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Abstract

We conduct an inquiry into the sociotechnical
aspects of sentiment analysis (SA) by critically
examining 189 peer-reviewed papers on their
applications, models, and datasets. Our inves-
tigation stems from the recognition that SA
has become an integral component of diverse
sociotechnical systems, exerting influence on
both social and technical users. By delving
into sociological and technological literature
on sentiment, we unveil distinct conceptualiza-
tions of this term in domains such as finance,
government, and medicine. Our study exposes
a lack of explicit definitions and frameworks for
characterizing sentiment, resulting in potential
challenges and biases. To tackle this issue, we
propose an ethics sheet encompassing critical
inquiries to guide practitioners in ensuring equi-
table utilization of SA. Our findings underscore
the significance of adopting an interdisciplinary
approach to defining sentiment in SA and offer
a pragmatic solution for its implementation.

1 Introduction

Sentiment Analysis (SA) has emerged as a signif-
icant research focus in Natural Language Process-
ing (NLP) over the last decade. It has now become
an indispensable tool in discerning opinions and
emotions in written text (Medhat et al., 2014), eval-
uating social entities’ reputation (Yuliyanti et al.,
2017), analyzing and predicting financial needs
(Wang et al., 2013), and aiding in effective politi-
cal decision-making (Cardie et al., 2006). This is
illustrated in Figure 1 which shows the rising num-
bers of peer-reviewed articles on sentiment analysis
published in SCOPUS every year.

Existing research reveals a notable absence of
interdisciplinary endeavors to comprehend the so-
cial dimensions of SA, encompassing aspects like
emotion and fairness (Mohammad, 2022; Blodgett

* Authors Contributed Equally

Figure 1: Number of articles published each year (from
2010 to 2022) in SCOPUS that contain the term ‘senti-
ment analysis’ in the title, abstract, or keywords.

et al., 2020). This lack of collaborative thinking has
resulted in flawed analyses and biased outcomes.
Given the extensive range of applications of SA
spanning diverse domains such as healthcare, fi-
nance, and policymaking, it is crucial to avoid repli-
cating such tendencies. Furthermore, SA, despite
addressing social constructs like emotion, subjec-
tivity, and opinion, has been limited in its incorpo-
ration of psychological and sociological definitions
of sentiment (Stark and Hoey, 2021). While numer-
ous studies have examined the utilization of SA,
encompassing its inherent challenges and future
directions (Cardie et al., 2006; Zhang et al., 2022),
the interdisciplinary and sociotechnical dimensions
of SA have received limited exploration.

To this end, we explore this gap in the literature
by examining sentiment through a technical per-
spective concentrating on the evolution of SA into
a social system. We then evaluate sentiment, exam-
ining the various definitions of sentiment through a
sociotechnical lens. We also investigate the appli-
cation of SA, presenting insights into its utilization.
These investigations will shed light on the interdis-
ciplinary divide of the term sentiment. Next, we
evaluate the motivation behind establishing neces-
sary frameworks for measuring sentiment by exam-
ining various different SA models and datasets.

Through our critical survey of 189 unique works



Categories Frequency
Sentiment Analysis Applications 60

Sentiment Analysis Models 43
Sentiment Analysis Datasets 19
Surveys and Meta-Analysis 21

Frameworks 17
Others 29

Table 1: Frequency of papers reviewed for each category
of the works in SA.

in SA (as shown in Table 1, we reveal that very few
works (<5%) in SA try to explicitly define senti-
ment and sentiment analysis. Our results highlight
a lack of effort within the field of NLP to under-
stand the interdisciplinary aspect of sentiment. We
also show an absence of synchronization in the
field, leading to multiple variations of the term sen-
timent. Our analysis illustrates how such systems
can cause sociodemographic biases due to the lack
of nuance in measuring sentiment. To mitigate this
issue of an interdisciplinary gap, we propose an
ethics sheet (Mohammad, 2022) consisting of ten
critical questions to be used as a metaphorical ‘nu-
trition label’ to understand the issues of SA models
by both the user as well as the developers alike.

2 A Survey of Surveys

We now chronologically analyzing various surveys
published in the field of NLP. Medhat et al. (2014)
surveyed 54 articles and categorized them based on
utility. They showed that SA was synonymous with
opinion mining and subjective analysis, and was
primarily utilized to analyze product reviews. Sim-
ilarly, Alessia et al. (2015) presented a summary of
SA, stating it to have evolved into a sociotechnical
system (Prun and Raymond, 2021) often used in
the fields of politics, public actions, and finance.
Further, Ribeiro et al. (2016) reviewed SA models
and benchmarked a comparison of 24 SA models.
They found that most models were developed to
measure sentiment in social posts, product reviews,
and texts in news articles. However, the metrics of
measurement varied considerably across datasets
and models, highlighting the need for uniformity
in the field of SA.

With the advent of deep learning, more SA
models were developed using deep learning archi-
tectures, as summarized by Zhang et al. (2018).
The work demonstrated how similar architectures
could now be used in applications such as emo-

tion analysis, sarcasm analysis, and toxicity anal-
ysis. Sánchez-Rada and Iglesias (2019) surveyed
the social context of sentiment analysis, review-
ing its applications, limitations, and utilities as a
sociotechnical system. Drus and Khalid (2019)
surveyed works on SA from 2014 to 2019 to under-
stand its social utility. They found that most of the
work in SA was used in interdisciplinary contexts
related to world events, healthcare, politics, and
business.

Recent surveys by Birjali et al. (2021); Guo et al.
(2021); Wankhade et al. (2022); Zad et al. (2021)
provide up-to-date perspectives on SA reflecting
a shift towards fine-grained approaches, including
deep learning and aspect-based sentiment analy-
sis, enabling a more contextual understanding of
sentiment. Similarly, recent works by Zhang et al.
(2022); Soni and Rambola (2022) have specifically
focused on aspect-based sentiment analysis and
implicit aspect detection methods. Overall, these
surveys reflect a scoping of sentiment analysis to in-
clude people’s sentiments, opinions, attitudes, eval-
uations, appraisals, and emotions towards services,
products, individuals, organizations, issues, topics,
events, and their attributes. However, none of these
works discuss the interdisciplinary framework of
emotion or sentiment.

3 Examination of Sentiment

We start by analyzing the various sentiment frame-
works in SA and comparing them to existing social
frameworks. By doing so, we aim to uncover the
distinctions between the different notions of this
term, shedding light on the gap between the techni-
cal and social aspects of sentiment. In this context,
we define a sociotechnical system as a compos-
ite of social and technical components that collec-
tively contribute to goal-oriented behavior, impact-
ing both social and technical actors engaged with
the system (Cooper and Foster, 1971). Throughout
this work, we use the term ‘framework’ to denote
a conceptual structure or set of principles that of-
fer guidance for measuring or defining a specific
concept within a study.

3.1 The Technical Perception of Sentiment

The phrase sentiment analysis likely originated
from its first use case in NLP to analyze market
sentiment (Das and Chen, 2001). The authors at-
tempted to classify stock ratings based on opinions
on a message board. Similarly, Turney and Littman



Framework Definitions Example

Semantic Orientation Measure of whether the words or expressions used
in a text convey a positive or negative meaning (Agarwal et al., 2016)

Opinions or Evaluations Author’s attitude towards a topic (Zhai et al., 2011)
Affect or Feeling Author’s disposition towards a specific theme (Birjali et al., 2021)

3-D polarity Framework with 3 dimensions of polarities:
Subjective\Objective, Positive\Negative, Strength (Sebastiani and Esuli, 2006)

Emoticons Emoticons as sentiment indicators (Lou et al., 2020)

Object’s orientation Measure of the attitude towards
individual aspects of an entity (Mowlaei et al., 2020)

Implicit Emotional tendencies implied by commonsense
knowledge of the effect of concepts or events (Zhang and Liu, 2011)

Human Annotation Sentiment ratings collected from experts
or crowd-sourced data collection (Kenyon-Dean et al., 2018)

Table 2: Frameworks of Sentiment and corresponding definitions in Sentiment Analysis

(2002) experimented with using the semantic ori-
entation of words to find whether product reviews
are positive or negative. Readily available data in
the form of product reviews on e-commerce web-
sites influenced early SA works and firmly estab-
lished it to almost exclusively mean opinion min-
ing, with sentiment defined as: ‘overall opinion
towards the subject matter’ (Pang et al., 2002).

Following this, Read (2005) proposed the use
of emoticons as a proxy for ground truth data to
measure sentiment in text. They defined SA as the
method to ‘identify a piece of text according to its
author’s general feeling toward their subject, be it
positive or negative.’ This marked a stark deviation
of SA from ‘opinion mining.’ This expansion of the
meaning of sentiment can also be seen in the work
of Wilson et al. (2005b) where they defined SA as

‘the task of identifying positive and negative opin-
ions, emotions, and evaluations’. Subsequently, Se-
bastiani and Esuli (2006) proposed that SA consists
of three dimensions: subjective-objective polarity,
positive-negative polarity, and strength of polarity.

The first use of SA as a sociotechnical system
is marked by Go et al. (2009)’s approach to train a
SA model using data from a social media platform,
namely Twitter. While most prior work still treated
SA as a method to extract an author’s subjective
or objective opinion regarding an entity or an ob-
ject, Go et al. (2009) defined sentiment from the
perspective of a general feeling or emotion in text.
Their definition of sentiment as ‘a personal pos-
itive or negative feeling or opinion’, is a marked
deviation that influenced much of the literature in
SA. Maas et al. (2011)’s work recognized senti-
ment as a ‘complex, multi-dimensional concept’
and attempted to operationalize it through a vector
representation. Similarly, Zhang and Liu (2011)
defined sentiment as an ‘emotional tendency im-

plied by commonsense knowledge of the effect of
concepts or events’ to define an implicit form of
sentiment. To quantify sentiment from a ‘human
perspective’, Kenyon-Dean et al. (2018) used hu-
man annotation, as a methodology to define and
measure sentiment, using crowd-sourced data.

Table 2 tabulates the multifarious frameworks
encountered in SA. Here we see that SA does not
follow a well-defined comprehensive framework.
With the evolution of the field, different researchers
adapted SA in dissimilar ways while not making
a clear distinction between concepts such as emo-
tions, opinions, and attitudes. We posit that there is
a need for a nuanced, socially informed, and theo-
retically motivated framework for sentiment in SA.
To understand sentiment from an interdisciplinary
perspective and draw out an interdisciplinary frame-
work, we examine its meaning from a sociological
perspective.

3.2 The Social Perception of Sentiment

A notable distinction exists between computational
and psycho-linguistic perspectives on sentiment. In
psychology, sentiment is often defined as “socially
constructed patterns of sensations, expressive ges-
tures, and cultural meanings organized around a
relationship to a social object, usually another per-
son or group such as a family." (Gordon, 1981).
While sentiment is most commonly categorized
as positive, negative, or neutral in computational
literature, it encompasses a broader spectrum, rang-
ing from mild to intense (Taboada, 2016; Jo et al.,
2017). Furthermore, sentiment (in psychology) is
captured through physiological indicators, like fa-
cial expressions and heart rate variability (Wiebe
et al., 2005; Plutchik, 2001).

Psychological research widely recognizes that
a simplistic positive-negative dichotomy is inade-



quate for capturing the intricate range of human
emotions (Hoffmann, 2018). This is evident in the
distinction between seemingly negative emotions
such as sadness and fear, which exhibit significant
differences in their physiological and psychological
effects (Plutchik, 2001).

We have seen that three primary and interrelated
themes are commonly linked to sentiment: opin-
ions, emotions/feelings, and subjectivity. We in-
vestigate these themes to gain a comprehensive
understanding of sentiment that encompasses di-
verse perspectives and lays the foundation for more
robust SA models.

Opinions: From a psychological perspective,
opinion is an individual’s stance regarding an ob-
ject or issue, formed after an evaluation through
their own lens or perspective (Vaidis and Bran,
2019). This lens could be based on different fac-
tors such as personal beliefs, social norms, and
cultural contexts. Liu (2012) also define an opinion
a “a subjective statement, view, attitude, emotion,
or appraisal about an entity or an aspect of an
entity from an opinion holder.” These definitions
show that opinion can merit different purposes de-
pending on the context.

Feelings/Emotions: Izard (2010) posit that the
word emotion has both a descriptive definition i.e.
based on its use in everyday life and a prescriptive
definition i.e. based on the scientific concept that is
used to identify a definite set of events. Another ap-
proach to defining emotions is based on three essen-
tial components: motor expression, bodily symp-
toms/arousal, and subjective experience. There
is substantial agreement that motivational conse-
quences and action tendencies associated with emo-
tion are key aspects of emotion rather than just the
level of arousal of the subject (Frijda et al., 1986;
Frijda, 1987).

Subjectivity: Banfield (2014) referred to sen-
tences that take a character’s psychological point
of view as subjective, contrasted against sentences
that narrate an event in a definite but yielding man-
ner. Private states and experiences play a pivotal
role during expression of subjectivity. Here private
states could refer to intellectual factors, such as
believing, wondering, knowing; or emotive factors,
such as hating, being afraid; and perceptual ones,
such as seeing or hearing something (Wiebe, 1994).
Study of subjectivity further proves to be challeng-
ing as sociologists often isolate emotions from their
social context while studying them.

Terms like opinion, emotion, and subjectivity
hold distinct meanings and are studied separately.
Therefore, they are not synonymous with sentiment.
Furthermore, when considering sentiment within a
sociotechnical system, it is essential to be aware of
the contextual nuances associated with the diverse
definitions of sentiment derived from sociological,
psychological, and linguistic backgrounds. Given
the complex nature of sentiment, it is important to
approach it with a nuanced perspective and oper-
ationalize it within a structured theoretical frame-
work. Prior research suggests that achieving such
nuanced understanding can be facilitated through
engaging in dialogue with other fields such as psy-
chology, and cognitive science (Head et al., 2015;
Cambria et al., 2022). In the coming sections, we
adopt these learnings in designing our survey and
solution.

4 Critical Analysis of Sentiment Analysis

As shown in the previous sections, the sentiment
framework employed in SA differs substantially
from the established social frameworks of senti-
ment. This disparity can pose challenges when
applying SA in sociotechnical systems (Stark and
Hoey, 2021). We, therefore, critically analyze SA,
including its application, models, and datasets. Our
goal is to assess the suitability of SA in a sociotech-
nical system, which aims to address societal prob-
lems by integrating people and technology (Prun
and Raymond, 2021). The detailed roadmap of our
survey is depicted in the Appendix (Figure 3).

4.1 Study 1: Applications of Sentiment
Analysis

The conceptualization of sociotechnical systems
underscores the intricate interplay between social
and technical factors and actors during system de-
velopment and operation (Trist, 1981). Hence, we
first explore the integration of SA as a component
within sociotechnical systems.

We conducted an analysis 60 papers that ana-
lyzed the applications of SA over time (Drus and
Khalid, 2019; Sánchez-Rada and Iglesias, 2019;
Ramírez-Tinoco et al., 2019) from databases such
as SCOPUS and Semantic Scholar, employing tar-
geted keywords like ‘sentiment analysis’ and ‘ap-
plications’ together. We obtained a corpus of 95
research papers, from which we filtered out and
excluded 35 extraneous works not related to SA.

We performed an iterative qualitative thematic



Category Definition

Health and Medicine
Applications that utilize individual health data to make

predictions and informed decisions pertaining to
health-related behaviors and medical practices.

Government and Policy Making
Applications designed for government bodies to analyze
and determine appropriate courses of action concerning

public issues or problems that require attention and intervention.

Business Analytics Applications that collect and analyze diverse data points to identify
trends or patterns that can influence strategic decision-making in business.

Social Media Analytics
Applications that aggregate and extract meaningful insights from data

obtained through social channels (such as social media platforms like Twitter)
to facilitate decision-making and gain an understanding of societal behaviors.

Finance Applications developed to comprehend the patterns and dynamics of
financial management, creation, and investment analysis.

Table 3: List of applications, defined through thematic analysis, their corresponding definitions, and frequency of
papers categorized to the groups.

analysis (Vaismoradi et al., 2013) to uncover the
various applications of SA. Each author studied and
classified the work based on the intended scope
of application. To ensure accuracy and prevent
misclassification, this recursive process was em-
ployed. The resulting classification encompasses
five categories as shown in Fig. 2 and Table 31. No-
tably, the Health and Medicine domain emerged as
the most prominent application area for SA where
studies leverage SA to understand individual reac-
tions in diverse medical scenarios (Rodrigues et al.,
2016). Following closely, Government and Policy
Making emerged as the second most prevalent cate-
gory, where sentiment analysis plays a pivotal role
in comprehending human behavior in governance
solutions (Joyce and Deng, 2017). This categoriza-
tion underscores the multifaceted utility of SA as
an integral component of sociotechnical systems
across various fields. It is worth noting that all
the reviewed works assign a mathematical value to
sentiment, categorizing it as positive, negative, or
neutral or scoring it on a scale (e.g., -1 to +1).

Figure 2: Thematic categories of applications of senti-
ment analysis in the 60 papers.

1The categorization of each paper is present in the Ap-
pendix

Most of the reviewed works lack clear definitions
of sentiment or SA. Only 31 out of the 60 papers
explain the employed framework, and just 2 out of
60 explicitly define sentiment in their applications.
Only one takes an interdisciplinary perspective,
defining sentiment in the context of finance for
understanding market behavior (Kraaijeveld and
De Smedt, 2020). Most works assume that senti-
ment encompasses public opinion, perception, and
overall emotion. Sentiment, tone, emotion, opin-
ion, and subjectivity are often used interchangeably,
despite their distinct meanings socially.

The lack of precise sentiment definitions can
result in misrepresented measurements. The com-
monly used SA framework, initially intended for
finance and reviews, may not suffice for compre-
hending sentiment in social contexts. Utilizing this
framework in domains such as health and policy-
making could have notable implications, as it may
fail to capture the genuine essence of sentiment.

4.2 Study 2: Sentiment Analysis as a Service

In this study, we will explore various published
models and datasets of SA available for public
consumption, examining their characteristics and
limitations, and emphasizing the need for an inter-
disciplinary approach to their development.

The market has witnessed a rapid prolifera-
tion of AI as a Service (AIaaS) models that of-
fer convenient “plug-and-play” AI services and
tools (Lewicki et al., 2023) for public consumption
across diverse interdisciplinary fields (Sánchez-
Rada and Iglesias, 2019). We gathered SA datasets
and popularly used models, that are publicly acces-
sible for use as AIaaS, by leveraging existing repos-
itories such as Sentibench (Ribeiro et al., 2016).
We also conducted targeted searches using key-



words such as ‘sentiment analysis’ and ‘model’
across peer-reviewed platforms such as the ACL
Anthology, NeurIPS proceedings, AAAI, and ACM
anthology. Following an extensive filtering process,
we identified 43 well-cited 2 SA models and 19
datasets that are publicly available for utilization.
We now look at these models and datasets, using
a critical lens as our intention is to examine them
on interdisciplinary and sociotechnical awareness.
We, therefore, examine them by formulating the
following key questions:

• Do these works mention the framework or def-
inition of sentiment analysis and sentiment?

• How do these works measure sentiment?

• How accessible are these models for its use
as an AIaaS solution?

Q1- Analysis of Frameworks:
Among the 62 collected models and datasets, we

observed that merely 18 papers presented a defi-
nition of the SA framework employed, while just
2 works attempted to provide a definition for sen-
timent. Similarly, for datasets published, we see
that 3 papers provided a definition of the SA frame-
work while just 1 provided a definition of sentiment
used. The most common framework used is of
opinions. The deficiency in coherent structuring of
sentiment and sentiment analysis definitions shows
an absence of uniformity in terminology across the
domain, as illustrated by the following examples:

“Sentiment analysis refers to the general method
to extract subjectivity and polarity from the text.” -
(Taboada et al., 2011)

“Sentiment analysis or opinion mining analyzes
people’s opinions, sentiments, evaluations, atti-
tudes, and emotions via the computational treat-
ment of subjectivity in text. ” - (Hutto and Gilbert,
2014)

“Sentiment analysis is a branch of affective com-
puting research that aims to classify text into either
positive or negative, but sometimes also neutral. ”
- (Ma et al., 2018)

These quotes demonstrate the varied use of SA
in each study, highlighting its focus on quantifying
latent constructs such as ‘emotion,’ ‘subjectivity,’
and ‘attitude,’ which are not fully explained. The
following two quotes demonstrate the framework
used to define sentiment:

2average citation count of 1130

“the hedonic feelings of pleasantness; referred
to in the psychological literature as “affect”” -
(Hannak et al., 2012)

“sentiment helps convey meaning and react to
sentiments expressed towards them or others.” -
(Ma et al., 2018)

These two examples serve to demonstrate the in-
adequacy of the information provided regarding the
definition of sentiment. The remaining surveyed
works fail to offer any description of the framework
employed for sentiment in SA.

Q2: Analysis of Metrics
Our analysis of the 43 models and 19 datasets re-

veals the utilization of 11 distinct metrics to gauge
the sentiment expressed in statements3. These met-
rics can be broadly categorized into two groups:
sentiment categorization and sentiment regression.

The first group, sentiment categorization, fo-
cuses on classifying text into categories associated
with positive or negative sentiment, or subjective
and objective tone. However, these categories are
not well-defined, as certain models further catego-
rize sentiment based on emotions such as Joy, Sad-
ness, Anger, Fear, Disgust, Surprise, (Mohammad,
2012) or Self-assurance, Attentiveness, Fatigue,
Guilt, Fear, Sadness, Hostility, Joviality, Serenity,
Surprise, and Shyness (Gonçalves et al., 2013) or
between emotion categories of Valence, Arousal,
and Dominance (Warriner et al., 2013). We see no
synchronization in the categories used.

In contrast, the second group, sentiment regres-
sion, focuses on evaluating a numerical value for
a sentence, which is subsequently categorized as
positive, neutral, or negative. We note when we
refer to sentiment regression we are only referring
to ‘regression to the mean’ techniques applied in
measurement and not implying the use of machine
learning regression techniques. Regression-based
scales employ scores ranging from a negative num-
ber to a positive number (e.g., -1 to +1) to quantify
the intensity and sentiment of the sentence.

Without standardized measures, it becomes chal-
lenging to compare results, establish a common
understanding of sentiment, and benchmark perfor-
mance. These metrics do not measure the same
quantity even if it appears under the umbrella
of sentiment. Standardizing sentiment measures
would address these issues by promoting consis-
tency, enhancing interpretation, and improving in-

3The breakdown of each of the 11 classes, with examples,
is presented in the Appendix.



tegration with social applications.
Q3: Analysis of Accessibility & Transparency
We will now delve into the accessibility of SA

models deployed as AI-as-a-Service (AIaaS) sys-
tems. Assessing the accessibility of the model
sheds light on how the field strives to provide
clearer access to its solutions in sociotechnical en-
vironments, where the behavior of the model is
more comprehensibly explicated. We scrutinize
three key aspects of the model: code availability,
dataset accessibility, and ease of model access.4.

Source Code Accessibility: Among the 43 an-
alyzed models, we find that only 15 (35%) offer
access to their source code, while the remaining
models (65%) do not. The prevailing trend indi-
cates a reluctance to disclose details or provide ac-
cess to the source code. This highlights the general
treatment of these AIaaS systems as black boxes,
where the reasons behind the SA model’s behavior
cannot be readily explained.

Training Dataset Accessibility: Out of the 43
models, only 16 (37%) grant access to the training
dataset employed in the model development. Con-
versely, the remaining models (63%) do not provide
any means of accessing the training dataset. Such
systems impede the replication of the model’s re-
sults, as they do not offer external means to verify
or test the outcomes.

Ease of Access: We further investigate the in-
clusivity of access provided by SA AIaaS models.
Our analysis reveals that 5 (12%) of the 43 mod-
els impose restrictions on access. These models
either operate behind a paywall or necessitate spe-
cific credentials to obtain full access to their per-
formance. These instances demonstrate that not all
AIaaS models are genuinely public in nature.

It is important to understand if these publicly
available systems can become opaque, leading to
unexplained outcomes and potential biases (Bender
et al., 2021; O’neil, 2017).

4.3 Study 3: The Bias and Harm of Sentiment
Analysis Applications

In the prior sections, we showed that not only is
there a general lack of effort in defining sentiment
in SA models, but SA contains multiple frame-
works that can hinder collaboration within the field.
Additionally, such work tend to not disclose details
on how they are developed. Next, we explore the

4The detailed breakdown of each of these works is
published at https://github.com/PranavNV/The-Sentiment-
Problem/blob/main/Survey.xlsx

Sentence Score
I am a tall person. 0.00
I am a beautiful person. 0.85
I am a black person. -0.16
I am a mentally handicapped person. -0.10
I am a blind person. -0.50

Table 4: Example of TextBlob sentiment analysis library
with a sentence set.

issues that can arise due to the lack of explanation
in creating solutions using an interdisciplinary lens.

Due to limited and restricted data and the sub-
jective nature of sentiment, the training data used
to train SA models are not representative of all
perspectives (Kiritchenko and Mohammad, 2018;
Gupta et al., 2023) and thus result in biases that can
be harmful to real-world applications. We demon-
strate this with an experiment on Textblob, a SA
model. Table 4 shows how certain terms generate
negative sentiments irrespective of context. How-
ever, it is difficult to comprehend what the negative
scores mean in a social setting where they can be
interpreted as toxic or hateful (Venkit et al., 2023;
Kiritchenko and Mohammad, 2018). Thus, the use
of sentiment analysis models can lead to discrimi-
nation against certain groups (Huang et al., 2020;
Shen et al., 2018). The existence of sentiment bias
can also lead to poor performance of sentiment
analysis models (Han et al., 2018).

SA models are shown to perform differently for
different age groups (Díaz et al., 2018). They show
that SA models are more likely to be positively
biased towards ‘young’ adjectives than ‘old’ adjec-
tives. Hutchinson et al. (2020) also demonstrate
how bias exists against people with disability in
toxicity prediction and sentiment analysis mod-
els. These models are shown to be biased against
African-American names (Rozado, 2020) and dis-
criminate against English text written by non-native
English speakers (Zhiltsova et al., 2019). Hube
et al. (2020) found that there exist prior sentiments
associated with some names in pre-trained word
embeddings used to train machine learning mod-
els. Such biased machine learning models can have
harmful implications when used in real-world set-
tings (Rudin, 2019; Bender et al., 2021; Schwartz
et al., 2021).

The works by Stark and Hoey (2021) & Moham-
mad (2022) argue that the complexity of human
emotion and the limits of technical computation
raise serious social, political, and ethical considera-
tions that merit further discussion in AI ethics. The



field of AI has not caught up well with the complex-
ities of human behavior. The same is seen in the
field of SA where we cannot socially comprehend
what a negative or positive sentiment means or even
captures. This can cause wrongful interpretation of
the results causing social harm and bias. Dev et al.
(2021) also demonstrate how these misinterpreta-
tions in the result of SA models can lead to social
harm such as dehumanization, erasure, and stereo-
typing. Therefore effort needs to be placed into
truly understanding the value of sentiment being
measured by such models, especially when they
are used in a sociotechnical system. Such efforts
can help in promoting inclusivity and diversity in
real-world applications.

5 The Weaknesses in Sentiment Analysis

Based on our survey analysis, we outline the key
weaknesses encountered in SA within NLP. Adopt-
ing an interdisciplinary lens, our focus centers on
the interpretability within sociotechnical systems,
in order to provide targeted recommendations for
future work.

Limited awareness of sentiment in a sociotech-
nical context: SA often lacks the understanding of
how sentiment is conceptualized beyond its techni-
cal purview (discussed in Section 2.2). When SA is
employed in sociotechnical systems like healthcare,
it is important to define the socially relevant frame-
work of sentiment. There is no motivation shown to
understand the social, political, and psychological
considerations of sentiment in these works.

Insufficient emphasis on capturing contextual
information and subtleties: Categorization-based
approaches in SA struggle to capture contextual in-
formation and subtle variations in the sentiment ex-
pressed in text. Factors such as tone, sarcasm, and
cultural nuances that influence sentiment may not
be adequately addressed by predefined categories
or limited numerical scores. Most analyzed works
focus primarily on lexically categorizing texts as
positive or negative, without considering the social
factors that contribute to sentiment measurement.

Wide range of vague and absent definitions:
The literature on SA exhibits diverse and conflict-
ing definitions and frameworks, often lacking clar-
ity or omitting explicit definitions for sentiment
and SA. Ambiguity arises from the use of terms
like ‘attitude,’ ‘tone,’ ‘subjectivity,’ and ‘tone’ inter-
changeably, without clear definitions in the context
of sentiment analysis.

Lack of standardization in sentiment mea-
surement: The absence of standardized metrics
to quantify sentiment results in the use of multiple
scales and categorizations in SA. This lack of stan-
dardization makes it challenging to compare and
interpret results across different models and studies,
leading to a proliferation of diverse approaches for
evaluating sentiment.

Lack of consensus between various frame-
works defined in SA There are multiple frame-
works created in SA to measure sentiment. How-
ever, these frameworks have been adopted based on
individual usage without reaching an accord among
other existing frameworks. This lack of consensus
amongst multiple frameworks undermines the over-
all integrity of research in this area.

Manifestation of bias in publicly released
models: The absence of standards can lead to
biased or subjective sentiment analysis. Differ-
ent measures may introduce bias or subjectivity
based on the perspectives or assumptions of the
researchers or developers, potentially affecting the
accuracy and fairness of the analysis. As shown
in our analysis, publicly available models often
demonstrate biases against specific social groups,
reflecting inconsistencies in the captured values.

Limitations in generalizability of SA mod-
els: The use of different scales and categorizations
limits the generalizability of SA models. Models
trained on specific categorization schemes struggle
to handle sentiments that fall outside the predefined
categories, rendering them less applicable in real-
world scenarios. This issue becomes particularly
apparent when models exhibit harmful misclassi-
fication towards minority groups due to limited
understanding of their context and language.

Addressing these issues requires careful consid-
eration of the categorization approach, integration
of contextual information, and, efforts towards ro-
bust evaluation methodologies in sentiment analy-
sis. In the following section we will look at how
we can focus on creating a solution and awareness
of these issues.

6 Recommendations and Ethics Sheet in
Creating A Sentiment Model

Prior works like Blodgett et al. (2020), Gebru et al.
(2021) & Bender and Friedman (2018) have cre-
ated data statements and ethics sheets as a means to
audit and provide noteworthy indications to resolve
issues in AI, through a list of meaningful ques-



tions. Building on these works, we now discuss
how practitioners conducting work analyzing ‘sen-
timent’ in NLP can avoid the challenges discussed
in our previous sections. We, therefore, propose
4 primary recommendations from which we will
build an ethics sheet to guide works in SA.

[R1] Use interdisciplinary understanding to es-
tablish a comprehensive framework for sentiment
analysis that incorporates insights from fields be-
yond NLP. Differentiate between sentiment, opin-
ion, subjectivity, and emotion analysis, employing
a shared vocabulary and consistent terminology.

[R2] Ensure explicit documentation of the sen-
timent framework and analysis methodology em-
ployed in sentiment analysis works. Provide guide-
lines that outline the expected measurements and
quantifications for the model to enhance inter-
pretability and applicability.

[R3] Explicitly state the use cases and user pro-
files intended to interact with the sentiment analysis
system. By considering the specific applications
and targeted users, mitigate potential biases in the
model’s results. Raise awareness about potential
biases introduced by sentiment analysis models,
emphasizing the importance of fairness and equity.

[R4] Use explainable SA models to enhance
transparency and interpretability. Encourage the de-
velopment of methods that provide insights into the
model’s decision-making process, allowing users
to understand how sentiment analysis results are
generated and enabling trust in the system. This
can be done by making sure the training data and
code of the model are available to all.

From the above recommendations, we build an
ethics sheet that contains questions that can be used
while building aspects associated with sentiment
analysis. We intend this ethics sheet to be used
as additional material to the existing literature to
bring awareness to the issues caused by SA in a
sociotechnical system. Additionally, we aim for the
ethics sheet to facilitate democratic usability and
public scrutiny of the model, empowering users to
make informed choices when selecting a suitable
model for their specific applications.

(Q1) What is the framework and definition of
sentiment utilized? [R2]

(Q2) What framework is employed for sentiment
analysis in the measurement of sentiment? [R2]

(Q3) Will this study be made available for public
use in measuring sentiment in NLP? [R2]

(Q3.1) Is the training dataset publicly published

without access restrictions? [R2]
(Q3.2) Is the model algorithm publicly published

without any access restrictions? [R2]
(Q4) Is this system primarily designed for users

outside the field of NLP? [R1+R4]
(Q5) What are the specific use cases this system

is intended for? [R1+R4]
(Q6) Who are the users and user profiles in-

tended to utilize the system? [R1+R4]
(Q7) Were tests conducted to identify explicit

and implicit biases in sentiment analysis mod-
els, specifically examining the various sociodemo-
graphic biases that may be exhibited? If yes, please
provide details. [R3]

(Q8) Were experts from interdisciplinary fields
involved in discussing the use and metrics of senti-
ment analysis models as social applications? If so,
please specify them explicitly. [R3]

(Q9) Did the study consider the potential cultural
or contextual variations in sentiment interpretation?
If so, how were they addressed? [R3]

(Q10) Were there any measures implemented
to mitigate potential biases in the model? If yes,
please explain the approach taken. [R3]

These contextually structured questions aid in
uncovering underlying assumptions embedded in
framing the task of creating a SA model. Addi-
tionally, it presents novel ethical considerations
unique and specifically pertinent to understanding
the sociotechnical nature of SA.

7 Conclusion

In our survey of 189 papers5 on SA, we observe
that, firstly, SA has shifted from analyzing prod-
uct reviews to being widely used in sociotechnical
systems like health and medicine. Secondly, there
is a lack of interdisciplinary exploration in defin-
ing social concepts in SA, such as sentiment. The
frameworks used for sentiment analysis often suffer
from vagueness, inconsistency, or absence. Thirdly,
many publicly available works create restricted
black boxes with limited access to the model or
training dataset. To address these challenges, we
offer four key recommendations and an ethics sheet
to guide future researchers and practitioners. We
aim to help improve the development of SA models
by enhancing clarity, interpretability, and ethical
considerations through our work.

5https://github.com/PranavNV/The-Sentiment-Problem



Limitations

Our study encompasses a selection of 189 pa-
pers, incorporating works from ACL Anthology,
NeurIPS proceedings, SCOPUS proceedings, and
Semantic Scholar query searches. While our in-
tention was not to provide an exhaustive collection
of all published works on sentiment analysis, we
aimed to include diverse sources that cover vari-
ous aspects of the field. Our intent was to curate
peer-reviewed literature commonly found in the
sentiment analysis domain, encompassing models,
applications, survey papers, and frameworks. Un-
fortunately, we encountered a scarcity of works
addressing multilinguality, which reflects the the-
matic underrepresentation in the broader field. Con-
sequently, we plan to delve deeper into the preva-
lent themes within sentiment analysis research to
address this gap and provide due attention to under-
represented areas in our upcoming work. Regard-
ing the creation of the ethics sheet, it is important
to note that the questions presented are not meant
to be exhaustive but rather serve as a foundational
framework to spark additional inquiries and foster
further engagement.

Ethics Statement

We are aware of the ethical considerations involved
in our research and have taken measures to ensure
responsible practices throughout the study.

Data Publication: All the papers used in our re-
search are listed in the Appendix. However, we rec-
ognize the importance of transparency and account-
ability. Therefore, we publish the complete collec-
tion of papers along with our qualitative classifica-
tion and annotation, allowing for public scrutiny
and examination.

Mitigating Qualitative Study Bias: We acknowl-
edge the potential for bias when performing qual-
itative coding of the papers regarding their appli-
cations. To address this concern, we ensured that
at least three different individuals independently
reviewed and verified the coding to minimize the
possibility of misclassification. Additionally, we
followed the same approach to verify the presence
of various definitions in each paper, enhancing the
reliability and validity of our analysis. By disclos-
ing these ethical considerations, we emphasize our
commitment to conducting research in an ethical
and accountable manner.
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A Appendix

A.1 Application of SA

In this section, we illustrate the examples and cat-
egories of works that were looked into for under-
standing the various applications of SA. We catego-
rize the purpose of SA into 5 major categories. The
definitions and categories of all the applications are
mentioned in Table 3.

Health and Medicine: Ji et al. (2013), Wu
et al. (2015), Rodrigues et al. (2016), Bui et al.
(2016), Korkontzelos et al. (2016), Asghar et al.
(2016), Du et al. (2017), Yang et al. (2016), Hassan
et al. (2017), Ali et al. (2017), Gopalakrishnan and
Ramaswamy (2017), Birjali et al. (2017), Sabra
et al. (2018), Salas-Zárate et al. (2017), Izzo and
Maloy (2017), Crannell et al. (2016), Rajput (2020),
Ramírez-Tinoco et al. (2019), Wang et al. (2022),
Fang et al. (2023)

Government and Policy Making:Kwon et al.
(2006), Conrad and Schilder (2007), Zavattaro et al.
(2015), Yuliyanti et al. (2017), Syaifudin and Puspi-
tasari (2017),Joyce and Deng (2017), Shayaa et al.
(2017), Fatyanosa and Bachtiar (2017), Mansour
(2018), Ikoro et al. (2018), Falck et al. (2020), Geor-
giadou et al. (2020), Ash et al. (2022)



Figure 3: Roadmap of the collection and analysis process of all the peer-reviewed sentiment analysis papers to
design the Ethics Sheet.

Business Analytics: Fan and Chang (2009),
Wang et al. (2013), Isah et al. (2014), Akter and
Aziz (2016), Li et al. (2016), Saragih and Girsang
(2017), Jabbar et al. (2019), Bose et al. (2020),
Bonny et al. (2022), Li et al. (2023),

Social Media Analytics: Cao et al. (2013); Or-
tigosa et al. (2014); Shahare (2017); Mahtab et al.
(2018); Abd El-Jawad et al. (2018); El Alaoui et al.
(2018); Jing and Murugesan (2019); Rani et al.
(2022); Venkit et al. (2021)

Finance: Loughran and McDonald (2011); Price
et al. (2012); Schumaker et al. (2012); Wang et al.
(2013); Garcia (2013); Rognone et al. (2020);
Kraaijeveld and De Smedt (2020)

A.2 Sentiment Analysis Models

Hu and Liu (2004); Wilson et al. (2005a); Sebas-
tiani and Esuli (2006); Nielsen (2011); Taboada
et al. (2011); Mohammad and Turney (2013); Han-
nak et al. (2012); Mohammad (2012); De Smedt
and Daelemans (2012); Wang et al. (2012);
Gonçalves et al. (2013) Mohammad et al. (2013);
Socher et al. (2013); Clement (2013); Warriner et al.
(2013); Cambria et al. (2022); Thelwall (2014);
Hutto and Gilbert (2014); Gatti et al. (2015);
Wang et al. (2016); Saeidi et al. (2016); Baziotis
et al. (2017); Moreno-Ortiz and Pérez-Hernández
(2018); Ma et al. (2018) Deng et al. (2019); Xu et al.
(2019); Sun et al. (2019); Amplayo (2019); Rietzler
et al. (2019); Lyu et al. (2020); Wu and Ong (2021);

Cambria et al. (2022); Ma et al. (2017); Devlin et al.
(2018); Liu (2012); Raffel et al. (2020); Yang et al.
(2019); Ionescu and Butnaru (2019) Baccianella
et al. (2010); Pappas et al. (2013)

A.3 Sentiment Analysis Datasets

Socher et al. (2013); Maas et al. (2011); Wiebe
et al. (2005); Li et al. (2018); Barbieri et al. (2020);
Rosenthal et al. (2019); Pang and Lee (2004, 2005);
Nakov et al. (2013); Barnes et al. (2022); Alam
et al. (2023); Blitzer et al. (2007) Go et al. (2009);
Ganesan and Zhai (2011); Majumder et al. (2019);
He and McAuley (2016); Alam et al. (2016); Kir-
itchenko and Mohammad (2018)

A.4 Sentiment Analysis Surveys

Medhat et al. (2014); Alessia et al. (2015); Ribeiro
et al. (2016); Laskari and Sanampudi (2016);
Zhang et al. (2018, 2022); Sánchez-Rada and Igle-
sias (2019); Drus and Khalid (2019); Ramírez-
Tinoco et al. (2019); Kothari et al. (2020); Birjali
et al. (2021); Mohammad (2022); Guo et al. (2021)
Zad et al. (2021); Wankhade et al. (2022); Soni and
Rambola (2022); Chan et al. (2023)

A.5 Bias in Sentiment Analysis

Huang et al. (2020); Díaz et al. (2018); Venkit and
Wilson (2021); Bhaskaran and Bhallamudi (2019);
Kiritchenko and Mohammad (2018); Zhiltsova
et al. (2019); Hube et al. (2020); Han et al.



(2018); Sweeney and Najafian (2020); Prabhakaran
et al. (2019) Rozado (2020); Hutchinson et al.
(2020); Davidson et al. (2019); Shen et al. (2018);
Narayanan Venkit et al. (2023); Asyrofi et al.
(2021); Ungless et al. (2023); Lin et al. (2021);
Mei et al. (2023); Venkit et al. (2023)

A.6 Breakdown of the Metrics used in
Sentiment Analysis

Sentiment Categorization: Negative, Objective,
Positive (Wilson et al., 2005a)| Negative, Positive
(Cambria et al., 2014)| Negative, Neutral, Positive
(Wang et al., 2016) | Very Negative, Negative, Neu-
tral, Positive, Very Positive (Socher et al., 2013) |
Positive, Somewhat Positive, Neutral, Somewhat
Negative, Negative (Devlin et al., 2018) | Valence,
Arousal, Dominance (Warriner et al., 2013) | Neg-
ative, Neutral, Unsure, Positive (De Smedt and
Daelemans, 2012)| Self-assurance, Attentiveness,
Fatigue, Guilt, Fear, Sadness, Hostility, Joviality,
Serenity, Suprise, Shyness (Gonçalves et al., 2013)
| Joy, Sadness, Anger, Fear, Disgust, Surprise (Mo-
hammad, 2012)

Sentiment Regression Scales: [-5,+5] (Nielsen,
2011)| [0,2,4] (Mohammad et al., 2013)| [-1,+1]
(Gonçalves et al., 2013) | [-4,+4] (Hutto and Gilbert,
2014)

A.7 Breakdown of Ethics Sheet
In this section, we aim to analyze the underlying
intention behind each question posed in the Ethics
Sheet.

Questions (Q1-Q3) are designed to focus on rec-
ommendation [R2]. The disclosure of all neces-
sary information pertaining to the framework and
analysis methodology is crucial. This disclosure
contributes to the interpretability of sociotechnical
systems employing SA, enhancing the understand-
ing of their functioning.

Questions (Q4-Q6) are tailored to address rec-
ommendations [R1] and [R4]. The outcomes de-
rived from these questions foster an interdisci-
plinary comprehension of SA developments. Ex-
plicitly stating user profiles and associated data em-
powers users with a democratic choice in selecting
suitable applications as required.

Questions (Q7-Q10) emphasize the significance
of comprehending weaknesses and biases inherent
in a model. These questions align with recom-
mendation [R3] by providing additional contextual
information regarding model performance. The
inclusion of information concerning implicit and

explicit biases sheds light on the potential harm
that a poorly administered model may exacerbate.



Term Definition Framework References
sentiment affective state or feeling associated with a particular object or event (Hoffmann, 2018)

opinion subjective statement, view, attitude, emotion, or appraisal about an entity
or an aspect of an entity from an opinion holder (Liu, 2012)

emotion/feelings

By “descriptive definition,” we mean a definition of the word emotion as
it is used in everyday life. By “prescriptive definition,” we mean a
definition of the scientific concept that is used to pick out the set of
events that a scientific theory of emotion purports to explain.

(Izard, 2010)

subjectivity
subjectivity analysis deals with the
detection of “private states” — a term that encloses sentiment,
opinions, emotions, evaluations, beliefs and speculations.

(Wiebe, 1994)

Table 5: Examples of a few definitions of different themes concerning sentiment from different fields to demonstrate
the difference in framework between these terms that are synonymously used in the field of SA in NLP.


