t,R) :
replicates R}). Suffix failures manifest in most of our
experiments at 7' = 100. In the scatter plot in Figure
3, the X-axis plots SuffFailFreq(7'/2) for each LLM
configuration, and we find that all but five configurations
have SuffFailFreq(7/2) > 15%. Recalling the definition
of suffix failures, this means that > 15% of the time, these
configurations do not pull the best arm even once in the last
half of the rounds.

A more detailed view of suffix failures and bimodal
behavior can be obtained by focusing on individual LLM
configurations. We visualize this for the basic configuration
(GPT-4-BNRNO) in Figure 1 (top) for 7" = 500, and in Fig-
ure 6 for GPT-4 (BNRNO and BNRN1) at 7" = 100. In these
detailed views, the middle panels plot SuffFailFreq(t) at
each time ¢ for the given LLM configurations, as well as
UCB, TS, and GREEDY. We find that these LLM configu-
rations have much higher suffix failure rates than both UCB
and TS. Bimodal behavior is visualized in the left panel
of each plot, where for each configuration, a large fraction
of replicates rarely pulls the best arm, while the remaining
fraction almost always pulls the best arm. Because of this bi-
modal behavior (particularly because a constant fraction of
replicates by chance almost always pull the best arm), suffix
failures are not fully reflected in the total reward plots in the
right panels of Figure 6, since the time horizon 7' = 100 is
not large enough. However, as mentioned, suffix failures are
suggestive of an irrecoverable failure to explore which leads
to stark differences in reward for larger T'. This is precisely
what we find at 7' = 500 in Figure 1, which suggests that
suffix failures indeed lead to poor long-term performance.

Uniform-like failures. Returning to the left panel of Figure
3, we see that three GPT-4 configurations avoid suffix fail-
ures. Two of these configurations exhibit a different type of
failure, where the LLM selects arms in roughly equal pro-
portions for the entirety of the 7" rounds and fails to exploit
the acquired information to focus on the better arms. We
call this a uniform-like failure.

Our surrogate statistic for measuring such failures is de-
fined as follows: For a particular experiment replicate
R and round ¢, let f,(t, R) be the fraction of rounds
in which a given arm a is chosen, MinFrac(t,R) =
min, f, (¢, R), and MinFrac(t) := mean({MinFrac(¢, R) :
replicates R}). Since MinFrac(t) < 1/K, Vt € [T], we al-
ways plot K -MinFrac(t), so as to rescale the range to [0, 1].
Larger MinFrac(t) corresponds to a more uniform selection

Can large language models explore in-context?

of arms at time ¢. When an LLM’s MinFrac(t) does not
decrease over time and stays substantively larger than that
of the baselines (especially as ¢ approaches the time horizon
T), we take it as an indication of a uniform-like failure.

The Y-axis of Figure 3 records K - MinFrac(T) for each
configuration, where we see that of the three GPT-4 config-
urations that avoid suffix failures, two configurations have
very high MinFrac(T") relative to UCB and TS (the third
configuration is GPT—4—BSS(~ZO, which is successful). These
two configurations are GPT-4-BNRND and GPT-4-BSSCD,
both of which use the distributional output format. We
provide a more detailed view of GPT-4-BNRND (as
well as GPT-4-BNSND, which also exhibits uniform-like
failures, but only differs from GPT-4-BNRND in the use
of summarized history) in Figure 7, which considers a
longer horizon and more replicates (1" = 200 and N = 20).
The middle panel reveals that K - MinFrac(t) does not
decrease over time for these LLM configurations, while it
does for the baselines. This behavior results in no suffix
failures, but leads to much lower reward than the baselines.
In particular, we obtain a clear separation in total reward,
showing that uniform-like failures indeed result in poor
long-term performance.

Generality of the failures. To summarize, Figure 3 shows
that all LLM configurations except GPT-4-BSSCO exhibit
either a suffix failure or a uniform failure for the hard MAB
instance and the buttons scenario. Scatter plots for the other
three experiments (i.e., the advertisements scenario and/or
the easy MAB instance) are qualitatively similar and are
deferred to Appendix E.

The same data, but with attributions to specific LLM con-
figurations, are presented for all GPT-4 configurations in
Figure 5; analogous tables for other LLMs and experimental
settings are given in Appendix E. As it is not instructive
to present detailed plots such as Figure 6 for every LLM
configuration, Figure 5 summarizes the performance of each
configuration with just a few statistics. We include:

* SuffFailFreq(7/2) and MinFrac(T'), defined above.

* MedianReward: the rescaled median (over replicates)
of the time-averaged total reward.”

* GreedyFrac: the fraction of greedy rounds, averaged
over the replicates. A greedy round is one in which an
arm with a largest average reward is selected. This is
one way to quantify the extent to which a configuration
behaves like GREEDY.

'"More precisely, let ®(R) be the time-averaged total reward
for a given replicate R. Then E{®(R)} ranges in the interval
[Y/2 — A/2,1/2 + A/2]. We rescale ®(R), by translating and
multiplying, so that E{®(R)} ranges in [0, 1].

We now summarize further findings from the scatter plots
(Figures 3 and 12) and the summary tables (Figures 13
to 19). First, GPT-4 performs much better than GPT-3.5,
and LLAMA?2 performs much worse (in particular, the suffix
failure frequency for LLAMA?2 ranges from that of GREEDY
to much larger). Second, we observe that all LLMs are
sensitive to small changes in the prompt design. However,
the different modifications we consider appear to interact
with each other, and it is difficult to identify which individual
modifications improve performance and which degrade it.

3.3. Investigating successes

On the hard MAB instance, the only configuration in our
experiments that avoids both suffix failures and uniform-like
failures is GPT-4 with the BSSCO prompt design. As can
be seen from Figure 5, at T' = 100, this configuration has
no suffix failures, the K - MinFrac value is only slightly
larger than TS, and the reward is comparable to TS. These
statistics suggest that this configuration succeeds, and in this
section we present further evidence supporting this claim.

To do so, we run GPT-4-BSSCO on the hard MAB in-
stance with 7' = 200 and N' = 40 to obtain more statisti-
cally meaningful results. We also consider GPT-4-BSRCO,
which swaps summarized history for raw history, as an abla-
tion. Figure 8 provides a summary of the results from this
experiment, while Figure 1(b) provides a detailed view of
the BSSCO configuration. The figures reveal that BSSCO
continues to avoid suffix failures and performs relatively
well in terms of Nreward for larger 7. On the other hand,
we see that BSRCO exhibits a non-trivial fraction of suffix
failures, demonstrating that this ablation results in funda-
mentally different behavior.

We also provide two additional visualizations that provide
some qualitative evidence toward the success of BSSCO, as
well as the failure of other configurations. These are pre-
sented in Figure 9 and Figure 10. In Figure 9 we visualize
the arm chosen at each time step for various replicates of sev-
eral different methods (LLMs and baselines). Specifically,
Figure 9 shows four replicates for the basic configuration
(BNRNO) and the two configurations with reinforced CoT
(BSRCO and BSSCO0), as well as one replicate of each of
the baseline algorithms. We see that the basic configuration
BNRNO tends to commit to a single arm for several rounds,
a behavior that is similar to that of GREEDY and very differ-
ent from both UCB and TS. BSRCO also commits for long
periods, but to a lesser extent than the basic configuration.
In contrast, BSSCO switches arms much more frequently,
and qualitatively appears much more similar to TS.

In Figure 10, we plot the fraction of rounds in [0, t] where
the optimal arm was pulled as a function of ¢ for individ-
ual replicates. BSRCO is visually similar to UCB, except
that a non-trivial fraction of runs exhibit suffix failures (the

Can large language models explore in-context?

curves that converge to 0 on the plot). Meanwhile, BSSCO
is visually similar to TS, with almost all replicates slowly
converging to 1. These visualizations, along with the sum-
mary statistics, suggest that BSSCO behaves most similarly
to TS, which further suggests it will successfully converge
to the optimal arm given a long enough time horizon.

3.4. Root causes

GreedyFrac LeastFrac

TS | 0.60 0.54 0.53]030 0.12 0.12
UCB 0.84 0.66 0.55|046 0.09 026
BNRNO [034 036 0.50[030 030 0.24
BNRCO | 0.50 0.84 058|012 0 0.04
BNSNO | 082 094 084|028 0 0
BSRNO | 020 0.18 0.22]0.60 038 038
Data source | Unif UCB TS | Unif UCB TS

Figure 4. Per-round decisions with some GPT-3.5 configurations.
T = 100, histories of length t = 30, hard MAB instance.

Our experimental findings above shed light on how LLM-
based decision making agents behave, but it is also worth-
while to understand why they behave the way they do (and
particularly, why they fail). This question is rather challeng-
ing to answer decisively, but two natural hypotheses are that
the configurations we consider (outside of GPT-4-BSSCO0)
are either a) too greedy, or b) too uniform-like. In this sec-
tion, we describe how our experiments offer some insight
into this hypotheses.

First, focusing on GPT-4, our experiments reveal qual-
itatively different behavior between the easy and hard
instances (Figure 13(a) and Figure 13(c)). Indeed, the
easy instance appears to be much easier; most GPT-4
configurations avoid suffix failures and accrue large rewards
on this instance, and the GreedyFrac statistic offers a
potential explanation as to why. On the easy instance, most
GPT-4 configurations have very high GreedyFrac values,
so they behave similarly to GREEDY, which performs
quite well (even though GREEDY provably fails with small
constant probability and, empirically, has many suffix
failures on this instance).!! A plausible hypothesis from
this is that GPT-4 performs quite well in low-noise settings,
which is precisely when GREEDY also performs well.

A stronger hypothesis would be that most GPT-4 configura-
tions (except perhaps those using reinforced CoT) behave

"ndeed, in Figure 13(c) we see that most GPT-4 configurations
have very high GreedyFrac but no suffix failures. Apparently,
even a very small amount of exploration suffices for easy instances
(and makes a big difference, relative to GREEDY). However, this
should not be construed as evidence for the more general and
robust exploratory behavior necessary for harder bandit instances.

like GREEDY on all instances, but this hypothesis is invali-
dated by the GreedyFrac statistics for our experiments on
the hard instance. On the hard instance, it seems that most
GPT-4 configurations are doing something non-trivial (albeit
flawed); their behavior is neither completely GREEDY-like
nor like uniform-at-random.

Toward a more fine-grained understanding, we ran a collec-
tion of small-scale secondary experiments focusing on the
per-round decisions of LLM-agents. The experiments focus
on a single round ¢ in a bandit problem. Each experiment
considers a particular “data source” (a distribution of bandit
histories), samples N = 50 bandit histories of length ¢
from this distribution, and presents them to the agents
(the LLMs and the baselines) and asks them to output an
arm or distribution over arms. We track two statistics for
each agent: GreedyFrac and LeastFrac, the fraction of
replicates in which the agent chose, resp., an empirically
best arm so far and a least-chosen arm so far. We vary the
data source, i.e., the algorithm which generates the history.
In particular, we consider histories generated by sampling
uniformly at random (Unif) and by running our baselines
UCB and TS for ¢ rounds.

Results are summarized in Figure 4. Unfortunately, we
find that per-round performance of both the LLMs and the
baselines is very sensitive to the particular data source. For
example, the MinFrac statistic of UCB can vary from as
high as 0.46 on histories generated uniformly at random
to as low as 0.09 on histories generated by UCB itself.
It seems plausible to conclude the BNSNO is too greedy
while BSRNO is too uniform, but the statistics for the other
two LLM configurations (BNRNO and BNRCO0)—both of
which fail in our longitudinal experiments—fall within the
reasonable range provided by the baselines. Thus, we find
that it is challenging to assess whether LLM agents are too
greedy or too uniform-like based on per-round decisions,
even though these agents behave rather differently from the
baselines in the longitudinal experiments.

References

Abernethy, J., Agarwal, A., Marinov, T. V., and Warmuth,
M. K. A mechanism for sample-efficient in-context learn-
ing for sparse retrieval tasks. arXiv:2305.17040, 2023.

Agrawal, S. and Goyal, N. Analysis of Thompson Sampling
for the multi-armed bandit problem. In Conference on
Learning Theory, 2012.

Agrawal, S. and Goyal, N. Near-optimal regret bounds for
thompson sampling. Journal of the ACM, 2017. Prelimi-
nary version in AISTATS 2013.

Ahn, K., Cheng, X., Daneshmand, H., and Sra, S. Trans-

Can large language models explore in-context?

formers learn to implement preconditioned gradient de-
scent for in-context learning. arXiv:2306.00297, 2023.

Ahn, M., Brohan, A., Brown, N., Chebotar, Y., Cortes, O.,
David, B., Finn, C., Fu, C., Gopalakrishnan, K., Hausman,
K., Herzon, Alexand Ho, D., Hsu, J., Ibarz, J., Ichter, B.,
Irpan, A., Jang, E., Ruano, R. J., Jeffrey, K., Jesmonth,
S., Joshi, N. J., Julian, R., Kalashnikov, D., Kuang, Y.,
Lee, K.-H., Levine, S., Lu, Y., Luu, L., Parada, C., Pastor,
P., Quiambao, J., Rao, K., Rettinghouse, J., Reyes, D.,
Sermanet, P., Sievers, N., Tan, C., Toshev, A., Vanhoucke,
V., Xia, F,, Xiao, T., Xu, P., Xu, S., Yan, M., and Zeng, A.
Do as I can, not as I say: Grounding language in robotic
affordances. arXiv:2204.01691, 2022.

Ahuja, K., Panwar, M., and Goyal, N. In-context learning
through the bayesian prism. arXiv:2306.04891, 2023.

Akyiirek, E., Schuurmans, D., Andreas, J., Ma, T., and
Zhou, D. What learning algorithm is in-context learning?
Investigations with linear models. arXiv:2211.15661,
2022.

Akyiirek, E., Wang, B., Kim, Y., and Andreas, J. In-
context language learning: Architectures and algorithms.
arXiv:2401.12973, 2024.

Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time
analysis of the multiarmed bandit problem. Machine
Learning, 2002.

Bai, Y., Chen, F., Wang, H., Xiong, C., and Mei, S. Trans-
formers as statisticians: Provable in-context learning with
in-context algorithm selection. arXiv:2306.04637, 2023.

Banihashem, K., Hajiaghayi, M., Shin, S., and Slivkins,
A. Bandit social learning: Exploration under myopic
behavior. arXiv:2302.07425, 2023.

Bhattamishra, S., Patel, A., Blunsom, P., and Kanade, V. Un-
derstanding in-context learning in transformers and LLMs
by learning to learn discrete functions. arXiv:2310.03016,
2023.

Brooks, E., Walls, L. A., Lewis, R., and Singh, S. Large
language models can implement policy iteration. In Ad-
vances in Neural Information Processing Systems, 2023.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, 1., and Amodei, D. Language
models are few-shot learners. In Advances in Neural
Information Processing Systems, 2020.

Bubeck, S. and Cesa-Bianchi, N. Regret Analysis
of Stochastic and Nonstochastic Multi-armed Ban-
dit Problems. Foundations and Trends in Machine
Learning, 5(1):1-122, 2012. Published with Now
Publishers (Boston, MA, USA). Also available at
https://arxiv.org/abs/1204.5721.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J.,
Horvitz, E., Kamar, E., Lee, P, Lee, Y. T., Li, Y., Lund-
berg, S., Nori, H., Palangi, H., Ribeiro, M. T., and Zhang,
Y. Sparks of artificial general intelligence: Early experi-
ments with gpt-4. arXiv:2303.12712, 2023.

Cheng, X., Chen, Y., and Sra, S. Transformers implement
functional gradient descent to learn non-linear functions
in context. arXiv:2312.06528, 2023.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems. arXiv:2110.14168, 2021.

Dettmers, T. and Zettlemoyer, L. The case for 4-bit pre-
cision: k-bit inference scaling laws. In International
Conference on Machine Learning, 2023.

Edwards, C. N., Naik, A., Khot, T., Burke, M. D., Ji,
H., and Hope, T. Synergpt: In-context learning for
personalized drug synergy prediction and drug design.
arXiv:2307.11694, 2023.

Fu, D., Chen, T.-Q., Jia, R., and Sharan, V. Transformers
learn higher-order optimization methods for in-context
learning: A study with linear models. arXiv:2310.17086,
2023.

Gao, L., Madaan, A., Zhou, S., Alon, U., Liu, P., Yang,
Y., Callan, J., and Neubig, G. Pal: Program-aided lan-
guage models. In International Conference on Machine
Learning, 2023.

Garg, S., Tsipras, D., Liang, P. S., and Valiant, G. What
can transformers learn in-context? a case study of sim-
ple function classes. Advances in Neural Information
Processing Systems, 2022.

Guo, T., Hu, W., Mei, S., Wang, H., Xiong, C., Savarese,
S., and Bai, Y. How do transformers learn in-context
beyond simple functions? A case study on learning with
representations. arXiv:2310.10616, 2023.

Hahn, M. and Goyal, N. A theory of emergent
in-context learning as implicit structure induction.
arXiv:2303.07971, 2023.

Han, C., Wang, Z., Zhao, H., and Ji, H. Explain-
ing emergent in-context learning as kernel regression.
arXiv:2305.12766, 2023a.

Can large language models explore in-context?

Han, X., Simig, D., Mihaylov, T., Tsvetkov, Y., Celikyilmaz,
A., and Wang, T. Understanding in-context learning via
supportive pretraining data. arXiv:2306.15091, 2023b.

Hendel, R., Geva, M., and Globerson, A. In-context learning
creates task vectors. arXiv:2310.15916, 2023.

Ho, C.-J., Slivkins, A., and Vaughan, J. W. Adaptive contract
design for crowdsourcing markets: Bandit algorithms for
repeated principal-agent problems. Journal of Artificial
Intelligence Research, 2016. Preliminary version in ACM
EC 2014.

Huang, Y., Cheng, Y., and Liang, Y. In-context convergence
of transformers. arXiv:2310.05249, 2023.

Jeon, H. J.,, Lee, J. D., Lei, Q., and Van Roy, B. An
information-theoretic analysis of in-context learning.
arXiv:2401.15530, 2024.

Kaufmann, E., Korda, N., and Munos, R. Thompson sam-
pling: An asymptotically optimal finite-time analysis. In
International Conference on Algorithmic Learning The-
ory, 2012.

Kiciman, E., Ness, R., Sharma, A., and Tan, C. Causal
reasoning and large language models: Opening a new
frontier for causality. arXiv:2305.00050, 2023.

Kirsch, L., Harrison, J., Sohl-Dickstein, J., and Metz, L.
General-purpose in-context learning by meta-learning
transformers. arXiv:2212.04458, 2022.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa, Y.
Large language models are zero-shot reasoners. Advances
in neural information processing systems, 2022.

Laskin, M., Wang, L., Oh, J., Parisotto, E., Spencer, S.,
Steigerwald, R., Strouse, D., Hansen, S., Filos, A.,
Brooks, E., Gazeau, M., Sahni, H., Singh, S., and Mnih,
V. In-context reinforcement learning with algorithm dis-
tillation. arXiv:2210.14215, 2022.

Lattimore, T. and Szepesvari, C. Bandit Algorithms. Cam-
bridge University Press, 2020.

Lee, J. N., Xie, A., Pacchiano, A., Chandak, Y., Finn,
C., Nachum, O., and Brunskill, E. Supervised pre-
training can learn in-context reinforcement learning.
arXiv:2306.14892, 2023a.

Lee, P., Goldberg, C., and Kohane, 1. The Al revolution in
medicine: GPT-4 and beyond. Pearson, 2023b.

Li, Y., Ildiz, M. E., Papailiopoulos, D., and Oymak, S.
Transformers as algorithms: Generalization and stability
in in-context learning. In International Conference on
Machine Learning, 2023.

10

Lin, L., Bai, Y., and Mei, S. Transformers as decision
makers: Provable in-context reinforcement learning via
supervised pretraining. arXiv:2310.08566, 2023.

Liu, B., Ash, J., Goel, S., Krishnamurthy, A., and Zhang,
C. Exposing attention glitches with flip-flop language
modeling. Advances in Neural Information Processing
Systems, 2024.

Lu, P, Bansal, H., Xia, T., Liu, J., Li, C., Hajishirzi, H.,
Cheng, H., Chang, K.-W., Galley, M., and Gao, J. Math-
vista: Evaluating mathematical reasoning of foundation
models in visual contexts. arXiv:2310.02255, 2023.

Malach, E. Auto-regressive next-token predictors are uni-
versal learners. arXiv:2309.06979, 2023.

Momennejad, 1., Hasanbeig, H., Vieira, F., Sharma, H., Ness,
R. O., Jojic, N., Palangi, H., and Larson, J. Evaluating
cognitive maps and planning in large language models
with cogeval. arXiv:2309.15129, 2023.

OpenAl. Gpt-4 technical report. arXiv:2303.08774, 2023.

Park, J. S., O’Brien, J., Cai, C. J., Morris, M. R., Liang,
P, and Bernstein, M. S. Generative agents: Interactive
simulacra of human behavior. In Symposium on User
Interface Software and Technology, 2023.

Raparthy, S. C., Hambro, E., Kirk, R., Henaff, M., and
Raileanu, R. Generalization to new sequential decision

making tasks with in-context learning. arXiv:2312.03801,
2023.

Raventés, A., Paul, M., Chen, F., and Ganguli, S. Pretrain-
ing task diversity and the emergence of non-bayesian
in-context learning for regression. arXiv:2306.15063,
2023.

Russo, D., Van Roy, B., Kazerouni, A., Osband, 1., and Wen,
Z. A tutorial on thompson sampling. Foundations and
Trends in Machine Learning, 2018.

Sclar, M., Choi, Y., Tsvetkov, Y., and Suhr, A. Quantify-
ing language models’ sensitivity to spurious features in
prompt design or: How i learned to start worrying about
prompt formatting. arXiv:2310.11324, 2023.

Shen, L., Mishra, A., and Khashabi, D. Do pretrained
transformers really learn in-context by gradient descent?
arXiv:2310.08540, 2023.

Shinn, N., Cassano, F., Labash, B., Gopinath, A.,
Narasimhan, K., and Yao, S. Reflexion: Language agents
with verbal reinforcement learning. arXiv:2303.11366,
2023.

Can large language models explore in-context?

Simchowitz, M., Tosh, C., Krishnamurthy, A., Hsu, D. J.,
Lykouris, T., Dudik, M., and Schapire, R. E. Bayesian
decision-making under misspecified priors with applica-
tions to meta-learning. Advances in Neural Information
Processing Systems, 2021.

Slivkins, A. Introduction to multi-armed bandits. Founda-
tions and Trends in Machine Learning, 2019.

Slivkins, A., Radlinski, F., and Gollapudi, S. Ranked bandits
in metric spaces: Learning optimally diverse rankings
over large document collections. Journal of Machine
Learning Research, 2013. Preliminary version in I[CML,
2010.

Som, A., Sikka, K., Gent, H., Divakaran, A., Kathol, A., and
Vergyri, D. Demonstrations are all you need: Advancing
offensive content paraphrasing using in-context learning.
arXiv:2310.10707, 2023.

Thompson, W. R. On the likelihood that one unknown
probability exceeds another in view of the evidence of
two samples. Biometrika, 1933.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen,
M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,
Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,
A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez,
V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P. S.,
Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y.,
Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog,
I, Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi,
K., Schelten, A., Silva, R., Smith, E. M., Subramanian, R.,
Tan, X. E., Tang, B., Taylor, R., Williams, A., Kuan, J. X,
Xu, P, Yan, Z., Zarov, 1., Zhang, Y., Fan, A., Kambadur,
M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S.,
and Scialom, T. Llama 2: Open foundation and fine-tuned
chat models. arXiv:2307.09288, 2023.

Valmeekam, K., Marquez, M., Olmo, A., Sreedharan, S.,
and Kambhampati, S. Planbench: An extensible bench-
mark for evaluating large language models on planning
and reasoning about change. In Advances in Neural Infor-

mation Processing Systems: Datasets and Benchmarks
Track, 2023.

Von Oswald, J., Niklasson, E., Randazzo, E., Sacramento,
J., Mordvintsev, A., Zhmoginov, A., and Vladymyrov,
M. Transformers learn in-context by gradient descent. In
International Conference on Machine Learning, 2023.

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C.,
Zhu, Y., Fan, L., and Anandkumar, A. Voyager: An
open-ended embodied agent with large language models.
arXiv:2305.16291, 2023.

11

Weber, L., Bruni, E., and Hupkes, D. The ICL consistency
test. arXiv:2312.04945, 2023.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., and Zhou, D. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 2022.

Wies, N., Levine, Y., and Shashua, A. The learnability of
in-context learning. arXiv:2303.07895, 2023.

Wu, J., Zou, D., Chen, Z., Braverman, V., Gu, Q.,
and Bartlett, P. L. How many pretraining tasks are
needed for in-context learning of linear regression?
arXiv:2310.08391, 2023.

Wu, Y., Tang, X., Mitchell, T., and Li, Y. Smartplay: A
benchmark for LLMs as intelligent agents. In Interna-
tional Conference on Learning Representations, 2024.

Xie, S. M., Raghunathan, A., Liang, P., and Ma, T. An
explanation of in-context learning as implicit bayesian
inference. arXiv:2111.02080, 2021.

Xu, M., Shen, Y., Zhang, S., Lu, Y., Zhao, D., Tenenbaum,
J., and Gan, C. Prompting decision transformer for few-
shot policy generalization. In International Conference
on Machine Learning, 2022.

Xu, M., Huang, P, Yu, W., Liu, S., Zhang, X., Niu, Y.,
Zhang, T., Xia, F,, Tan, J., and Zhao, D. Creative robot
tool use with large language models. arXiv:2310.13065,
2023.

Yiu, E., Kosoy, E., and Gopnik, A. Imitation ver-
sus innovation: What children can do that large lan-
guage and language-and-vision models cannot (yet)?
arXiv:2305.07666, 2023.

Yu, D., Kaur, S., Gupta, A., Brown-Cohen, J., Goyal, A.,
and Arora, S. Skill-mix: A flexible and expandable family
of evaluations for ai models. arXiv:2310.17567, 2023.

Zhang, R., Frei, S., and Bartlett, P. L. Trained transformers
learn linear models in-context. arXiv:2306.09927, 2023a.

Zhang, Y., Zhang, F., Yang, Z., and Wang, Z. What and how
does in-context learning learn? bayesian model averaging,
parameterization, and generalization. arXiv:2305.19420,
2023b.

Can large language models explore in-context?

A. Related work

This paper belongs to a recent body of work that aims to understand the capabilities of LLMs, i.e., what they can and cannot
do well, and why. Capabilities that have received considerable attention, but are peripheral to the present paper, include
general intelligence (Bubeck et al., 2023), causal (Kiciman et al., 2023; Yiu et al., 2023) and mathematical reasoning (Cobbe
et al., 2021; Lu et al., 2023), planning (Valmeekam et al., 2023; Momennejad et al., 2023; Brooks et al., 2023), and
compositionality (Yu et al., 2023).

In more detail, our work contributes to the broader literature on capabilities of in-context learning. Prior studies of in-context
learning include theoretical (Xie et al., 2021; Akyiirek et al., 2022; Zhang et al., 2023b; Abernethy et al., 2023; Zhang et al.,
2023a; Han et al., 2023a; Cheng et al., 2023; Ahn et al., 2023; Wies et al., 2023; Fu et al., 2023; Wu et al., 2023; Huang et al.,
2023; Hendel et al., 2023; Li et al., 2023; Von Oswald et al., 2023; Bai et al., 2023; Hahn & Goyal, 2023; Jeon et al., 2024)
and empirical (Garg et al., 2022; Kirsch et al., 2022; Ahuja et al., 2023; Han et al., 2023b; Raventos et al., 2023; Weber
et al., 2023; Bhattamishra et al., 2023; Guo et al., 2023; Shen et al., 2023; Akyiirek et al., 2024) investigations, though as
mentioned in the prequel, the vast majority of this work pertains to in-context supervised learning; in-context reinforcement
learning has received far less attention. The small collection of empirical works that study in-context RL (Laskin et al.,
2022; Lee et al., 2023a; Raparthy et al., 2023; Xu et al., 2022) focus on models trained from scratch using trajectory data
collected from another agent (either an RL algorithm or an expert); theoretically, Lee et al. (2023a) and later Lin et al.
(2023) justify this approach with a Bayesian meta-reinforcement learning perspective (Simchowitz et al., 2021), and show
that pre-trained transformers can implement classical exploration strategies like Thompson sampling and upper confidence
bounds (UCB). However, these works require interventions to the pre-training phase of the language model, and do not
study whether existing LLMs exhibit exploration capabilities under standard training conditions.

In parallel, there is a rapidly growing line of work that applies LLMs to real-world decision-making applications. Beyond
previously mentioned works (Shinn et al., 2023; Wang et al., 2023; Lee et al., 2023b), which consider applications to gaming,
programming, and medicine, highlights include Park et al. (2023), who introduce generative agents which simulate human
behavior in an open-world environment, Ahn et al. (2022); Xu et al. (2023), who develop LL.M-enabled robots.

Concurrent work of Wu et al. (2024) studies LLM performance in a battery of tasks that aim to characterize “intelligent
agents”, with two-armed bandits as a specific task of interest. Their bandit experiments differ in several key respects: They
consider a very easy MAB instance (with 2 arms and a gap A = 0.6, which is much easier than both of our instances), focus
on a single prompt design (similar to our basic prompt), and compare to human players rather than algorithmic benchmarks.
These differences lead to very different experimental findings. In particular, they find that GPT-4 performs well on their
simple MAB instance, converging very quickly to the best arm, while we find that GPT-4 with a similar prompt fails on a
harder MAB instance. However, their finding is consistent with ours, as we also find that several configurations of GPT-4 do
well on the easy MAB instance. As we discuss in Section 3.4, this instance is too simple to provide compelling evidence for
principled exploratory behavior.

A.1. Further background on multi-armed bandits

Here, we provide additional background on the multi-armed bandit problem, and on the baseline algorithms used in this
paper. Deeper discussion can be found in Bubeck & Cesa-Bianchi (2012); Slivkins (2019); Lattimore & Szepesvari (2020).

The UCB algorithm (Auer et al., 2002) explores by assigning each arm a an index, defined as the average reward from the
arm so far plus a bonus of the form /C/n,, where C = ©(log T') and n,, is the number of samples from the arm so far. In
each round, it chooses an arm with the largest index. The bonus implements the principle of optimism under uncertainty.
We use a version of UCB that sets C' = 1 (a heuristic), which has been observed to have a favorable empirical performance
(e.g., Slivkins et al., 2013; Ho et al., 2016).

Thompson Sampling (Thompson, 1933; Russo et al., 2018, for a survey) proceeds as if the arms’ mean rewards were initially
drawn from some Bayesian prior. In each round, it computes a Bayesian posterior given the history so far, draws a sample
from the posterior, and chooses an arm with largest mean reward according to this sample (i.e., assuming the sample were the
ground truth). In our setting, the prior is essentially a parameter to the algorithm. We choose the prior that draws the mean
reward of each arm independently and uniformly at random from the [0, 1] interval. This is one standard choice, achieving
near-optimal regret bounds, as well as good empirical performance (Kaufmann et al., 2012; Agrawal & Goyal, 2012; 2017).
Each arm is updated independently as a Beta-Bernoulli conjugate prior. Further optimizing UCB and Thompson Sampling
is non-essential to this paper, as they already perform quite well in our experiments.

12

Can large language models explore in-context?

Provable guarantees for bandit algorithms are commonly expressed via regret: the difference in expected total reward of the
best arm and the algorithm. Both baselines achieve regret O(y/KT logT), which is nearly minimax optimal as a function
of T and K. They also achieve a nearly instance-optimal regret rate, which scales as O{X/A log T’} for the instances we
consider.

The e-GREEDY algorithm (Footnote 6) is fundamentally inefficient in that it does not adaptively steer its exploration toward
better-performing arms. Accordingly, its regret rate scales as 7%/3 (for an optimal setting of € ~ T—1/3). Fixing such e,
regret does not improve for easier instances.

The GREEDY algorithm (Footnote 5) does not explore at all, which causes suffix failures. This is obvious when the algorithm
is initialized with a single sample (n = 1) of each arm: a suffix failure happens when the good arm returns 0, and one of the
other arms returns 1. However, suffix failures are not an artifact of small n: they can happen for any n, with probability that
scales as Q(1/+/n) (Banihashem et al., 2023).

B. Discussion and open questions

Our investigation suggests that contemporary LLMs do not robustly engage in exploration required for very basic statistical
reinforcement learning and decision making problems, at least without further intervention. In what follows, we identify
several next steps to further evaluate this hypothesis and search for interventions to mitigate this behavior.

Basic interventions and the need for methodological advancements. In light of our negative results, the most obvious
interventions one might consider include:

1. Experiment with other prompts. As with many other settings (Sclar et al., 2023), it is possible that small changes to our
prompt template might improve performance. However, sensitivity to prompt design is already concerning.

2. Experiment with few-shot prompting, where the prompt contains examples of exploratory behavior, or use such examples
to fine-tune the LLM.

3. Train the LLM to use auxiliary tools, such as a calculator for basic arithmetic or a “randomizer” to correctly sample
from a distribution.

While these steps are quite natural, cost, access to models, and compute pose significant barriers to further study, particularly
because of the need to employ long horizons 7' and many replicates N to obtain statistically meaningful results. To this end,
we believe that further methodological and/or statistical advancements to enable cost-effective diagnosis and understanding
of LLM-agent behavior (e.g., our surrogate statistics) are essential.

Implications for complex decision making problems. Our focus on simple multi-armed bandit problems provides a clean
and controllable experimental setup to study the exploratory behavior of LLMs and potential algorithmic interventions.
Exploration failures here suggest that similar failures will also occur in more complex RL and decision making settings. On
the other hand, caution must be exercised in developing mitigations, as solutions that succeed for the MAB setting may not
generalize to more complex settings. For example, while GPT-4 with summarized interaction history and reinforced CoT
seems to successfully explore in our MAB setting, it is not clear how one should externally summarize the history in settings
with complex, high-dimensional observations such as contextual bandits (see Footnote 1). Indeed, even for linear contextual
bandits, the approach may not be applicable without a substantial algorithmic intervention (such as, e.g., a linear regression
computed externally and included in the prompt) and the many explicit modeling and algorithmic choices involved in such
interventions. We believe a deeper investigation of algorithmic interventions is essential to understand the extent to which
LLMs can operate as decision making agents.

C. Additional figures

13

Can large language models explore in-context?

CB Greedy BNRNO BNRN1 BNRND BNRCO BNSNO BSRNO BSSCO BSSC1 BSSCD BSSCO

- A I I AT
e v (SRR v KRR . o o
R - I -~ Lo EEIEES
-~ I K Y

Replicates| 1000 1000 1000

Figure 5. GPT-4 for T' = 100: a per-configuration summary table on the hard MAB instance. Only three GPT-4 configurations do not
exhibit suffix failures; two of these (BNRND and BSSCD) exhibit uniform-like failures. The final configuration (BSSCO) succeeds.

Buttons, 5-arms, Delta=0.2
1.0 T T T T

o
o

o GPT-A.NF 0.60 FFF— —
= TS BN GPT-4-NRNO TS —— GPT-4-NRNO — = TOTT
E UCB-1.0 BN GPT-4-NRN1 bt —— UCB-1.0 —— GPT-4-NRN1 - - -0 \
1 — - — -4- o
5 08 B Greedy-1 9 6] — Greedy-1 T UCB-1.0 GPT-A-NRNI o
= | | | | | | | g $ 055 — Greedy-1 —— OPT
© i i i i i i i c
= ! ! ! : : : : g 3 - A —
0.6 A S A = o
o ! ! ! ! ! ! ! o Q
5 A s 04 g 050
5 0.41 I 5 g
o H 1 1 H H H H = ©
g | | | | | | | & b
g A x 021 E 0.45]
= 0.2 T £ £ 045
! ! ! ! 5
| I @
0.0 ; ; 00 . » - - . . . 0.40 ? |
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 0 20 40 60 80 100
Plays of the best arm in rounds [0,100] Time step (t) Time step (t)

Figure 6. Detailed view of bimodal behavior and suffix failures for GPT-4 with 7' = 100. Configurations visualized are the basic
configuration (BNRNO) and the same configuration but with temperature 1 (BNRN1). Visualizations are the same as in Figure 1.

Buttons, 5-arms, Delta=0.2

o
©
-
<)

0.60
— TS —— GPT-4-NRND — TS —— GPT-4-NRND
5 —— UCB-1.0 —— GPT-4-NSND o8 —— UCB-1.0 —— GPT-4-NSND ESCB o g:::'::xg
J —— Greedy-1 1 —— Greedy-1 B L s
§°'6 4 4 $ 055\ — Greedy-1 —— OPT
8 s g
= S 0.6 - i
£ 0.4 s g
£ & 8 0.50 1
E] Z 0.4 2
£ S :
x 02 E 045
£ 0.2 =
(2]
0.0 0.0 0.40 .
0 20 40 60 80 100 120 140 160 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Time step (t) Time step (t) Time step (t)

Figure 7. Detailed view of uniform-like failures for GPT-4 (the BNRND and BNSND configurations) with 7" = 200. Visualizations
are: (Left) suffix failure frequency, (Center) K - MinFrac(¢) as a function of ¢ and (Right) cumulative time-averaged rewards. These
configurations exhibit uniform-like failures but not suffix failures, and uniform-like failures are detrimental to long-term rewards.

14

Can large language models explore in-context?

Greedy BSRCO BSSCO

SuffFailFreq(T/2)

GreedYFrac “““--
Replicates 1000 1000 1000

Figure 8. Summary statistics of two GPT-4 configurations with reinforced CoT (BSREO and BSSEO) when run on the hard MAB instance
with T" = 200 for N = 40 replicates. BSRCO exhibits suffix failures. BSSCO exhibits neither suffix failures nor uniform-like failures and
has reasonable reward, so we declare it to be successful.

BNRNO

kll

BSRCO

Arm index

BSSCO

| IIIIII

|IIIII ’

Figure 9. Traces of the arm chosen at each time step for (a) 4 of the replicates of the basic configuration (GPT-4-BNRNO) (left four cells
in top row), (b) 4 of the replicates of GPT-4-BSRCO (left four cells of the middle row), (c) 4 of the replicates of GPT-4-BSSCO (left four
cells of the bottom row), as well as one replicate of GREEDY (red border), UCB (green border) and TS (orange border). For each of the
T = 100 time steps (X-axis) we indicate which of the five arms was chosen (Y-axis). The best arm is the top row of each plot, highlighted
with blue boxes.

Buttons, 5-arms, Delta=0.2

o BSRCO BSSCO Greedy TS

0.6

0.2 4

Fraction of pulls of the best arm

o
o

0 50 100 150 200 0O 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

Figure 10. Visualization of the per-replicate behavior of two GPT-4 configurations with reinforced-CoT and the baselines. For each
algorithm, replicate and time step ¢, we plot the fraction of rounds in [0, t] where the optimal arm was pulled.

15

Can large language models explore in-context?

D. Prompt designs

e D
You are in a room with 5 buttons labeled blue, You are a bandit algorithm in a room with 5 buttons

| green, red, yellow, purple. labeled blue, green, red, yellow, purple.)

(" Each button is associated with a Bernoulli distribution with a fixed but unknown mean; the means for the)
buttons could be different. For each button, when you press it, you will get a reward that is sampled from the
button's associated distribution. You have 100 time steps and, on each time step, you can choose any button

_ and receive the reward. Your goal is to maximize the total reward over the 100 time steps.)

A

[So far you have played 5 times with \ fSo far you have played 9 times with your past choices and\

the following choices and rewards: rewards summarized as follows:
green button, reward 1 blue button: pressed 8 times with average reward 0.2
red button, reward 0 green button: pressed 1 times with average reward 0.0
blue button, reward 0 red button: pressed 0 times
green button, reward 0 yellow button: pressed 0 times
\yellow button, reward 0 / kpurple button: pressed 0 times /

*V>-<_"

You must provide your final answer

within the tags <Answer> COLOR You may output a distribution over the 5 buttons formatted
</Answer> where COLOR is one of EXACTLY like “blue:a,green:b,red:c,yellow:d,purple:e”.
blue, green, red, yellow, purple.

/ \ 4

Which button will you choose next?
You must provide your final answer
immediately <...> and with no text
explanation.

Let’s think step by step to make sure we make a good
choice. Which button will you choose next? You must
provide your final answer <...>

Figure 11. Prompt designs with text in the buttons scenario, expanding on Figure 2.

16

Can large language models explore in-context?

D.1. Prompt examples

Let us present three full examples of our prompts. We remove the blank lines for the sake of readability.

(a) Our basic prompt design (i.e., BNRN, as temperature is specified elsewhere): the buttons scenario with neutral framing
and raw histories, asking the LLM to return an action without chain-of-thought reasoning.

[SYSTEM] You are in a room with 5 buttons labeled blue, green, red, yellow, purple. Each button is associated
with a Bernoulli distribution with a fixed but unknown mean; the means for the buttons could be different. For
each button, when you press it, you will get a reward that is sampled from the button’s associated distribution.
You have 10 time steps and, on each time step, you can choose any button and receive the reward. Your goal is to
maximize the total reward over the 10 time steps.

At each time step, I will show you your past choices and rewards. Then you must make the next choice, which
must be exactly one of blue, green, red, yellow, purple. You must provide your final answer immediately within
the tags <Answer>COLOR</Answer> where COLOR is one of blue, green, red, yellow, purple and with no
text explanation.

[USER] So far you have played 2 times with the following choices and rewards:

blue button, reward 1
green button, reward 0

Which button will you choose next? Remember, YOU MUST provide your final answer within the tags <An-
swer>COLOR </Answer> where COLOR is one of blue, green, red, yellow, purple.

(b) The adverts scenario with all the “advanced” modifications (i.e., ASSCD) : suggestive framing, summarized histories,
asking the LLM to return a distribution over actions, and asking for a chain-of-thought reasoning.

[SYSTEM] You are recommendation engine that chooses advertisements to display to users when they visit your
webpage. There are 5 advertisements you can choose from, named A, B, C, D, E. When a user visits the webpage
you can choose an advertisement to display and you will observe whether the user clicks on the ad or not. You
model this by assuming that each advertisement has a certain click rate and users click on advertisements with
their corresponding rates.

You have a budget of 10 users to interact with and your goal is to maximize the total number of clicks during this
process.

A good strategy to optimize for clicks in these situations requires balancing exploration and exploitation. You
need to explore to try out all of the options and find those with high click rates, but you also have to exploit the
information that you have to accumulate clicks.

When each user visits the webpage, I will show you a summary of the data you have collected so far.

Then you must choose which advertisement to display. You may output a distribution over the 5 choices formatted
EXACTLY like “A:n1,B:n2,C:n3,D:n4,E:n5”.

Let’s think step by step to make sure we make a good choice. Then, you must provide your final answer within
the tags <Answer>DIST</Answer> where DIST is the distribution in the format specified above.

[USER] So far you have interacted with 2 users. Here is a summary of the data you have collected:

Advertisement A was shown to 1 users with an estimated click rate of 1.00
Advertisement B was shown to 1 users with an estimated click rate of 0.00
Advertisement C has not been shown
Advertisement D has not been shown
Advertisement E has not been shown

Which advertisement will you choose next? Remember, YOU MUST provide your final answer within the tags
<Answer>DIST</Answer> where DIST is formatted like “A:n1,B:n2,C:n3,D:n4,E:n5”.

17

Can large language models explore in-context?

(c) The successful configuration for GPT-4 (i.e., BSSC, as temperature is specified elsewhere), which uses the buttons
scenario, suggestive framing, summarized histories, and reinforced chain-of-thought reasoning.

[SYSTEM] You are a bandit algorithm in a room with 5 buttons labeled blue, green, red, yellow, purple. Each
button is associated with a Bernoulli distribution with a fixed but unknown mean; the means for the buttons could
be different. For each button, when you press it, you will get a reward that is sampled from the button’s associated
distribution. You have 10 time steps and, on each time step, you can choose any button and receive the reward.
Your goal is to maximize the total reward over the 10 time steps.

At each time step, I will show you a summary of your past choices and rewards. Then you must make the next
choice, which must be exactly one of blue, green, red, yellow, purple. Let’s think step by step to make sure we
make a good choice. You must provide your final answer within the tags <Answer>COLOR</Answer> where
COLOR is one of blue, green, red, yellow, purple.

[USER] So far you have played 2 times with your past choices and rewards summarized as follows:
blue button: pressed 1 times with average reward 1.00

green button: pressed 1 times with average reward 0.00

red button: pressed 0 times

yellow button: pressed 0 times

purple button: pressed O times

Which button will you choose next? Remember, YOU MUST provide your final answer within the tags <An-
swer>COLOR </Answer> where COLOR is one of blue, green, red, yellow, purple. Let’s think step by step to
make sure we make a good choice.

18

Can large language models explore in-context?

E. Scatter plots and summary tables

Buttons, K=5, Delta=0.2, T=100

. TS I TS
0.6 * UCB 0.64 * UCB
. e Greedy e Greedy
= ° ° Eps-Greedy Eps-Greedy
8)
P e GPT-35 1 °® e GPT-35
L 0.4 0.4
£ x Llama-2-13b o Llama-2-13b
= * . e GPT-4 J o GPT4
\ L4 \ °
¥ 024 # ° 021 *
L4 °
.0 %_ . ° . oo
e e - o ®° o e “ov8e0 Se °
0.04 ° e%e _°, Se 0.0 1 e ® - Py) e
00 02 04 06 08 10 00 02 04 06 08 1.0
Buttons, K=4, Delta=0.5, T=100 Advertisements, K=4, Delta=0.5, T=100
0.8 0.8
. TS * TS
* UCB * UCB
0.6 - e Greedy 0.6 - e Greedy
E ! ° Eps-Greedy Eps-Greedy
(®)
© 1 e GPT-3.5 e GPT-3.5
‘£ 0.41 ° GPT-4 0.41 e GPT-4
= o
* °
¥ !
0.2+ o . 027
X [) o 37
? 8. - ® ¢ } : : v e ®
0.0 “ e S e w 0.0 3 @ %% o
00 01 02 03 04 05 06 0.0 0.2 0.4 0.6
SuffFailFreq(T/2) SuffFailFreq(T/2)
Figure 12. All scatter plots for the main experiments (I' = 100): suffix failures vs. uniform-like failures. Specifically:

SuffFailFreq(7’/2) vs K - MinFrac(T).

Advertisements, K=5, Delta=0.2, T=100

Each LLM/configuration pair maps to a dot on this plane. (However, some dots may
be hidden by some others.) We also plot e-GREEDY, tracing out the different tradeoffs obtained for different values of e.

19

Can large language models explore in-context?

(a) Hard MAB instance (A = 0.2), buttons scenario, N = 10 replicates.
CB Greedy BNRNO BNRN1 BNRND BNRCO BNSNO BSRNO BSSCO BSSC1 BSSCD BSSCO

sutralfreattyz) 00 -mm mm-m

K*MinFrac

Replicates| 1000 1000 1000

(b) Hard MAB instance (A = 0.2), advertisements scenario, N = 3 replicates.

Greedy ANRNO ANRN1 ANRND ANRCO ANSNO ASRNO ASSCO ASSC1 ASSCD
SUffFaIIFreq o 00 o2 -mn-ﬂn-ﬂ m

Replicates| 1000 1000 1000

(c) Easy MAB instance (A = 0.5), buttons scenario, N = 3 replicates.

TS ucBe Greedy BNRNO BNRN1 BNRND BNRCO BNSNO BSRNO BSSCO BSSC1 BSSCD

MedianReward | 0.84 0.88 0.92 0.90 0.92 m 0.92 0.96 0.92 0.92 0.90 m

SuffFailFreq(T/2) 0.00 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

K*MinFrac . 0.14

Replicates| 1000 1000 1000

(d) Easy MAB instance (A = 0.5), advertisements scenario, N = 3 replicates.

TS ucB Greedy ANRNO ANRN1 ANRND ANRCO ANSNO ASRNO ASSCO ASSC1 ASSCD

MedianReward = 0.84 0.88 0.92 0.88 0.88 0.88 0.90 0.88 m
Suffaifrea(T2) 0,00 0.00 ﬂn- ﬂ 000 000 0.0
K*MinFrac . 0.14

Replicates| 1000 1000 1000

Figure 13. GPT-4 for T' = 100: the per-configuration summary tables. The “fails” row indicates that all replicates completed successfully.

20

Can large language models explore in-context?

MedianReward
TS 0.47

UCB
Greedy
BNRNO
BNRN1
BNRND
BNRCO
BNRC1
BNRCD
BNSNO
BNSN1
BNSND
BNSCO
BNSC1
BNSCD

BSRNO

N

BSRN1

BSRND

BSRCO

BSRC1

BSRCD

BSSNO

BSSN1

BSSND

BSSCO

BSSC1

BSSCD

(=)
N
o

SuffFailFreq(T/2) K*MinFrac

0.01
0.02 0.18
0.48 0.05
0.16

(=]
(o)
(=)

o (=] ¢
[=
(6} (6]

0.00
0.02
0.10

GreedyFrac

0.62
0.76
1.00
0.30

0.33
0.44
0.47
0.60
1.00
0.78
0.42
1.00
0.83
0.78

Replicates

1000

1000

1000

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

Figure 14. GPT-3.5 for T' = 100: the per-configuration summary table. The buttons scenario, hard MAB instance.

21

Can large language models explore in-context?

MedianReward SuffFailFreq(T/2)

ucB 0.02

Greedy 0.48
ANRNO

ANRN1

ANRND

ANRCO

ANRC1

ANRCD

= -
o

ANSNO

ANSN1

ANSND

ANSCO

ANSC1

ANSCD

ASRNO

ASRN1

ASRND

ASRCO

ASRC1

ASRCD

(=]

ASSNO
ASSN1
ASSND 0.70
ASSCO 0.80
ASSC1 0.15

ASSCD

0.70

K*MinFrac

0.18
0.05
0.03
0.05
0.00
0.00
0.00
0.00
0.00
0.04
0.00
0.00
0.01
0.00
0.03
0.06
0.00
0.06
0.11
0.00
0.00
0.05
0.00
0.01
0.14
0.00

GreedyFrac
0.62

0.76
1.00
0.48
0.33
1.00
0.98
0.80
1.00
1.00
0.93
1.00
1.00
0.93
1.00
0.48

1.00
0.64
0.65
1.00
1.00
0.92
1.00
0.99

0.83

1.00

Replicates

1000

1000

1000

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

Figure 15. GPT-3.5 for T' = 100: the per-configuration summary table. The advertisements scenario, hard MAB instance.

22

Can large language models explore in-context?

MedianReward SuffFailFreq(T/2) K*MinFrac GreedyFrac Replicates

TS 0.84 0.00 0.14 0.88 1000

uce 0.88 0.00 0.09 0.94 1000

Greedy 0.92 0.19 0.04 1.00 1000
BNRNomm 0.02 0.85 20
BNRNl_ . 0.16 0.62 20
BNRNDm_ 0.17 0.46 20
BNRCO _ 0.03 0.56 20
BNRC1 0.81 0.05 0.08 0.77 20
BNRCD 0.10 0.04 0.92 20
BNSNO““ 0.00 1.00 20
BNSNlmm 0.02 0.89 20
BNSNDm 0.10 m 0.52 20
BNscomm 0.00 1.00 20
BNSClmm 0.01 0.95 20
BNSCDmm 0.03 0.77 20
BSRNO_m 0.11 0.57 20
BSRNlm 0.00 0.42 20
BSRND“_ 0.09 0.43 20
BSRCO 0.87 0.06 0.72 20
BSRCl_ 0.05 0.16 0.72 20
BSRCD 0.81 0.11 0.76 20
BSSNomm 0.00 1.00 20
BSSNl__ 0.02 0.89 20
Bsscomm 0.00 0.99 20
BSSClmm 0.03 0.82 20
BSSCD__ 0.02 0.90 20

Figure 16. GPT-3.5 for T' = 100: the per-configuration summary table. The buttons scenario, easy MAB instance.

23

Can large language models explore in-context?

MedianReward SuffFailFreq(T/2)

TS 0.84 0.00
UCB 0.88 0.00
Greedy 0.92 0.19
ANSC1 .
ASRCO .

ASSN1 0.79 0.10
ASSND

ASSCO 0.89 0.20
ASSC1 0.82 0.10

ASSCD

Figure 17. GPT-3.5 for T' = 100: the per-configuration summary table. The adverts scenario, easy MAB instance.

K*MinFrac
0.14

0.09
0.04
0.01
0.03
0.00
0.00
0.03
0.00
0.00
0.03
0.00
0.00
0.03
0.00
0.01
0.05
0.00
0.08
0.13
0.00
0.04
0.05
0.00
0.01
0.11
0.00

24

GreedyFrac
0.88

0.94
1.00
0.81
0.47
1.00
0.96
0.89
1.00
1.00
0.97
1.00
1.00
0.96
1.00
0.81
0.40
1.00
0.86
0.86
1.00
0.92
0.93
1.00
1.00

0.92

1.00

Replicates

1000

1000

1000

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

Can large language models explore in-context?

MedianReward SuffFailFreq(T/2)

UCB“ 0.02

K*MinFrac

0.18

0.05

0.00

0.00

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.01

0.00

0.00

0.00

0.00

GreedyFrac
0.62

0.76
1.00
1.00
1.00
0.62
0.89
1.00
1.00
1.00
1.00
1.00

0.93

0.72

0.67

1.00

1.00

1.00

1.00

Replicates

1000

1000

1000

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

Figure 18. LLAMA?2 for T' = 100: the per-configuration summary tables. The buttons scenario, hard MAB instance.

25

Can large language models explore in-context?

MedianReward SuffFailFreq(T/2)

UCB“ 0.02

K*MinFrac

0.18

0.05

0.00

0.00

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.01

0.00

0.00

0.00

0.00

GreedyFrac
0.62

0.76
1.00
1.00
1.00
0.62
0.89
1.00
1.00
1.00
1.00
1.00

0.93

0.72

0.67

1.00

1.00

1.00

1.00

Replicates

1000

1000

1000

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

Figure 19. LLAMA?2 for T' = 100: the per-configuration summary tables. The advertisements scenario, hard MAB instance.

26

