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Abstract

Effective modeling of health outcomes from biomedical time series requires meth-
ods that capture both temporal and frequency dynamics. Trait anxiety, a transdiag-
nostic risk factor, manifests in neural activity and systemic physiology. We present
a multimodal graph-attention framework that integrates resting-state fMRI time
series with structural connectivity and allostatic-load biomarkers via cross-modal
attention. Using 120 participants from the LEMON dataset, the model achieved
modest but stable predictive accuracy. Within the brain branch, we systematically
compared feature extraction strategies and found that preserving temporal order
in slow-4/slow-5 oscillations was essential for prediction, while approaches dis-
carding temporal structure consistently underperformed. Interpretability analyses
highlighted limbic—visual circuits and metabolic—immune markers as reproducible
contributors. These findings demonstrate that capturing temporal dynamics is
critical in health time-series modeling, and show how multimodal graph-attention
can provide both predictive value and interpretable digital biomarkers for anxiety
vulnerability.

1 Introduction

Trait anxiety is a stable disposition characterized by heightened anticipatory stress across contexts.
Neuroimaging has linked it to altered functional connectivity in the default mode and limbic networks
[L, 2] from resting state fMRI (rsfMRI), and disrupted white-matter pathways [3]. However, existing
brain-centric approaches rarely account for systemic physiological states that shape neural activity.
Elevated allostatic load, the cumulative physiological burden from chronic stress adaptation, is
associated with trait anxiety and may induce inflammation and excitatory/inhibitory neurotransmission
imbalance [4}15]. These findings suggest the need for models to integrate brain—body associations
and to examine neural activity as cellular state changes directly alter regional signals.

Regional activity metrics such as amplitude of low-frequency fluctuations implicate slow-4/slow-5
oscillations in anxiety disorders [6, [7, 8], yet they capture only amplitude and fail to characterize
temporal-frequency dynamics. Prior multimodal efforts have focused on either brain or physiology in
isolation, leaving their interaction underexplored.

We propose a multimodal graph-attention framework that jointly models rs-fMRI time-series features
on a structural scaffold and fuses them with allostatic-load biomarkers via cross-modal attention.
A central contribution is the systematic comparison of feature extraction strategies, showing that
preserving temporal order in slow-4/slow-5 oscillations is critical for prediction, whereas frequency-
only or order-discarding approaches underperform. This framework also enables us to highlight
anxiety-relevant brain connectivity patterns, physiological axes, providing a computational lens on
brain—body pathways of anxiety vulnerability.
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2 Methods
2.1 Dataset and Participants

We used the LEMON dataset [9]], with multimodal measures (rs-fMRI, diffusion MRI, blood biomark-
ers, behavior). From 132 young adults, 120 participants (84 Males, age 20-30) with complete
neuroimaging, trait anxiety (STAI[10, [11]), and blood marker data were included. Data were de-
identified and relied on the dataset’s released preprocessing[12].

2.2 Neuroimaging and Allostatic Load Data

The rs-fMRI blood oxygen level dependent (BOLD) time series signal (TR=1.4s, timepoints = 522)
and diffusion MRI were preprocessed by the standard preprocessing pipelines (motion correction, dis-
tortion correction, denoising, spatial normalization to MNI152) and parcellated using 183 data-driven
regions via voxel-wise clustering of rs-fMRI signals within macro-anatomical regions [[12]. Structural
connectivity was quantified as streamline counts from diffusion MRI. Allostatic load markers spanned
cardiovascular, metabolic, and immune systems (10 biomarkers including, Systolic/Diastolic Blood
Pressure, Body Mass Index, Total Cholesterol, Low-Density Lipoprotein Cholesterol, High-Density
Lipoprotein Cholesterol, Total Cholesterol to HDL-C Ratio, and Glucose, Creatinine, C-Reactive
Protein), following prior anxiety work [[13} |14} [15]. Each biomarker was treated as an individual
feature without constructing a composite AL marker.
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Figure 1: Overview of the model.

2.3 Model Architecture

We propose a multimodal framework (AlloNeuroGAT) combining brain and physiology (Fig. 1a).

NeuroGAT : Three GATv2Conv layers with residual connections, each followed by LayerNorm,
LeakyReLU, and dropout (0.2). Node features were represented with features extracted from rs-fMRI
time series, and diffusion MRI-derived structural connectivity provides the binary adjacency matrix
(Fig.1b). Strategies for node feature extraction are as follows:

* Frequency-Filtered MLP: Per-band MLP on slow-4 (0.027-0.073 Hz) and slow-5
(0.01-0.027 Hz) band-pass filtered signals.

* Frequency-Filtered 1D-CNN: Per-band 1D-CNN (kernel=7) on slow-4 and slow-5 band-
pass filtered signals.

* Frequency-Informed 1D-CNN: Two 1D-CNNs (kernel=64/24; stride=8/4) on unfiltered
signals, which are combined to capture both long and short-range temporal dynamics.

* Frequency-Agnostic 1D-CNN: A single 1D-CNN (kernel=7) on unfiltered signals. We used
softmax-weighted concatenation to combine the outputs of the per-band models, generating
a 64-dimensional node feature vector for each brain region.

Allostatic load markers Projection: A two-layer MLP (Leaky ReL.U, dropout=0.2) embeds ten
biomarkers into a 64-d representation. Inputs are z-scored within each train/val/test splits.
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Cross-Modal Attention: Brain representation (query) attends to AL representation (key/value) via
2-head cross-modal attention, producing a fused embedding passed to a linear head for trait anxiety
prediction.

2.4 Training and Evaluation

Models were trained with AdamW and MSE loss with early stopping (patience = 20). The learning
rate and weight decay were selected via a grid search over learning rate = [0.001, 0.0005, 0.0001,
0.00005] and weight decay = [0.001, 0.01] based on the validation set performance. Performance
was evaluated using nested 3-fold subject-level cross-validation, repeated five times with different
splits and reported on held-out tests using R2, MSE, and Pearson correlation coefficient (Pearson r).

3 Experimental Results

Table 1: AlloNeuroGAT Feature Extraction Model Performance

Model MSE () r’ () Pearson r (1)

AlloNeuroGAT-Freq_filtered_ MLP 1.008 £ 0.06 —0.034 £ 0.061 0.115 + 0.056
AlloNeuroGAT-Freq_agnostic_IDCNN  0.940 £ 0.035 0.036 £ 0.036 0.206 £ 0.072
AlloNeuroGAT-Freq_informed_IDCNN  0.934 + 0.017 0.042 +0.017 0.236 + 0.025

AlloNeuroGAT-Freq_filtered_1DCNN  0.924 &+ 0.028 0.052 £+ 0.028 0.257 + 0.05

3.1 Performance of Node Feature Extraction Strategies

We systematically compared four temporal feature extraction strategies to evaluate the importance of
frequency filtering and temporal dynamics for capturing trait anxiety from rs-fMRI signals (Table
1). Performance differences across the strategies were modest but consistent across repeated runs
(Kruskal-Wallis: 7 p = 0.048, R%? p = 0.069, MSE p = 0.072).

The frequency-filtered 1D-CNN consistently yielded the best performance (table 1). This model
explicitly targets slow-4 and slow-5 oscillatory bands, which are neurobiologically relevant to anxiety
[6] while retaining temporal ordering via convolution. By contrast, the frequency-filtered MLP, which
discards temporal order, consistently underperformed. (post-hoc Dunn’s test, p value of » = 0.053,
R? = 0.062, MSE = 0.067). These results underscore that temporal dynamics, not just frequency
content, are essential for predicting trait anxiety.

Table 2: Multimodal Model Performance Comparison

Model MSE () r? o) Pearson r (1)
NeuroGAT_Only 0.986 + 0.022 —0.012 £ 0.023 —0.068 £+ 0.081
ALMLP_Only 0.948 £+ 0.051 0.028 + 0.052 0.187 £ 0.095
AlloNeuroGAT-Node_coordinate 0.951 +0.026 0.025 4+ 0.026 0.198 £+ 0.055
AlloNeuroGAT-Edge_FC 0.936 + 0.049 0.040 % 0.050 0.204 £+ 0.091
AlloNeuroGAT-QAL/KV_BrainRep  0.938 £ 0.028 0.038 £ 0.029 0.218 £0.048
AlloNeuroGAT (Best) 0.924 + 0.028 0.052 £ 0.028 0.257 £+ 0.05

3.2 Ablation Study

To disentangle the contribution of brain and physiology, we compared unimodal baselines (NeuroGAT-
only, using brain features only; AL-only, using biomarkers only) and several architectural variants
against the full model. The NeuroGAT-only model failed to generalize, while the AL-only model
showed modest predictive value (Table 2). The full AlloNeuroGAT significantly outperformed the
brain-only variant (Mann—Whitney: r p = 0.0008, M S E p = 0.012), confirming that physiological
markers provide complementary signal, although gains over the AL-only model were not statistically
reliable.

Within the brain representation, substituting temporal node features with static ROI coordinates
marginally degraded performance (Mann—Whitney: » p = 0.095), and replacing the structural graph
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with a functional connectivity graph also showed no benefit. Reversing the cross-modal attention
roles (Q=allostatic load, K/V=brain) likewise impaired performance. Overall, these findings indicate
that both brain and physiological modalities contribute uniquely, and that optimal prediction requires
temporal features embedded in a structural scaffold, fused with physiology through brain-driven
queries.
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Figure 2: Model Interpretations.

3.3 Model Interpretation

We aggregated attention maps from five runs of the best AlloNeuroGAT to derive edge attention
(averaged over layers) and node importance (mean incident—edge attention; Fig. 2a—b). Node
importance significantly differed across Yeo networks [[16] (Kruskal-Wallis H = 31.03, p < 10~%);
with Limbic and Visual network consistently ranked above others after FDR-BH correction (Fig.
2c-d). This pattern indicates that affective and sensory systems carried greater predictive weight for
trait anxiety.

At the edge level, within-network connections received higher attention than between-network ones
(Mann-Whitney U, p < 10~%; Fig. 2e). Limbic network showed significantly higher within-network
attention than edges to any other network and Visual network also favored within-network edges
except for the Limbic—Visual pairing (all p(corrected) < 10~2). By contrast, edges projecting
from Frontoparietal, Default Mode, or Ventral/Dorsal Attention to Limbic or Visual exceeded those
networks’ own within-network attention (all p(corrected) < 1073; Fig 2f). Together with node
importance, this highlights Limbic and Visual as anxiety-relevant hubs that integrate both local
and cross-network signals. Model attention also showed a trend toward favoring long-range over
short-range connections (Mann—Whitney U, p = 0.064; Fig. 2g), suggesting distributed pathways are
relevant for prediction.

Finally, permutation importance within the allostatic-load branch (1,000 shuffles per marker) high-
lighted metabolic and immune axes: shuffling creatinine, glucose, body mass index, and C-reactive
protein produced the largest drops in performance, underscoring that systemic load in these domains
interacts with brain dynamics to shape anxiety vulnerability (Fig. 2h).

4 Conclusions

We introduced a multimodal graph-attention framework for modeling health time series that inte-
grates rs-fMRI temporal features, structural connectivity, and allostatic-load biomarkers. Experiments
showed that preserving temporal dynamics of slow-4/slow-5 oscillations was essential for prediction,
while approaches discarding temporal order underperformed. Multimodal fusion with physiology
provided modest but consistent gains. Attention-based analyses suggested that limbic—visual con-
nectivity and metabolic—-immune markers contributed most to model decisions. Although predictive
accuracy was modest, the reproducibility of these signals indicates that capturing temporal dynamics
can yield stable and interpretable patterns from heterogeneous biomedical time series, positioning
brain—body integration as a promising direction for future health research.
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