
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Can large language models explore in-context?

Anonymous Authors1

Abstract
We investigate the extent to which contemporary
Large Language Models (LLMs) can engage in
exploration, a core capability in reinforcement
learning and decision making. We focus on na-
tive performance of existing LLMs, without train-
ing interventions. We deploy LLMs as agents in
simple multi-armed bandit environments, speci-
fying the environment description and interaction
history entirely in-context, i.e., within the LLM
prompt. We experiment with GPT-3.5, GPT-4,
and LLAMA2, using a variety of prompt designs,
and find that the models do not robustly engage in
exploration without substantial interventions: i)
Across all of our experiments, only one configura-
tion resulted in satisfactory exploratory behavior:
GPT-4 with chain-of-thought reasoning and an ex-
ternally summarized interaction history, presented
as sufficient statistics; ii) All other configurations
did not result in robust exploratory behavior, in-
cluding those with chain-of-thought reasoning but
unsummarized history. Although these findings
can be interpreted positively, they suggest that
external summarization—which may not be pos-
sible in more complex settings—is important for
obtaining desirable behavior from LLM agents.
We conclude that non-trivial algorithmic inter-
ventions, such as fine-tuning or dataset curation,
may be required to empower LLM-based decision
making agents in complex settings.

1. Introduction
In-context learning is an important emergent capability of
Large Language Models (LLMs) that enables one to use
a pre-trained LLM to solve a problem by specifying the
problem description and relevant data entirely in-context,
i.e., within the LLM prompt, with no updates to the LLM

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the 1st In-context Learning
Workshop at the International Conference on Machine Learning
(ICML). Do not distribute.

parameters (Brown et al., 2020). For example, one can
prompt an LLM with numeric covariate vectors and scalar
targets and subsequently obtain regression-style predictions
from the model by including new covariate vectors in the
prompt (Garg et al., 2022). Perhaps surprisingly, LLMs
are not explicitly trained for this behavior; instead the un-
derlying algorithms employed for in-context learning are
extracted from the training corpus and emerge at scale.

Since its discovery in the GPT-3 model (Brown et al., 2020),
in-context learning has been the subject of a growing body
of research. These works include theoretical investigations
into the underlying mechanisms (e.g., Xie et al., 2021;
Akyürek et al., 2022), empirical probes (e.g., Garg et al.,
2022; Kirsch et al., 2022), and works leveraging in-context
learning in applications (e.g., Xu et al., 2022; Som et al.,
2023; Edwards et al., 2023). This literature predominantly
studies in-context learning for prediction or supervised
learning tasks, and while theoretical progress is in its in-
fancy, our understanding of how to use in-context supervised
learning (ICSL) in practice is rapidly taking shape.

Although supervised learning is an important capability,
many applications demand the use of ML models for down-
stream decision making. Thus, in-context reinforcement
learning (ICRL) and sequential decision making is a natu-
ral next frontier. LLMs are already being used as decision
making agents in applications ranging from experimental
design in the natural sciences (Lee et al., 2023b) to game
playing (Shinn et al., 2023; Wang et al., 2023), but our
understanding—theoretically and operationally—of ICRL
is far less developed than for ICSL. To date, we lack a
systematic understanding as to whether LLMs can be con-
sidered general-purpose decision making agents.

Decision making agents must possess three core capabili-
ties: generalization (required for supervised learning), explo-
ration (making decisions that may be suboptimal in the short
term for the sake of gathering more information) and plan-
ning (to account for long-term consequences of decisions).
In this paper, we focus on exploration, the capability to de-
liberately gather information in order to evaluate alternatives
and reduce uncertainty. A recent series of papers (Laskin
et al., 2022; Lee et al., 2023a; Raparthy et al., 2023) demon-
strates in-context reinforcement learning behavior (includ-
ing exploration) in transformer models when they are ex-

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Can large language models explore in-context?

plicitly trained to produce this behavior using data from
reinforcement learning agents or expert demonstrations on
related tasks. Such training tends to be laborious, expensive,
and possibly task-specific. In particular, these findings do
not shed light into whether exploratory behavior manifests
in general-purpose LLMs obtained via standard training
methods, which suggests the following basic question:

Do contemporary LLMs exhibit the capability to
explore in-context?

Contributions. We investigate this question by deploying
LLMs as agents in simple synthetic reinforcement learning
problems, namely multi-armed bandits (MABs) (Slivkins,
2019; Lattimore & Szepesvári, 2020), specifying the envi-
ronment description and interaction history entirely within
the LLM prompt. Multi-armed bandits are a classical and
well-studied type of RL problem that isolates the tradeoff
between exploration and exploitation, i.e., making the best
decision given the available data. They are also a funda-
mental building block toward general sequential decision
making; the ability to solve MABs is a prerequisite for
more challenging reinforcement learning tasks. Their sim-
plicity, centrality to RL, and focus on exploration versus
exploitation make MABs a natural choice for systematically
studying the in-context exploration abilities of LLMs.

We evaluate the in-context exploration behavior of GPT-3.5
(Brown et al., 2020), GPT-4 (OpenAI, 2023), and LLAMA2
(Touvron et al., 2023) in MAB environments, using a variety
of prompt designs. In our experiments, we find that only a
single configuration (i.e., a prompt design and LLM pair)
results in satisfactory exploratory behavior. All other con-
figurations exhibit exploration failures, failing to converge
to the best decision (arm) with significant probability. We
find that typically this happens due to suffix failures, where
the LLM fails to select the best arm even once after some
initial rounds (i.e., in some “time suffix”). This scenario is
reflected in Figure 1(a): in particular, GPT-4 with our basic
prompt design experiences a suffix failure in > 60% of the
replicates. An alternative failure mode we identify is where
the LLM behaves “uniformly”, selecting all arms near-
equally often and failing to narrow down to the better ones.

The single configuration thato succeeds in our experiments
involves a combination of GPT-4 and an “enhanced” prompt
that (a) provides a suggestive hint to explore, (b) externally
summarizes the history of interaction into per-arm averages,
and (c) asks the LLM to use zero-shot chain-of-thought
reasoning (Wei et al., 2022; Kojima et al., 2022). This
configuration is visualized in Figure 1(b). One can interpret
this finding positively: state-of-the-art LLMs do possess
the capability to robustly explore, provided that the prompt
is carefully designed to elicit this behavior. On the other
hand, we find that the same configuration without external

summarization fails, which leads to a negative interpretation:
LLMs may fail to explore in more complex environments,
where externally summarizing the history is a non-trivial
algorithm design problem.1

We conclude that while the current generation of LLMs can
perhaps explore in simple RL environments with appropri-
ate prompt engineering, training interventions—in the spirit
of Lee et al. (2023a); Raparthy et al. (2023)—may be re-
quired to endow LLMs with more sophisticated exploration
capabilities required for more complex settings.

Methodology. An underlying technical challenge in assess-
ing LLM capabilities and limitations is that one must search
a combinatorially large space of prompt designs while ob-
taining statistically meaningful results, all while meeting
the financial and computational constraints associated with
LLMs. Assessing in-context bandit learning is even more
challenging because (a) stochasticity in the environment
demands a high degree of replication for statistical signifi-
cance and (b) the sample complexity of learning/exploration
demands that even a single experiment involve hundreds or
thousands of LLM queries to obtain meaningful effect sizes
(i.e., separation between successful and failing methods).
To address these issues, our core technical contribution is
to identify surrogate statistics as diagnostics for long-term
exploration failure. The surrogate statistics we consider
characterize long-term exploration failure, yet can be mea-
sured at moderate scale with few replicates and short learn-
ing horizons, even when the standard performance measure
(namely, reward) is too noisy to be useful.

2. Experimental setup
Multi-armed bandits (MAB). We consider a basic multi-
armed bandit variant, stochastic Bernoulli bandits. There
are K possible actions (arms), indexed as [K] :=
{1, . . . ,K}. Each arm a is associated with mean reward
µa ∈ [0, 1], which is unknown. An agent interacts with
the environment for T time steps, where in each time step
t ∈ [T ] the agent selects an arm at ∈ [K] and receives a
reward rt ∈ {0, 1} drawn independently from a Bernoulli
distribution with mean µat . Thus, the MAB instance is de-
termined by the mean rewards {µa : a ∈ [K]} and the time
horizon T . The goal is to maximize the total reward, which
roughly corresponds to identifying the best arm: an arm
with the highest mean reward. A key feature of the MAB
setup is that rewards for arms not chosen by the agent are not
revealed, so exploration is necessary to identify the best arm.

1 E.g., if there are many arms, or if we are considering con-
textual bandits with many contexts, then we may only play each
arm (context-arm pair) a few times, so averaging reward separately
for each—as we do in our experiments—does not provide much
summarization. (See Appendix B for further discussion.)

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Can large language models explore in-context?

0 50 100 150 200 250 300 350 400 450
Plays of the best arm in rounds [0,500]

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 re

pl
ica

te
s

TS
UCB

Greedy
GPT4

0 50 100 150 200 250 300 350 400
Time step (t)

0.0

0.2

0.4

0.6

0.8

Su
ffi

x 
Fa

ilu
re

 Fr
eq

ue
nc

y 
@

 t

TS
UCB

Greedy
GPT4

0 100 200 300 400 500
Time step (t)

0.40

0.45

0.50

0.55

0.60

Ti
m

e-
av

er
ag

ed
 re

wa
rd

TS
UCB
Greedy

GPT4
OPT

0 25 50 75 100 125 150 175
Plays of the best arm in rounds [0,200]

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 re

pl
ica

te
s

TS
UCB

Greedy
GPT4-CoT

0 20 40 60 80 100 120 140 160
Time step (t)

0.0

0.2

0.4

0.6

0.8

Su
ffi

x 
Fa

ilu
re

 Fr
eq

ue
nc

y 
@

 t TS
UCB

Greedy
GPT4-CoT

0 25 50 75 100 125 150 175 200
Time step (t)

0.40

0.45

0.50

0.55

0.60

Ti
m

e-
av

er
ag

ed
 re

wa
rd

TS
UCB
Greedy

GPT4-CoT
OPT

Buttons, 5-arms, Delta=0.2

Figure 1. Representative experiments: Two prompt configurations for GPT-4 on a 5-armed bandit problem, demonstrating exploration
failure (top) and success (bottom). The baselines are two standard bandit algorithms with performance guarantees, Upper Confidence
Bound (UCB) and Thompson Sampling (TS), as well as the GREEDY algorithm, which always chooses an arm with the best average
reward so far and is known to perform poorly. Visualizations are: (Left) histogram over replicates of the number of times the best arm is
chosen, (Center) for each t, we plot the suffix failure frequency, the fraction of replicates for which the best arm is never chosen after
time-step t, and (Right) cumulative time-averaged rewards, averaged over replicates.

(a) Top row. GPT-4 with our basic prompt design with zero temperature. The experiment runs for T = 500 rounds, and is replicated
N = 20 times, varying environment randomness. This configuration exhibits highly bimodal behavior: a large (> 60%) fraction of
replicates choose the best arm only a handful of times and exhibit suffix failures, similar to GREEDY, and very unlike UCB and TS. This
is suggestive of a long term failure to explore and, indeed, this configuration underperforms substantially in terms of reward.

(b) Bottom row. GPT-4 with a suggestive framing, summarized history, and chain-of-thought with zero temperature. The experiment runs
for T = 200 rounds and is replicated N = 40 times. This configuration exhibits a unimodal distribution of plays of the best arm, very
few suffix failures, and reward that is comparable to TS.

We focus on MAB instances where the best arm has mean
reward µ⋆ = 0.5 + ∆/2 for a parameter ∆ > 0, while all
other arms have mean reward µ = 0.5 − ∆/2 (so, ∆ =
µ⋆−µ is the gap between the best and the second-best arm).
The main instance we consider has K = 5 arms and gap
∆ = 0.2. We call this the hard instance, as we also consider
an easy instance with K = 4 and ∆ = 0.5.2

Prompts. We employ LLMs to operate as decision making
agents that interact with MAB instances by prompting them
with a description of the MAB problem (including the time
horizon T ) and the history of interaction thus far. Our
prompt design allows several independent choices. First is
a “scenario”, which provides a grounding for the decision
making problem, positioning the LLM either a) as an agent
choosing buttons to press, or b) as a recommendation engine
displaying advertisements to users. Second, we specify a

2A larger gap ∆ makes it easier to distinguish arms, while
smaller K means there are fewer alternatives to explore.

“framing” as either a) explicitly suggestive of the need to
balance exploration and exploitation, or b) neutral. Third,
the history can be presented as a) a raw list over rounds, or
it can b) be summarized via number of plays and average
rewards of each arm. Fourth, the requested final answer can
be a) a single arm, or b) a distribution over arms. Finally,
we either a) request the answer only, or b) also allow the
LLM to provide a “chain-of-thought” (CoT) explanation.
Altogether, these choices lead to 25 = 32 prompt designs,
illustrated in Figure 2. More details about the prompt design,
including examples, are provided in Appendix D.

The most basic prompt design from the options above
uses the buttons scenario, neutral framing, and raw history,
and requests the LLM to return only an arm with no CoT.
Each of the five possible modifications to this prompt can
potentially help the LLM, and our experiments evaluate this.
For example, both the advertising scenario and suggestive
framing might help invoke the LLM’s knowledge of bandit
algorithms (as bandit algorithms are commonly used in

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Can large language models explore in-context?

Figure 2. Prompt designs; see Figure 11 for a more detailed view.
A prompt is generated by traversing the graph from top to bottom.

content recommendation). History summarization might
help if the LLM cannot reliably summarize history itself
(perhaps due to arithmetic errors3) and/or does not fully
realize that it should. Returning a distribution might help
if the LLM can identify a good distribution, but fails to
correctly sample from it. Finally, chain-of-thought is
known to help in a wide variety of LLM scenarios (Wei
et al., 2022; Malach, 2023), even when used in a zero-shot
manner (Kojima et al., 2022) as we do here.

Prompts are presented to each LLM using both system and
user messages (exposed by all three LLM APIs). The sys-
tem message presents information about the scenario and
framing and prompts the LLM about whether to use CoT
and whether (and how) to return a distribution. The user
message presents the history and reminds the LLM about
how to format its response. For GPT-4 only, we found that
prompting the LLM to use CoT in the system prompt did not
reliably elicit CoT outputs, so—for GPT-4 only—we also
consider a reinforced CoT prompt design that additionally
reminds the LLM to use CoT at the end of the user prompt.
See Appendix D for examples.

LLM configurations. We experiment with three LLMs:
GPT-3.5, GPT-4, and LLAMA2.4 In addition to the prompt
variations above, we also consider two choices for the
temperature parameter, 0 and 1. A temperature of 0 forces
the LLM to be deterministic and therefore isolates the
“deliberate” exploration behavior of the LLM itself. A

3E.g., LLMs sometimes fail at basic arithmetic (Gao et al.,
2023; Liu et al., 2024), though this is likely to improve in the near
future via better training and/or integrating calculator-like tools.

4Specifically: GPT-3.5-TURBO-0613 (released 06/13/2023),
GPT-4-0613 (released 06/13/2023), and LLAMA2-13B-CHAT
quantized to 4-bits (Dettmers & Zettlemoyer, 2023).

temperature of 1 provides a source of external randomness
in the LLM responses, which may or may not result in
randomization among the arms. Allowing the LLM to return
a distribution instead of a single arm also provides external
randomness (as we sample from the returned distribution);
to isolate sources of randomness, we do not consider
temperature 1 with “return distribution” prompt designs.

We refer to the tuple (prompt design, temperature) as the
LLM configuration. We identify each configuration with a
5-letter “code” L1L2L3L4L5, with letters Li denoting the
choices:

• L1: ‘B’ or ‘A’ for, resp., buttons or advertisements
scenario;

• L2: ‘N’ or ‘S’ for, resp., neutral or suggestive framing;

• L3: ‘R’ or ‘S’ for, resp., raw or summarized history;

• L4: ‘C’ or ‘C̃’ or ‘N’ for, resp., chain-of-thought, rein-
forced CoT, or no CoT.

• L5: ’0’, ’1’ or ’D’ for, resp., temperature and returning
a distribution (with temperature 0).

We refer to “BNRN0” as the basic configuration going for-
ward. Most of our experiments consider the “buttons” sce-
nario, and we use the “advertisements” scenario primarily
as a robustness check.

For GPT-3.5 and LLAMA2, we do not consider reinforced
CoT as it is not required to reliably elicit CoT outputs; thus,
we have 48 configurations total for these two LLMs. For
GPT-4, we primarily used reinforced CoT, but did experi-
ment with some standard CoT prompt designs; thus, there
are 72 configurations total for GPT-4.

Baselines. For baselines, we consider two standard
MAB algorithms, UCB (Auer et al., 2002) and Thompson
Sampling (TS) (Thompson, 1933), which are optimal in
a certain theoretical sense and also reasonably effective
in practice. We also consider the GREEDY algorithm,
which does not explore and is known to fail.5 While
all three baselines have tunable parameters, we perform
no parameter tuning (see Appendix A.1 for a detailed
description of each algorithm with parameter settings).
In addition to these baselines, some of our experiments
include the the ϵ-GREEDY algorithm6 with various choices
of ϵ to quantitatively demonstrate tradeoffs between
exploration and exploitation. We ran 1000 replicates

5In each round, GREEDY chooses an arm with the largest aver-
age reward so far. The algorithm is initialized with one sample of
each arm. It fails in that with constant probability, it never chooses
the best arm after initialization.

6ϵ-GREEDY is a standard MAB algorithm which in each round
chooses an arm uniformly at random with a given probability ϵ,
and exploits (i.e., mimics GREEDY) otherwise.

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Can large language models explore in-context?

for each baseline and each MAB instance (with rewards
realized independently across the replicates).

Scale of the experiments. Our main set of experiments
has time horizon T = 100. To account for randomness in
rewards (and possibly in the LLM, via temperature) we ran
N ∈ {10, 20} replicates for each LLM configuration and
each bandit instance, with rewards generated independently
across the replicates. As a robustness check, we ran a single
experiment on GPT-4 with the basic configuration for T =
500 rounds (with N = 20), and obtained consistent/stronger
conclusions, depicted in Figure 1(a).

In more detail, for GPT-3.5 we used N = 20 replicates
across all 48 prompt configurations, resulting in ≈ 200K
queries in total. GPT-4 was an order of magnitude more
expensive, considerably slower on throughput, and subject
to unpredictable throttling. As such, we only used N = 10
replicates across 10 representative prompt configurations.7

For additional robustness checks, we ran four GPT-4
configurations with T = 200, two for N = 20 replicates
and two for N = 40 replicates. In total, this resulted in
≈50K queries issued to GPT-4. LLAMA2 was essentially
free from our perspective (since it was locally hosted), but
its performance was consistently sub-par; we limited our
experiments to the hard MAB instance, 32 configurations,
and N = 10 replicates.

We emphasize that bandit experiments with LLMs are
quite costly in terms of money and time. They take N · T
LLM queries for each LLM configuration and each MAB
instance being tested. Both N and T must be relatively
large to obtain statistically meaningful results: N governs
the significance level and must be large to overcome
randomness in reward realizations, while T governs the
effect size and must be large so that good algorithms have
enough time to identify the optimal arm. Both issues are
more pronounced in harder MAB instances (many arms K
and/or small gap ∆), but exploration failures also tend to
be less frequent in (very) easy MAB instances.8 Further, we
need to cover the space of possible prompt designs, which
is essentially infinitely large, to ensure that our findings do
not overfit to one particular design. Thus, ideally we would
take N , T , the number of MAB instances, and the number
of prompts to be rather large, but doing so is not practically
feasible.9 Instead, we use moderately small gap ∆ = 0.2,
moderately large choices for N ∈ {10, 20} and T = 100,

7Precisely, N = 10 for the buttons scenario, and N = 3 for
the robustness check with the advertisements scenario.

8For example, GREEDY always succeeds when the gap is ∆ =
1, i.e., there is no noise, and trivially succeeds with probability at
least (1 + ∆)2/4 when the initial samples evaluate to 1 for the
good arm and 0 for the bad arm.

9Raw-history prompts and chain-of-thought outputs are partic-
ularly expensive, as LLM APIs bill per token.

0.0 0.2 0.4 0.6 0.8 1.0
SuffFailFreq(T/2) (exploration fail)

0.0

0.2

0.4

0.6

K 
* M

in
Fr

ac
(T

) (
ex

pl
oi

ta
tio

n 
fa

il)

ep
s=

0.
01

eps=0.95
Buttons, K=5, Delta=0.2, T=100

TS
UCB
Greedy
Eps-Greedy
GPT-3.5
Llama-2-13b
GPT-4

Figure 3. Scatter plot summarizing all experiments with T = 100.
We plot suffix failures (expressed via SuffFailFreq(T/2)) vs.
uniform-like failures (expressed via K · MinFrac(T )). Each
LLM/configuration pair maps to a dot on this plane (some dots
may overlap). The GPT-4 configuration labeled with a star is
BSSC̃0, which is the only configuration that succeeds. We also
plot ϵ-GREEDY, tracing out the different tradeoffs obtained for
different values of ϵ.

and the prompt design space as described above.

As we will see below, these choices (specifically, N ∈
{10, 20} and T = 100 and ∆ = 0.2) do not provide enough
statistical power to distinguish between successful and un-
successful methods based solely on accumulated rewards.
In lieu of further increasing the scale of the experiments,
which is not practically feasible, we rely on surrogate statis-
tics which can be detected at our moderate scale, and which
are highly suggestive of long-term/persistent exploration
failures. Our robustness checks with larger T and N , as
well as qualitative findings that we report below provide
supporting evidence for this methodology.

3. Experimental results
In this section, we present our experimental findings,
beginning with a summary in Section 3.1. In Section 3.2
we investigate failing LLM configurations in detail,
and in Section 3.3 we focus on the single successful
LLM configuration our experiments identified. Finally,
in Section 3.4 we attempt to diagnose the underlying causes
for exploration failures.

3.1. Overview

We find that all but one of the LLM configurations we con-
sider exhibit exploration failures, not converging to the best
arm with significant probability. This happens either due to
suffix failures, where the LLM never selects the best arm
after a small number of initial rounds, or (in a smaller num-

5



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Can large language models explore in-context?

ber of configurations) due to uniform-like failures, where
the LLM selects all arms at an approximately uniform rate,
failing to eliminate poorly performing arms. The only one
exception is GPT-4 with the BSSC̃0 configuration, i.e., with
the buttons scenario, suggestive framing, summarized his-
tory, reinforced CoT, and temperature 0.

We summarize our key findings in Figure 3 and Figure 5.
Figure 3 summarizes the main set of experiments (which
we recall consider the hard MAB instance), visualizing
each LLM configuration with a single point on a scatter
plot where the axes correspond to two surrogate statistics,
SuffFailFreq and MinFrac, which represent the strength
of the two failure modes (SuffFailFreq measures suffix
failures, and K · MinFrac measures uniform-like failures);
these statistics are described in detail in the sequel. Figure
5 displays SuffFailFreq, MinFrac, GreedyFrac (which
measures how similar a method is to GREEDY), and addi-
tional summary statistics for each of the GPT-4 configura-
tions in the main set of experiments. These statistics reveal
that all of the LLM configurations, except for GPT-4-BSSC̃0
(the blue star in Figure 3), behave fundamentally differently
from the baseline algorithms UCB and TS, and we find that
these differences result in a large, persistent drop in perfor-
mance. Conversely, we find that GPT-4-BSSC̃0 successfully
explores and (as a result) converges to the best arm.

3.2. Identifying failures

We now give a precise overview of the exploration failures
illustrated in Figure 3 and Figure 5, and provide additional
results and figures that illustrate failure in greater detail.
We focus on GPT-4, as we find that GPT-3.5 and LLAMA2
perform worse (and often much worse) in all experiments;
detailed results for GPT-3.5 and LLAMA2 are included
in Appendix E for completeness. We begin with detailed
background on the surrogate statistics, SuffFailFreq and
MinFrac, used to quantify failures in Figures 3 and 5 and
beyond, providing evidence that exploration failure—as
quantified by these statistics—results in a persistent drop
in performance.

Suffix failures. Most of the LLM configurations we con-
sider exhibit highly bimodal behavior, whereby a large frac-
tion of the replicates choose the best arm very rarely, and a
few replicates converge to the best arm extremely quickly.
Consistent with this bimodal behavior, we observe a large
incidence of suffix failures, where the best arm is not se-
lected even once after a small number initial of rounds (i.e.,
in some “time suffix”). Suffix failures are suggestive of a
long-term failure to explore which cannot be improved by
running the algorithm for longer, because, without playing
the optimal arm, one cannot acquire information to learn
that it is indeed optimal. Such behaviors are qualitatively
similar to those of GREEDY and qualitatively very different

from those of UCB and Thompson Sampling.

Our surrogate statistic for measuring suffix failures is
defined as follows: For an experiment replicate R and
round t, let SuffFail(t, R) be a binary variable that
is 1 if the best arm is never chosen in rounds [t, T ].
Then let SuffFailFreq(t) := mean({SuffFail(t, R) :
replicates R}). Suffix failures manifest in most of our
experiments at T = 100. In the scatter plot in Figure
3, the X-axis plots SuffFailFreq(T/2) for each LLM
configuration, and we find that all but five configurations
have SuffFailFreq(T/2) ≥ 15%. Recalling the definition
of suffix failures, this means that ≥ 15% of the time, these
configurations do not pull the best arm even once in the last
half of the rounds.

A more detailed view of suffix failures and bimodal
behavior can be obtained by focusing on individual LLM
configurations. We visualize this for the basic configuration
(GPT-4-BNRN0) in Figure 1 (top) for T = 500, and in Fig-
ure 6 for GPT-4 (BNRN0 and BNRN1) at T = 100. In these
detailed views, the middle panels plot SuffFailFreq(t) at
each time t for the given LLM configurations, as well as
UCB, TS, and GREEDY. We find that these LLM configu-
rations have much higher suffix failure rates than both UCB
and TS. Bimodal behavior is visualized in the left panel
of each plot, where for each configuration, a large fraction
of replicates rarely pulls the best arm, while the remaining
fraction almost always pulls the best arm. Because of this bi-
modal behavior (particularly because a constant fraction of
replicates by chance almost always pull the best arm), suffix
failures are not fully reflected in the total reward plots in the
right panels of Figure 6, since the time horizon T = 100 is
not large enough. However, as mentioned, suffix failures are
suggestive of an irrecoverable failure to explore which leads
to stark differences in reward for larger T . This is precisely
what we find at T = 500 in Figure 1, which suggests that
suffix failures indeed lead to poor long-term performance.

Uniform-like failures. Returning to the left panel of Figure
3, we see that three GPT-4 configurations avoid suffix fail-
ures. Two of these configurations exhibit a different type of
failure, where the LLM selects arms in roughly equal pro-
portions for the entirety of the T rounds and fails to exploit
the acquired information to focus on the better arms. We
call this a uniform-like failure.

Our surrogate statistic for measuring such failures is de-
fined as follows: For a particular experiment replicate
R and round t, let fa(t, R) be the fraction of rounds
in which a given arm a is chosen, MinFrac(t, R) :=
mina fa(t, R), and MinFrac(t) := mean({MinFrac(t, R) :
replicates R}). Since MinFrac(t) ≤ 1/K, ∀t ∈ [T ], we al-
ways plot K ·MinFrac(t), so as to rescale the range to [0, 1].
Larger MinFrac(t) corresponds to a more uniform selection

6



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Can large language models explore in-context?

of arms at time t. When an LLM’s MinFrac(t) does not
decrease over time and stays substantively larger than that
of the baselines (especially as t approaches the time horizon
T ), we take it as an indication of a uniform-like failure.

The Y-axis of Figure 3 records K · MinFrac(T ) for each
configuration, where we see that of the three GPT-4 config-
urations that avoid suffix failures, two configurations have
very high MinFrac(T ) relative to UCB and TS (the third
configuration is GPT-4-BSSC̃0, which is successful). These
two configurations are GPT-4-BNRND and GPT-4-BSSCD,
both of which use the distributional output format. We
provide a more detailed view of GPT-4-BNRND (as
well as GPT-4-BNSND, which also exhibits uniform-like
failures, but only differs from GPT-4-BNRND in the use
of summarized history) in Figure 7, which considers a
longer horizon and more replicates (T = 200 and N = 20).
The middle panel reveals that K · MinFrac(t) does not
decrease over time for these LLM configurations, while it
does for the baselines. This behavior results in no suffix
failures, but leads to much lower reward than the baselines.
In particular, we obtain a clear separation in total reward,
showing that uniform-like failures indeed result in poor
long-term performance.

Generality of the failures. To summarize, Figure 3 shows
that all LLM configurations except GPT-4-BSSC̃0 exhibit
either a suffix failure or a uniform failure for the hard MAB
instance and the buttons scenario. Scatter plots for the other
three experiments (i.e., the advertisements scenario and/or
the easy MAB instance) are qualitatively similar and are
deferred to Appendix E.

The same data, but with attributions to specific LLM con-
figurations, are presented for all GPT-4 configurations in
Figure 5; analogous tables for other LLMs and experimental
settings are given in Appendix E. As it is not instructive
to present detailed plots such as Figure 6 for every LLM
configuration, Figure 5 summarizes the performance of each
configuration with just a few statistics. We include:

• SuffFailFreq(T/2) and MinFrac(T ), defined above.

• MedianReward: the rescaled median (over replicates)
of the time-averaged total reward.10

• GreedyFrac: the fraction of greedy rounds, averaged
over the replicates. A greedy round is one in which an
arm with a largest average reward is selected. This is
one way to quantify the extent to which a configuration
behaves like GREEDY.

10More precisely, let Φ(R) be the time-averaged total reward
for a given replicate R. Then E{Φ(R)} ranges in the interval
[1/2 − ∆/2, 1/2 + ∆/2]. We rescale Φ(R), by translating and
multiplying, so that E{Φ(R)} ranges in [0, 1].

We now summarize further findings from the scatter plots
(Figures 3 and 12) and the summary tables (Figures 13
to 19). First, GPT-4 performs much better than GPT-3.5,
and LLAMA2 performs much worse (in particular, the suffix
failure frequency for LLAMA2 ranges from that of GREEDY
to much larger). Second, we observe that all LLMs are
sensitive to small changes in the prompt design. However,
the different modifications we consider appear to interact
with each other, and it is difficult to identify which individual
modifications improve performance and which degrade it.

3.3. Investigating successes

On the hard MAB instance, the only configuration in our
experiments that avoids both suffix failures and uniform-like
failures is GPT-4 with the BSSC̃0 prompt design. As can
be seen from Figure 5, at T = 100, this configuration has
no suffix failures, the K · MinFrac value is only slightly
larger than TS, and the reward is comparable to TS. These
statistics suggest that this configuration succeeds, and in this
section we present further evidence supporting this claim.

To do so, we run GPT-4-BSSC̃0 on the hard MAB in-
stance with T = 200 and N = 40 to obtain more statisti-
cally meaningful results. We also consider GPT-4-BSRC̃0,
which swaps summarized history for raw history, as an abla-
tion. Figure 8 provides a summary of the results from this
experiment, while Figure 1(b) provides a detailed view of
the BSSC̃0 configuration. The figures reveal that BSSC̃0
continues to avoid suffix failures and performs relatively
well in terms of reward for larger T . On the other hand,
we see that BSRC̃0 exhibits a non-trivial fraction of suffix
failures, demonstrating that this ablation results in funda-
mentally different behavior.

We also provide two additional visualizations that provide
some qualitative evidence toward the success of BSSC̃0, as
well as the failure of other configurations. These are pre-
sented in Figure 9 and Figure 10. In Figure 9 we visualize
the arm chosen at each time step for various replicates of sev-
eral different methods (LLMs and baselines). Specifically,
Figure 9 shows four replicates for the basic configuration
(BNRN0) and the two configurations with reinforced CoT
(BSRC̃0 and BSSC̃0), as well as one replicate of each of
the baseline algorithms. We see that the basic configuration
BNRN0 tends to commit to a single arm for several rounds,
a behavior that is similar to that of GREEDY and very differ-
ent from both UCB and TS. BSRC̃0 also commits for long
periods, but to a lesser extent than the basic configuration.
In contrast, BSSC̃0 switches arms much more frequently,
and qualitatively appears much more similar to TS.

In Figure 10, we plot the fraction of rounds in [0, t] where
the optimal arm was pulled as a function of t for individ-
ual replicates. BSRC̃0 is visually similar to UCB, except
that a non-trivial fraction of runs exhibit suffix failures (the

7



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Can large language models explore in-context?

curves that converge to 0 on the plot). Meanwhile, BSSC̃0
is visually similar to TS, with almost all replicates slowly
converging to 1. These visualizations, along with the sum-
mary statistics, suggest that BSSC̃0 behaves most similarly
to TS, which further suggests it will successfully converge
to the optimal arm given a long enough time horizon.

3.4. Root causes

LeastFracGreedyFrac
0.120.120.300.530.540.60TS
0.260.090.460.550.660.84UCB
0.240.300.300.500.360.34BNRN0
0.0400.120.580.840.50BNRC0

000.280.840.940.82BNSN0
0.380.380.600.220.180.20BSRN0
TSUCBUnifTSUCBUnifData source

Figure 4. Per-round decisions with some GPT-3.5 configurations.
T = 100, histories of length t = 30, hard MAB instance.

Our experimental findings above shed light on how LLM-
based decision making agents behave, but it is also worth-
while to understand why they behave the way they do (and
particularly, why they fail). This question is rather challeng-
ing to answer decisively, but two natural hypotheses are that
the configurations we consider (outside of GPT-4-BSSC̃0)
are either a) too greedy, or b) too uniform-like. In this sec-
tion, we describe how our experiments offer some insight
into this hypotheses.

First, focusing on GPT-4, our experiments reveal qual-
itatively different behavior between the easy and hard
instances (Figure 13(a) and Figure 13(c)). Indeed, the
easy instance appears to be much easier; most GPT-4
configurations avoid suffix failures and accrue large rewards
on this instance, and the GreedyFrac statistic offers a
potential explanation as to why. On the easy instance, most
GPT-4 configurations have very high GreedyFrac values,
so they behave similarly to GREEDY, which performs
quite well (even though GREEDY provably fails with small
constant probability and, empirically, has many suffix
failures on this instance).11 A plausible hypothesis from
this is that GPT-4 performs quite well in low-noise settings,
which is precisely when GREEDY also performs well.

A stronger hypothesis would be that most GPT-4 configura-
tions (except perhaps those using reinforced CoT) behave

11Indeed, in Figure 13(c) we see that most GPT-4 configurations
have very high GreedyFrac but no suffix failures. Apparently,
even a very small amount of exploration suffices for easy instances
(and makes a big difference, relative to GREEDY). However, this
should not be construed as evidence for the more general and
robust exploratory behavior necessary for harder bandit instances.

like GREEDY on all instances, but this hypothesis is invali-
dated by the GreedyFrac statistics for our experiments on
the hard instance. On the hard instance, it seems that most
GPT-4 configurations are doing something non-trivial (albeit
flawed); their behavior is neither completely GREEDY-like
nor like uniform-at-random.

Toward a more fine-grained understanding, we ran a collec-
tion of small-scale secondary experiments focusing on the
per-round decisions of LLM-agents. The experiments focus
on a single round t in a bandit problem. Each experiment
considers a particular “data source” (a distribution of bandit
histories), samples N = 50 bandit histories of length t
from this distribution, and presents them to the agents
(the LLMs and the baselines) and asks them to output an
arm or distribution over arms. We track two statistics for
each agent: GreedyFrac and LeastFrac, the fraction of
replicates in which the agent chose, resp., an empirically
best arm so far and a least-chosen arm so far. We vary the
data source, i.e., the algorithm which generates the history.
In particular, we consider histories generated by sampling
uniformly at random (Unif) and by running our baselines
UCB and TS for t rounds.

Results are summarized in Figure 4. Unfortunately, we
find that per-round performance of both the LLMs and the
baselines is very sensitive to the particular data source. For
example, the MinFrac statistic of UCB can vary from as
high as 0.46 on histories generated uniformly at random
to as low as 0.09 on histories generated by UCB itself.
It seems plausible to conclude the BNSN0 is too greedy
while BSRN0 is too uniform, but the statistics for the other
two LLM configurations (BNRN0 and BNRC0)—both of
which fail in our longitudinal experiments—fall within the
reasonable range provided by the baselines. Thus, we find
that it is challenging to assess whether LLM agents are too
greedy or too uniform-like based on per-round decisions,
even though these agents behave rather differently from the
baselines in the longitudinal experiments.

References
Abernethy, J., Agarwal, A., Marinov, T. V., and Warmuth,

M. K. A mechanism for sample-efficient in-context learn-
ing for sparse retrieval tasks. arXiv:2305.17040, 2023.

Agrawal, S. and Goyal, N. Analysis of Thompson Sampling
for the multi-armed bandit problem. In Conference on
Learning Theory, 2012.

Agrawal, S. and Goyal, N. Near-optimal regret bounds for
thompson sampling. Journal of the ACM, 2017. Prelimi-
nary version in AISTATS 2013.

Ahn, K., Cheng, X., Daneshmand, H., and Sra, S. Trans-

8



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Can large language models explore in-context?

formers learn to implement preconditioned gradient de-
scent for in-context learning. arXiv:2306.00297, 2023.

Ahn, M., Brohan, A., Brown, N., Chebotar, Y., Cortes, O.,
David, B., Finn, C., Fu, C., Gopalakrishnan, K., Hausman,
K., Herzon, Alexand Ho, D., Hsu, J., Ibarz, J., Ichter, B.,
Irpan, A., Jang, E., Ruano, R. J., Jeffrey, K., Jesmonth,
S., Joshi, N. J., Julian, R., Kalashnikov, D., Kuang, Y.,
Lee, K.-H., Levine, S., Lu, Y., Luu, L., Parada, C., Pastor,
P., Quiambao, J., Rao, K., Rettinghouse, J., Reyes, D.,
Sermanet, P., Sievers, N., Tan, C., Toshev, A., Vanhoucke,
V., Xia, F., Xiao, T., Xu, P., Xu, S., Yan, M., and Zeng, A.
Do as I can, not as I say: Grounding language in robotic
affordances. arXiv:2204.01691, 2022.

Ahuja, K., Panwar, M., and Goyal, N. In-context learning
through the bayesian prism. arXiv:2306.04891, 2023.

Akyürek, E., Schuurmans, D., Andreas, J., Ma, T., and
Zhou, D. What learning algorithm is in-context learning?
Investigations with linear models. arXiv:2211.15661,
2022.

Akyürek, E., Wang, B., Kim, Y., and Andreas, J. In-
context language learning: Architectures and algorithms.
arXiv:2401.12973, 2024.

Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time
analysis of the multiarmed bandit problem. Machine
Learning, 2002.

Bai, Y., Chen, F., Wang, H., Xiong, C., and Mei, S. Trans-
formers as statisticians: Provable in-context learning with
in-context algorithm selection. arXiv:2306.04637, 2023.

Banihashem, K., Hajiaghayi, M., Shin, S., and Slivkins,
A. Bandit social learning: Exploration under myopic
behavior. arXiv:2302.07425, 2023.

Bhattamishra, S., Patel, A., Blunsom, P., and Kanade, V. Un-
derstanding in-context learning in transformers and LLMs
by learning to learn discrete functions. arXiv:2310.03016,
2023.

Brooks, E., Walls, L. A., Lewis, R., and Singh, S. Large
language models can implement policy iteration. In Ad-
vances in Neural Information Processing Systems, 2023.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Advances in Neural
Information Processing Systems, 2020.

Bubeck, S. and Cesa-Bianchi, N. Regret Analysis
of Stochastic and Nonstochastic Multi-armed Ban-
dit Problems. Foundations and Trends in Machine
Learning, 5(1):1–122, 2012. Published with Now
Publishers (Boston, MA, USA). Also available at
https://arxiv.org/abs/1204.5721.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J.,
Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li, Y., Lund-
berg, S., Nori, H., Palangi, H., Ribeiro, M. T., and Zhang,
Y. Sparks of artificial general intelligence: Early experi-
ments with gpt-4. arXiv:2303.12712, 2023.

Cheng, X., Chen, Y., and Sra, S. Transformers implement
functional gradient descent to learn non-linear functions
in context. arXiv:2312.06528, 2023.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems. arXiv:2110.14168, 2021.

Dettmers, T. and Zettlemoyer, L. The case for 4-bit pre-
cision: k-bit inference scaling laws. In International
Conference on Machine Learning, 2023.

Edwards, C. N., Naik, A., Khot, T., Burke, M. D., Ji,
H., and Hope, T. Synergpt: In-context learning for
personalized drug synergy prediction and drug design.
arXiv:2307.11694, 2023.

Fu, D., Chen, T.-Q., Jia, R., and Sharan, V. Transformers
learn higher-order optimization methods for in-context
learning: A study with linear models. arXiv:2310.17086,
2023.

Gao, L., Madaan, A., Zhou, S., Alon, U., Liu, P., Yang,
Y., Callan, J., and Neubig, G. Pal: Program-aided lan-
guage models. In International Conference on Machine
Learning, 2023.

Garg, S., Tsipras, D., Liang, P. S., and Valiant, G. What
can transformers learn in-context? a case study of sim-
ple function classes. Advances in Neural Information
Processing Systems, 2022.

Guo, T., Hu, W., Mei, S., Wang, H., Xiong, C., Savarese,
S., and Bai, Y. How do transformers learn in-context
beyond simple functions? A case study on learning with
representations. arXiv:2310.10616, 2023.

Hahn, M. and Goyal, N. A theory of emergent
in-context learning as implicit structure induction.
arXiv:2303.07971, 2023.

Han, C., Wang, Z., Zhao, H., and Ji, H. Explain-
ing emergent in-context learning as kernel regression.
arXiv:2305.12766, 2023a.

9



495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Can large language models explore in-context?

Han, X., Simig, D., Mihaylov, T., Tsvetkov, Y., Celikyilmaz,
A., and Wang, T. Understanding in-context learning via
supportive pretraining data. arXiv:2306.15091, 2023b.

Hendel, R., Geva, M., and Globerson, A. In-context learning
creates task vectors. arXiv:2310.15916, 2023.

Ho, C.-J., Slivkins, A., and Vaughan, J. W. Adaptive contract
design for crowdsourcing markets: Bandit algorithms for
repeated principal-agent problems. Journal of Artificial
Intelligence Research, 2016. Preliminary version in ACM
EC 2014.

Huang, Y., Cheng, Y., and Liang, Y. In-context convergence
of transformers. arXiv:2310.05249, 2023.

Jeon, H. J., Lee, J. D., Lei, Q., and Van Roy, B. An
information-theoretic analysis of in-context learning.
arXiv:2401.15530, 2024.

Kaufmann, E., Korda, N., and Munos, R. Thompson sam-
pling: An asymptotically optimal finite-time analysis. In
International Conference on Algorithmic Learning The-
ory, 2012.

Kıcıman, E., Ness, R., Sharma, A., and Tan, C. Causal
reasoning and large language models: Opening a new
frontier for causality. arXiv:2305.00050, 2023.

Kirsch, L., Harrison, J., Sohl-Dickstein, J., and Metz, L.
General-purpose in-context learning by meta-learning
transformers. arXiv:2212.04458, 2022.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa, Y.
Large language models are zero-shot reasoners. Advances
in neural information processing systems, 2022.

Laskin, M., Wang, L., Oh, J., Parisotto, E., Spencer, S.,
Steigerwald, R., Strouse, D., Hansen, S., Filos, A.,
Brooks, E., Gazeau, M., Sahni, H., Singh, S., and Mnih,
V. In-context reinforcement learning with algorithm dis-
tillation. arXiv:2210.14215, 2022.

Lattimore, T. and Szepesvári, C. Bandit Algorithms. Cam-
bridge University Press, 2020.

Lee, J. N., Xie, A., Pacchiano, A., Chandak, Y., Finn,
C., Nachum, O., and Brunskill, E. Supervised pre-
training can learn in-context reinforcement learning.
arXiv:2306.14892, 2023a.

Lee, P., Goldberg, C., and Kohane, I. The AI revolution in
medicine: GPT-4 and beyond. Pearson, 2023b.

Li, Y., Ildiz, M. E., Papailiopoulos, D., and Oymak, S.
Transformers as algorithms: Generalization and stability
in in-context learning. In International Conference on
Machine Learning, 2023.

Lin, L., Bai, Y., and Mei, S. Transformers as decision
makers: Provable in-context reinforcement learning via
supervised pretraining. arXiv:2310.08566, 2023.

Liu, B., Ash, J., Goel, S., Krishnamurthy, A., and Zhang,
C. Exposing attention glitches with flip-flop language
modeling. Advances in Neural Information Processing
Systems, 2024.

Lu, P., Bansal, H., Xia, T., Liu, J., Li, C., Hajishirzi, H.,
Cheng, H., Chang, K.-W., Galley, M., and Gao, J. Math-
vista: Evaluating mathematical reasoning of foundation
models in visual contexts. arXiv:2310.02255, 2023.

Malach, E. Auto-regressive next-token predictors are uni-
versal learners. arXiv:2309.06979, 2023.

Momennejad, I., Hasanbeig, H., Vieira, F., Sharma, H., Ness,
R. O., Jojic, N., Palangi, H., and Larson, J. Evaluating
cognitive maps and planning in large language models
with cogeval. arXiv:2309.15129, 2023.

OpenAI. Gpt-4 technical report. arXiv:2303.08774, 2023.

Park, J. S., O’Brien, J., Cai, C. J., Morris, M. R., Liang,
P., and Bernstein, M. S. Generative agents: Interactive
simulacra of human behavior. In Symposium on User
Interface Software and Technology, 2023.

Raparthy, S. C., Hambro, E., Kirk, R., Henaff, M., and
Raileanu, R. Generalization to new sequential decision
making tasks with in-context learning. arXiv:2312.03801,
2023.

Raventós, A., Paul, M., Chen, F., and Ganguli, S. Pretrain-
ing task diversity and the emergence of non-bayesian
in-context learning for regression. arXiv:2306.15063,
2023.

Russo, D., Van Roy, B., Kazerouni, A., Osband, I., and Wen,
Z. A tutorial on thompson sampling. Foundations and
Trends in Machine Learning, 2018.

Sclar, M., Choi, Y., Tsvetkov, Y., and Suhr, A. Quantify-
ing language models’ sensitivity to spurious features in
prompt design or: How i learned to start worrying about
prompt formatting. arXiv:2310.11324, 2023.

Shen, L., Mishra, A., and Khashabi, D. Do pretrained
transformers really learn in-context by gradient descent?
arXiv:2310.08540, 2023.

Shinn, N., Cassano, F., Labash, B., Gopinath, A.,
Narasimhan, K., and Yao, S. Reflexion: Language agents
with verbal reinforcement learning. arXiv:2303.11366,
2023.

10



550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Can large language models explore in-context?

Simchowitz, M., Tosh, C., Krishnamurthy, A., Hsu, D. J.,
Lykouris, T., Dudik, M., and Schapire, R. E. Bayesian
decision-making under misspecified priors with applica-
tions to meta-learning. Advances in Neural Information
Processing Systems, 2021.

Slivkins, A. Introduction to multi-armed bandits. Founda-
tions and Trends in Machine Learning, 2019.

Slivkins, A., Radlinski, F., and Gollapudi, S. Ranked bandits
in metric spaces: Learning optimally diverse rankings
over large document collections. Journal of Machine
Learning Research, 2013. Preliminary version in ICML,
2010.

Som, A., Sikka, K., Gent, H., Divakaran, A., Kathol, A., and
Vergyri, D. Demonstrations are all you need: Advancing
offensive content paraphrasing using in-context learning.
arXiv:2310.10707, 2023.

Thompson, W. R. On the likelihood that one unknown
probability exceeds another in view of the evidence of
two samples. Biometrika, 1933.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen,
M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,
Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,
A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez,
V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P. S.,
Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y.,
Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog,
I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi,
K., Schelten, A., Silva, R., Smith, E. M., Subramanian, R.,
Tan, X. E., Tang, B., Taylor, R., Williams, A., Kuan, J. X.,
Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur,
M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S.,
and Scialom, T. Llama 2: Open foundation and fine-tuned
chat models. arXiv:2307.09288, 2023.

Valmeekam, K., Marquez, M., Olmo, A., Sreedharan, S.,
and Kambhampati, S. Planbench: An extensible bench-
mark for evaluating large language models on planning
and reasoning about change. In Advances in Neural Infor-
mation Processing Systems: Datasets and Benchmarks
Track, 2023.

Von Oswald, J., Niklasson, E., Randazzo, E., Sacramento,
J., Mordvintsev, A., Zhmoginov, A., and Vladymyrov,
M. Transformers learn in-context by gradient descent. In
International Conference on Machine Learning, 2023.

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C.,
Zhu, Y., Fan, L., and Anandkumar, A. Voyager: An
open-ended embodied agent with large language models.
arXiv:2305.16291, 2023.

Weber, L., Bruni, E., and Hupkes, D. The ICL consistency
test. arXiv:2312.04945, 2023.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., and Zhou, D. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 2022.

Wies, N., Levine, Y., and Shashua, A. The learnability of
in-context learning. arXiv:2303.07895, 2023.

Wu, J., Zou, D., Chen, Z., Braverman, V., Gu, Q.,
and Bartlett, P. L. How many pretraining tasks are
needed for in-context learning of linear regression?
arXiv:2310.08391, 2023.

Wu, Y., Tang, X., Mitchell, T., and Li, Y. Smartplay: A
benchmark for LLMs as intelligent agents. In Interna-
tional Conference on Learning Representations, 2024.

Xie, S. M., Raghunathan, A., Liang, P., and Ma, T. An
explanation of in-context learning as implicit bayesian
inference. arXiv:2111.02080, 2021.

Xu, M., Shen, Y., Zhang, S., Lu, Y., Zhao, D., Tenenbaum,
J., and Gan, C. Prompting decision transformer for few-
shot policy generalization. In International Conference
on Machine Learning, 2022.

Xu, M., Huang, P., Yu, W., Liu, S., Zhang, X., Niu, Y.,
Zhang, T., Xia, F., Tan, J., and Zhao, D. Creative robot
tool use with large language models. arXiv:2310.13065,
2023.

Yiu, E., Kosoy, E., and Gopnik, A. Imitation ver-
sus innovation: What children can do that large lan-
guage and language-and-vision models cannot (yet)?
arXiv:2305.07666, 2023.

Yu, D., Kaur, S., Gupta, A., Brown-Cohen, J., Goyal, A.,
and Arora, S. Skill-mix: A flexible and expandable family
of evaluations for ai models. arXiv:2310.17567, 2023.

Zhang, R., Frei, S., and Bartlett, P. L. Trained transformers
learn linear models in-context. arXiv:2306.09927, 2023a.

Zhang, Y., Zhang, F., Yang, Z., and Wang, Z. What and how
does in-context learning learn? bayesian model averaging,
parameterization, and generalization. arXiv:2305.19420,
2023b.

11



605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Can large language models explore in-context?

A. Related work
This paper belongs to a recent body of work that aims to understand the capabilities of LLMs, i.e., what they can and cannot
do well, and why. Capabilities that have received considerable attention, but are peripheral to the present paper, include
general intelligence (Bubeck et al., 2023), causal (Kıcıman et al., 2023; Yiu et al., 2023) and mathematical reasoning (Cobbe
et al., 2021; Lu et al., 2023), planning (Valmeekam et al., 2023; Momennejad et al., 2023; Brooks et al., 2023), and
compositionality (Yu et al., 2023).

In more detail, our work contributes to the broader literature on capabilities of in-context learning. Prior studies of in-context
learning include theoretical (Xie et al., 2021; Akyürek et al., 2022; Zhang et al., 2023b; Abernethy et al., 2023; Zhang et al.,
2023a; Han et al., 2023a; Cheng et al., 2023; Ahn et al., 2023; Wies et al., 2023; Fu et al., 2023; Wu et al., 2023; Huang et al.,
2023; Hendel et al., 2023; Li et al., 2023; Von Oswald et al., 2023; Bai et al., 2023; Hahn & Goyal, 2023; Jeon et al., 2024)
and empirical (Garg et al., 2022; Kirsch et al., 2022; Ahuja et al., 2023; Han et al., 2023b; Raventós et al., 2023; Weber
et al., 2023; Bhattamishra et al., 2023; Guo et al., 2023; Shen et al., 2023; Akyürek et al., 2024) investigations, though as
mentioned in the prequel, the vast majority of this work pertains to in-context supervised learning; in-context reinforcement
learning has received far less attention. The small collection of empirical works that study in-context RL (Laskin et al.,
2022; Lee et al., 2023a; Raparthy et al., 2023; Xu et al., 2022) focus on models trained from scratch using trajectory data
collected from another agent (either an RL algorithm or an expert); theoretically, Lee et al. (2023a) and later Lin et al.
(2023) justify this approach with a Bayesian meta-reinforcement learning perspective (Simchowitz et al., 2021), and show
that pre-trained transformers can implement classical exploration strategies like Thompson sampling and upper confidence
bounds (UCB). However, these works require interventions to the pre-training phase of the language model, and do not
study whether existing LLMs exhibit exploration capabilities under standard training conditions.

In parallel, there is a rapidly growing line of work that applies LLMs to real-world decision-making applications. Beyond
previously mentioned works (Shinn et al., 2023; Wang et al., 2023; Lee et al., 2023b), which consider applications to gaming,
programming, and medicine, highlights include Park et al. (2023), who introduce generative agents which simulate human
behavior in an open-world environment, Ahn et al. (2022); Xu et al. (2023), who develop LLM-enabled robots.

Concurrent work of Wu et al. (2024) studies LLM performance in a battery of tasks that aim to characterize “intelligent
agents”, with two-armed bandits as a specific task of interest. Their bandit experiments differ in several key respects: They
consider a very easy MAB instance (with 2 arms and a gap ∆ = 0.6, which is much easier than both of our instances), focus
on a single prompt design (similar to our basic prompt), and compare to human players rather than algorithmic benchmarks.
These differences lead to very different experimental findings. In particular, they find that GPT-4 performs well on their
simple MAB instance, converging very quickly to the best arm, while we find that GPT-4 with a similar prompt fails on a
harder MAB instance. However, their finding is consistent with ours, as we also find that several configurations of GPT-4 do
well on the easy MAB instance. As we discuss in Section 3.4, this instance is too simple to provide compelling evidence for
principled exploratory behavior.

A.1. Further background on multi-armed bandits

Here, we provide additional background on the multi-armed bandit problem, and on the baseline algorithms used in this
paper. Deeper discussion can be found in Bubeck & Cesa-Bianchi (2012); Slivkins (2019); Lattimore & Szepesvári (2020).

The UCB algorithm (Auer et al., 2002) explores by assigning each arm a an index, defined as the average reward from the
arm so far plus a bonus of the form

√
C/na, where C = Θ(log T ) and na is the number of samples from the arm so far. In

each round, it chooses an arm with the largest index. The bonus implements the principle of optimism under uncertainty.
We use a version of UCB that sets C = 1 (a heuristic), which has been observed to have a favorable empirical performance
(e.g., Slivkins et al., 2013; Ho et al., 2016).

Thompson Sampling (Thompson, 1933; Russo et al., 2018, for a survey) proceeds as if the arms’ mean rewards were initially
drawn from some Bayesian prior. In each round, it computes a Bayesian posterior given the history so far, draws a sample
from the posterior, and chooses an arm with largest mean reward according to this sample (i.e., assuming the sample were the
ground truth). In our setting, the prior is essentially a parameter to the algorithm. We choose the prior that draws the mean
reward of each arm independently and uniformly at random from the [0, 1] interval. This is one standard choice, achieving
near-optimal regret bounds, as well as good empirical performance (Kaufmann et al., 2012; Agrawal & Goyal, 2012; 2017).
Each arm is updated independently as a Beta-Bernoulli conjugate prior. Further optimizing UCB and Thompson Sampling
is non-essential to this paper, as they already perform quite well in our experiments.

12



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Can large language models explore in-context?

Provable guarantees for bandit algorithms are commonly expressed via regret: the difference in expected total reward of the
best arm and the algorithm. Both baselines achieve regret O(

√
KT log T ), which is nearly minimax optimal as a function

of T and K. They also achieve a nearly instance-optimal regret rate, which scales as O{K/∆ log T} for the instances we
consider.

The ϵ-GREEDY algorithm (Footnote 6) is fundamentally inefficient in that it does not adaptively steer its exploration toward
better-performing arms. Accordingly, its regret rate scales as T 2/3 (for an optimal setting of ϵ ∼ T−1/3). Fixing such ϵ,
regret does not improve for easier instances.

The GREEDY algorithm (Footnote 5) does not explore at all, which causes suffix failures. This is obvious when the algorithm
is initialized with a single sample (n = 1) of each arm: a suffix failure happens when the good arm returns 0, and one of the
other arms returns 1. However, suffix failures are not an artifact of small n: they can happen for any n, with probability that
scales as Ω(1/

√
n) (Banihashem et al., 2023).

B. Discussion and open questions
Our investigation suggests that contemporary LLMs do not robustly engage in exploration required for very basic statistical
reinforcement learning and decision making problems, at least without further intervention. In what follows, we identify
several next steps to further evaluate this hypothesis and search for interventions to mitigate this behavior.

Basic interventions and the need for methodological advancements. In light of our negative results, the most obvious
interventions one might consider include:

1. Experiment with other prompts. As with many other settings (Sclar et al., 2023), it is possible that small changes to our
prompt template might improve performance. However, sensitivity to prompt design is already concerning.

2. Experiment with few-shot prompting, where the prompt contains examples of exploratory behavior, or use such examples
to fine-tune the LLM.

3. Train the LLM to use auxiliary tools, such as a calculator for basic arithmetic or a “randomizer” to correctly sample
from a distribution.

While these steps are quite natural, cost, access to models, and compute pose significant barriers to further study, particularly
because of the need to employ long horizons T and many replicates N to obtain statistically meaningful results. To this end,
we believe that further methodological and/or statistical advancements to enable cost-effective diagnosis and understanding
of LLM-agent behavior (e.g., our surrogate statistics) are essential.

Implications for complex decision making problems. Our focus on simple multi-armed bandit problems provides a clean
and controllable experimental setup to study the exploratory behavior of LLMs and potential algorithmic interventions.
Exploration failures here suggest that similar failures will also occur in more complex RL and decision making settings. On
the other hand, caution must be exercised in developing mitigations, as solutions that succeed for the MAB setting may not
generalize to more complex settings. For example, while GPT-4 with summarized interaction history and reinforced CoT
seems to successfully explore in our MAB setting, it is not clear how one should externally summarize the history in settings
with complex, high-dimensional observations such as contextual bandits (see Footnote 1). Indeed, even for linear contextual
bandits, the approach may not be applicable without a substantial algorithmic intervention (such as, e.g., a linear regression
computed externally and included in the prompt) and the many explicit modeling and algorithmic choices involved in such
interventions. We believe a deeper investigation of algorithmic interventions is essential to understand the extent to which
LLMs can operate as decision making agents.

C. Additional figures

13



715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Can large language models explore in-context?

TS UCB Greedy BNRN0 BNRN1 BNRND BNRC0 BNSN0 BSRN0 BSSC0 BSSC1 BSSCD BSSC0

MedianReward

SuffFailFreq(T/2)

K*MinFrac

GreedyFrac

0.47 0.55 0.40 0.63 0.70 0.33 0.35 0.60 0.45 0.68 0.28 0.37 0.47

0.01 0.02 0.48 0.50 0.40 0.00 0.50 0.60 0.70 0.30 0.20 0.00 0.00

0.28 0.18 0.05 0.03 0.04 0.41 0.09 0.07 0.05 0.09 0.19 0.49 0.33

0.62 0.76 1.00 0.52 0.46 0.45 0.78 0.99 0.59 0.93 0.88 0.49 0.69

Replicates 1000 1000 1000 10 10 10 10 10 10 10 10 10 10

Figure 5. GPT-4 for T = 100: a per-configuration summary table on the hard MAB instance. Only three GPT-4 configurations do not
exhibit suffix failures; two of these (BNRND and BSSCD) exhibit uniform-like failures. The final configuration (BSSC̃0) succeeds.

0 10 20 30 40 50 60 70 80 90
Plays of the best arm in rounds [0,100]

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 re

pl
ica

te
s

TS
UCB-1.0
Greedy-1

GPT-4-NRN0
GPT-4-NRN1

0 10 20 30 40 50 60 70 80
Time step (t)

0.0

0.2

0.4

0.6

0.8

Su
ffi

x 
Fa

ilu
re

 Fr
eq

ue
nc

y 
@

 t

TS
UCB-1.0
Greedy-1

GPT-4-NRN0
GPT-4-NRN1

0 20 40 60 80 100
Time step (t)

0.40

0.45

0.50

0.55

0.60

Ti
m

e-
av

er
ag

ed
 re

wa
rd

TS
UCB-1.0
Greedy-1

GPT-4-NRN0
GPT-4-NRN1
OPT

Buttons, 5-arms, Delta=0.2

Figure 6. Detailed view of bimodal behavior and suffix failures for GPT-4 with T = 100. Configurations visualized are the basic
configuration (BNRN0) and the same configuration but with temperature 1 (BNRN1). Visualizations are the same as in Figure 1.

0 20 40 60 80 100 120 140 160
Time step (t)

0.0

0.2

0.4

0.6

0.8

Su
ffi

x 
Fa

ilu
re

 Fr
eq

ue
nc

y 
@

 t

TS
UCB-1.0
Greedy-1

GPT-4-NRND
GPT-4-NSND

0 25 50 75 100 125 150 175 200
Time step (t)

0.0

0.2

0.4

0.6

0.8

1.0

K 
* M

in
Fr

ac
(t)

TS
UCB-1.0
Greedy-1

GPT-4-NRND
GPT-4-NSND

0 25 50 75 100 125 150 175 200
Time step (t)

0.40

0.45

0.50

0.55

0.60

Ti
m

e-
av

er
ag

ed
 re

wa
rd

TS
UCB-1.0
Greedy-1

GPT-4-NRND
GPT-4-NSND
OPT

Buttons, 5-arms, Delta=0.2

Figure 7. Detailed view of uniform-like failures for GPT-4 (the BNRND and BNSND configurations) with T = 200. Visualizations
are: (Left) suffix failure frequency, (Center) K · MinFrac(t) as a function of t and (Right) cumulative time-averaged rewards. These
configurations exhibit uniform-like failures but not suffix failures, and uniform-like failures are detrimental to long-term rewards.

14



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Can large language models explore in-context?

TS UCB Greedy BSRC0 BSSC0

MedianReward

SuffFailFreq(T/2)

K*MinFrac

GreedyFrac

0.59 0.70 0.60 0.65 0.54

0.00 0.02 0.47 0.12 0.03

0.23 0.12 0.03 0.11 0.29

0.66 0.81 1.00 0.75 0.68

Replicates 1000 1000 1000 40 40

Figure 8. Summary statistics of two GPT-4 configurations with reinforced CoT (BSRC̃0 and BSSC̃0) when run on the hard MAB instance
with T = 200 for N = 40 replicates. BSRC̃0 exhibits suffix failures. BSSC̃0 exhibits neither suffix failures nor uniform-like failures and
has reasonable reward, so we declare it to be successful.

Ar
m

 in
de

x

Figure 9. Traces of the arm chosen at each time step for (a) 4 of the replicates of the basic configuration (GPT-4-BNRN0) (left four cells
in top row), (b) 4 of the replicates of GPT-4-BSRC̃0 (left four cells of the middle row), (c) 4 of the replicates of GPT-4-BSSC̃0 (left four
cells of the bottom row), as well as one replicate of GREEDY (red border), UCB (green border) and TS (orange border). For each of the
T = 100 time steps (X-axis) we indicate which of the five arms was chosen (Y-axis). The best arm is the top row of each plot, highlighted
with blue boxes.

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 p

ul
ls 

of
 th

e 
be

st
 a

rm

BSRC0

0 50 100 150 200

BSSC0

0 50 100 150 200

Greedy

0 50 100 150 200

TS

0 50 100 150 200

UCB
Buttons, 5-arms, Delta=0.2

Figure 10. Visualization of the per-replicate behavior of two GPT-4 configurations with reinforced-CoT and the baselines. For each
algorithm, replicate and time step t, we plot the fraction of rounds in [0, t] where the optimal arm was pulled.

15



825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Can large language models explore in-context?

D. Prompt designs

Figure 11. Prompt designs with text in the buttons scenario, expanding on Figure 2.

16



880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Can large language models explore in-context?

D.1. Prompt examples

Let us present three full examples of our prompts. We remove the blank lines for the sake of readability.

(a) Our basic prompt design (i.e., BNRN, as temperature is specified elsewhere): the buttons scenario with neutral framing
and raw histories, asking the LLM to return an action without chain-of-thought reasoning.

[SYSTEM] You are in a room with 5 buttons labeled blue, green, red, yellow, purple. Each button is associated
with a Bernoulli distribution with a fixed but unknown mean; the means for the buttons could be different. For
each button, when you press it, you will get a reward that is sampled from the button’s associated distribution.
You have 10 time steps and, on each time step, you can choose any button and receive the reward. Your goal is to
maximize the total reward over the 10 time steps.

At each time step, I will show you your past choices and rewards. Then you must make the next choice, which
must be exactly one of blue, green, red, yellow, purple. You must provide your final answer immediately within
the tags <Answer>COLOR</Answer> where COLOR is one of blue, green, red, yellow, purple and with no
text explanation.

[USER] So far you have played 2 times with the following choices and rewards:

blue button, reward 1
green button, reward 0

Which button will you choose next? Remember, YOU MUST provide your final answer within the tags <An-
swer>COLOR</Answer> where COLOR is one of blue, green, red, yellow, purple.

(b) The adverts scenario with all the “advanced” modifications (i.e., ASSCD) : suggestive framing, summarized histories,
asking the LLM to return a distribution over actions, and asking for a chain-of-thought reasoning.

[SYSTEM] You are recommendation engine that chooses advertisements to display to users when they visit your
webpage. There are 5 advertisements you can choose from, named A, B, C, D, E. When a user visits the webpage
you can choose an advertisement to display and you will observe whether the user clicks on the ad or not. You
model this by assuming that each advertisement has a certain click rate and users click on advertisements with
their corresponding rates.

You have a budget of 10 users to interact with and your goal is to maximize the total number of clicks during this
process.

A good strategy to optimize for clicks in these situations requires balancing exploration and exploitation. You
need to explore to try out all of the options and find those with high click rates, but you also have to exploit the
information that you have to accumulate clicks.

When each user visits the webpage, I will show you a summary of the data you have collected so far.

Then you must choose which advertisement to display. You may output a distribution over the 5 choices formatted
EXACTLY like “A:n1,B:n2,C:n3,D:n4,E:n5”.

Let’s think step by step to make sure we make a good choice. Then, you must provide your final answer within
the tags <Answer>DIST</Answer> where DIST is the distribution in the format specified above.

[USER] So far you have interacted with 2 users. Here is a summary of the data you have collected:

Advertisement A was shown to 1 users with an estimated click rate of 1.00
Advertisement B was shown to 1 users with an estimated click rate of 0.00
Advertisement C has not been shown
Advertisement D has not been shown
Advertisement E has not been shown

Which advertisement will you choose next? Remember, YOU MUST provide your final answer within the tags
<Answer>DIST</Answer> where DIST is formatted like “A:n1,B:n2,C:n3,D:n4,E:n5”.

17



935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Can large language models explore in-context?

(c) The successful configuration for GPT-4 (i.e., BSSC̃, as temperature is specified elsewhere), which uses the buttons
scenario, suggestive framing, summarized histories, and reinforced chain-of-thought reasoning.

[SYSTEM] You are a bandit algorithm in a room with 5 buttons labeled blue, green, red, yellow, purple. Each
button is associated with a Bernoulli distribution with a fixed but unknown mean; the means for the buttons could
be different. For each button, when you press it, you will get a reward that is sampled from the button’s associated
distribution. You have 10 time steps and, on each time step, you can choose any button and receive the reward.
Your goal is to maximize the total reward over the 10 time steps.

At each time step, I will show you a summary of your past choices and rewards. Then you must make the next
choice, which must be exactly one of blue, green, red, yellow, purple. Let’s think step by step to make sure we
make a good choice. You must provide your final answer within the tags <Answer>COLOR</Answer> where
COLOR is one of blue, green, red, yellow, purple.

[USER] So far you have played 2 times with your past choices and rewards summarized as follows:
blue button: pressed 1 times with average reward 1.00
green button: pressed 1 times with average reward 0.00
red button: pressed 0 times
yellow button: pressed 0 times
purple button: pressed 0 times

Which button will you choose next? Remember, YOU MUST provide your final answer within the tags <An-
swer>COLOR</Answer> where COLOR is one of blue, green, red, yellow, purple. Let’s think step by step to
make sure we make a good choice.

18



990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Can large language models explore in-context?

E. Scatter plots and summary tables

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

K 
* M

in
Fr

ac
(T

)

Buttons, K=5, Delta=0.2, T=100

TS
UCB
Greedy
Eps-Greedy
GPT-3.5
Llama-2-13b
GPT-4

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

Advertisements, K=5, Delta=0.2, T=100

TS
UCB
Greedy
Eps-Greedy
GPT-3.5
Llama-2-13b
GPT-4

0.0 0.1 0.2 0.3 0.4 0.5 0.6
SuffFailFreq(T/2)

0.0

0.2

0.4

0.6

0.8

K 
* M

in
Fr

ac
(T

)

Buttons, K=4, Delta=0.5, T=100

TS
UCB
Greedy
Eps-Greedy
GPT-3.5
GPT-4

0.0 0.2 0.4 0.6
SuffFailFreq(T/2)

0.0

0.2

0.4

0.6

0.8
Advertisements, K=4, Delta=0.5, T=100

TS
UCB
Greedy
Eps-Greedy
GPT-3.5
GPT-4

Figure 12. All scatter plots for the main experiments (T = 100): suffix failures vs. uniform-like failures. Specifically:
SuffFailFreq(T/2) vs K · MinFrac(T ). Each LLM/configuration pair maps to a dot on this plane. (However, some dots may
be hidden by some others.) We also plot ϵ-GREEDY, tracing out the different tradeoffs obtained for different values of ϵ.

19



1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Can large language models explore in-context?

(a) Hard MAB instance (∆ = 0.2), buttons scenario, N = 10 replicates.
TS UCB Greedy BNRN0 BNRN1 BNRND BNRC0 BNSN0 BSRN0 BSSC0 BSSC1 BSSCD BSSC0

MedianReward

SuffFailFreq(T/2)

K*MinFrac

GreedyFrac

0.47 0.55 0.40 0.63 0.70 0.33 0.35 0.60 0.45 0.68 0.28 0.37 0.47

0.01 0.02 0.48 0.50 0.40 0.00 0.50 0.60 0.70 0.30 0.20 0.00 0.00

0.28 0.18 0.05 0.03 0.04 0.41 0.09 0.07 0.05 0.09 0.19 0.49 0.33

0.62 0.76 1.00 0.52 0.46 0.45 0.78 0.99 0.59 0.93 0.88 0.49 0.69

Replicates 1000 1000 1000 10 10 10 10 10 10 10 10 10 10

(b) Hard MAB instance (∆ = 0.2), advertisements scenario, N = 3 replicates.

TS UCB Greedy ANRN0 ANRN1 ANRND ANRC0 ANSN0 ASRN0 ASSC0 ASSC1 ASSCD

MedianReward

SuffFailFreq(T/2)

K*MinFrac

GreedyFrac

0.47 0.55 0.40 0.00 -0.05 -0.15 0.35 0.40 0.45 0.15 0.60 -0.15

0.01 0.02 0.48 1.00 0.67 0.67 0.33 1.00 0.67 0.33 0.00 0.67

0.28 0.18 0.05 0.00 0.03 0.00 0.05 0.05 0.07 0.30 0.43 0.00

0.62 0.76 1.00 0.47 0.23 1.00 0.86 0.99 0.91 0.68 0.70 1.00

Replicates 1000 1000 1000 3 3 3 3 3 3 3 3 3

(c) Easy MAB instance (∆ = 0.5), buttons scenario, N = 3 replicates.

TS UCB Greedy BNRN0 BNRN1 BNRND BNRC0 BNSN0 BSRN0 BSSC0 BSSC1 BSSCD

MedianReward

SuffFailFreq(T/2)

K*MinFrac

GreedyFrac

0.84 0.88 0.92 0.90 0.92 0.56 0.92 0.96 0.92 0.92 0.90 0.58

0.00 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.14 0.09 0.04 0.05 0.03 0.43 0.05 0.04 0.03 0.04 0.09 0.35

0.88 0.94 1.00 0.97 0.99 0.56 0.99 1.00 0.73 0.99 0.93 0.63

Replicates 1000 1000 1000 3 3 3 3 3 3 3 3 3

(d) Easy MAB instance (∆ = 0.5), advertisements scenario, N = 3 replicates.

TS UCB Greedy ANRN0 ANRN1 ANRND ANRC0 ANSN0 ASRN0 ASSC0 ASSC1 ASSCD

MedianReward

SuffFailFreq(T/2)

K*MinFrac

GreedyFrac

0.84 0.88 0.92 0.88 0.88 0.08 0.88 0.90 0.88 0.70 0.68 0.08

0.00 0.00 0.19 0.33 0.33 0.67 0.00 0.33 0.00 0.00 0.00 0.67

0.14 0.09 0.04 0.01 0.00 0.00 0.04 0.04 0.07 0.25 0.29 0.00

0.88 0.94 1.00 0.81 0.95 1.00 0.94 1.00 0.96 0.81 0.73 1.00

Replicates 1000 1000 1000 3 3 3 3 3 3 3 3 3

Figure 13. GPT-4 for T = 100: the per-configuration summary tables. The “fails” row indicates that all replicates completed successfully.

20



1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Can large language models explore in-context?

MedianReward SuffFailFreq(T/2) K*MinFrac GreedyFrac
TS

UCB

Greedy

BNRN0

BNRN1

BNRND

BNRC0

BNRC1

BNRCD

BNSN0

BNSN1

BNSND

BNSC0

BNSC1

BNSCD

BSRN0

BSRN1

BSRND

BSRC0

BSRC1

BSRCD

BSSN0

BSSN1

BSSND

BSSC0

BSSC1

BSSCD

0.47 0.01 0.28 0.62

0.55 0.02 0.18 0.76

0.40 0.48 0.05 1.00

0.22 0.50 0.16 0.30

0.22 0.00 0.41 0.28

0.12 0.55 0.07 0.40

0.12 0.80 0.01 0.51

0.10 0.50 0.03 0.57

0.65 0.45 0.01 0.75

0.12 0.85 0.00 1.00

0.22 0.25 0.04 0.76

0.20 0.20 0.52 0.38

0.12 0.85 0.00 0.95

0.22 0.70 0.01 0.88

0.05 0.50 0.11 0.50

0.17 0.30 0.25 0.32

0.25 0.00 0.66 0.29

0.42 0.25 0.12 0.33

0.10 0.65 0.03 0.44

0.05 0.25 0.12 0.47

0.28 0.15 0.11 0.60

0.12 0.85 0.00 1.00

0.25 0.30 0.03 0.78

0.25 0.15 0.45 0.42

0.17 0.85 0.00 1.00

0.17 0.55 0.02 0.83

0.20 0.35 0.10 0.78

Replicates
1000

1000

1000

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

Figure 14. GPT-3.5 for T = 100: the per-configuration summary table. The buttons scenario, hard MAB instance.

21



1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Can large language models explore in-context?

MedianReward SuffFailFreq(T/2) K*MinFrac GreedyFrac
TS

UCB

Greedy

ANRN0

ANRN1

ANRND

ANRC0

ANRC1

ANRCD

ANSN0

ANSN1

ANSND

ANSC0

ANSC1

ANSCD

ASRN0

ASRN1

ASRND

ASRC0

ASRC1

ASRCD

ASSN0

ASSN1

ASSND

ASSC0

ASSC1

ASSCD

0.47 0.01 0.28 0.62

0.55 0.02 0.18 0.76

0.40 0.48 0.05 1.00

0.22 0.65 0.03 0.48

0.22 0.50 0.05 0.33

0.15 0.70 0.00 1.00

0.15 0.85 0.00 0.98

0.20 0.50 0.00 0.80

0.15 0.70 0.00 1.00

0.12 0.85 0.00 1.00

0.12 0.20 0.04 0.93

0.15 0.70 0.00 1.00

0.17 0.80 0.00 1.00

0.12 0.55 0.01 0.93

0.15 0.70 0.00 1.00

0.25 0.70 0.03 0.48

0.05 0.42 0.06 0.28

0.15 0.70 0.00 1.00

0.37 0.40 0.06 0.64

0.30 0.25 0.11 0.65

0.15 0.70 0.00 1.00

0.15 0.85 0.00 1.00

0.25 0.42 0.05 0.92

0.15 0.70 0.00 1.00

0.12 0.80 0.01 0.99

0.30 0.15 0.14 0.83

0.15 0.70 0.00 1.00

Replicates
1000

1000

1000

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

Figure 15. GPT-3.5 for T = 100: the per-configuration summary table. The advertisements scenario, hard MAB instance.

22



1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

Can large language models explore in-context?

MedianReward SuffFailFreq(T/2) K*MinFrac GreedyFrac
TS

UCB

Greedy

BNRN0

BNRN1

BNRND

BNRC0

BNRC1

BNRCD

BNSN0

BNSN1

BNSND

BNSC0

BNSC1

BNSCD

BSRN0

BSRN1

BSRND

BSRC0

BSRC1

BSRCD

BSSN0

BSSN1

BSSND

BSSC0

BSSC1

BSSCD

0.84 0.00 0.14 0.88

0.88 0.00 0.09 0.94

0.92 0.19 0.04 1.00

0.23 0.55 0.02 0.85

0.72 0.05 0.16 0.62

0.14 0.25 0.17 0.46

0.84 0.25 0.03 0.56

0.81 0.05 0.08 0.77

0.88 0.10 0.04 0.92

0.18 0.65 0.00 1.00

0.60 0.40 0.02 0.89

0.26 0.10 0.54 0.52

0.18 0.65 0.00 1.00

0.16 0.55 0.01 0.95

0.62 0.35 0.03 0.77

0.73 0.30 0.11 0.57

0.35 0.00 0.48 0.42

0.21 0.25 0.09 0.43

0.87 0.05 0.06 0.72

0.73 0.05 0.16 0.72

0.81 0.05 0.11 0.76

0.18 0.65 0.00 1.00

0.17 0.25 0.02 0.89

0.26 0.30 0.39 0.60

0.19 0.60 0.00 0.99

0.53 0.35 0.03 0.82

0.78 0.25 0.02 0.90

Replicates
1000

1000

1000

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

Figure 16. GPT-3.5 for T = 100: the per-configuration summary table. The buttons scenario, easy MAB instance.

23



1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

Can large language models explore in-context?

MedianReward SuffFailFreq(T/2) K*MinFrac GreedyFrac
TS

UCB

Greedy

ANRN0

ANRN1

ANRND

ANRC0

ANRC1

ANRCD

ANSN0

ANSN1

ANSND

ANSC0

ANSC1

ANSCD

ASRN0

ASRN1

ASRND

ASRC0

ASRC1

ASRCD

ASSN0

ASSN1

ASSND

ASSC0

ASSC1

ASSCD

0.84 0.00 0.14 0.88

0.88 0.00 0.09 0.94

0.92 0.19 0.04 1.00

0.18 0.65 0.01 0.81

0.10 0.35 0.03 0.47

0.10 0.55 0.00 1.00

0.13 0.60 0.00 0.96

0.77 0.35 0.03 0.89

0.10 0.55 0.00 1.00

0.18 0.65 0.00 1.00

0.69 0.15 0.03 0.97

0.10 0.55 0.00 1.00

0.23 0.60 0.00 1.00

0.71 0.20 0.03 0.96

0.10 0.55 0.00 1.00

0.08 0.75 0.01 0.81

0.08 0.45 0.05 0.40

0.10 0.55 0.00 1.00

0.68 0.10 0.08 0.86

0.74 0.00 0.13 0.86

0.10 0.55 0.00 1.00

0.29 0.00 0.04 0.92

0.79 0.10 0.05 0.93

0.10 0.55 0.00 1.00

0.89 0.20 0.01 1.00

0.82 0.10 0.11 0.92

0.10 0.55 0.00 1.00

Replicates
1000

1000

1000

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

Figure 17. GPT-3.5 for T = 100: the per-configuration summary table. The adverts scenario, easy MAB instance.

24



1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

Can large language models explore in-context?

MedianReward SuffFailFreq(T/2) K*MinFrac GreedyFrac
TS

UCB

Greedy

BNRN0

BNRN1

BNRC0

BNRC1

BNSN0

BNSN1

BNSC0

BNSC1

BSRN0

BSRN1

BSRC0

BSRC1

BSSN0

BSSN1

BSSC0

BSSC1

0.47 0.01 0.28 0.62

0.55 0.02 0.18 0.76

0.40 0.48 0.05 1.00

-0.05 0.90 0.00 1.00

0.07 0.90 0.00 1.00

0.10 0.80 0.01 0.62

0.28 0.90 0.00 0.89

0.60 0.50 0.00 1.00

0.60 0.50 0.00 1.00

0.07 1.00 0.00 1.00

0.47 0.60 0.00 1.00

-0.03 0.90 0.00 1.00

-0.08 1.00 0.00 0.93

0.10 0.80 0.01 0.72

-0.08 1.00 0.01 0.67

0.60 0.50 0.00 1.00

0.60 0.50 0.00 1.00

0.07 1.00 0.00 1.00

0.22 0.90 0.00 1.00

Replicates

1000

1000

1000

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

Figure 18. LLAMA2 for T = 100: the per-configuration summary tables. The buttons scenario, hard MAB instance.

25



1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429

Can large language models explore in-context?

MedianReward SuffFailFreq(T/2) K*MinFrac GreedyFrac
TS

UCB

Greedy

BNRN0

BNRN1

BNRC0

BNRC1

BNSN0

BNSN1

BNSC0

BNSC1

BSRN0

BSRN1

BSRC0

BSRC1

BSSN0

BSSN1

BSSC0

BSSC1

0.47 0.01 0.28 0.62

0.55 0.02 0.18 0.76

0.40 0.48 0.05 1.00

-0.05 0.90 0.00 1.00

0.07 0.90 0.00 1.00

0.10 0.80 0.01 0.62

0.28 0.90 0.00 0.89

0.60 0.50 0.00 1.00

0.60 0.50 0.00 1.00

0.07 1.00 0.00 1.00

0.47 0.60 0.00 1.00

-0.03 0.90 0.00 1.00

-0.08 1.00 0.00 0.93

0.10 0.80 0.01 0.72

-0.08 1.00 0.01 0.67

0.60 0.50 0.00 1.00

0.60 0.50 0.00 1.00

0.07 1.00 0.00 1.00

0.22 0.90 0.00 1.00

Replicates

1000

1000

1000

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

Figure 19. LLAMA2 for T = 100: the per-configuration summary tables. The advertisements scenario, hard MAB instance.

26


