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Abstract

Exact computation of the partition function is known to be intractable, necessitating ap-
proximate inference techniques. Existing methods for approximate inference are slow to
converge for many benchmarks. The control of accuracy-complexity trade-off is also non-
trivial in many of these methods. We propose a novel incremental build-infer-approximate
(IBIA) framework for approximate inference that addresses these issues. In this framework,
the probabilistic graphical model is converted into a sequence of clique tree forests (SCTF)
with bounded clique sizes. We show that the SCTF can be used to efficiently compute the
partition function. We propose two new algorithms which are used to construct the SCTF
and prove the correctness of both. The first is an algorithm for incremental construction of
CTFs that is guaranteed to give a valid CTF with bounded clique sizes and the second is an
approximation algorithm that takes a calibrated CTF as input and yields a valid and cali-
brated CTF with reduced clique sizes as the output. We have evaluated our method using
several benchmark sets from recent UAI competitions and our results show good accuracies
with competitive runtimes.

1 Introduction

Discrete probabilistic graphical models including Bayesian networks (BN) and Markov networks (MN) have
been used for probabilistic inference in a wide variety of applications. A fundamental task in inference is the
computation of the partition function (PR), which is the normalization constant for the overall probability
distribution. Exact inference of PR is known to be #P complete (Roth, 1996), necessitating approximations
in general. Methods for approximate inference can be broadly classified as methods based on variational
optimization and sampling or search based methods.

Variational techniques cast the inference problem as an optimization problem, which is typically solved
using iterative message-passing algorithms. These include loopy belief propagation (LBP) (Murphy et al.,
1999; Wainwright et al., 2002; Wiegerinck & Heskes, 2003), region-graph based methods like generalized belief
propagation (GBP) and its variants (Yedidia et al., 2000; Heskes, 2006; Mooij & Kappen, 2007; Sontag et al.,
2008; Lin et al., 2020), mean-field approximations (Winn et al., 2005) and methods based on expectation
propagation (Minka, 2001; 2004; Vehtari et al., 2020). A combination of mini-bucket heuristics and belief
propagation is used in methods like weighted mini-bucket elimination (WMB) (Liu & Ihler, 2011; Forouzan
& Ihler, 2015; Lee et al., 2020) and iterative join graph propagation (IJGP) (Mateescu et al., 2010). While
the parameter settings for complexity accuracy trade-off is non-trivial in many of the GBP based methods,
it is controlled using a single user-defined parameter (ibound) in mini-bucket based methods. More recently,
several extensions of mini-bucket based methods have been proposed. These include bucket re-normalization
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(Ahn et al., 2018), deep-bucket elimination (DBE) (Razeghi et al., 2021) and NeuroBE (Agarwal et al.,
2022). Both DBE and NeuroBE use neural networks to improve the quality of approximations. Another
approach is to bound clique sizes by simplifying the network. In the thin junction tree based methods (Bach
& Jordan, 2001; Elidan & Gould, 2008; Scanagatta et al., 2018), a set of features (nodes and edges) so that
the resulting graph has a bounded tree-width. The remaining features are ignored. The edge deletion belief
propagation (EDBP) and the related relax-recover compensate (RRC) methods (Choi et al., 2005; Choi &
Darwiche, 2006; 2007; 2008) perform inference on progressively more complex graphs in which new features
are added, while satisfying some consistency conditions.

Sampling algorithms can be classified as methods based on Markov chain Monte Carlo (MCMC) like Gibbs
sampling (Gelfand, 2000) and methods based on importance and stratified sampling (Bouckaert et al., 1996;
Hernandez et al., 1998; Moral & Salmerón, 2005). The more recent importance sampling based methods
use proposals based on approximate variational methods like WMB and IJGP. In Liu et al. (2015), WMB is
used as the proposal for importance sampling (WMB-IS). The dynamic importance sampling (DIS) method
proposed in Lou et al. (2017) also uses WMB and has a periodic update of the sampling proposal. The
abstraction sampling methods (Broka, 2018; Kask et al., 2020) use an abstraction function to merge similar
nodes in AND-OR search trees to get abstract states. An estimate of the PR is obtained using sampled
subtrees, with WMB used in the sampling proposal. Sample search (Gogate & Dechter, 2007) is a variant of
importance sampling that deals with the rejection of samples in the presence of zero weights. The method
proposed in Gogate & Dechter (2011) uses sample search with cutset sampling and an IJGP based proposal.
Another approach is to combine sampling techniques with model counting based methods (Chakraborty
et al., 2013; 2016; Soos & Meel, 2019; Sharma et al., 2019).

Limitations of existing methods: Sampling based methods are anytime algorithms where it is possible
to improve accuracy by increasing the number of samples, without the associated increase in memory.
However, the performance of these methods depends significantly on the proposal distribution used for
importance sampling. The results in Gogate & Dechter (2011); Lou et al. (2017; 2019); Kask et al. (2020)
also indicate that after an initial rapid increase, the improvement in accuracy slows down significantly with
time. Variational techniques typically require increase in both time and memory for better accuracy. LBP
works with minimal cluster sizes and is therefore fast and gives solutions for most benchmarks (Agrawal
et al., 2021). However, it results in poor accuracies especially for many of the harder benchmarks. The
accuracy of GBP based methods depends on the choice of the outer regions, which is non-trivial. In practice,
we have found that these methods are slow to converge for many benchmarks. Methods based on mini-
bucket heuristics like WMB, WMB-IS and DIS have easy control of accuracy complexity trade-off but the
accuracy obtained is often limited (Broka, 2018; Kask et al., 2020; Agarwal et al., 2022). Neural network
based extensions like NeuroBE and DBE improve the accuracy of estimates, but require several hours of
training. Selection of optimum features in the RRC and related methods is compute-intensive since it
is based on metrics that require several iterations of belief propagation. While weighted model counting
based methods work well for many benchmarks, they struggle for benchmarks with large variable domain
cardinality (Agrawal et al., 2021).

Contributions of this paper: In this paper, we propose a new framework for approximate inference that
addresses some of these issues. Our framework, denoted the incremental build-infer-approximate (IBIA)
paradigm, converts each connected graph in the PGM into a data structure that we call Sequence of Clique
Tree Forests (SCTF). We show that the SCTF can be used for efficient computation of the PR. To construct
the SCTF, we propose two new algorithms and prove the correctness of both. The first is an algorithm for
incremental construction of CTFs that is guaranteed to give a valid CTF with bounded clique sizes and the
second is an approximation algorithm that takes a calibrated CTF as input and yields a valid and calibrated
CTF with reduced clique sizes as the output.

Our method has easy control of accuracy-complexity trade-off using two user-defined parameters for clique
size bounds, which are similar to the ibound parameter setting in mini-bucket based methods. Since IBIA
is based on clique trees and not loopy graphs, the belief propagation step is non-iterative and there are
no convergence issues. In IBIA, approximations are based on clique beliefs and not the network structure
alone, which results in good accuracies. We evaluated our method with 1717 instances belonging to different
benchmark sets included in several UAI competitions. Results show that the accuracy of solutions obtained
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by IBIA is better than the other variational techniques. It also gives comparable or better accuracies than
the state of art sampling methods in a much shorter time.

Organization of this paper: The rest of this paper is organized as follows. Section 2 provides background
and notation. We present an overview of the IBIA framework in Section 3, the methodology for constructing
the SCTF in Section 4 and approximate inference of PR in Section 5. We present the complexity analysis
in Section 6, results in Section 7 and comparison with related work in Section 8. Finally, we present our
conclusions in Section 9. The proofs for all propositions and theorems are included in Appendix A.

2 Background

This section has the notation and the definitions used in this paper.
Definition 1. Probabilistic graphical model (PGM): Let X = {X1, X2, · · · Xn} be a set of random
variables with associated domains D = {DX1 , DX2 , · · · DXn

}. The probabilistic graphical model (PGM) over
X consists of a set of factors, Φ. Each factor ϕα(Xα) ∈ Φ is defined over a subset of variables Scope(ϕα) = Xα,
where α denotes the index to the set of factors. The domain Dα of Xα is the Cartesian product of the domains
of variables in Xα and the factor ϕα is a map ϕα : Dα → R ≥ 0. The joint probability distribution captured
by the model is P (X ) = 1

Z

∏
α ϕα where the normalizing constant, Z =

∑
Domain(X )

∏
α ϕα is the partition

function (PR).

Each node of the undirected graph corresponding to the PGM is associated with a random variable, Xi ∈ X .
Variables Xi and Xj are connected via an edge in this graph if there is at least one factor in the PGM (Φ)
whose scope contains both variables.
Definition 2. Chordal graph (H): It is an undirected graph with no cycle of length greater than three.
Definition 3. Clique: A subset of nodes in an undirected graph such that all pairs of nodes are adjacent.
Definition 4. Maximal clique: A clique that is not contained within any other clique in the graph.
Definition 5. Junction tree or Join tree or Clique tree (CT) (Koller & Friedman, 2009): The CT is
a hypertree with nodes that are cliques (Ci) in the chordal graph (H) corresponding to the undirected graph
of the PGM. An edge between Ci and Cj is associated with a sepset Si,j = Ci ∩ Cj . A valid CT satisfies the
following properties.

(a) All cliques are maximal cliques i.e., there is no Cj such that Cj ⊂ Ci.

(b) It satisfies the running intersection property (RIP), which states that for all variables X, if X ∈ Ci

and X ∈ Cj , then X is present in every node in the unique path between Ci and Cj .

(c) Each factor ϕα in the PGM is assigned to a single node Ci such that Scope(ϕα) ⊆ Ci.

Note that throughout the paper, we use the terms clique tree, join tree and junction tree interchangeably.
Also, as is common in the literature, we use the term Ci as a label for the node in the CT as well as to
denote the set of variables in the clique.

The initial belief associated with clique Ci is the product of all factors assigned to Ci. Exact inference in a
CT is done using the belief propagation (BP) algorithm (Lauritzen & Spiegelhalter, 1988; Koller & Friedman,
2009) that is equivalent to two rounds of message passing along the edges of the CT, an upward pass (from
the leaf nodes to the root node) and a downward pass (from the root node to the leaves). Following this,
each clique in the CT has an associated joint belief β(Ci) =

∑
Domain(X \Ci)

∏
α ϕα and each sepset has an

associated joint belief µ(Sij) =
∑

Domain(X \Sij)
∏

α ϕα.
Definition 6. Calibrated CT (Koller & Friedman, 2009): Let β(Ci) and β(Cj) denote the beliefs associated
with adjacent cliques Ci and Cj . The cliques are said to be calibrated if∑

Domain(Ci\Si,j)

β(Ci) =
∑

Domain(Cj\Si,j)

β(Cj) = µ(Si,j) (1)

Here, Si,j is the sepset corresponding to Ci and Cj , and µ(Si,j) is the associated sepset belief. The CT is
said to be calibrated if all pairs of adjacent cliques are calibrated. It has the following properties.
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(a) All clique and sepset beliefs in the calibrated CT have the same normalization constant (Z) which
is equal to the partition function (PR).

(b) The joint probability distribution, P (X ), can be re-parameterized in terms of the sepset and clique
beliefs as follows:

P (X ) = 1
Z

∏
i∈VT

β(Ci)∏
(i,j)∈ET

µ(Si,j) (2)

where VT and ET are the set of nodes and edges in the CT.

3 Overview of the IBIA paradigm

This section has the definitions of terms used in various algorithms and an overview of the IBIA paradigm.
We also introduce a running example that will be used in various sections of this paper to illustrate the
constituent algorithms.

3.1 Definitions

We use the following definitions in the paper.
Definition 7. Clique Tree Forest (CTF): Set of disjoint CTs.
Definition 8. Valid CTF: A CTF is valid if all CTs in the CTF are valid i.e., they satisfy all properties
in Definition 5.
Definition 9. Calibrated CTF: A CTF is calibrated if all CTs in the CTF are valid and calibrated.
Definition 10. Clique size: The clique size csi of a clique Ci is defined as follows.

csi = log2 (
∏

v ∈ Ci

|Dv| ) (3)

where |Dv| is the cardinality or the number of states in the domain of the variable v.

It can be seen from the definition that the clique size is the effective number of binary variables contained
in the clique.

3.2 Motivation

Since the complexity of inference is exponential in the maximum clique size, the key to making the problem
tractable is to bound the clique size. Typically, bounding clique sizes leads to loopy graphs and convergence
issues. An alternative is to divide the PGM into multiple sections such that each section results in a CTF
with smaller clique sizes, thus making it amenable to non-iterative belief propagation. Existing approaches
are multiply sectioned Bayesian networks (MSBN) (Xiang et al., 1993; Xiang & Lesser, 2003), which is an
exact inference method and the approximate inference method proposed in Bhanja & Ranganathan (2004).
The limitations of these methods are discussed in Section 8. Following are the two main challenges that
need to be addressed: (a) How do we divide the PGM such that the maximum clique size of each CTF is
less than a user-specified bound? (b) How do we exchange beliefs between the CTFs, so that the overall
partition function can be inferred?

These two challenges are addressed in this paper.

3.3 Overview

The inputs to the algorithm are the set of initial factors (Φ) and two user-defined clique size parameters mcsp

and mcsim. Let G denote the undirected graph induced by Φ. Figure 1 illustrates the overall methodology
used in IBIA to construct the sequence of CTFs (SCTF) for G and get an estimate of the partition function
for the given set of factors. The three main steps in the method are as follows.
Incremental Build: Starting with a valid CTF, the algorithm (Algorithm 1) builds the CTs in the CTF
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Figure 1: Estimation of partition function using the IBIA framework

by incrementally adding new factors to it as long as the maximum clique size bound, mcsp, is not violated.
We show that the result of Algorithm 1 is guaranteed to be a valid CTF. It is assumed that mcsp is large
enough to accommodate the maximum domain size of the factors.
Infer: This step takes a valid CTF as input and calibrates all the CTs in the CTF using the standard BP
algorithm (Lauritzen & Spiegelhalter, 1988) for exact inference. After calibration, all clique beliefs in a CT
have the same normalization constant.
Approximate: The input to this algorithm (Algorithm 2) is a calibrated CTF, CTFk, with maximum
clique size mcsp. The result of the algorithm is an approximate CTF, CTFk,a, with a reduced maximum
clique size of mcsim. Our approximation algorithm ensures that CTFk,a is valid and calibrated so that the
CTs need not be re-calibrated using the message-passing algorithm. It also ensures that a connected CT in
CTFk remains connected in CTFk,a and normalization constants of the CTs in the CTF are unchanged.

Assume that G is connected. The construction of the SCTF starts with an initial CTF (CTF0) that contains
cliques corresponding to factors in Φ with disjoint scopes. As shown in the figure, the three steps incremen-
tal build, infer and approximate are used repeatedly to construct the SCTF = {CTF1, · · · , CTFn}. The
construction is complete once all factors in Φ have been added to some CTF in the SCTF. The SCTF is
thus a sequence of calibrated CTFs, each of which satisfies a property proved in Proposition 9. Based on
this property, we show that the last CTF, CTFn, contains a single connected CT and the normalization
constant of this CT is the estimate of the PR (Theorem 2).

If G has multiple disjoint graphs, which happens for example after evidence based simplification, an SCTF is
constructed for each connected graph and the estimate of PR is the product of the normalization constants
of the last CTF of each SCTF.

3.4 Example

We will use the example shown in Figure 2a as a running example to explain the steps used in various
algorithms proposed in this work. The figure has the factors and the input graph induced by the factors. All
variables are assumed to be binary and mcsp and mcsim are set to 4 and 3 respectively. The final result is
an SCTF consisting of two CTFs shown in Figure 2b. The normalization constant of clique beliefs in CTF2
is the estimated PR for the example.

4 Construction of the SCTF

In this section, we describe the three steps that are used to generate the sequence of CTFs namely, incremental
build, infer and approximate. We use the following definitions in this section.
Definition 11. MSG[V ]: Given a subset of variables (V ) in a valid CTF, MSG[V ] is used to denote the
minimal subgraph of the CTF that is needed to compute the joint beliefs of V .
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(a) Undirected graph induced by input set of factors Φ.
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fgdh fdhm hmj
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fdh hm

h i

dh dm

jhf

fm

fmoh ohkl dhk
ho hkCTF2 :

(b) Corresponding sequence of CTFs (SCTF).

Figure 2: Construction of sequence of CTFs (SCTF) for the input set of factors Φ = {ϕ(c, h, j), ϕ(f, g, d),
ϕ(i, l), ϕ(a, b, f), ϕ(d, g, h), ϕ(d, h, k), ϕ(h, i), ϕ(f, o), ϕ(j, m), ϕ(f, m, n), ϕ(d, m, o), ϕ(k, l, o)}. The maxi-
mum clique size constraints, mcsp and mcsim are set to 4 and 3 respectively. All variables are assumed to
be binary.

It is obtained by first identifying the subgraph of CTF that connects all the cliques that contain variables in
the set V . Then, starting from the leaf nodes of the subgraph (nodes with degree equal to 1), cliques that
contain the same set (or subset) of variables in V as their neighbors are removed recursively.
Definition 12. Interface variables (IV): Let the initial set of factors in the PGM be Φ = {Φ1, . . . , Φn},
where Φk denotes the set of factors added to CTFk. A variable in CTFk is an interface variable if it is
present in the scope of any factor in the set {Φk+1, . . . , Φn}.

Each CTF in the sequence has a different set of interface variables. IVs are needed to form the next CTF in
the sequence.

4.1 Incremental Build

In this step, new factors from a set Φ are incrementally added to an existing valid CTF, which is either CTF0
or the approximate CTF, CTFk−1,a, as long as the maximum clique size bound (mcsp) is not violated. If the
scope of a new factor is a subset of an existing clique, the factor is simply assigned to the clique. Otherwise,
we need to modify the CTF to add a clique that contains the scope of the new factor while ensuring that
the CTF remains valid. We first explain our method of construction of CTFs with the help of the running
example. We then formally state the steps and prove the correctness of our algorithm.

4.1.1 Example

Figure 3 illustrates the construction of CTF1 from an initial CTF, CTF0. CTF0 is initialized with cliques
corresponding to factors with disjoint scopes, chosen as cliques C1, C3 and C9 in the example. These are
highlighted in red in the graph. Let V denote the set of variables present in the existing CTF. The first step
in the addition of a factor ϕ is the identification of the subgraph SGmin = MSG[scope(ϕ) ∩ V]. The method
for addition of ϕ to the CTF depends on whether SGmin is a set of disjoint cliques or it has connected
components. The steps involved in the two cases are as follows.
1. SGmin is a set of disjoint cliques: Assume that the factor ϕ(h, i) is to be added to CTF0. In this
case, SGmin = MSG[h, i] consists of two disjoint cliques, C3 and C9. As shown in the figure, the new clique
corresponding to ϕ(h, i) can simply be connected to cliques C3 and C9 via the sepset variables h and i,
producing a valid CTF. The addition of factor ϕ(d, g, h) is similar. SGmin for the factors ϕ(d, h, k), ϕ(a, b, f)
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Figure 3: Construction of the first CTF in the sequence, CTF1, for an example PGM with mcsp set to 4.
Starting with a set of disjoint cliques, factors are added until the maximum clique size reaches mcsp. Factors
ϕ(k, l, o) and ϕ(f, o) are deferred for addition to the next CTF.

and ϕ(j, m) are single cliques. As shown in the figure, they can be connected to the existing CTF via the
corresponding sepsets to produce a valid CTF.

2. SGmin has connected components: When we try to add factor ϕ(f, m, n), the variables f and m are
present in cliques C5 and C4 which are already connected in the existing CTF. Directly connecting these
cliques to the new clique containing variables f , m and n will generate a loop and hence result in an invalid
CTF. Figure 4 shows the steps used for addition of this factor. SGmin = MSG[{f, m}] is highlighted in red
in Figure 4a. The goal is to replace SGmin with a subtree ST ′ that has a clique containing variables f, m and
n, while ensuring that the resulting CTF remains valid. As shown in Figure 4b, when the new clique is added
to the chordal graph corresponding to SGmin, chordless loops f -g-h-j-m-f and f -d-h-j-m-f are introduced.
Therefore, retriangulation is needed to get back a chordal graph. However, only a subgraph of the modified
chordal graph needs to be re-triangulated. Using variable elimination to form cliques, clique containing
variables c, h and j is obtained after eliminating variable c. This clique is already present in SGmin. We
call such cliques as retained cliques. The subgraph GE shown in Figure 4c is obtained after removing the
variable c and deleting the corresponding edges. This is the subgraph that needs re-triangulation. We call
it the elimination graph and denote the variables in this graph as the elimination set (SE). Comparing
Figures 4a and 4c, we see that SE contains the sepset variables in SGmin and the variables in the new factor.
On triangulating GE , we get a CT, ST ′, that contains cliques C1

′, C2
′, C3

′ and C4
′ as shown in Figure 4d.

Each retained clique is then connected to a clique in ST ′ such that the sepset contains all common variables.
In the example, clique C3 gets connected to clique C3

′ via sepset variables h and j which are present in
both C3 and ST ′. The final ST ′ is highlighted in teal in Figure 4d. ST ′ replaces SGmin in the existing
CTF. The connection is done via cliques C5, C7 and C8 that were adjacent to SGmin with the same sepsets.
Since cliques C1, C2, C4 are no longer present in the modified CT, the associated factors are re-assigned to
corresponding containing cliques in ST ′. Accordingly, the factors associated with C1 and C2 are re-assigned
to C

′

1 and that associated with C4 is re-assigned to C
′

3. The new factor ϕ(f, m, n) is assigned to clique C4
′

that contains all variables in the scope of this factor.
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(a) Existing CTF. The minimal subgraph cor-
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(b) Addition of a clique
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chordal graph corresponding
to SGmin.

f g h j
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d

(c) The elimination graph, GE ,
which is the subgraph of the mod-
ified chordal graph that needs re-
triangulation.

C
′

1 : fgdh C
′

2 : fhm C
′

3 : hmj C3 : chj

C4
′ : fmn

C5 : abf C8 : hi C9 : il

C7 : dhk

fh hm hjf h

i

dh fm

(d) The modified CTF obtained after replacing SGmin with ST ′

(marked in teal). ST ′ contains cliques obtained after triangulating
the elimination graph (C1

′, C2
′, C3

′, C4
′) and the retained clique C3.

Figure 4: Addition of a factor ϕ(f, m, n) to an existing CTF.

Factor ϕ(d, m, o) is added in a similar manner and the resulting CTF, CTF1, is shown in Figure 3. Addition
of factors ϕ(f, o) and ϕ(k, l, o) violates the clique size bounds (mcsp = 4) and are deferred for addition to
the next CTF in the sequence. Note that ST ′ is not unique and depends on the elimination order used for
re-triangulation. Similarly, the replacement of SGmin by ST ′ can be done in multiple ways. Therefore, the
resulting CTF is not unique, but it is always a valid CTF.

Often the new factors that need to be added impact overlapping portions of the existing CTF. While they
can be added sequentially, adding them together not only reduces the effort required for re-triangulation,
but also often results in smaller clique sizes. Therefore, in our algorithm factors having overlapping SGmin

are added together as a group. The procedure to add a group of factors is similar.

4.1.2 Algorithm

We first define various terms used in the algorithm. Let V denote the variables in the existing CTF, Φ denote
the set of factors to be added and Scope(Φ) = ∪ϕ∈ΦScope(ϕ).
Definition 13. SGmin: It is defined as MSG[Scope(Φ) ∩ V] (see Definition 11 for MSG).

It is the minimal portion of the existing CTF that is impacted by the addition of new factors.
Definition 14. Elimination set (SE): It is the set containing the variables in the new factors to be added
and the variables in the sepsets of SGmin.
Definition 15. Retained cliques: Cliques in SGmin that contain variables that are not contained in the
set SE .
Definition 16. Elimination graph (GE): The elimination graph is constructed using the following steps:-
(a) For each factor ϕ in the set Φ, add a fully connected component between variables in Scope(ϕ) (b) For
each clique C ∈ SGmin, add a fully connected component corresponding to C ∩ SE .

Algorithm 1 shows the formal steps in our algorithm for incremental addition of new factors to an existing
CTF such that clique sizes are bounded. The inputs to the algorithm are a valid CTF, the set of factors to
be added (Φ) and the clique size bound mcsp. In each step of this algorithm, we attempt to add a group of
factors that have overlapping SGmin (Φg) (lines 3-15). To do this, we first find the SGmin corresponding
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to the entire group Φg (Definition 13) and construct the modified subtree ST ′ by adding factors in Φg to
SGmin (lines 6-7). If ST ′ satisfies the clique size bounds, the CTF is modified and the Φg is removed from
Φ (lines 9-11). Otherwise, we remove a subset of factors, Φgs, from Φ and try adding the remaining factors
to the CTF. Φgs is added to Φd, which is a list of factors that are deferred for addition to subsequent CTFs

Algorithm 1 BuildCTF(CTF, Φ, mcsp)
Input: CT F : Input CTF

Φ: Set of new factors to be added
mcsp: Maximum clique size bound for the modified CTF

Output: CT F : Modified CTF
Φ: Set of remaining factors

1: Initialize: Φd = {} ▷ Set of factors deferred for addition to subsequent CTFs
2: while Φ.isNotEmpty() do ▷ Loop until further addition is not possible
3: V = {V ariables ∈ CT F}
4: For each factor ϕ ∈ Φ, identify the corresponding minimal subgraph SGmin = MSG[Scope(ϕ) ∩ V]
5: Φg ← Find a group of factors with overlapping minimal subgraphs
6: SGmin ←MSG[Scope(Φg) ∩ V] ▷ Find the minimal subgraph corresponding to set Φg

7: ST ′ ← Construct ST ′ (Φg, SGmin) ▷ ST ′: Modified subtree
8: ▷ Modify CT F if clique size bound is satisfied.
9: if Max-clique-size(ST ′) ≤ mcsp then

10: CT F ← Modify CTF(ST ′, SGmin, CT F ) ▷ Replace SGmin with ST ′ and get modified CTF
11: Φ← Φ \ Φg ▷ Update the set of remaining factors
12: else
13: Φgs ← {Subset of factors ∈ Φg} ▷ Choose a subset of factors for addition to subsequent CTFs
14: Φ← Φ \ Φgs; Φd.add(Φgs); ▷ Remove Φgs from Φ and add it to the set of deferred factors Φd

15: end if
16: end while
17: Φ = Φd

18:
19: procedure Construct ST ′(Φg, SGmin)
20: Construct the elimination set SE and elimination graph GE , as per Definitions 14 and 16
21: ST ′ ← Triangulate GE and find the corresponding clique tree
22: ▷ Identify the set of retained cliques, Cr

23: Vsg ← {Variables ∈ SGmin}; Vr ← Vsg \ SE ▷ Vr: Variables used to identify retained cliques
24: Cr ← Cliques ∈ SGmin that contain at least one variable in Vr ▷ Cr: Set of retained cliques
25: ▷ Connect retained cliques to ST ′

26: for C ∈ Cr do
27: Find a clique C′ ∈ ST ′ such that C ∩ SE ⊆ C′

28: if C′ ⊂ C then Replace C′ by C else Connect C′ to C ▷ Check maximality, connect retained clique C
29: end for
30: ▷ Assign factors to cliques in ST ′

31: Re-assign factors associated with cliques in SGmin to containing cliques in ST ′

32: Assign factors in Φg to containing cliques in ST ′

33: return ST ′

34: end procedure
35:
36: procedure Modify CTF(ST ′, SGmin, CT F )
37: ▷ Replace SGmin with ST ′ in CTF
38: Adj(SGmin)← List of tuples (Ca, Sa) containing cliques adjacent to SGmin and corresponding sepset variables
39: Remove SGmin from CTF
40: for (Ca, Sa) ∈ Adj(SGmin) do ▷ Re-connect cliques adjacent to SGmin to cliques in ST ′

41: Connect Ca to clique C′ in ST ′ such that Sa ⊂ C′

42: end for
43: return CT F
44: end procedure

9
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(lines 12-15). This process is continued until Φ becomes empty and no further addition is possible. After
the CTF is built, we re-assign Φ to contain the set of all deferred factors (line 17).

Construct ST ′ (lines 19-34): In this function, we first find the elimination set SE and the elimination graph
GE as per Definitions 14 and 16. The elimination graph is then triangulated and the corresponding clique
tree ST ′ is obtained (lines 20-21). We then identify the set of retained cliques (Cr) which contain variables
that are not present in SE (Vr) (lines 22-24). For each retained clique C, we find a clique C ′ in ST ′ that
contains the set C ∩ SE . We show that this is always possible in the proof of Proposition 3. If C ′ is a subset
of C, we replace C ′ with C. Otherwise, we connect C to C ′ (lines 25-29). Following this, factors associated
with cliques in SGmin are reassigned and new factors in Φg are assigned to corresponding containing cliques
in ST ′ (lines 30-33).

Modify CTF (lines 36-44): This function modifies the CTF by replacing SGmin by ST ′. We start by finding
the set of cliques adjacent to SGmin in the input CTF (Adj(SGmin)) and remove SGmin from the CTF.
Cliques in Adj(SGmin) are reconnected to cliques in ST

′ that contain the corresponding sepset in the existing
CTF. We show that this connection is always possible in the proof of Proposition 3.

4.1.3 Soundness of the algorithm

Let the input to Algorithm 1 be a valid CTF. Let CTFm denote the modified CTF obtained after adding
a group of factors Φg to an existing CTF using lines 3-15 of Algorithm 1. Then the following propositions
hold true. The proofs for these propositions are included in Appendix A.
Proposition 1. CTFm contains only trees (possibly disjoint) i.e., no loops are introduced by the algorithm.
Proposition 2. CTFm contains only maximal cliques.
Proposition 3. All CTs in CTFm satisfy the running intersection property (RIP).
Proposition 4. If the joint distribution captured by the input CTF with corresponding set of variables Xin

is P (Xin), then the joint distribution captured by CTFm is P (Xin)
∏

ϕ∈Φg
ϕ.

Theorem 1. Let the input CTF to Algorithm 1 be a valid CTF. Then, the CTF constructed by the
algorithm is also a valid CTF with maximum clique size of mcsp.

Proof. In Algorithm 1, we start with a valid CTF and sequentially add groups of factor using steps shown
in lines 3-15. Based on Propositions 1 - 3, if the input is a valid CTF, the modified CTF is also a valid
CTF since it satisfies all the properties needed to ensure that the CTF contains a set of valid CTs (see
Definition 5). The clique size is bounded since the addition of factors is done only if the clique size bounds
are met (line 9).

4.2 Infer clique beliefs

The output of the incremental build step is a CTF, CTFk, where the maximum clique size is at most
mcsp. In the infer step, CTFk is calibrated using the standard belief propagation algorithm for exact
inference (Lauritzen & Spiegelhalter, 1988; Koller & Friedman, 2009). This is efficient since message passing
is performed over clique trees with bounded clique sizes.

4.3 Approximate CTF

The next step is the approximate step, in which we reduce clique sizes in CTFk to get an approximate CTF,
CTFk,a. Based on Definition 12, we identify the interface variables (IV) in CTFk. All the other variables in
the CTF are referred to as non-interface variables (NIV). Since subsequent CTFs have factors that contain
IVs, the accuracy of beliefs in these CTFs will depend on how well the joint beliefs of the IVs is preserved in
CTFk,a.

Figure 5 shows the steps required to get the approximate CTF (CTF1,a) for the running example. In the
example, mcsim is set to 3 and IV = {f, l, k, o} (marked in red in the figure). CTF1,a is initialized to the
minimal subgraph corresponding to IV, MSG[{f, l, k, o}] (highlighted in blue in the figure). The two main
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Figure 5: Approximation of CTF1 for the running example with mcsim set to 3. The blue cliques in CTF1
form the minimal subgraph corresponding to interface variables f, k, o and l (marked in red). CTF1,a is
obtained after exact marginalization of non-interface variables c, j, i and local marginalization of variable d.

steps used to reduce the clique sizes are exact and local marginalization, described below. For clarity, we
explain the steps assuming that the clique sizes can be reduced exactly to the user-defined parameter mcsim.
In practice, it could be larger or smaller depending on the domain-sizes of the variables that are removed.

Exact marginalization: The goal of this step is to reduce the number of NIVs and the number of cliques
in the CTF while preserving the joint beliefs over the IVs exactly. This can be done by removing some of the
NIVs from the CTF as follows. If an NIV is present in a single clique, it is removed from the CTF and the
corresponding clique belief is marginalized over all states in the domain of this variable. In case the resulting
clique is non-maximal, it is removed and its neighbors are connected to the containing clique. If an NIV is
present in multiple cliques, exact marginalization can only be done after collapsing all the cliques containing
the variable into a single clique. Let STv be the subtree of CTFk,a that has all the cliques containing a
non-interface variable v and Cc be the new clique obtained after collapsing cliques in STv and removing
v. The clique belief for Cc is obtained after marginalizing the joint probability distribution of STv over all
states in the domain of variable v, as follows.

β(Cc) =
∑
Dv

( ∏
C∈STv

β(C)∏
SP ∈STv

µ(SP )

)
(4)

where SP denotes sepsets in STv and Dv denotes the domain of variable v. While this exactly preserves the
joint distribution, this process becomes expensive or infeasible as the size of the collapsed clique increases.
Therefore, we perform this step only if the size of the collapsed clique is less than or equal to mcsim.

In the running example (shown in Figure 5), non-interface variable c is present in a single clique C6. It is
removed from C6 and the corresponding belief is marginalized. After this, C6 contains only variables h and
j, both of which are also present in C7. Since C6 is a non-maximal clique, it is removed and its neighbour
C4 is connected to C7. In C7, j is a non-interface variable, present in a single clique. We can follow a
similar process of marginalization and removal of a non-maximal clique, leaving only C1, C2, C3, C4 and C5
in CTF1,a. We can further reduce the number of non-interface variables. Variable i is present in cliques C4
and C5 which when collapsed give a clique of size 3 (≤ mcsim) containing variables h, i and l. Variable i
is removed and the beliefs are marginalized to give a new clique C4

′. Exact marginalization over all other
NIVs will increase the clique size beyond mcsim and is therefore not attempted.
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Local marginalization: In this step, we reduce clique sizes by removing variables from cliques with size
greater than mcsim and locally marginalizing clique beliefs as follows. If a variable v is locally marginalized
from two adjacent cliques Ci and Cj with sepset Si,j , the result is two cliques C ′

i = Ci \ v and C ′
j = Cj \ v

with sepset S′
i,j = Si,j \ v and beliefs given by

β(C ′
i) =

∑
Dv

β(Ci), β(C ′
j) =

∑
Dv

β(Cj), µ(S′
i,j) =

∑
Dv

µ(Si,j) (5)

We need to ensure that local marginalization satisfies the following constraints:

(a) Since IVs are present in factors that have not yet been added to a CTF, they must be retained in
at least one clique in CTFk,a.

(b) A connected CT in CTFk should remain connected in CTFk,a. The reason for this will become
apparent in Section 5.

Figure 5 illustrates the methodology for local marginalization using the running example. CTF1,a obtained
after exact marginalization contains a single clique C2, with size greater than mcsim (set to 3). The variables
present in this clique are f, d, h and m. Since f is an interface variable that is present in a single clique, it is
not considered for marginalization. Variable h is also not considered, because removal of h from cliques C2
and C4

′ will disconnect the clique tree, since the sepset between them contains only h. If we remove d from
C2, it must also be removed from either C1 or C3 to satisfy RIP. We retain d in C3 and marginalize it from
beliefs corresponding to C1 and C2. The resulting approximated CTF, CTF1,a, contains cliques with sizes
bounded by mcsim.

4.3.1 Approximation Algorithm

ApproximateCTF (Algorithm 2) shows the formal steps in our algorithm used to approximate the CTF.
The inputs are CTFk, the set of factors Φ that have not been added to any CTF in the set {CTF1, . . . CTFk}
and the clique size bound for the approximate CTF, mcsim. It returns the approximate CTF, CTFk,a. We
first identify the interface variables (IV ) and initialize CTFk,a as the minimal subgraph of CTFk that is
needed to compute the joint beliefs of IV (MSG[IV ], Definition 11) (lines 1-3). This is followed by exact
marginalization of NIVs which are either present in a single clique or wherever the size of the collapsed clique
is less than mcsim (lines 4-10). Next, we perform local marginalization to reduce clique sizes to mcsim, if
possible. We first choose a variable (v) that is present in large sized cliques and retain it in a connected
subtree (STr) that has clique sizes less than or equal to mcsim (lines 12-16). v is locally marginalized from
all other cliques while satisfying the constraints specified for local marginalization (lines 18-24). Any non-
maximal clique obtained after exact or local marginalization is removed and its neighbors are reconnected
to the containing clique (lines 7,19).

4.3.2 Properties of the approximated CTF

If the input CTF, CTFk to the approximation algorithm is valid and calibrated, then resulting approximate
CTF, CTFk,a, satisfies the following properties. The proofs for these properties are included in Appendix A.
Proposition 5. All CTs in the approximate CTF, CTFk,a, are valid CTs.
Proposition 6. All CTs in the approximate CTF, CTFk,a, are calibrated.
Proposition 7. The normalization constant of all CTs in the approximate CTF CTFk,a is the same as in
the input CTF, CTFk.
Proposition 8. If the clique beliefs are uniform, then the beliefs obtained after local marginalization are
exact.

4.3.3 Heuristics for choice of variables for local marginalization

Since our aim is to preserve the joint beliefs of the interface variables as much as possible, we would like
to choose variables that have the least impact on this joint belief for local marginalization. We need a
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Algorithm 2 ApproximateCTF (CTFk, Φ, mcsim)
Input: CT Fk: Input CTF

Φ: Set of remaining factors
mcsim: Maximum clique size limit for the approximated CT F

Output: CT Fk,a: Approximated CT F
1: IV ← {V ariables ∈ CT Fk} ∩ {V ariables ∈ Φ} ▷ Identify interface variables in CT Fk

2: ▷ Initialize CT Fk,a

3: CT Fk,a ← Minimal subgraph of CT Fk corresponding to variables in IV , MSG[IV ] ▷ See Definition 11
4: NIV ← Variables ∈ CT Fk,a \ IV ▷ Identify non-interface variables in CT Fk,a

5: ▷ Step1: Exact marginalization
6: Sum out NIVs present in a single clique in CT Fk,a

7: Remove resultant non-maximal cliques, re-connect neighbors
8: while size of collapsed cliques ≤ mcsim do ▷ Exact marginalization over NIVs present in multiple cliques
9: Exact marginalization over NIVs; reconnect neighbors

10: end while
11: ▷ Step 2: Local marginalization
12: L← List of variables present in cliques with size > mcsim ▷ Identify variables present in large-sized cliques
13: ▷ Loop until max-clique size is ≤ mcsim or further reduction is not possible
14: while (CT Fk,a.max-clique-size > mcsim) && L.isNotEmpty() do
15: v ← Choose a variable in L; prioritize NIVs
16: L.remove(v)
17: STr ← Find a connected subtree containing v s.t. max-clique-size ≤ mcsim ▷ Subtree in which v is retained
18: CT F

′
k,a ← Locally marginalize v from cliques and sepsets in CT Fk,a \STr ▷ Marginalize v from other cliques

19: Remove resultant non-maximal cliques, reconnect neighbors
20: if (Any CT ∈ CT Fk,a gets disconnected in CT F

′
k,a) ∥ ((v ∈ IV )&&(v ̸∈ CT F

′
k,a)) then

21: continue ▷ Ignore if a CT gets disconnected or if an IV is not retained after local marginalization
22: else
23: CT Fk,a = CT F

′
k,a ▷ Modify the approximate CTF

24: end if
25: end while
26: return CT Fk,a

metric that measures this influence and is inexpensive to compute. Towards this end, we propose a heuristic
technique based on pairwise mutual information (MI) between variables. The MI between two variables x
and y is defined as

MI(x; y) =
∑

s∈Dx,w∈Dy

p(s, w) log p(s, w)
p(s)p(w)

Computation of MI for variables belonging to different cliques is expensive. Instead, we propose two metrics
that are easy to compute, namely, Maximum Local Mutual Information (MLMI) and Maximum Mutual
Information (maxMI) which are defined as follows. Let IVC denote the set of interface variables in a clique
C. The MLMI of a variable v in clique C is defined as

MLMIv,C = max
∀x∈IVC\v

MI(v; x) (6)

The maxMI for a variable v is defined as the maximum MLMI over all cliques.

maxMIv = max
∀C∈CT F s.t. v∈C

MLMIv,C (7)

As seen in Equation 6, if v is an interface variable, MLMI is the maximum MI between v and the other
interface variables in the clique. If v is a non-interface variable, it is the maximum MI between v and all the
interface variables in the clique. Since maxMI of v is the maximum MLMI over all cliques (Equation 7), it
is a measure of the maximum influence that a variable v has on interface variables that are present in cliques
that contain v. A low maxMI means that v has a low MI with interface variables in all the cliques in
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which it is present and is therefore assumed to have a lower impact on the joint distribution of the interface
variables.

We prioritize non-interface variables with the least maxMI for local marginalization. If it is not possible to
reduce clique sizes by removing non-interface variables, we locally marginalize over interface variables with
least maxMI (line 15, Algorithm 2). During local marginalization, if we find multiple connected subtrees
(STr) with bounded clique sizes (line 17, Algorithm 2), we retain the variable in the subtree that contains
the clique with the maximum MLMI.

4.3.4 Re-parameterization of approximate CTF

CTFk+1 is constructed by adding new factors to the approximate CTF, CTFk,a. Before adding new factors,
we re-assign factors associated with cliques in CTFk,a such the product of these factors is a valid joint
distribution. This reparameterization is needed to use the message-passing algorithm for calibration of
CTFk+1. Using Proposition 6, we know that clique and sepset beliefs in CTFk,a are calibrated. We re-
assign clique factors as follows. For each CT in the CTFk,a, a root node is chosen at random. The factor
for the root node is the same as the clique belief. All other nodes are assigned factors by iterating through
them in pre-order, i.e., from the root node to the leaf nodes. An un-visited neighbor Cj

′ of a node Ci
′ in

CTFk,a is assigned the conditional belief β(Cj
′|Ci

′) = β(C′
j)

µ(S′
i,j

) as a factor. Using Equation 2, the product of
the re-assigned factors is a valid joint distribution.

5 Approximate inference of the partition function

The partition function can be inferred using Proposition 9 and Theorem 2 stated below. The proofs for both
are included in Appendix A.
Proposition 9. Let the undirected graph associated with the PGM be connected and let {CTF1, CTF1,a,
CTF2, . . . , CTFn−1,a, CTFn} with the corresponding sets of variables {X1, X1,a, X2 . . . Xn−1,a, Xn} denote
the sequence of CTFs generated by Algorithms 1 and 2. Then, the normalization constant of the distribution
encoded by CTFk (Zk) is

Zk =


∑

Domain(X1)

∏
ϕ∈Φ1

ϕ for k = 1

∑
Domain(Xk)

∏
C′∈CT Fk−1,a

β(C′)∏
SP ′∈CT Fk−1,a

µ(SP ′)

∏
ϕ∈Φk

ϕ for k > 1
(8)

where, Φ1, . . . , Φk are the subsets of initial factors added to CTF1, . . . CTFk respectively and∑
Domain(Xk−1,a)

∏
C′∈CT Fk−1,a

β(C ′)∏
SP ′∈CT Fk−1,a

µ(SP ′) =
∑

Domain(Xk−1)

∏
C∈CT Fk−1

β(C)∏
SP ∈CT Fk−1

µ(SP ) (9)

Theorem 2. Let the undirected graph corresponding to the PGM be connected and let the sequence
{CTF1, · · · , CTFn} be the SCTF generated by IBIA. Then, the last CTF, CTFn contains a single CT,
denoted as CTn. IBIA returns the normalization constant of CTn (Zn) as the PR.

The PR returned by IBIA (Zn) is an approximation to the exact value. This is because Algorithm 2 uses
local marginalization, which means,∏

C′∈CT Fk−1,a
β(C ′)∏

SP ′∈CT Fk−1,a
µ(SP ′) ≈

∑
Domain(Xk−1\Xk−1,a)

∏
C∈CT Fk−1

β(C)∏
SP ∈CT Fk−1

µ(SP )

Note that, although the overall joint distribution in CTFk−1,a is approximate, the normalization constant is
preserved as seen from Equation 9.

Evidence-based simplification of the PGM could give a set of disjoint graphs. We construct an SCTF
corresponding to each connected graph. The PR is then estimated as the product of the normalization
constants of the CT in the last CTF of each SCTF.
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6 Complexity analysis and Conditions for exact inference

Complexity: Let NCT F be the number of CTFs in the SCTF and Ns be the maximum number of incre-
mental steps required to build any CTF . We now discuss the worst-case complexity of three steps used to
construct the SCTF.

Incremental Build: In each step, we add a subset of factors that impact overlapping portions of the CTF.
The overall complexity of modification depends on the number of steps and the cost of re-triangulation in
each step. In the worst case, in each step we get a group of factors that impacts all the cliques in the
CTF and there are no retained cliques. The cost of re-triangulation (CostR) using any of the greedy search
methods is polynomial in the number of variables in CTF (Koller & Friedman, 2009, Chap. 9). Hence, the
worst-case complexity is upper bounded by O(NCT F · Ns · CostR). Generally, the number of computations
required is much lower since there are many retained cliques and different subsets of factors impact disjoint
subgraphs of the existing CTs.

Inference and Approximation: Since we use exact inference to calibrate the clique-tree, the complexity of
inference in each CTF is O(2mcsp). Approximation involves summing out variables from a belief table. Once
again, this is O(2mcsp). The overall complexity is therefore O(NCT F · 2mcsp).

Conditions under which IBIA gives exact solution: When the SCTF has a single CTF, the PR
obtained is exact. If the SCTF has multiple CTFs, it is still possible to get the exact PR if the approximate
step uses only exact marginalization. But this is rare and in most cases, local marginalization is required,
and the PR obtained is approximate.

7 Results

All experiments were carried out on a Intel i9-12900 Linux system. IBIA was run using Python v3.10 with
Numpy, Scipy and NetworkX libraries. The memory limit was set to 8GB for all experiments, which is the
same as that used in the UAI 2022 inference competition (UAI, 2022).

We address the following questions in our evaluation.

• How many instances can IBIA solve within different runtime limits?

• Are clique sizes generated by the proposed incremental method comparable to those obtained with
a non-incremental method?

• Is the heuristic used for approximation useful?

• What is the impact of clique size constraints on the performance of IBIA?

• How does the performance of IBIA compare with the state of art techniques?

Performance measure: The error metric used is the absolute error in partition function (PR) measured as
| log10 PRIBIA − log10 PRref |. PRref is either the exact value or available reference values of PR, discussed
in more detail later in the section. Since each tool reports PR using a different number of precision digits,
we round off errors to three decimal places and report an error of zero when it is less than 0.001.

Benchmarks: Table 1 lists the benchmark sets used in this work. These benchmarks have been included
in several UAI approximate inference challenges (UAI, 2010; 2014; 2022) and the Probabilistic Inference
Challenge (PIC, 2011). We have categorized an instance as ‘small’ if the exact solution was either available
in the repository (Ihler, 2006) or could be computed using Ace (Chavira & Darwiche, 2015; 2008), a tool
based on weighted model counting. All other instances are categorized as ‘large’.

Notation: In all tables in this section, we denote the induced width of a specific benchmark as w and the
maximum domain-size as dm. We use the following to denote the average statistics over all instances in
each benchmark set (a) va: average number of variables (b) fa: average number of factors (c) wa: average
induced width and (d) dma: average of the maximum domain size.

15



Published in Transactions on Machine Learning Research (09/2023)

Choice of parameters: Based on the memory limit of 8GB, we chose mcsp of 20 for all experiments unless
stated otherwise. Since mcsim determines the extent of approximation, we would like it to be as high as
possible for better accuracy. But, we also need a sufficient margin to add variables to the next CTF in the
sequence. We have empirically chosen mcsim to be 5 less than mcsp.

7.1 Number of instances solved by IBIA

Table 1: Statistics of benchmark sets used and percentage of total instances solved by IBIA with memory
limit set to 8GB and runtime limit set to 20 seconds, 20 minutes, 60 minutes and 100 minutes.

Size Benchmarks #Inst Average stats + Instances solved (%)
(va, fa, wa, dma) 20 s 20 min 60 min 100 min

Small

Segmentation 50 (229,851,17,2) 100% 100% 100% 100%
Promedas 65 (619,619,21,2) 100% 100% 100% 100%

Protein 77 (60,180,6,76) 100% 100% 100% 100%
BN 97 (637,637,28,10) 100% 100% 100% 100%

Object Detection 79 (60,210,6,16) 100% 100% 100% 100%
Grids 8 (250,728,22,2) 100% 100% 100% 100%
CSP 14 (68,345,13,4) 100% 100% 100% 100%

DBN 66 (780,15453,29,2) 100% 100% 100% 100%
Pedigree 24 (853,853,24,5) 100% 100% 100% 100%

mastermind 128 (2159,2159,26,2) 98% 100% 100% 100%
blockmap 240 (24589,24589,5057,2) 78% 100% 100% 100%

Large

Segmentation 50 (229,851,19,21) 100% 100% 100% 100%
Promedas 173 (1209,1209,72,2) 80% 100% 100% 100%

Protein 386 (311,1215,21,81) 75% 100% 100% 100%
BN 22 (1272,1272,51,17) 73% 100% 100% 100%

Object Detection 37 (60,1830,59,17) 0% 100% 100% 100%
Grids 19 (3432,10244,117,2) 16% 79% 100% 100%
CSP 52 (304,12168,181,43) 23% 77% 77% 77%

DBN 48 (1000,66116,78,2) 0% 63% 63% 100%
Type4b 82 (10822,10822,24,5) 0% 99% 100% 100%

+ Average statistics for instances in each benchmark set, va: average number of variables, fa: average number of factors, wa: average
induced width and dma: average of the maximum domain-size.

Table 1 shows the percentage of large and small instances in each set that are solved by IBIA within 20
seconds, 20 minutes, 60 minutes and 100 minutes, similar to limits used in the UAI 2022 competition.

Except for a few blockmap and some mastermind instances, IBIA was able to solve all the small benchmarks
within 20 seconds. Solutions to the remaining instances were obtained within 20 minutes. For the large
instances, we allow for an increase in mcsp if needed so that at least one new factor can be added while
maintaining the overall memory limit. Except for Grids, CSP, DBN and Type4b, in which some instances
take longer, all other large instances could be solved within 20 minutes. All Grids and Type4b instances
can be solved within 60 minutes and DBN within 100 minutes. For a few DBN instances, the number of
factors is very large (greater than 100,000) and the runtime is dominated by the incremental build step
where repeated re-triangulations are performed to add factors. In large CSP benchmarks, inference using
IBIA runs out of memory in 12 out of 52 instances. For these instances, the maximum domain-size is large
(varies from 44 to 200). As a result, the number of variables contained in cliques and sepsets in the CTF
is very small. Therefore, the approximation step has a limited choice of variables and it becomes infeasible
in these cases. This in turn leads to large-sized cliques in the next CTF, thereby exceeding the set memory
limit.

7.2 Evaluation of Algorithms in IBIA

In this section, we evaluate the performance of the proposed method for incremental CT construction and
the performance of the metric used for guiding the approximate step in IBIA. We also study the trade-off
between runtime and accuracy.

Evaluation of Incremental CT construction: We first evaluated our algorithm for incremental con-
struction of the CT in terms of the maximum clique size. We used the following method for evaluation.
For a given mcsp, we used Algorithm 1 to incrementally construct the first CTF in the sequence (CTF1).
For comparison, we used a CTF obtained using full compilation of all the factors added to CTF1. This is
done as follows. We first find the undirected graph induced by the factors that were added to CTF1. This
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graph is then compiled using variable elimination (Zhang & Poole, 1996; Koller & Friedman, 2009). The
elimination order is found using the ‘min-fill’ metric, and the metric ‘min-neighbors’ is used in the case of a
tie (Koller & Friedman, 2009). We choose the min-fill metric since in most cases it has found to give lower
clique sizes than other heuristics (Gogate & Dechter, 2004; Li & Ueno, 2017). Re-computing the number
of fill-in edges each time a variable is eliminated increases the execution time. Therefore, we adopted the
methodology suggested in Kask et al. (2011) to compute only the change in the number of fill-in edges.

Table 2: The difference in maximum clique sizes obtained after incremental construction (mcsibia) of the
first CTF in the sequence, CTF1, and that obtained after full compilation of undirected graph induced by
the factors added to CTF1 (mcsf ) for mcsp = 20, 25. ∆ = mcsibia − mcsf .

#Inst dm+
a

mcsp = 20 mcsp = 25
Avg ∆ Min ∆ Max ∆ Avg ∆ Min ∆ Max ∆

BN 119 12 -0.03 -8.1 3 0.5 -9.2 5
Promedas 238 2 -0.6 -12 4 -0.1 -14 6
Pedigree 24 5 -2.1 -11.8 3 -1.5 -10.3 3
Grids 27 2 -0.6 -3 2 -0.2 -6 6
CSP 66 35 -1.5 -13.3 4 -2 -14.3 3.6

+ dma: average of the maximum domain-size.

Table 2 compares the maximum clique size obtained using the incremental (mcsibia) and full compilation
(mcsf ) approaches for mcsp of 20 and 25. It shows the average, maximum and minimum difference (∆ =
mcsibia − mcsf ) in clique sizes1 for a few benchmark sets. The results for other benchmarks are similar.
The difference, ∆ = mcsibia − mcsf , is negative when the incremental approach yields a smaller clique size
and positive otherwise. On an average, our incremental approach gives similar results as full compilation
of the corresponding undirected graph. The average is negative, indicating that in many benchmarks, the
incremental approach actually resulted in lower clique sizes than full compilation. Since the maximum value
of ∆ is positive, it indicates that there are instances for which full compilation is better, which is expected.

Evaluation of heuristic used in the approximate step: To get an approximate CTF with lower clique
sizes, we choose variables for local marginalization based on the maxMI metric (refer Equation 7). Table 3
compares the errors obtained using the maxMI metric and errors obtained using a random selection of
variables. The minimum error obtained is marked in bold. We show results for a subset of hard instances
(large width and domain-sizes) in BN, Pedigree, Promedas and DBN benchmarks. In most of the testcases,
we observe that the errors obtained with the maxMI metric are either lower or comparable to that obtained
using a random selection. This shows that the metric performs well.

Table 3: Comparison of error obtained using IBIA when the choice of variables for local marginalization is
made based on the maxMI metric versus a random selection of variables. The minimum error obtained is
marked in bold.

Benchmark (w, dm)+ Error Benchmark (w, dm)+ Error
maxMI Random maxMI Random

BN_69 (48,36) 1.2 1.3 or_chain_155 (31,2) 0.01 0.02
BN_70 (81,36) 2.2 5.1 or_chain_107 (33,2) 0.3 0.3
BN_71 (45,36) 0.8 2.2 or_chain_128 (30,2) 0.2 0.6
BN_72 (58,36) 1.3 2.4 or_chain_102 (31,2) 0.4 0.8
BN_73 (75,36) 1.9 2.3 or_chain_106 (31,2) 0.3 0.7
BN_74 (37,36) 1.7 2.9 or_chain_140 (33,2) 0.1 0.9
BN_75 (59,36) 2.4 2.5 or_chain_242 (31,2) 0.5 0.1
BN_76 (53,36) 1.7 1.7 or_chain_198 (32,2) 1.0 0.01
pedigree13 (32,3) 0.01 0.02 or_chain_61 (34,2) 0.6 0.1
pedigree42 (24,5) 0.05 0.04 rus_20_40_0_3 (30,2) 0.9 2.6
pedigree19 (27,5) 0.04 0.3 rus2_20_40_2_2 (30,2) 0.4 1.1
pedigree34 (32,5) 0.2 0.3 rus2_20_40_8_2 (30,2) 0.7 1.3
pedigree40 (29,7) 0.1 0.3 rus_20_40_4_2 (30,2) 0.4 0.02
pedigree41 (31,5) 0.04 0.5 rus_20_40_8_1 (30,2) 0.8 0.2
pedigree7 (33,4) 0.01 0.2 rus2_20_40_5_3 (30,2) 0.7 0.3

+ w : induced width, dm : maximum domain-size

1As shown in Equation (3), our definition for clique size is the logarithm (base 2) of the product of the domain sizes.
Therefore, it is possible to get decimal values for sizes when cliques contain variables with domain size greater than 2.

17



Published in Transactions on Machine Learning Research (09/2023)

Impact of mcsp on accuracy and runtime: Table 4 shows the error in the estimated PR values for
various values of mcsp. As mentioned earlier, we have empirically chosen mcsim to be 5 less than mcsp. We
observe that in most cases the accuracy improves as the clique size bounds are increased. This is expected
because increasing the bounds potentially increases the number of factors added in each step, which in turn
could reduce the number of CTFs and the number of approximate steps. Also, the metrics used for guiding
the approximate step are computed using beliefs corresponding to the partial set of factors added up to the
current CTF. Therefore, the accuracy of the metrics could improve when a larger set of factors is added,
resulting in better estimates.

Table 4: Comparison of error in partition function estimated with IBIA and required runtime (in seconds)
for various clique size constraints (mcsp, mcsim).

Benchmark (w, dm)+ Error Runtime (s)
(10,5) (15,10) (20,15) (25,20) (10,5) (15,10) (20,15) (25,20)

grid2020f15 (26,2) 9.7 2.9 0.5 4×10−6 3 4 3 28
grid2020f2 (26,2) 0.1 0.1 3×10−5 3×10−6 3 4 3 29
grid2020f5 (26,2) 0.2 0.2 0.003 3×10−6 3 4 3 34
rus2_20_40_3_2 (30,2) 3.4 2.1 0.9 0.1 17 11 13 261
rus2_20_40_2_2 (30,2) 1.8 1.7 0.4 0.9 16 12 13 261
rus2_20_40_2_3 (30,2) 5.6 0.7 1.4 0.01 18 14 14 165
rus2_20_40_6_2 (30,2) 6.1 1.3 1.0 0.2 17 12 13 185
pedigree19 (27,5) 0.6 0.4 0.04 0.01 3 3 4 36
pedigree31 (29,5) 0.2 0.1 0.1 0.01 5 4 5 45
pedigree34 (32,5) 0.4 0.2 0.2 0.08 3 3 4 35
pedigree40 (29,7) 0.8 0.4 0.1 0.05 5 5 5 44
pedigree42 (24,5) 0.1 0.1 0.04 0.004 1 1 1 19
pedigree44 (27,4) 0.3 0.1 0.03 0.001 3 2 3 19

+ w: induced width, dm: maximum domain-size

The runtime of IBIA includes the time required for the construction of the SCTF and inference of the
partition function. We observe that while the required runtime is similar when mcsp is set to 10, 15 and
20, it increases sharply when mcsp is set to 25. This is because the build step dominates the runtime for
smaller values of mcsp and the infer step dominates for larger values. As discussed in Section 6, the time
complexity of the build step is O(NCT F · Ns · CostR). As mcsp increases, while the number of CTFs in the
sequence (NCT F ) is expected to reduce, the cost of re-triangulation (CostR) could be potentially larger as
the number of variables in the CTF is larger. Therefore, we observe that the runtime is similar for mcsp of
10, 15 and 20. The exponential complexity of inference begins to dominate at mcsp = 25.

7.3 Accuracy and runtime comparison with existing inference techniques

7.3.1 Methods used for comparison

As mentioned, we classified the benchmarks as small or large depending on whether exact PR values can
be computed or not. To evaluate the performance of IBIA for the small benchmarks, we used the results
of a recent evaluation of various exact and approximate inference solvers by Agrawal et al. (2021). Based
on these results, we chose the following methods for comparison. For exact inference, we used Ace (Chavira
& Darwiche, 2015), which is based on weighted model counting. To compare with variational methods, we
used LBP (Murphy et al., 1999) and double-loop GBP (HAK) (Heskes et al., 2003). Amongst the sampling
techniques with a variational proposal, we chose Sample search (Gogate & Dechter, 2011). We used the
publicly available codes used in Agrawal et al. (2021) or original implementations by the authors of the
method for the comparison. Accordingly, for LBP and HAK, we used the implementations in libDAI (Mooij,
2010). For SampleSearch, we used a recent implementation (Gogate, 2020) by the authors of the method,
which performs sample search using an IJGP-based proposal and cutset sampling (ISSwc). The runtime
switches used are included in Table 5. For IBIA, we have used two sets of clique size bounds. We refer to
IBIA with mcsp set to 20 as ‘IBIA20’ and IBIA with mcsp of 25 as ‘IBIA25’. We report results for ISSwc
with two parameter settings. The first variant called as ‘ISSwcd’ uses default values of ibound (effective
number of binary variables in a cluster) and w-cutset bound determined by the solver depending on the
benchmark and given runtime constraints. For a fair comparison with IBIA, we set both bounds to 20 in
the second variant (referred to as ‘ISSwc20’). While IBIA is implemented in Python, other tools use C++.
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Table 5: Methods used for comparison. For each method, we indicate the class of techniques it falls under.
The column marked Publication has the citation to the paper containing the estimates of the PR and the
first column has the citation to the original paper of the method. Methods for which we obtained data by
running various tools are shown with the corresponding parameter settings in the last two columns.

Method Type Publication Tool Parameters
IBIA IBIA mcsp = 20, mcsim = 15 (IBIA20)

mcsp = 25, mcsim = 20 (IBIA25)
LBP Variational LibDAI tol = 10-3,#Iter= 104

(Murphy et al., 1999)
HAK Variational LibDAI tol = 10-3,#Iter= 104, clusters=LOOP3

(Heskes et al., 2003)
ISSwc Variational (MB) ✓(Gogate & Dechter, 2011) ISSwc Default (ISSwcd)

(Gogate & Dechter, 2011) +Sampling ibound=20,w-cutset bound=20 (ISSwc20)
EDBP Variational ✓(Gogate & Dechter, 2011)

(Choi & Darwiche, 2006)
WMB Variational (MB) ✓(Agarwal et al., 2022)

(Liu & Ihler, 2011)
NeuroBE Variational (MB) ✓(Agarwal et al., 2022)

(Agarwal et al., 2022) +Neural Networks
DBE Variational (MB) ✓(Razeghi et al., 2021)

(Razeghi et al., 2021) + Neural Networks
DIS Variational (MB) ✓(Kask et al., 2020)

(Lou et al., 2017; 2019) +Search +Sampling
AS Variational (MB) ✓(Kask et al., 2020)

(Broka, 2018) +Search+Sampling

Amongst the small benchmarks, some of the benchmarks are in general considered “hard” in the literature.
These benchmarks have been used extensively for comparison and results for many approximate inference
methods are available in the literature. For these benchmarks, we compared our method with published
results. Table 5 has the methods used for comparison and the reference to the publication from which the
PR estimates were obtained.

For large networks for which the exact PR is not available, we compare our results with published results
in Kask et al. (2020), which uses reference values of PR generated using 100 1-hr runs of abstraction sampling.

7.3.2 Performance of IBIA for the small benchmarks

Table 6 compares the average error obtained using IBIA20 and IBIA25 with LBP, HAK, ISSwcd and ISSwc20
for all small benchmarks. We use two runtime constraints, 20 seconds and 20 minutes. If all instances in
a set could not be solved within the given time and memory limits, we mark the corresponding entry as ‘-’
and show the number of instances solved in brackets. An entry is marked in bold if it gives the lowest error
amongst the methods used for comparison.

Out of 848 instances, IBIA20 solves 792 instances in 20 seconds. In contrast, ISSwc20 that uses the same
clique size bounds solves only 659 instances. ISSwcd uses smaller clique size constraints and is able to solve
838 instances. LBP and HAK solve lesser instances than IBIA20. Note that while other solvers are written
in C++, IBIA is implemented using Python3 and is therefore at a disadvantage in terms of runtime. That
said, the only benchmarks that do not run within 20 seconds with IBIA20 are blockmap and mastermind,
for which the maximum runtime is 408 and 35 seconds respectively. In 20 minutes, IBIA20 is able to solve
all instances. On the other hand, LBP is unable to solve a few DBN instances, ISSwcd is unable to solve
a few BN instances and ISSwc20 is unable to solve some Grid, BN and mastermind testcases. IBIA25 also
fails to give a solution for some relational (blockmap and mastermind) and DBN benchmarks in 20 minutes
with 8GB memory limit.

For both time constraints, IBIA20 is definitely better than the two variational methods LBP and HAK for all
benchmark sets. In 20 seconds, the errors obtained using IBIA20 are comparable to or better than ISSwcd
and ISSwc20 for all benchmarks except CSP. IBIA20 has a significantly lower error for Pedigree and Grids,
but higher error than ISSwcd for CSP. It is the only solver that solves all BN benchmarks in 20 seconds, with
a low error. In 20 minutes, the lowest errors are obtained by either ISSwcd or IBIA25 or both. In fact, the
accuracy of the PR estimates obtained with IBIA20 in 20 seconds is either comparable to or
better than that obtained by ISSwc20 and ISSwcd in 20 minutes for many of the benchmark
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Table 6: Average error in partition function estimated using IBIA20, IBIA25, LBP, HAK, ISSwcd and
ISSwc20 with runtime limit set to 20 seconds and 20 minutes. Entries are marked as ‘-’ where at least one
instance could not be solved within the set time limit and the number of instances solved is shown in brackets
below. The minimum average error obtained for each set is marked in bold.

Average stats Total Average Error (20 seconds) (#Inst.) Average Error (20 minutes) (#Inst.)
(fa, wa, dma)+ #Inst. LBP HAK ISSwcd ISSwc20 IBIA20 IBIA25 LBP HAK ISSwcd ISSwc20 IBIA20 IBIA25

Pedigree (853,24,4) - 1.03 2.48 0.41 0.07 - 2.60 1.03 0.17 0.20 0.07 0.05
24 (22) (12)

Grids (728,22,2) 45.5 113.3 6.1 - 0.2 - 45.5 113.3 0.4 - 0.2 0
8 (4) (4) (4)

Promedas (619,21,2) 0.2 0.2 0.7 - 0.2 - 0.2 0.2 0.1 0.1 0.2 0.1
65 (62) (30)

DBN (15453,29,2) - - 0.82 - 0.57 - - 30.2 0.001 0.02 0.57 -
66 (57) (63) (6) (6) (58) (36)

CSP (345,13,4) 18.2 12.5 0.68 - 2.87 - 18.2 12.5 0.28 0.43 2.87 1.06
14 (11) (11)

BN (637,28,10) - - - - 0.004 - 0.27 - - - 0.004 0.002
97 (84) (54) (91) (77) (84) (78) (93) (91)

ObjDetect (210,6,16) 0.38 - 0.05 - 0.01 0 0.38 6.2 0.01 0.001 0.01 0
79 (35) (22)

Protein (180,6,76) 0.004 - 0.001 0.003 0 0 0.004 0.006 0 0 0 0
77 (34)

Segment (851,17,2) 0.62 0.05 0.07 - 0.001 0 0.62 0.05 0 0.005 0.001 0
50 (46)

Blockmap (24589,5057,2) - - - - - - - - 0 0 0.009 -
240 (186) (75) (236) (236) (187) (177) (238) (152) (198)

Mastermind (2159,26,2) - - 0.13 - - - 2.33 2.37 0.04 - 0.12 -
128 (112) (103) (94) (125) (96) (113) (119)

Total #Instances solved 848 754 525 838 659 792 626 838 741 844 823 848 767
+fa: average number of factors, wa: average induced width and dma: average of the maximum domain-size.

sets. The hardest benchmarks for IBIA are CSP and DBN. In ISSwc, cutset sampling plays a crucial role
in reduction of errors. Without cutset sampling, we found that errors are significantly larger. This is also
seen from the results in Broka (2018).

7.3.3 Comparison with published results

Table 7 compares the error obtained using IBIA (mcsp = 10, 20, 25) with WMB, DBE, NeuroBE, EDBP
and ISSwc for five subsets of benchmarks. The memory limit for IBIA was set to 8GB and time limit to 20
minutes. In the table, we use ISSwc(P) to indicate that the reported results are published results. For fair
comparison, we set mcsp to 10 in IBIA for benchmarks where ibound of 10 was used in published results.
Entries are marked with ‘-’ for instances where published results are not available for a particular benchmark.
The minimum error obtained for each testcase is marked in magenta color in the table.

For small grid instances, the error obtained using IBIA10 is lower than all other methods. For small DBN
instances, the error obtained with IBIA10 is smaller than WMB10, but worse than DBE10. For these
instances, IBIA20 has the best accuracy in all testcases, except rbm20 for which WMB20 is better. In
the Pedigree and BN instances, IBIA20 gives an error comparable to ISSwc(P). The two exceptions are
BN_72 and BN_75 where IBIA20 gives a significantly larger error. For these instances, IBIA25 gives error
comparable to ISSwc(P). Exact solutions are not known for large Grid instances. Therefore, we measure the
absolute difference from the reference values published in Agarwal et al. (2022); Razeghi et al. (2021). The
difference obtained with IBIA20 is much smaller than WMB20 and DBE20, and higher than NeuroBE for
some instances. That said, the reference values are estimates and not the exact solution, thereby making it
difficult to draw any conclusions.

Runtimes for published data cannot be compared due to differences in programming languages and systems
used for evaluation. Therefore, we have only reported runtimes for IBIA. The small instances can be solved
in less than 10 seconds by IBIA20. For the larger BNs and Grids, IBIA requires a couple of 100s to get an
error comparable to ISSwc(P) and NeuroBE20 respectively.
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Table 7: Comparison of error in PR obtained with IBIA with published results for a subset of benchmarks.
The minimum error obtained for each testcase is shown in magenta. Entries are marked with ‘-’ where
published results are not available. w: induced width, dm: maximum domain-size

(a) Grid-small (mcsp = 10, ibound = 10)

(w, dm) log10 P R
Error Runtime (s)

WMB10 DBE10 NeuroBE10 IBIA10 IBIA10
grid1010f10w (21,2) 333.3 32 4 1.8 0.05 0.5
grid1010f10 (12,2) 303.1 1.6 0.7 1.2 0 0.2
grid2020f2 (26,2) 291.7 11 2 0.1 0 3
grid2020f10 (26,2) 1312.0 81 10 2.4 0.002 3
grid2020f5 (26,2) 665.1 39 6 0.8 0.003 3
grid2020f15 (26,2) 1963.0 123 18 2.7 0.5 3

(b) DBN-small (mcsp = 10, ibound = 10 and mcsp = 20, ibound = 20)

(w, dm) log10 P R
Error Runtime (s)

WMB10 DBE10 NeuroBE10 IBIA10 IBIA10
rbm20 (20,2) 58.5 7.8 0.5 1.4 2.1 1
rbm21 (21,2) 63.1 15.7 0.7 0.9 1.0 3
rbm22 (22,2) 66.6 27.5 0.7 0.9 6.0 3

WMB20 DBE20 NeuroBE20 IBIA20 IBIA20
rbm20 (20,2) 58.5 0.0007 0.2 0.4 0.1 2
rbm21 (21,2) 63.1 6.4 0.4 0.6 0.2 3
rbm22 (22,2) 66.6 8.7 0.5 0.8 0.1 5
rbm-ferro20 (20,2) 151.2 0.005 0.4 0.8 0 2
rbm-ferro21 (21,2) 152.6 2.0 1.1 1.8 0 3
rbm-ferro22 (22,2) 166.1 0.5 2.1 4.2 0 5

(c) Pedigree-small (mcsp = 20, ibound = 20)

(w, dm) log10 P R
Error Runtime (s)

EDBP ISSwc(P)1 WMB20 DBE20 NeuroBE20 IBIA20 IBIA20
pedigree19 (27,5) -59.0 0.5 0.14 2.6 3.7 2.6 0.04 4
pedigree42 (24,5) -30.8 0.3 0 - - - 0.05 1
pedigree44 (27,4) -63.5 1.6 0 - - - 0.04 3
pedigree41 (31,5) -76.0 - - 4.1 2.9 0.5 0.04 4
pedigree31 (29,5) -69.7 0.2 0.02 12.4 5.9 - 0.1 5
pedigree13 (32,3) -31.2 1.9 0.11 6.5 3.9 1.1 0.01 6
pedigree34 (32,5) -64.2 0.1 0.2 7.1 5.9 0.7 0.2 4
pedigree7 (33,4) -64.8 0.7 0.05 6.0 6.0 1.8 0.01 4

1 Results for sample search with IJGP-based proposal and cutset sampling as published in Gogate & Dechter (2011)

(d) BN-large (mcsp = 20, 25)

(w, dm) log10 P R0 Error Runtime (s)
EDBP ISSwc(P)1 IBIA20 IBIA25 IBIA20 IBIA25

BN_69 (48,36) -53.3 3.3 1.3 1.2 1.2 6 140
BN_70 (81,36) -70.7 7.5 2.2 2.2 0.1 25 404
BN_71 (45,36) -110.3 3.7 0.6 0.8 0.8 14 197
BN_72 (58,36) -149.4 4.7 0.1 1.3 0.6 28 261
BN_73 (75,36) -112.6 5.0 2.0 1.9 1.3 16 233
BN_74 (37,36) -44.4 2.8 1.3 1.7 1.1 3 68
BN_75 (59,36) -90.2 5.3 0.4 2.4 0.8 23 360
BN_76 (53,36) -109.3 4.1 1.4 1.7 1.0 21 268

0Exact values computed using bucket elimination with external memory as published in Gogate & Dechter (2011)
1 Results for sample search with IJGP-based proposal and cutset sampling as published in Gogate & Dechter (2011)

(e) Grid-large (mcsp = 20)

(w, dm) log10 P R0
Ref

Error Runtime (s)
WMB20 DBE20 NeuroBE20 IBIA20 IBIA20

grid4040f2 (54,2) 1220 25 7 2 0.2 30
grid4040f5 (54,2) 2800 85 40 4 2 28
grid4040f10 (54,2) 5490 215 97 10 21 30
grid4040f15 (54,2) 8200 338 83 18 36 29
grid4040f2w (113,2) 1231 32 15 6 0.6 144
grid4040f5w (113,2) 2819 137 - 10 24 159
grid4040f10w (113,2) 5637 298 - 54 75 140

0 Reference values computed using 100 × 1hr runs of abstraction sampling as published in Agarwal et al. (2022); Razeghi et al. (2021)
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Table 8: Comparison of the average difference in PR from the reference values (log10 PR − log10 PRref )
for large instances in four benchmark sets. PRref are estimates averaged over 100 × 1hr simulations of
abstraction sampling (AS). Table reports results obtained using IBIA (mcsp = 20) and published results for
DIS and a single 1hr run of AS. Entries are marked as ‘-’ where at least one instance could not be solved.
AS(R): AOAS with randomized context-based abstraction function with 256 levels
AS(B): Best configuration

#Inst. Avg. Difference Avg. (Max.) Runtime (s)
IBIA20 AS(R) AS(B) DIS IBIA20

Promedas 173 1.0 -3.5 -2.8 -66.6 13 (60)
Grids 19 73.2 -77.5 -49.5 -113.73 16 (26)
Type4b 67† 8.6 - - - 336 (1226)
DBN 48 -16.2 -2.6 -2.3 -39.5 2000 (5810)

† Reference values available only for 67 large instances out of 82.

Table 8 has the results for large benchmarks for which the exact PR is not known. Here, the comparison was
done with reference values of PR.2 The table reports the average difference over all instances in 4 benchmark
sets. It has the results obtained using IBIA20 as well as published results for dynamic importance sampling
(DIS) and abstraction sampling (AS) (Kask et al., 2020). In the table, the column marked AS(R) shows
results obtained using the AOAS algorithm with randomized context-based abstraction function with 256
levels, and the column marked AS(B) shows best-case results. The table also shows the average and maximum
runtime required for IBIA20.

IBIA20 could solve all instances within 8GB memory. In contrast, both AS and DIS are unable to solve all
Type4b benchmarks within 1hr and 24 GB memory (Kask et al., 2020). On an average, estimates obtained
using IBIA20 are higher than the reference value for all benchmarks except DBN, while those obtained by AS
and DIS are lower. While Promedas, Grids and Type4b benchmarks are easy for IBIA, the DBN benchmarks
are difficult. Both the difference from the reference and required runtimes are larger for these testcases.

8 Related work

Inference methods that use multiple CTFs: As discussed in Section 3.2, two issues need to be addressed
in inference techniques that divide the PGM into multiple sections. The first issue is how to divide the PGM
such that the maximum clique size of the CTF corresponding to each section is bounded. Previous attempts
at dividing the PGM include the exact inference method, multiply sectioned BN (MSBN) (Xiang et al.,
1993; Xiang & Lesser, 2003), and the approximate inference method in Bhanja & Ranganathan (2004). In
MSBNs, the network structure is divided into sections. The CTF for each section is built using co-operative
triangulation and there is no guarantee that the maximum clique size will be within a specified bound.
Bhanja & Ranganathan (2004) use an iterative method for partitioning that requires repeated conversion of
different candidate sections to corresponding CTFs, which is compute-intensive. In contrast, IBIA uses an
incremental strategy for sectioning that requires re-triangulation of only a portion of the CTF in each step,
which reduces the time complexity.

The second issue is how do we exchange beliefs between the CTFs so that the overall partition function
can be inferred. In Bhanja & Ranganathan (2004), the information is transmitted from one CTF to the
next using approximate Chow-Liu trees, containing variables present in both CTFs. However, this method
cannot be used for inference of PR since finding a connected Chow-Liu tree consisting of all interface variables
requires exact marginalization which is computationally infeasible. In contrast, information is passed via an
approximate CTF in IBIA, which is constructed using a combination of exact and local marginalization. A
sequence of CTs is also obtained for the 2T-BN model of dynamic BNs in the method proposed in Murphy
(2002). Beliefs are transferred from one CT to the next using joint beliefs over subsets of variables present
in both CTs (Boyen & Koller, 1998). The approximation method used in this technique could disconnect
CTs and hence, cannot be used for inference of PR. In contrast, the approximation strategy used in IBIA

2Reference values of PR were obtained by Prof. Rina Dechter’s group by averaging estimates obtained from 100 one hour
runs of abstraction sampling.
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preserves the PR at each step (Proposition 7). This allows for inference of the overall PR from the last CTF
in the sequence.

Incremental construction of CTs: Incremental methods for CT modification have been explored in some
previous works (Draper, 1995; Darwiche, 1998; Flores et al., 2002). In Draper (1995), incremental addition
of links is performed by first forming a cluster graph using a set of rules and then converting the cluster
graph into a junction tree. Although several heuristic-based graph transformations are suggested, a difficulty
is to choose a set of heuristics so that clique size constraints are met. Also, there is no specific algorithm to
construct the CT. A preferable method would be to make additions to an existing CT. Dynamic reconfigu-
ration of CTs is explored (Darwiche, 1998), but it is specific to evidence and query based simplification. A
more general approach using the Maximal Prime Subgraph Decomposition (MPD) of the PGM is discussed
in Flores et al. (2002). In this method, the CT is converted into another graphical representation called the
MPD join tree which is based on the moralized graph. When factors are added, the minimal subgraph of
the moralized graph that needs re-triangulation is identified using the MPD tree. The identified subgraph
is re-triangulated, and both the CT and MPD join trees are updated. In contrast, our method,

• Requires a lower effort for re-triangulation. This is because the minimal subgraph that is re-
triangulated is not the modified moralized graph, but a portion of the modified chordal graph
corresponding to the CT (which we have denoted as the elimination graph). Moreover, as opposed
to Flores et al. (2002), the subgraph identified using our method need not always contain all variables
present in the impacted cliques of the CT.

• Eliminates the memory and runtime requirements for maintaining additional representations like
the moralized graph and the MPD join tree. Our method identifies the minimal subgraph to be
re-triangulated directly from the CT, triangulates it and updates the CT. No other representation
of the PGM is needed.

9 Discussion and Conclusions

We propose a technique for approximate inference of partition function that constructs a sequence of CTFs
using a series of incremental build, infer and approximate steps. We prove the correctness of our incremental
build and approximate algorithms.

IBIA gives better accuracies than several variational methods like LBP, region-graph based techniques like
HAK, methods that simplify network like EDBP and WMB which is a mini-bucket based method. For the
same clique size bound, accuracy obtained with IBIA is comparable or better than the neural network based
methods DBE and NeuroBE in many cases, without having the disadvantage of requiring several hours of
training. In most instances, the accuracy obtained with IBIA is comparable or better than recent sampling
based techniques with much smaller runtimes. The runtimes are very competitive even though it is written in
Python. Within a memory limit of 8 GB, IBIA was able to give PR estimates for 1705 of 1717 benchmarks.
For a large percentage of these benchmarks, a solution was obtained within 20 minutes.

The main difficulty with predicting the performance of approximate inference algorithms is that besides being
dependent on the graph structure of the PGM, it is also strongly dependent on the beliefs encoded by the
PGM, which is what the algorithms are trying to estimate. In methods that use “loopy" cluster graphs, we
generally expect better accuracies if the cluster(clique) sizes are larger since it accounts for a larger number
of correlations between variables. However, inference methods that rely solely on the network structure to
form clusters are not always useful. For example, both LBP and HAK are variants of iterative BP. While
LBP uses minimum-sized clusters, HAK allows for the use of larger clusters to account for different cycle
lengths. However, as seen in Table 6, the error obtained with HAK is larger than LBP in some cases. In
contrast, approximations in IBIA are made based on both structure-based and belief-based information,
resulting in lower errors than that obtained using the graph structure alone. However, as shown in Table 3,
while belief-based metrics are useful in most cases, there are some cases where the error obtained using
random selection is lower.
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In IBIA, increasing the clique size bounds gives better accuracies in general. However, this also results in
increased runtimes and memory utilization. IBIA constructs clique trees by incrementally adding factors to
an existing CT. When the number of factors is large, repeated re-triangulations could increase the runtime.
This is particularly seen in a few DBN instances where the number of factors is greater than 100,000 and the
required runtime is around 100 minutes. Also, for benchmarks that have very large variable domain-sizes,
the number of variables in cliques and sepsets in a CTF is small and approximation becomes difficult. This
is seen in CSP benchmarks, where we were unable to solve 12 instances. Therefore, a good strategy is needed
for the incremental build step that optimizes the runtime and results in reduced clique sizes. Approximation
based on the maxMI gives smaller error in most testcases. However, in a few Promedas and DBN testcases
smaller errors were obtained with random selection, thus indicating a possibility for further exploration of
heuristics.

A possible extension would be to combine IBIA and sampling based techniques to get accuracies that improve
with time. The proposed IBIA framework can also be extended to handle other inference queries such as
computation of the marginals, max-marginals and the most probable explanation. It also has implications
in learning, since the tree-width limitations can be relaxed.

Acknowledgements

We thank Prof. Rina Dechter and Bobak Pezeshki for providing reference values of the partition function
for the large benchmarks for which exact solutions are not known.

References
Sakshi Agarwal, Kalev Kask, Alex Ihler, and Rina Dechter. NeuroBE: Escalating neural network approxi-

mations of bucket elimination. In Uncertainty in Artificial Intelligence, pp. 11–21, 2022.

Durgesh Agrawal, Yash Pote, and Kuldeep S. Meel. Partition function estimation: A quantitative study. In
International Joint Conference on Artificial Intelligence, pp. 4276–4285, 8 2021. Survey Track.

Sungsoo Ahn, Michael Chertkov, Adrian Weller, and Jinwoo Shin. Bucket renormalization for approximate
inference. In International Conference on Machine Learning, pp. 109–118, 2018.

Francis Bach and Michael Jordan. Thin junction trees. Advances in neural information processing systems,
14, 2001.

Sanjukta Bhanja and Nagarajan Ranganathan. Cascaded Bayesian inferencing for switching activity esti-
mation with correlated inputs. IEEE transactions on very large scale integration (VLSI) systems, 12:
1360–1370, 2004.

Remco R Bouckaert, Enrique Castillo, and JoséManuel Gutiérrez. A modified simulation scheme for inference
in Bayesian networks. International Journal of Approximate Reasoning, 14(1):55–80, 1996.

Xavier Boyen and Daphne Koller. Tractable inference for complex stochastic processes. In Uncertainty in
Artificial Intelligence, pp. 33–42, 1998.

Filjor Broka. Abstraction sampling in graphical models. In AAAI Conference on Artificial Intelligence, pp.
8010–8011, 2018.

Supratik Chakraborty, Kuldeep S Meel, and Moshe Y Vardi. A scalable approximate model counter. In
Principles and Practice of Constraint Programming, pp. 200–216, 2013.

Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. Algorithmic improvements in approximate
counting for probabilistic inference: From linear to logarithmic sat calls. In International Joint Conference
on Artificial Intelligence, pp. 3569–3576, 2016.

Mark Chavira and Adnan Darwiche. On probabilistic inference by weighted model counting. Artificial
Intelligence, 172(6-7):772–799, 2008.

24



Published in Transactions on Machine Learning Research (09/2023)

Mark Chavira and Adnan Darwiche. Ace version 3.0. http://reasoning.cs.ucla.edu/ace/, 2015. Ac-
cessed: 2021-10-15.

A. Choi and A. Darwiche. Approximating the partition function by deleting and then correcting for model
edges. In Uncertainty in Artificial Intelligence, pp. 79–87, 2007.

A. Choi and A. Darwiche. Many pairs mutual information for adding structure to belief propagation ap-
proximations. In Artificial Intelligence, pp. 1031–1036, 2008.

A. Choi, H. Chan, and A. Darwiche. On Bayesian network approximation by edge deletion. In Uncertainty
in Artificial Intelligence, pp. 128–135, 2005.

Arthur Choi and Adnan Darwiche. An edge deletion semantics for belief propagation and its practical impact
on approximation quality. In National Conference on Artificial Intelligence and Innovative Applications
of Artificial Intelligence Conference, pp. 1107–1114, 2006.

Adnan Darwiche. Dynamic jointrees. In Uncertainty in Artificial Intelligence, pp. 97–104, 1998.

Denise L Draper. Clustering without (thinking about) triangulation. In Uncertainty in Artificial Intelligence,
pp. 125–133, 1995.

Gal Elidan and Stephen Gould. Learning bounded treewidth Bayesian networks. Journal of Machine Learning
Research, 9(12), 2008.

M Julia Flores, José A Gámez, and Kristian G Olesen. Incremental compilation of Bayesian networks. In
Uncertainty in Artificial Intelligence, pp. 233–240, 2002.

Sholeh Forouzan and Alexander Ihler. Incremental region selection for mini-bucket elimination bounds. In
Uncertainty in Artificial Intelligence, pp. 1–10, 2015.

Alan E Gelfand. Gibbs sampling. Journal of the American statistical Association, 95(452):1300–1304, 2000.

Vibhav Gogate. IJGP-sampling and samplesearch (PR and MAR tasks). https://github.com/dechterlab/
ijgp-samplesearch, 2020. Accessed: 2023-01-15.

Vibhav Gogate and Rina Dechter. A complete anytime algorithm for treewidth. In Uncertainty in Artificial
Intelligence, pp. 201–208, 2004.

Vibhav Gogate and Rina Dechter. Samplesearch: A scheme that searches for consistent samples. In Artificial
Intelligence and Statistics, pp. 147–154, 2007.

Vibhav Gogate and Rina Dechter. Samplesearch: Importance sampling in presence of determinism. Artificial
Intelligence, 175(2):694–729, 2011.

Luis D Hernandez, Serafin Moral, and Antonio Salmeron. A Monte Carlo algorithm for probabilistic propa-
gation in belief networks based on importance sampling and stratified simulation techniques. International
Journal of Approximate Reasoning, 18(1-2):53–91, 1998.

Tom Heskes. Convexity arguments for efficient minimization of the Bethe and Kikuchi free energies. Journal
of Artificial Intelligence Research, 26:153–190, 2006.

Tom Heskes, Kees Albers, and Bert Kappen. Approximate inference and constrained optimization. In
Uncertainty in Artificial Intelligence, pp. 313–320, 2003.

Alexander Ihler. UAI model files and solutions. http://sli.ics.uci.edu/~ihler/uai-data/, 2006. Ac-
cessed: 2021-10-15.

Kalev Kask, Andrew Gelfand, Lars Otten, and Rina Dechter. Pushing the power of stochastic greedy ordering
schemes for inference in graphical models. In AAAI Conference on Artificial Intelligence, 2011.

Kalev Kask, Bobak Pezeshki, Filjor Broka, Alexander Ihler, and Rina Dechter. Scaling up and/or abstraction
sampling. In International Joint Conference on Artificial Intelligence, pp. 4266–4274, 2020.

25

http://reasoning.cs.ucla.edu/ace/
https://github.com/dechterlab/ijgp-samplesearch
https://github.com/dechterlab/ijgp-samplesearch
http://sli.ics.uci.edu/~ihler/uai-data/


Published in Transactions on Machine Learning Research (09/2023)

Daphne Koller and Nir Friedman. Probabilistic graphical models: Principles and techniques. MIT press,
2009.

Steffen L Lauritzen and David J Spiegelhalter. Local computations with probabilities on graphical structures
and their application to expert systems. Journal of the Royal Statistical Society: Series B (Methodological),
50(2):157–194, 1988.

Junkyu Lee, Radu Marinescu, Alexander Ihler, and Rina Dechter. A weighted mini-bucket bound for solving
influence diagram. In Uncertainty in Artificial Intelligence, volume 115, pp. 1159–1168, 2020.

Chao Li and Maomi Ueno. An extended depth-first search algorithm for optimal triangulation of Bayesian
networks. International Journal of Approximate Reasoning, 80:294–312, 2017.

Peng Lin, Martin Neil, and Norman Fenton. Improved high dimensional discrete Bayesian network inference
using triplet region construction. Journal of Artificial Intelligence Research, 69:231–295, 2020.

Qiang Liu and Alexander Ihler. Bounding the partition function using holder’s inequality. In International
Conference on Machine Learning, pp. 849–856, 2011.

Qiang Liu, John W Fisher III, and Alexander T Ihler. Probabilistic variational bounds for graphical models.
Advances in Neural Information Processing Systems, 28, 2015.

Qi Lou, Rina Dechter, and Alexander T Ihler. Dynamic importance sampling for anytime bounds of the
partition function. Advances in Neural Information Processing Systems, 30, 2017.

Qi Lou, Rina Dechter, and Alexander Ihler. Interleave variational optimization with Monte Carlo sampling:
A tale of two approximate inference paradigms. In AAAI Conference on Artificial Intelligence, volume 33,
pp. 7900–7907, 2019.

Robert Mateescu, Kalev Kask, Vibhav Gogate, and Rina Dechter. Join-graph propagation algorithms.
Journal of Artificial Intelligence Research, 37:279–328, 2010.

Thomas P. Minka. Expectation propagation for approximate Bayesian inference. In Uncertainty in Artificial
Intelligence, pp. 362–369, 2001. ISBN 1558608001.

Tom Minka. Power ep. Technical Report MSR-TR-2004-149, Microsoft Research Ltd., January 2004. URL
https://www.microsoft.com/en-us/research/publication/power-ep/.

Joris M. Mooij. libDAI: A free and open source C++ library for discrete approximate inference in graphical
models. Journal of Machine Learning Research, 11:2169–2173, August 2010.

Joris M. Mooij and Hilbert J. Kappen. Loop corrections for approximate inference on factor graphs. Journal
of Machine Learning Research, 8(40):1113–1143, 2007.

Serafín Moral and Antonio Salmerón. Dynamic importance sampling in Bayesian networks based on proba-
bility trees. International Journal of Approximate Reasoning, 38(3):245–261, 2005.

Kevin P. Murphy, Yair Weiss, and Michael I. Jordan. Loopy belief propagation for approximate inference:
An empirical study. In Uncertainty in Artificial Intelligence, pp. 467–475, 1999.

Kevin Patrick Murphy. Dynamic Bayesian networks: Representation, inference and learning, dissertation.
PhD thesis, UC Berkley, Dept. Comp. Sci, 1, 2002.

PIC. The probabilistic inference challenge (pic2011). https://www.cs.huji.ac.il/project/PASCAL/,
2011.

Yasaman Razeghi, Kalev Kask, Yadong Lu, Pierre Baldi, Sakshi Agarwal, and Rina Dechter. Deep bucket
elimination. In International Joint Conference on Artificial Intelligence, pp. 4235–4242, 2021.

Dan Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82(1-2):273–302, 1996.

26

https://www.microsoft.com/en-us/research/publication/power-ep/
https://www.cs.huji.ac.il/project/PASCAL/


Published in Transactions on Machine Learning Research (09/2023)

Mauro Scanagatta, Giorgio Corani, Cassio Polpo De Campos, and Marco Zaffalon. Approximate structure
learning for large Bayesian networks. Machine Learning, 107(8):1209–1227, 2018.

Shubham Sharma, Subhajit Roy, Mate Soos, and Kuldeep S Meel. GANAK: A scalable probabilistic exact
model counter. In International Joint Conference on Artificial Intelligence, volume 19, pp. 1169–1176,
2019.

David Sontag, Talya Meltzer, Amir Globerson, Tommi Jaakkola, and Yair Weiss. Tightening LP relaxations
for MAP using message passing. In Uncertainty in Artificial Intelligence, pp. 503–510, 2008.

Mate Soos and Kuldeep S Meel. BIRD: Engineering an efficient cnf-xor sat solver and its applications to
approximate model counting. In AAAI Conference on Artificial Intelligence, pp. 1592–1599, 2019.

UAI. The 2010 UAI Approximate inference challenge. https://www.cs.huji.ac.il/project/UAI10/,
2010.

UAI. UAI 2014 - Probabilistic inference competition. https://www.auai.org/uai2014/competition.
shtml, 2014.

UAI. UAI 2022 - Competition. https://www.auai.org/uai2022/uai2022_competition, 2022.

Aki Vehtari, Andrew Gelman, Tuomas Sivula, Pasi Jylänki, Dustin Tran, Swupnil Sahai, Paul Blomstedt,
John P Cunningham, David Schiminovich, and Christian P Robert. Expectation propagation as a way of
life: A framework for Bayesian inference on partitioned data. Journal of Machine Learning Research, 21
(1):577–629, 2020.

Martin J Wainwright, Tommi Jaakkola, and Alan Willsky. Tree-based reparameterization for approximate
inference on loopy graphs. In T. Dietterich, S. Becker, and Z. Ghahramani (eds.), Advances in Neural
Information Processing Systems, volume 14, pp. 1001–1008, 2002.

Wim Wiegerinck and Tom Heskes. Fractional belief propagation. In Advances in Neural Information Pro-
cessing Systems, volume 15, 2003.

John Winn, Christopher M Bishop, and Tommi Jaakkola. Variational message passing. Journal of Machine
Learning Research, 6(4), 2005.

Yang Xiang and Victor Lesser. On the role of multiply sectioned Bayesian networks to cooperative multiagent
systems. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 33(4):489–
501, 2003.

Yang Xiang, David Poole, and Michael P Beddoes. Multiply sectioned Bayesian networks and junction
forests for large knowledge-based systems. Computational Intelligence, 9(2):171–220, 1993.

Jonathan S Yedidia, William T Freeman, Yair Weiss, et al. Generalized belief propagation. In Advances in
Neural Information Processing Systems, volume 13, pp. 689–695, 2000.

Nevin Lianwen Zhang and David Poole. Exploiting causal independence in Bayesian network inference.
Journal of Artificial Intelligence Research, 5:301–328, 1996.

A Proofs

Propositions based on Algorithm 1: Propositions 1 to 4 are based on our algorithm for the incremental
addition of a group of factors (Φg) to an existing valid CTF using lines 3-15 of Algorithm 1. The modified
CTF obtained after addition of factors is denoted as CTFm. SGmin, SE , GE and retained cliques are
defined in Definitions 13−16. All line numbers in these propositions refer to Algorithm 1.

Proposition 1 CTFm contains only trees (possibly disjoint) i.e., no loops are introduced by the
algorithm.
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Proof. Algorithm 1 first identifies SGmin for a set of factors that have overlapping minimal subgraphs in
the input CTF (lines 4-6). SGmin is either a single tree or a set of disjoint trees, each of which contains
variables present in Φg. The algorithm then constructs the elimination graph GE (refer Definition 16).
When SGmin has a single tree, GE is a connected graph because SE contains all the sepset variables in
SGmin and GE contains a fully connected component between C ∩ SE for each clique C in SGmin. When
SGmin has disjoint trees, GE gets connected when we add fully connected components corresponding to all
factors in Φg. Therefore, a single CT, ST ′, is obtained on triangulating GE (line 21). Each retained clique
either replaces or is re-connected to a single clique in ST ′ (lines 25-29). Hence, the resulting structure ST ′

continues to be a tree. Next, SGmin is removed from the CTF (line 39). This results in disjoint trees, each
containing a single clique in the adjacency list of SGmin. Each adjacent clique is re-connected to a single
clique in the modified subtree ST ′ (lines 40-42). Therefore, no loops are introduced and the modified CTF,
CTFm, continues to have one or more disjoint trees.

Proposition 2 CTFm contains only maximal cliques.

Proof. ST ′ obtained after triangulating the elimination graph, GE , has only maximal cliques by construction
(line 21). The final ST ′ is obtained after connecting retained cliques (lines 25-29), where there is an additional
check for maximality. CTFm is obtained after replacing SGmin with ST ′. Cliques in the input CTF that
are not in SGmin contain at least one variable that is not present in ST ′, thus remain maximal.

Proposition 3 All CTs in CTFm satisfy the running intersection property (RIP).

Proof. In Algorithm 1, Vsg is the set of variables in SGmin and Vr is the set Vsg \ SE (line 23). Consider
the chordal graph corresponding to SGmin. This chordal graph has a perfect elimination order such that no
fill-in edges are introduced on elimination. Even after the addition of edges between variables in the new
factors, variables in Vr can be eliminated in this order without adding any fill-in edges. Therefore, cliques
containing these variables are retained as is in the modified CTF, CTFm. Elimination of variables in SE could
potentially introduce fill-in edges as they are a part of chordless loops introduced by the addition of the new
cliques. Therefore, only the subgraph of the modified chordal graph corresponding to the set of variables in
SE needs re-triangulation. Construction of elimination graph GE using Definition 16 is equivalent to finding
this subgraph. ST ′ obtained after re-triangulation of GE is valid by construction and thus satisfies RIP.
The modified subtree ST ′ obtained after adding the retained cliques (lines 25-29) satisfies RIP because each
retained clique C is connected such that the sepsets contain all variables in the intersection C ∩ SE . This
addition is always possible because ST ′ is obtained from GE which contains a fully connected component
between C ∩ SE for all cliques C in SGmin (see Definition 16).

CTFm is obtained by removing SGmin and reconnecting cliques adjacent to SGmin in the input CTF
(Adj(SGmin)) to the cliques in ST ′ (lines 36-44). Consider a clique Ca in Adj(SGmin) that was connected
via the set of sepset variables Sa. Since the input CTF satisfies RIP, Ca ∩ Vsg = Sa. In addition to Vsg, the
only variables in ST ′ are variables in the new factors Φg which are not present in the input CTF. Therefore,
Ca ∩ ST ′ = Ca ∩ Vsg = Sa. Thus, RIP is satisfied since each adjacent clique Ca is re-connected to a clique
C ′ in ST ′ that contains the corresponding sepset Sa (line 41). This connection is always possible because of
the following reasons. If Ca was connected to a retained clique, it can simply be re-connected via the same
sepsets. Otherwise, if Ca was connected to a clique C in SGmin that is not a retained clique, by construction
every variable in C must be present in SE i.e. C ∩ SE = C. Since GE contains a fully connected component
corresponding to C ∩ SE for all cliques in SGmin (see Definition 16), C is contained in at least one clique
C ′ in ST ′ obtained after re-triangulation. Therefore, C ′ also contains the sepset Sa and can be connected
to Ca.

Proposition 4 If the joint distribution captured by the input CTF with corresponding set of variables Xin

is P (Xin), then the joint distribution captured by CTFm is P (Xin)
∏

ϕ∈Φg
ϕ.

Proof. CTFm is obtained after replacing a subgraph of the existing CTF (SGmin) with a modified subtree
ST ′. We reassign the factors corresponding to each clique in SGmin to cliques in ST ′ containing their scope
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(line 31). This is always possible because a) retained cliques in SGmin are also present in ST ′ and (b)
cliques in SGmin that are not retained cliques are contained in cliques in ST ′ (as shown in the proof of
Proposition 3). No change is made to factors assigned to the remaining cliques. The new factors in Φg

are assigned to cliques in the modified CTF, CTFm, containing the scope of these factors (line 32). This
is possible because the elimination graph GE contains a fully connected components corresponding to all
new factors (see Definition 16) and hence, these are contained in cliques obtained after re-triangulation.
Therefore, if the product of factors in the input CTF is P (Xin), then the product of factors in CTFm is
P (Xin)

∏
ϕ∈Φ ϕ.

Propositions based on Algorithm 2: Propositions 5 to 8 are based on the proposed approximation algo-
rithm (Algorithm 2) and Equations 4 and 5. We use CTFk to represent the input CTF to the algorithm and
CTFk,a to represent the output of the algorithm. CTFk is a valid and calibrated CTF. IV denotes the set of
interface variables (refer Definition 12) in CTFk. All line numbers in these propositions refer to Algorithm 2.

Proposition 5 All CTs in the approximate CTF, CTFk,a, are valid CTs.

Proof. CTFk,a is initialized as MSG[IV ]. MSG[IV ] is the minimal subgraph corresponding to the IVs (see
Definition 11). Since all CTs in CTFk are valid, any connected subtree in CTFk is also valid. We now argue
that all CTs in CTFk,a obtained after marginalization steps satisfy all properties of a valid CT.

• It contains only maximal cliques.
Any non-maximal clique generated in the exact and local marginalization step is removed (lines 7
and 19).

• It contains disjoint trees.
In the exact marginalization step, no loops are introduced since the neighbors of the collapsed and
the non-maximal cliques are reconnected to CTFk,a so that connectivity of the CTs is preserved (lines
7 and 9). The local marginalization step only involves marginalization of variables from individual
cliques and sepsets (line 18) and therefore does not alter the tree structure of the CTs in the CTF.

• It satisfies RIP.
In the exact marginalization step, neighbors of all cliques that are collapsed are connected to the
collapsed clique via corresponding sepsets and thus, RIP is satisfied. In the local marginalization
step, variables are retained in a single connected subtree of CTFk (line 17-18). Also, in both steps,
neighbors of non-maximal cliques which are removed are connected to the containing cliques with
the same sepsets. Therefore, RIP is satisfied.

Proposition 6 All CTs in the approximate CTF, CTFk,a, are calibrated.

Proof. In a calibrated CT, all adjacent cliques agree on the marginals over the sepset variables (see Equa-
tion 1). CTFk,a is obtained from CTFk, which is calibrated. After exact marginalization, all the clique and
sepset beliefs are preserved. Therefore, the resultant CTF is also calibrated. For the local marginalization
step, let v be the variable that is locally marginalized from adjacent cliques Ci and Cj with sepset Si,j in
CTFk. After local marginalization of variable v, we get the corresponding cliques C ′

i and C ′
j with sepset S′

i,j

in CTFk,a, with the following beliefs (see Equation 5).

β(C ′
i) =

∑
Dv

β(Ci), β(C ′
j) =

∑
Dv

β(Cj), µ(S′
i,j) =

∑
Dv

µ(Si,j)

Here, Dv is the domain of variable v. Since the result is invariant with respect to the order in which variables
are summed out, we have∑

Domain(Ci
′\S′

i,j
)

β(C ′
i) =

∑
Domain(Ci

′\S′
i,j

)

∑
Dv

β(Ci) =
∑
Dv

∑
Domain(Ci

′\S′
i,j

)

β(Ci) =
∑
Dv

µ(Si,j) = µ(S′
i,j)
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Similarly,
∑

Domain(Cj
′\S′

i,j
) β(C ′

j) = µ(S′
i,j). Therefore, beliefs of the modified cliques Ci

′ and Cj
′ agree on

the marginals of the sepset variables S′
i,j . Since this is true for every pair of adjacent cliques, all CTs in

CTFk,a are calibrated.

Proposition 7 The normalization constant of all CTs in the approximate CTF CTFk,a is the same as in
the input CTF, CTFk.

Proof. The approximation algorithm (Algorithm 2) has two steps, namely, exact marginalization and local
marginalization. Exact marginalization involves collapsing cliques to find a joint belief (Equation 4) and
then marginalizing a variable by summing over its states. Neither of these steps changes the normalization
constant. Local marginalization involves marginalizing a variable from individual cliques and sepsets by
summing over its states. Once again, it does not alter the normalization constant.

Proposition 8 If the clique beliefs are uniform, then the beliefs obtained after local marginalization are
exact.

Proof. Let C1 and C2 be two adjacent cliques in CTFk with sepset S1,2. After local marginalization of
a variable v, we get the corresponding cliques C ′

1 and C ′
2 in CTFk,a, with sepset S′

1,2. Let b1, b2 and b3
represent the uniform beliefs in C1, C2 and S1,2. If the domain of variable v (Dv) has k states, the beliefs
of states in C ′

1, C ′
2 and S′

1,2 are kb1, kb2 and kb3.

The exact joint belief of C1 and C2 is

β(C1 ∪ C2) = β(C1)β(C2)
µ(S1,2)

Each state of β(C1 ∪ C2) has a constant belief b1b2
b3

. If exact marginalization is carried out, the states of∑
Dv

β(C1 ∪ C2) have a constant belief k b1b2
b3

. With local marginalization, the joint beliefs are

β(C ′
1 ∪ C ′

2) = β(C ′
1)β(C ′

2)
µ(S′

1,2)

The corresponding constant beliefs are (kb1)(kb2)
kb3

= k b1b2
b3

.

Propositions based on inference of PR: Proposition 9 and Theorem 2 relate to inference of partition
function (PR).

Proposition 9 Let the undirected graph associated with the PGM be connected and let {CTF1, CTF1,a,
CTF2, . . . , CTFn−1,a, CTFn} with the corresponding sets of variables {X1, X1,a, X2 . . . Xn−1,a, Xn} denote
the sequence of CTFs generated by Algorithms 1 and 2. Then, the normalization constant of the distribution
encoded by CTFk (Zk) is

Zk =


∑

Domain(X1)

∏
ϕ∈Φ1

ϕ for k = 1

∑
Domain(Xk)

∏
C′∈CT Fk−1,a

β(C′)∏
SP ′∈CT Fk−1,a

µ(SP ′)

∏
ϕ∈Φk

ϕ for k > 1

where, Φ1, . . . , Φk are the subsets of initial factors added to CTF1, . . . CTFk respectively and

∑
Domain(Xk−1,a)

∏
C′∈CT Fk−1,a

β(C ′)∏
SP ′∈CT Fk−1,a

µ(SP ′) =
∑

Domain(Xk−1)

∏
C∈CT Fk−1

β(C)∏
SP ∈CT Fk−1

µ(SP )
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Proof. Since the infer step uses the standard belief propagation algorithm for exact inference to calibrate the
CTs, the distribution encoded by CTF1 is exactly

∏
ϕ∈Φ1

ϕ. Therefore, the normalization constant of CTF1

(Z1) is the following.

Z1 =
∑

Domain(X1)

∏
ϕ∈Φ1

ϕ

The approximation algorithm (Algorithm 2) enforces the following two constraints (a) no CT in CTFk−1
is disconnected (b) all interface variables are retained. These two constraints ensure that the number of
CTs in CTFk−1,a is the same as that in CTFk−1. This is because the first constraint ensures that the
number of CTs in CTFk−1,a cannot be higher than that in CTFk−1. The second constraint along with the
assumption that input PGM is a connected graph, ensures that each CT in CTFk−1 has at least one interface
variable. If it is not so, it means that the PGM has a disconnected set of variables, which is a contradiction.
Since all interface variables are retained, CTFk−1,a has a CT corresponding to each CT in CTFk−1. Using
Propositions 6 and 7, each CT in CTFk−1,a is calibrated and has the same normalization constant (NC) as
the corresponding CT in CTFk−1. The overall NC of the distribution encoded by CTFk−1,a is the product
of NCs of all disjoint CTs. Therefore, the NC of CTFk−1,a is the same as that of CTFk−1 i.e.

∑
Domain(Xk−1,a)

∏
C′∈CT Fk−1,a

β(C ′)∏
SP ′∈CT Fk−1,a

µ(SP ′) =
∑

Domain(Xk−1)

∏
C∈CT Fk−1

β(C)∏
SP ∈CT Fk−1

µ(SP )

CTFk is built from CTFk−1,a by adding factors in Φk and then calibrated using belief propagation. Therefore,
the NC of CTFk (Zk) can be written as follows.

Zk =
∑

Domain(Xk)

∏
C′∈CT Fk−1,a

β(C ′)∏
SP ′∈CT Fk−1,a

µ(SP ′)
∏

ϕ∈Φk

ϕ

Theorem 2 Let the undirected graph corresponding to the PGM be connected and let the sequence
{CTF1, · · · , CTFn} be the SCTF generated by IBIA. Then, the last CTF, CTFn contains a single CT,
denoted as CTn. IBIA returns the normalization constant of CTn (Zn) as the PR.

Proof. First, we show that Algorithm 1 (BuildCTF) with mcsp set to ∞ gives a single CT if the graph
corresponding to the PGM is connected. Without loss of generality, assume an initial CTF, CTF0 and a
fixed order in which factors are added. CTF0 contains disjoint CTs that have single cliques. Each factor
that is added either modifies a CT or connects multiple CTs depending on the scope of the factor. Therefore,
the number of CTs either decreases or remains the same as new factors are added. If there are disjoint CTs
after all factors are added, it means that there is no factor in the PGM whose scope contains variables from
each of the disjoint CTs. This means that the set of variables in these CTs are present in disjoint graphs
of the PGM, which is not possible since the undirected graph corresponding to the PGM is connected by
assumption. This is true for any initial set of cliques and any order in which factors are added.

If mcsp is set to a finite value, Algorithm 1 stops when this bound is reached. The CTs are then simplified
and approximated by Algorithm 2. As argued in the proof of Proposition 9, CTFk,a and CTFk have the
same number of CTs. Therefore, each CT in CTFk,a corresponds to a single CT in CTFk that has the same
set of interface variables. Thus, when subsequent factors are added to the CTF in the same fixed order,
the same CTs will get modified or connected. Since this is true of every approximate step, the final CTF
will contain a single CT, denoted as CTn. By Proposition 9, CTn is calibrated and has the normalization
constant given by Zn, which is returned by IBIA as the PR of the PGM.
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