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Abstract

Effective modeling of health outcomes from biomedical time series requires meth-1

ods that capture both temporal and frequency dynamics. Trait anxiety, a transdiag-2

nostic risk factor, manifests in neural activity and systemic physiology. We present3

a multimodal graph-attention framework that integrates resting-state fMRI time4

series with structural connectivity and allostatic-load biomarkers via cross-modal5

attention. Using 120 participants from the LEMON dataset, the model achieved6

modest but stable predictive accuracy. Within the brain branch, we systematically7

compared feature extraction strategies and found that preserving temporal order8

in slow-4/slow-5 oscillations was essential for prediction, while approaches dis-9

carding temporal structure consistently underperformed. Interpretability analyses10

highlighted limbic–visual circuits and metabolic–immune markers as reproducible11

contributors. These findings demonstrate that capturing temporal dynamics is12

critical in health time-series modeling, and show how multimodal graph-attention13

can provide both predictive value and interpretable digital biomarkers for anxiety14

vulnerability.15

1 Introduction16

Trait anxiety is a stable disposition characterized by heightened anticipatory stress across contexts.17

Neuroimaging has linked it to altered functional connectivity in the default mode and limbic networks18

[1, 2] from resting state fMRI (rsfMRI), and disrupted white-matter pathways [3]. However, existing19

brain-centric approaches rarely account for systemic physiological states that shape neural activity.20

Elevated allostatic load, the cumulative physiological burden from chronic stress adaptation, is21

associated with trait anxiety and may induce inflammation and excitatory/inhibitory neurotransmission22

imbalance [4, 5]. These findings suggest the need for models to integrate brain–body associations23

and to examine neural activity as cellular state changes directly alter regional signals.24

Regional activity metrics such as amplitude of low-frequency fluctuations implicate slow-4/slow-525

oscillations in anxiety disorders [6, 7, 8], yet they capture only amplitude and fail to characterize26

temporal-frequency dynamics. Prior multimodal efforts have focused on either brain or physiology in27

isolation, leaving their interaction underexplored.28

We propose a multimodal graph-attention framework that jointly models rs-fMRI time-series features29

on a structural scaffold and fuses them with allostatic-load biomarkers via cross-modal attention.30

A central contribution is the systematic comparison of feature extraction strategies, showing that31

preserving temporal order in slow-4/slow-5 oscillations is critical for prediction, whereas frequency-32

only or order-discarding approaches underperform. This framework also enables us to highlight33

anxiety-relevant brain connectivity patterns, physiological axes, providing a computational lens on34

brain–body pathways of anxiety vulnerability.35
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2 Methods36

2.1 Dataset and Participants37

We used the LEMON dataset [9], with multimodal measures (rs-fMRI, diffusion MRI, blood biomark-38

ers, behavior). From 132 young adults, 120 participants (84 Males, age 20–30) with complete39

neuroimaging, trait anxiety (STAI[10, 11]), and blood marker data were included. Data were de-40

identified and relied on the dataset’s released preprocessing[12].41

2.2 Neuroimaging and Allostatic Load Data42

The rs-fMRI blood oxygen level dependent (BOLD) time series signal (TR=1.4s, timepoints = 522)43

and diffusion MRI were preprocessed by the standard preprocessing pipelines (motion correction, dis-44

tortion correction, denoising, spatial normalization to MNI152) and parcellated using 183 data-driven45

regions via voxel-wise clustering of rs-fMRI signals within macro-anatomical regions [12]. Structural46

connectivity was quantified as streamline counts from diffusion MRI. Allostatic load markers spanned47

cardiovascular, metabolic, and immune systems (10 biomarkers including, Systolic/Diastolic Blood48

Pressure, Body Mass Index, Total Cholesterol, Low-Density Lipoprotein Cholesterol, High-Density49

Lipoprotein Cholesterol, Total Cholesterol to HDL-C Ratio, and Glucose, Creatinine, C-Reactive50

Protein), following prior anxiety work [13, 14, 15]. Each biomarker was treated as an individual51

feature without constructing a composite AL marker.

Figure 1: Overview of the model.52

2.3 Model Architecture53

We propose a multimodal framework (AlloNeuroGAT) combining brain and physiology (Fig. 1a).54

NeuroGAT : Three GATv2Conv layers with residual connections, each followed by LayerNorm,55

LeakyReLU, and dropout (0.2). Node features were represented with features extracted from rs-fMRI56

time series, and diffusion MRI–derived structural connectivity provides the binary adjacency matrix57

(Fig.1b). Strategies for node feature extraction are as follows:58

• Frequency-Filtered MLP: Per-band MLP on slow-4 (0.027–0.073 Hz) and slow-559

(0.01–0.027 Hz) band-pass filtered signals.60

• Frequency-Filtered 1D-CNN: Per-band 1D-CNN (kernel=7) on slow-4 and slow-5 band-61

pass filtered signals.62

• Frequency-Informed 1D-CNN: Two 1D-CNNs (kernel=64/24; stride=8/4) on unfiltered63

signals, which are combined to capture both long and short-range temporal dynamics.64

• Frequency-Agnostic 1D-CNN: A single 1D-CNN (kernel=7) on unfiltered signals. We used65

softmax-weighted concatenation to combine the outputs of the per-band models, generating66

a 64-dimensional node feature vector for each brain region.67

Allostatic load markers Projection: A two-layer MLP (Leaky ReLU, dropout=0.2) embeds ten68

biomarkers into a 64-d representation. Inputs are z-scored within each train/val/test splits.69
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Cross-Modal Attention: Brain representation (query) attends to AL representation (key/value) via70

2-head cross-modal attention, producing a fused embedding passed to a linear head for trait anxiety71

prediction.72

2.4 Training and Evaluation73

Models were trained with AdamW and MSE loss with early stopping (patience = 20). The learning74

rate and weight decay were selected via a grid search over learning rate = [0.001, 0.0005, 0.0001,75

0.00005] and weight decay = [0.001, 0.01] based on the validation set performance. Performance76

was evaluated using nested 3-fold subject-level cross-validation, repeated five times with different77

splits and reported on held-out tests using R², MSE, and Pearson correlation coefficient (Pearson r).78

3 Experimental Results79

Table 1: AlloNeuroGAT Feature Extraction Model Performance
Model MSE (↓) r2 (↑) Pearson r (↑)

AlloNeuroGAT-Freq_filtered_MLP 1.008± 0.06 −0.034± 0.061 0.115± 0.056
AlloNeuroGAT-Freq_agnostic_1DCNN 0.940± 0.035 0.036± 0.036 0.206± 0.072
AlloNeuroGAT-Freq_informed_1DCNN 0.934± 0.017 0.042± 0.017 0.236± 0.025
AlloNeuroGAT-Freq_filtered_1DCNN 0.924 ± 0.028 0.052 ± 0.028 0.257 ± 0.05

3.1 Performance of Node Feature Extraction Strategies80

We systematically compared four temporal feature extraction strategies to evaluate the importance of81

frequency filtering and temporal dynamics for capturing trait anxiety from rs-fMRI signals (Table82

1). Performance differences across the strategies were modest but consistent across repeated runs83

(Kruskal–Wallis: r p = 0.048, R2 p = 0.069, MSE p = 0.072).84

The frequency-filtered 1D-CNN consistently yielded the best performance (table 1). This model85

explicitly targets slow-4 and slow-5 oscillatory bands, which are neurobiologically relevant to anxiety86

[6] while retaining temporal ordering via convolution. By contrast, the frequency-filtered MLP, which87

discards temporal order, consistently underperformed. (post-hoc Dunn’s test, p value of r = 0.053,88

R2 = 0.062, MSE = 0.067). These results underscore that temporal dynamics, not just frequency89

content, are essential for predicting trait anxiety.90

Table 2: Multimodal Model Performance Comparison
Model MSE (↓) r2 (↑) Pearson r (↑)

NeuroGAT_Only 0.986± 0.022 −0.012± 0.023 −0.068± 0.081
ALMLP_Only 0.948± 0.051 0.028± 0.052 0.187± 0.095
AlloNeuroGAT-Node_coordinate 0.951± 0.026 0.025± 0.026 0.198± 0.055
AlloNeuroGAT-Edge_FC 0.936± 0.049 0.040± 0.050 0.204± 0.091
AlloNeuroGAT-QAL/KV_BrainRep 0.938± 0.028 0.038± 0.029 0.218± 0.048
AlloNeuroGAT (Best) 0.924 ± 0.028 0.052 ± 0.028 0.257 ± 0.05

3.2 Ablation Study91

To disentangle the contribution of brain and physiology, we compared unimodal baselines (NeuroGAT-92

only, using brain features only; AL-only, using biomarkers only) and several architectural variants93

against the full model. The NeuroGAT-only model failed to generalize, while the AL-only model94

showed modest predictive value (Table 2). The full AlloNeuroGAT significantly outperformed the95

brain-only variant (Mann–Whitney: r p = 0.0008, MSE p = 0.012), confirming that physiological96

markers provide complementary signal, although gains over the AL-only model were not statistically97

reliable.98

Within the brain representation, substituting temporal node features with static ROI coordinates99

marginally degraded performance (Mann–Whitney: r p = 0.095), and replacing the structural graph100
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with a functional connectivity graph also showed no benefit. Reversing the cross-modal attention101

roles (Q=allostatic load, K/V=brain) likewise impaired performance. Overall, these findings indicate102

that both brain and physiological modalities contribute uniquely, and that optimal prediction requires103

temporal features embedded in a structural scaffold, fused with physiology through brain-driven104

queries.

Figure 2: Model Interpretations.
105

3.3 Model Interpretation106

We aggregated attention maps from five runs of the best AlloNeuroGAT to derive edge attention107

(averaged over layers) and node importance (mean incident–edge attention; Fig. 2a–b). Node108

importance significantly differed across Yeo networks [16] (Kruskal–Wallis H = 31.03, p < 10−4);109

with Limbic and Visual network consistently ranked above others after FDR-BH correction (Fig.110

2c-d). This pattern indicates that affective and sensory systems carried greater predictive weight for111

trait anxiety.112

At the edge level, within-network connections received higher attention than between-network ones113

(Mann–Whitney U, p < 10−4; Fig. 2e). Limbic network showed significantly higher within-network114

attention than edges to any other network and Visual network also favored within-network edges115

except for the Limbic–Visual pairing (all p(corrected) < 10−3). By contrast, edges projecting116

from Frontoparietal, Default Mode, or Ventral/Dorsal Attention to Limbic or Visual exceeded those117

networks’ own within-network attention (all p(corrected) < 10−3; Fig 2f). Together with node118

importance, this highlights Limbic and Visual as anxiety-relevant hubs that integrate both local119

and cross-network signals. Model attention also showed a trend toward favoring long-range over120

short-range connections (Mann–Whitney U, p = 0.064; Fig. 2g), suggesting distributed pathways are121

relevant for prediction.122

Finally, permutation importance within the allostatic-load branch (1,000 shuffles per marker) high-123

lighted metabolic and immune axes: shuffling creatinine, glucose, body mass index, and C-reactive124

protein produced the largest drops in performance, underscoring that systemic load in these domains125

interacts with brain dynamics to shape anxiety vulnerability (Fig. 2h).126

4 Conclusions127

We introduced a multimodal graph-attention framework for modeling health time series that inte-128

grates rs-fMRI temporal features, structural connectivity, and allostatic-load biomarkers. Experiments129

showed that preserving temporal dynamics of slow-4/slow-5 oscillations was essential for prediction,130

while approaches discarding temporal order underperformed. Multimodal fusion with physiology131

provided modest but consistent gains. Attention-based analyses suggested that limbic–visual con-132

nectivity and metabolic–immune markers contributed most to model decisions. Although predictive133

accuracy was modest, the reproducibility of these signals indicates that capturing temporal dynamics134

can yield stable and interpretable patterns from heterogeneous biomedical time series, positioning135

brain–body integration as a promising direction for future health research.136
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