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ABSTRACT

Many real-world classification problems, such as plant identification, have ex-
tremely long-tailed class distributions. In order for prediction sets to be useful
in such settings, they should (i) provide good class-conditional coverage, ensur-
ing that rare classes are not systematically omitted from the prediction sets, and
(ii) be a reasonable size, allowing users to easily verify candidate labels. Unfor-
tunately, existing conformal prediction methods, when applied to the long-tailed
setting, force practitioners to make a binary choice between small sets with poor
class-conditional coverage or sets with very good class-conditional coverage but
that are extremely large. We propose methods with guaranteed marginal cover-
age that smoothly trade off between set size and class-conditional coverage. First,
we introduce a new conformal score function, coined prevalence-adjusted soft-
max, that targets macro-coverage, a relaxed notion of class-conditional coverage.
Second, we propose a label-weighted conformal prediction method that allows
us to interpolate between marginal and class-conditional conformal prediction.
We demonstrate our methods on Pl@ntNet-300K and iNaturalist-2018, two long-
tailed image datasets with 1,081 and 8,142 classes, respectively.

1 INTRODUCTION

Prediction sets are useful because they replace a single fallible point prediction with a set that is
likely to contain the true label. In classification, prediction sets are most useful in settings with
many classes, as they provide few candidate labels that human decision makers can verify. Consider
an amateur plant enthusiast who wants to identify a plant. The enthusiast struggles to identify
plants on their own, but when presented with a short list of possible matches, it is easy for them
to go through the list and select the correct species (e.g., by comparing their plant with images of
potential matches).

Another key characteristic of plant identification is its extremely long-tailed class distribution. As
shown in Figure 1, there are thousands of images of common plants but only a handful for rare
plants. Such skewed distributions also appear in animal identification and disease diagnosis. An
added challenge is that we often care even more about identifying instances of the rare classes than
about the popular ones. In botany, scientists may want to prioritize the acquisition of examples
of endangered plant species, which fall in the tail (Figure 1). In medicine, catching the few cases
of an aggressive cancer early matters more than perfectly classifying common benign lesions. In
collaborative human-AI systems where the human generates labels based on AI recommendations
and these labels are used to improve the predictive model in future training rounds, neglecting niche
classes can accelerate “model collapse” (Shumailov et al., 2024), shrinking the model’s effective
label space over time and degrading accuracy. This motivates pursuing prediction sets where all
classes have a high probability of being correctly included in the prediction set. Beyond training
good predictive models in this setting, an additional challenge for post-hoc uncertainty quantification
is that most available examples of rare classes are used for model training, leaving these classes with
few or zero holdout examples to use for calibrating uncertainty quantification methods.

Formally, let X ∈ X be features with unknown label Y ∈ Y = {1, 2, . . . , |Y|}. Our goal is to
construct a set-generating procedure C : X → 2Y , where 2Y denotes the set of all subsets of Y ,
with good class-conditional coverage. For y ∈ Y , the class-conditional coverage of C for class y
is CondCov(C, y) = P(Y ∈ C(X) | Y = y). This can be contrasted with marginal coverage,
which is simply MarginalCov(C) = P(Y ∈ C(X)). To ensure that our prediction sets are useful for
identifying instances of all classes, including rare ones, we aim for high class-conditional coverage
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Figure 1: The number of train examples of each species in Pl@ntNet-300K (Garcin et al., 2021).
We highlight threatened species, as defined by the International Union for Conservation of Nature
(https://iucn.org), which are particularly important to identify for biodiversity monitoring
purposes. Note that they are mostly in the tail of the distribution.

across all classes. In addition to coverage, set size is also crucial, as large sets are often impractical.
For instance, in plant identification, enthusiasts lack the time to review prediction sets containing
hundreds of species. Ideally, we would generate prediction sets with both high class-conditional
coverage and small size. Unfortunately, there is an inherent trade-off between small set sizes and
class-conditional coverage in the long-tailed setting.

Conformal prediction (CP) provides methods guaranteed to achieve marginal or class-conditional
coverage under no distributional assumptions. STANDARD CP, the most basic conformal prediction
method, yields small sets but only guarantees marginal coverage and often has poor class-conditional
coverage for some classes. Approaches targeting class-conditional coverage struggle in scenarios
where many classes have few examples. In such settings, CLASSWISE CP (a Mondrian conformal
variant Vovk et al., 2005) and rank-calibrated class-conditional CP (Shi et al., 2024) produce large
sets, and Clustered CP (Ding et al., 2023) effectively defaults to STANDARD CP for rare classes that
it is unable to assign to a cluster.

Our goal is to create prediction sets that optimize class-conditional coverage, without sacrificing
reasonable set sizes or marginal coverage. We approach this in two ways.

APPROACH I: Target a relaxed notion of class-conditional coverage. Motivated by the multi-class
classification concept of “macro-accuracy,” which is the average of class-wise accuracies (Lewis,
1991), we consider macro-coverage, which is the average of class-conditional coverages:

MacroCov(C) = 1

|Y|
∑

y∈Y
P(Y ∈ C(X) | Y = y) =

1

|Y|
∑

y∈Y
CondCov(C, y). (1)

In contrast, marginal coverage is a weighted average of class-conditional coverages where the weight
of class y is its prevalence p(y):

MarginalCov(C) =
∑

y∈Y
p(y) · CondCov(C, y). (2)

This emphasizes coverage of more frequent classes. We derive the form of the prediction set that op-
timally trades off set size and macro-coverage under oracle knowledge of the underlying distribution
and design a conformal score function, called prevalence-adjusted softmax (PAS), which approx-
imates these oracle optimal sets given an imperfect classifier p̂(y|x) and estimated label distribution
p̂(y).

APPROACH II: Target class-conditional coverage, then back off (until the set size is reasonable).
We propose a simple procedure called INTERP-Q that interpolates between CLASSWISE CP and
STANDARD CP in a literal sense by linearly interpolating their quantile thresholds. This method
allows the user to choose their position on the trade-off curve between set size and class-conditional
coverage via the interpolation parameter.

The choice between these two approaches depends on the setting. Targeting macro-coverage
(APPROACH I) implies that we care equally about the coverage of all classes, but it is acceptable
if a few classes have poor coverage, so long as the average class-conditional coverage is high. On
the other hand, starting from CLASSWISE and softening (APPROACH II) implies that we want all
classes to have good coverage. This approach also comes with a parameter that the user can vary
depending on their preference between small sets and class-conditional coverage.

2

https://iucn.org


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

1.1 RELATED WORK

Class-conditional conformal prediction. Conformal prediction provides a way to construct pre-
diction sets with coverage guarantees given a calibration dataset that is exchangeable with the test
point (Vovk et al., 2005; Angelopoulos & Bates, 2023). We are specifically interested in class-
conditional coverage, which is difficult to achieve in a useful way when many classes have very
few calibration examples, as is the case in long-tailed settings. Previous works on class-conditional
conformal focus on easy settings with at most ten classes (Shi et al., 2013; Löfström et al., 2015;
Hechtlinger et al., 2018; Sadinle et al., 2019), or the harder setting of many classes with some class
imbalance but still lacking a truly long tail (Ding et al., 2023; Shi et al., 2024).

Optimally trading off set size and coverage. Prediction sets should achieve the desired coverage
while being as small as possible, so as to be maximally informative. In general, the set-generating
procedures that optimally navigate the coverage-size trade-off depend on the density of the underly-
ing distribution (Lei et al., 2013; Lei & Wasserman, 2014; Vovk et al., 2016; Sadinle et al., 2019).
Although the true density is unknown in practice, these theoretically optimal sets serve as guidelines
for designing effective conformal score functions or new conformal procedures for various target
quantities, such as X-conditional coverage (e.g., APS from Romano et al., 2020, RAPS from An-
gelopoulos et al., 2021, SAPS from Huang et al., 2023, CQC from Cauchois et al., 2021) or size
(Denis & Hebiri, 2017; Kiyani et al., 2024). In APPROACH I, we construct a score function inspired
by the oracle sets that optimally trade-off set size and macro-coverage, a coverage target that has not
been previously explored in this context.

Learning from long-tailed data. Many real-world classification problems exhibit long-tailed dis-
tributions, a challenge particularly pronounced in fine-grained visual categorization, a field that has
recently attracted substantial interest, especially in biodiversity (Van Horn et al., 2015; 2018; Garcin
et al., 2021; Wang et al., 2022). The goal is to classify images into highly specific subcategories
(e.g., plant species), which often differ only subtly. While extensive research has focused on im-
proving class-conditional top-1 or top-k accuracy for such tasks (Russakovsky et al., 2015; Lapin
et al., 2015; Liu et al., 2019; Garcin et al., 2021; Zhang et al., 2023), less attention has been devoted
to constructing high-quality prediction sets in long-tailed settings, beyond the naive approach of
selecting the top-k predictions. While methods like logit adjustment for long-tail learning (Menon
et al., 2021) and focal loss for dense object detection (Lin et al., 2017) address class imbalance
through reweighting or output adjustment, designing robust prediction sets under long-tailed dis-
tributions remains understudied. Addressing this gap is critical for systems like Pl@ntNet (Joly
et al., 2014), a plant identification app where users upload images and receive candidate species
matches.

1.2 PRELIMINARIES

Notation. For a positive integer n, let [n] := {1, . . . , n}. Let Dcal = {(Xi, Yi) for i ∈ [n]} be a
calibration set , where (Xi, Yi) for i = 1, . . . , n are exchangeable with the test point (Xn+1, Yn+1),
where the label Yn+1 is unknown. For a class y ∈ Y , we use Iy = {i ∈ [n] : Yi = y} to denote
the set of calibration points with label y and ny = |Iy| the number of calibrations points with label
y. Let α ∈ [0, 1] be a user-specified probability of miscoverage. We use s : X × Y → R to denote
a conformal score function, where smaller values of s(x, y) indicate that the pair (x, y) conforms
better with previously seen data.

Score function. We focus on the split conformal setting in which the score function s is defined
using a predictive model trained using data separate from the calibration set Dcal. We use the
softmax conformal score function, defined as ssoftmax(x, y) = 1 − p̂(y|x), where p̂(y|x) is the
predicted probability for class y for input x obtained from the softmax output of a trained neural
network. Our methods can be readily adapted to other scoring functions but we focus on this score
because alternatives like APS (Romano et al., 2020) and its variants produce larger sets and are
primarily designed for X-conditional coverage, which is outside our scope.

Conformal prediction as thresholded sets. Let q = (q1, q2, . . . , q|Y|) be a |Y|-dimensional vec-
tor of score thresholds. Define the q-thresholded set as

C(X;q) = {y ∈ Y : s(X, y) ≤ qy}. (3)

Conformal prediction provides principled ways to set q as a function of the calibration data Dcal

and the chosen miscoverage level α so as to achieve coverage guarantees.
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Algorithm 1 Conformal prediction

Require: Score function s : X × Y → R, miscoverage level α ∈ [0, 1], calibration set Dcal =
{(Xi, Yi)}ni=1, test point Xn+1, threshold function q̂ : Rn × [0, 1]→ R|Y|

Compute scores: Si ← s(Xi, Yi) for i = 1, . . . , n
Compute thresholds: q← q̂((Si)

n
i=1, α)

return Prediction set C(Xn+1) = {y : s(Xn+1, y) ≤ qy}, where qy is the y-th entry of q

STANDARD conformal prediction constructs sets as CSTAND.(X) := C(X; q̂STAND.) for q̂STAND. =
(q̂, . . . , q̂) where

q̂ = Quantile1−α

( 1

n+ 1

n∑

i=1

δs(Xi,Yi) +
1

n+ 1
δ∞

)
, (4)

and where Quantileγ(P ) = inf{x ∈ R : P(V ≤ x) ≥ γ} denotes the level-γ quantile of a random
variable V ∼ P and δs is the Dirac measure at point s (this follows the notation of Tibshirani
et al., 2019). By setting the thresholds in this way, STANDARD conformal prediction sets achieve a
marginal coverage guarantee (Vovk et al., 2005):

P(Y ∈ C(X; q̂STAND.)) ≥ 1− α. (5)

CLASSWISE conformal prediction constructs sets as CCLASSWISE(X) := C(X; q̂CLASSWISE(s,Dcal))
where the y-th entry of q̂CLASSWISE(s,Dcal) is

q̂CW
y = Quantile1−α

( 1

ny + 1

∑

i∈Iy

δs(Xi,Yi) +
1

ny + 1
δ∞

)
. (6)

CLASSWISE conformal prediction sets achieve a class-conditional coverage guarantee (Vovk et al.,
2005):

P(Y ∈ C(X; q̂CLASSWISE) | Y = y) ≥ 1− α, for all y ∈ Y. (7)

By marginalizing over y, this implies that CCLASSWISE(X) achieves 1− α marginal coverage.

We explicitly describe the meta-algorithm for conformal prediction in Algorithm 1. The existing
methods, STANDARD and CLASSWISE, and the methods we will propose in the next section are
instantiations of this meta-algorithm for the score functions and threshold functions described in
Table 1.

2 METHODS

Table 1: Summary of the conformal methods
considered. MargCov refers to the marginal cov-
erage guarantee of the method.

Score
function

Threshold
function MargCov

STANDARD any q̂STAND. (4) 1− α
CLASSWISE any q̂C.WISE (6) 1− α
PAS∗ sPAS (11) q̂STAND. (4) 1− α
WPAS∗ sWPAS (14) q̂STAND. (4) 1− α
INTERP-Q∗ any q̂IQ (15) 1− 2α

∗Our methods

We take two approaches to the problem of
simultaneously achieving reasonable set sizes
and reasonable class-conditional coverage in
the long-tailed classification setting, each lead-
ing to a method. APPROACH I targets the
weaker guarantee of macro-coverage. From
this, we derive an oracle set that optimally bal-
ances set size and macro-coverage. We then
define a conformal score function by replac-
ing the true conditional density with its esti-
mate. We also consider an extension that pri-
oritizes coverage of user-specified classes. AP-
PROACH II addresses the trade-off by interpo-
lating between class-conditional and marginal
score quantiles, leading to a simple new procedure. We defer the formal statements of propositions
and their proofs to Appendix B.

2.1 APPROACH I: TARGETING (WEIGHTED) MACRO-COVERAGE VIA A NEW SCORE

We consider the population optimization problem of minimizing the expected set size subject to a
macro-coverage constraint,

4
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min
C:X 7→2Y

E[|C(X)|] subject to MacroCov(C) ≥ 1− α, (8)

and its dual version maximizing macro-coverage subject to an expected set size constraint,

max
C:X 7→2Y

MacroCov(C) subject to E[|C(X)|] ≤ κ (9)

where MacroCov(C) is defined in (1).
Proposition 1 (Informal). The solutions of (8) and (9) are of the form

C∗(x) = {y ∈ Y : p(y|x)/p(y) ≥ t} , (10)

for some threshold t that depends on α or κ, respectively.

The key takeaway from this proposition is that thresholding on p(y|x)/p(y) optimally balances
macro-coverage and expected set size. Specifically, among set-generating procedures with a given
expected set size, none achieve better macro-coverage than thresholding on p(y|x)/p(y). Similarly,
for a fixed macro-coverage, no other procedure yields a smaller expected set size. We contrast
this with the solution to the more classical problem of minimizing the expected set size subject
to marginal or class-conditional coverage, which is given by thresholding on p(y|x) (Neyman &
Pearson, 1933; Sadinle et al., 2019).

Although we do not have access to p(y|x) and p(y) in practice, we have estimates p̂(y|x) and
p̂(y) from our classifier and the distribution of empirical training labels, respectively. By creating
prediction sets as Ĉ(X) = {y ∈ Y : p̂(y|X)/p̂(y) ≥ t} for a threshold t, we approximate an oracle
Pareto-optimal set. We choose t to achieve 1− α marginal coverage in the following way: Observe
that Ĉ can be rewritten as Ĉ(x) = {y ∈ Y : sPAS(x, y) ≤ −t}, where

sPAS(x, y) = −p̂(y|x)/p̂(y) (11)

and PAS stands for prevalence-adjusted softmax. By setting −t to be the STANDARD CP q̂ from
(4) using sPAS, Ĉ inherits the marginal coverage guarantee of STANDARD. In summary, the first
method we propose is simply running STANDARD CP with the PAS score function (which we will
refer to as STANDARD with PAS), as this achieves the desired marginal coverage guarantee while
(approximately) optimally trading off set size and macro-coverage.

Extension to weighted macro-coverage. Recall that macro-coverage is the unweighted average
of the class-conditional coverages, and the PAS score function is designed to optimize macro-
coverage among all set-generating procedures with a certain expected set size. However, in some
settings we may wish to instead optimize for a weighted average of the class-conditional coverages
(e.g., because it is more important to cover some classes than others). Given class weights ω(y) for
y ∈ Y that sum to one, we can similarly define the ω-weighted macro-coverage as

MacroCovω(C) =
∑

y∈Y
ω(y)P(Y ∈ C(X) | Y = y). (12)

For ω(y) = |Y|−1 we recover MacroCov and for ω(y) = p(y) we get MarginalCov.
Proposition 2 (Informal). The solutions of (8) and (9) when MacroCov is replaced with
MacroCovω are of the form

C∗(x) = {y ∈ Y : ω(y) · p(y|x)/p(y) ≥ t} , (13)

for some threshold t that depends on ω and α or κ, respectively.

We can approximate these optimal sets by running STANDARD CP with the weighted prevalence-
adjusted softmax (WPAS),

sWPAS(x, y) := −ω(y)
p̂(y|x)
p̂(y)

, (14)

as the score function.
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2.2 APPROACH II: SOFTENING CLASSWISE CP VIA INTERP-Q
We propose a simple way to interpolate between the behaviors of CLASSWISE and STANDARD
by linearly interpolating their quantile thresholds. We call this procedure INTERP-Q for “interpo-
lated quantile,” as it constructs sets as CINTERP-Q(X) := C(X; q̂IQ) where the y-th entry of q̂IQ is a
weighted average of q̂ and q̂CW

y (as defined in (4) and (6)) for some weight τ ∈ [0, 1]. That is,

q̂IQ
y = τ q̂CW

y + (1− τ)q̂ for all y ∈ Y. (15)

For classes where q̂CW
y = ∞ due to small ny , we replace it with one (the maximum possible value

of the softmax conformal score) before interpolating.
Proposition 3. If q̂ and q̂CW

y (for y ∈ Y) are the STANDARD and CLASSWISE conformal quantiles
for α ∈ [0, 1], then CINTERP-Q achieves a marginal coverage of at least 1− 2α.

We remark that this theoretical lower bound is likely conservative and, in practice, INTERP-Q
achieves coverage close to 1− α.

In Appendix A, we consider an alternative way of instantiating the interpolation idea used by
INTERP-Q. We propose a method called FUZZY Classwise CP that interpolates by computing
weighted quantiles using class-dependent weights determined by some notion of class similar-
ity.

3 EXPERIMENTS

Overview. We consider two datasets for long-tailed classification: Pl@ntNet-300K (Garcin et al.,
2021) and iNaturalist-2018 (Van Horn et al., 2018). Figure 2 shows the class distributions of the
datasets we use. Unless otherwise stated, we use the softmax score function described in Section
1.2. The base model is a ResNet-50 (He et al., 2016) trained using the standard cross-entropy
loss (see Appendix D.3 for similar results using focal loss Lin et al., 2017, a loss designed for class-
imbalanced settings). More details about the experimental setup are available in Appendix C.

0 500 1000
Class

1

10

100

1,000

10,000

#
of

ex
am

p
le

s

Pl@ntNet-300K

0 100 200 300
Class

Pl@ntNet-300K-truncated

0 2500 5000 7500
Class

iNaturalist-2018

0 250 500 750
Class

iNaturalist-2018-truncated
train

val

test

All

Figure 2: Class distributions (sorted by prevalence), plotted using a logarithmic scale, of the classical
train, val, and test sets in the datasets we experiment on. We further randomly split 30% of
val to use for model validation and use the remaining 70% as the calibration set Dcal. We use the
truncated versions when it is important to have good estimates of class-conditional metrics.

Table 2: Our evaluation metrics. ĉy is the
empirical coverage for class y on the test
set of N points, 1−α is the target coverage
level, and |Y| is the number of classes.

Metric name Definition

FracBelow50%
1

|Y|
∑
y∈Y

1
{
ĉy ≤ 0.5

}
UnderCovGap

1

|Y|
∑
y∈Y

max
(
1 − α − ĉy, 0

)
MacroCov

1

|Y|
∑
y∈Y

ĉy

MarginalCov
1

N

N∑
i=1

1
{
Y

T
i ∈ C(XT

i )
}

Average set size
1

N

N∑
i=1

∣∣C(XT
i )

∣∣

Metrics. We evaluate each set-generating procedure
C : X → 2Y on a test dataset {(XT

i , Y T
i )}Ni=1 that is

separate from the data used for model training (and
validation) and calibration. Let Jy ⊆ [N ] be the
set of indices of the test examples with label y, and
define

ĉy := 1
|Jy|

∑

i∈Jy

1{Y T
i ∈ C(XT

i )} (16)

as the empirical class-conditional coverage of
class y. We consider several ways of aggregating ĉy
across y to obtain a scalar metric: (i) the fraction of
classes with coverage below a threshold (50% in our
experiments), (ii) the undercoverage gap, defined as
the average undercoverage across classes (zero for
classes with coverage at least 1 − α), and (iii) the
average of ĉy’s, yielding the empirical macrocover-
age. This is summarized in the first three rows of Table 2. Which of these metrics is most natural
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Figure 3: Average set size vs. FracBelow50%, UnderCovGap, MacroCov, and MarginalCov for
various methods on the two datasets. For INTERP-Q, lines are used to trace out the trade-off curve
achieved by running the method with different τ values for a fixed α. For FracBelow50% and
UnderCovGap, it is better to be closer to the bottom left. For MacroCov, the bottom right is better.
For MarginalCov, we want to be at the bottom and to the right of the dotted line at 1 − α for the α
at which the method is run.

depends on the goal of the practitioner. Furthermore, we consider the standard prediction set metrics
of marginal coverage and average set size, as detailed in the last two rows of Table 2.

Methods. We run STANDARD with the PAS score function from Section 2.1. and INTERP-Q from
Section 2.2 with weights τ ∈ {0, 0.25, 0.5, 0.75, 0.9, 0.95, 0.975, 0.99 , 0.999, 1} on the CLASSWISE
thresholds. These weights are chosen to trace out the trade-off curves in the figures below. We com-
pare these against the following baseline conformal prediction methods: STANDARD, as described
in (4); CLASSWISE, as described in (6); and CLUSTERED (Ding et al., 2023), which groups together
classes with similar score distributions and computes a single score threshold for each cluster.

3.1 EVALUATING THE SIZE-COVERAGE TRADE-OFF

Figure 3 visualizes the trade-off between set size and various notions of coverage (class-conditional,
macro- , and marginal) achieved by each method. We describe some high-level takeaways:

(i) When targeting set size and class-conditional or macro-coverage, it is more effective to optimize
for this trade-off directly than trading off set size and marginal coverage. Adjusting α in STANDARD
CP is a plausible solution to target class-conditional coverage but the results show that this does not
optimally navigate the set size/class-conditional coverage trade-off, which is our goal. In compar-
ison, our methods, which explicitly optimize for class-conditional or macro-coverage, consistently
achieve better trade-offs than STANDARD CP.

(ii) CLASSWISE should generally be avoided, as comparable class-conditional and macro-coverage
can be achieved with significantly smaller sets using our proposed methods.

(iii) INTERP-Q produces reasonable set sizes even for large values of τ . Linearly interpolating
between the STANDARD quantile and CLASSWISE quantile does not linearly interpolate the average
set sizes of the two methods: At τ = 1, INTERP-Q coincides with CLASSWISE and consequently
has a very large average set size (780 for Pl@ntNet-300K and 7430 for iNaturalist-2018, α = 0.1),
but decreasing τ only slightly to τ = 0.99 results in much more reasonable average set sizes of 7.6
on Pl@ntNet-300K and 55.8 on iNaturalist-2018. This nonlinear relationship is likely due to the
fact that the softmax distribution of rare classes is highly skewed towards one because the classifier
consistently assigns them predicted probabilities near zero.
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0

5

10

15

20

A
ve

ra
ge

se
t

si
ze

0.4 0.6 0.8
Not-at-risk average ĉy
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Figure 4: Results for running STANDARD on Pl@ntNet-300K with different conformal score func-
tions: softmax, PAS, and WPAS with λ ∈ {1, 10, 102, 103}. Increasing λ in WPAS improves
the class-conditional coverage of at-risk classes, which is measured using ĉy , the empirical class-
conditional coverage of class y. “At-risk average ĉy” is computed as (1/|Yat-risk|)

∑
y∈Yat-risk

ĉy and
“not-at-risk average ĉy” is computed analogously. Note that here the y-axis is on a linear scale.

(iv) STANDARD with PAS is Pareto optimal, in the sense that at any marginal coverage level, there is
no method that simultaneously achieves better set size and class-conditional/macro- coverage. This
suggests that STANDARD with PAS is a good starting place for practitioners due to its simplicity and
strong performance on all metrics. However, INTERP-Q is also of practical value since their tunable
parameters allows us to choose where we want to be on the trade-off curve between set size and
class-conditional coverage without significantly changing the marginal coverage. Note that the two
methods can also be combined, as presented in Appendix D.2, Figure 9.

Pl@ntNet-300K case study. Suppose we want sets with 90% marginal coverage on Pl@ntNet-
300K. STANDARD has a small average set size of 1.57 but 421 of the 1081 plant species have
coverage below 50%. Conversely, the CLASSWISE sets have zero classes with coverage below
50%, but an average set size of 780. Our methods provide a middle ground: STANDARD with PAS
produces sets that have an average size only slightly bigger than STANDARD (2.57) but more than
halves the number of classes with coverage below 50% to 180. INTERP-Q behaves similarly, with
the added bonus that the trade-off between set size and class-conditional coverage can be tuned by
adjusting τ . We provide a table of the metric values plotted in Figure 3 in Appendix D.1 and an
extended Pl@ntNet-300K case study in Appendix D.4.

3.2 TARGETING ENDANGERED SPECIES

Motivated by plant conservation, we use the weighted prevalence-adjusted softmax (WPAS) score
to target coverage of at-risk species in Pl@ntNet-300K.1 Let Yat-risk ⊆ Y be the set of at-risk species.
The coverage of at-risk species is weighted λ ≥ 1 times more than the coverage of other species, so

ω(y) =

{
λ
W if y ∈ Yat-risk
1
W otherwise,

where W = λ|Yat-risk|+ |Y \ Yat-risk| is a normalizing factor to ensure
∑

y∈Y ω(y) = 1.

The results are shown in Figure 4. We observe that STANDARD with WPAS improves the class-
conditional coverage of at-risk classes relative to STANDARD with softmax or PAS. Comparing
WPAS to PAS, we see that increasing λ, the amount we upweight at-risk classes, leads to larger
improvements in the class-conditional coverage of at-risk classes, as expected. These increases are
“paid for” in terms of a mild increase in average set size and have no discernible effect on the class-
conditional coverage of not-at-risk classes, which is appealing from a practical perspective.

3.3 SIMULATED HUMAN DECISION-MAKER

We now examine how coverage and set size can jointly influence human decision accuracy. Human
interpretations of prediction sets can vary (Zhang et al., 2024; Hullman et al., 2025), and we focus on
two models of human decision-making that are impacted by coverage and set size: an expert verifier

1We consider species with an IUCN status of “endangered”, “vulnerable”, “near threatened”, “critically
endangered”, or “lower risk” as at risk. Of the 1,081 total species in Pl@ntNet-300K, 33 species qualify as
at-risk.
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Figure 5: Class-conditional decision accuracies for a range of decision makers when presented with
sets from STANDARD, CLASSWISE or STANDARD with PAS at α = 0.1. Classes are ordered by
decreasing decision accuracy of Hexpert under each method.

Hexpert and a random guesser Hrandom (equivalent to the uncertainty suppressing decision maker
in Hullman et al., 2025). Let H(C(X), Y ) ∈ Y be a human’s chosen label given prediction set C(X)
when the true label is Y . The probability P (H(C(X), Y ) = Y ) that the human chooses the correct
label after seeing prediction set C(X) is 1{Y ∈ C(X)} if H = Hexpert and 1{Y ∈ C(X)}/|C(X)|
if H = Hrandom. Hexpert is only affected by coverage and not set size, whereas random guessers
are highly sensitive to set size, as they choose a label uniformly at random from the prediction
set. We also consider mixture decision-makers, Hmixture, who act as Hexpert with probability γexp.
and Hrandom with 1 − γexp. for γexp. ∈ [0, 1]. We are interested in how prediction sets affect the
probability that a human correctly labels an instance of a given class, which we formalize as the
class-conditional decision accuracy for class y under procedure C, defined as P(H(C(X), Y ) = Y |
Y = y).

Figure 5 shows the class-conditional decision accuracies for various types of decision makers un-
der STANDARD with PAS as compared to baselines (the plots for INTERP-Q are similar; see Ap-
pendix D.6). We report results on truncated versions of Pl@ntNet-300K and iNaturalist-2018 that
only include classes with enough test examples to reliably estimate class-conditional decision accu-
racy (see Appendix C.1 for more details). We observe that STANDARD and STANDARD with PAS
achieve strong performance regardless of γexp., whereas CLASSWISE only does well when γexp. is
high. However, STANDARD with PAS has an additional benefit that its performance is more bal-
anced across classes. The worst decision accuracies for STANDARD with PAS are higher than those
of STANDARD, which is paid for by only a slight decrease in the best decision accuracies.

4 DISCUSSION

Limitations and future work. To use INTERP-Q, we must choose a value of τ . In practice, if we select
a desired average set size and choose the parameter value that achieves this size on the calibration
set, this will produce reasonable results (despite the exchangeability violation). A promising future
research direction that we touched upon is the interaction between set sizes and coverage in deter-
mining the utility of prediction sets. In particular, an important aspect of decision-making not ad-
dressed by the decision accuracy discussed in Section 3.3 is the concept of ”effort”: even if a human
can identify the correct label within a set, larger sets require more effort to search through.

Broader impacts. The methods we introduce have the potential to benefit society in the mid- to long-
term by improving uncertainty quantification on citizen science platforms like Pl@ntNet. Our meth-
ods increase the probability that prediction sets for rare or endangered species contain the truth while
keeping the average set size under control. This has important implications for biodiversity monitor-
ing and has the potential to produce a virtuous cycle: as more images of rare species are identified,
they can be used to retrain the classifier to better identify such species, which in turn improves the
probability that citizen scientists will correctly classify future images of these species.
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A FUZZY CLASSWISE CONFORMAL PREDICTION

INTERP-Q shrinks q̂y in a naive way that disregards relationships between classes; in this section,
we propose a more sophisticated approach called fuzzy classwise CP (FUZZY for short) that assigns
weights to the score of each calibration example based on the “similarity” between their class and
class y and then takes the quantile of this weighted distribution. This approach achieves a 1 −
α marginal coverage guarantee. Empirically we find that it does not do better than the simpler
INTERP-Q procedure, but we still believe it is useful to present the method, as it may be preferable in
settings where a marginal coverage guarantee is desired. Proofs are deferred to Appendix B.

This method relates to work on weighted conformal prediction, which generalizes standard con-
formal prediction by computing a weighted quantile of calibration scores (Tibshirani et al., 2019;
Barber et al., 2023; Barber & Tibshirani, 2025). Methodologically closest to our work is Podkopaev
& Ramdas (2021), which uses label-dependent weighting to ensure marginal coverage under label
shift.

A.1 PRELIMINARIES

Recall the STANDARD CP and CLASSWISE CP procedures introduced in Section 1.2. We now
consider a generalization of these two methods. Let w : Y × Y → R≥0 be a weighting function
where w(y′, y) is the weight assigned to a point with label y′ when computing the weighted quan-
tile threshold for class y. The w-label-weighted conformal prediction set (see, e.g., Podkopaev &
Ramdas, 2021) is CLW(X;w) := C(X; q̂w) where the y-th entry of q̂w is

q̂wy = Quantile1−α

( n∑

i=1

w(Yi, y)

Wy
δs(Xi,Yi) +

w(y, y)

Wy
δ∞

)
(17)

and Wy =
∑n

i=1 w(Yi, y)+w(y, y) is a normalizing factor to ensure the weights sum to one.

STANDARD corresponds to label-weighted conformal with equal weights for all classes regardless
of y — that is, w(y′, y) ∝ 1. CLASSWISE corresponds to label-weighted conformal where nonzero
weights are assigned only to other calibration points of class y, i.e. w(y′, y) ∝ 1{y′ = y}.

A.2 THE FUZZY METHOD

We now present the fuzzy classwise conformal prediction (FUZZY) procedure. We begin by present-
ing a simpler method, Raw FUZZY, that FUZZY builds upon.

STANDARD

CLASSWISE

FUZZY

Π(y)

Figure 6: The weighting
function w of each CP
method, when viewed as
label-weighted conformal
prediction.

Raw FUZZY. The large sets of CLASSWISE result from not hav-
ing enough data from each class when computing the score quan-
tiles. A natural solution to this problem is to borrow data from
other classes, where more data is borrowed from classes that are
more similar.

We define the Raw FUZZY prediction sets to be the label-weighted
conformal prediction sets obtained using wFUZZY : Y × Y →
R≥0 as the weighting function in (17), i.e., CRAWFUZZY(X) :=
CLW(X;wFUZZY).

To construct this weighting function, we use a class mapping Π :
Y → Λ ⊆ Rd for some small d > 0 (e.g., Λ = (0, 1)) and kernel
functions hσ

y : Λ×Λ→ R≥0 parameterized by a bandwidth σ > 0.
A good Π should map classes with similar score distributions close together. The kernel hσ

y takes in
two mapped classes and outputs a non-negative scalar that is decreasing with the distance between
the two inputs, and it is allowed to depend on y. For example, its bandwidth could be rescaled to
decrease with the number of examples we have from class y so that classes with more examples
“borrow less” from other classes.

We then define the weighting function as

wFUZZY(y
′, y) = hσ

y

(
Π(y′),Π(y)

)
. (18)

Figure 6 visualizes how Raw FUZZY can be viewed as interpolating between STANDARD and
CLASSWISE CP by setting weights that are in between the two extremes.
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The following proposition tells us that for most reasonable kernels, such as the Gaussian kernel
hσ(u, v) ∝ exp

(
−(v − u)2/(2σ2)

)
, Raw FUZZY can recover both STANDARD and CLASSWISE

by setting the bandwidth appropriately.
Proposition 4 (Informal). Assume Π maps each class to a unique point. If, for all u, v ∈ Λ with
u ̸= v, the kernel h satisfies hσ(u, v) → 0 as σ → 0 and hσ(u, v) → hσ(u, u) as σ → ∞, then
for sufficiently small σ we have CRAWFUZZY(X) ≡ CCLASSWISE(X) and for sufficiently large σ we have
CRAWFUZZY(X) ≡ CSTANDARD(X).

FUZZY = Raw FUZZY + reconformalization for marginal coverage. To obtain the FUZZY pro-
cedure, we add a reconformalization wrapper around Raw FUZZY to ensure marginal coverage. In
order to do this reconformalization, we use a holdout dataset. In practice, this holdout dataset can
be created by setting aside a relatively small part of the calibration dataset (here, 5000 examples)
since we only use it to estimate a single parameter. The intuition behind our procedure is as follows.
When reconformalizing, we hope to equally affect all class-conditional coverages. One way to do
this is to find the α̃ ≥ 0 such that running Raw FUZZY at level 1 − α̃ achieves the desired 1 − α
coverage. This can be formulated as an example of STANDARD CP with a special score function
s̃(x, y) = F̂y

(
s(x, y)

)
, where

F̂y(t) =

n∑

i=1

wy
i 1{s(Xi, Yi) < t} and wy

i =
wFUZZY(Yi, y)∑n

i=1 wFUZZY(Yi, y) + wFUZZY(y, y)
. (19)

Then, we have the equivalence y ∈ CRAWFUZZY(x) ⇐⇒ s̃(x, y) < 1 − α. The score s̃ can be
interpreted as (one minus) a weighted conformal p-value (Vovk et al., 2005; Barber & Tibshirani,
2025), which we re-calibrate. To achieve the desired marginal coverage, the method FUZZY does
STANDARD CP with the new score function s̃ and held out data as calibration set.
Proposition 5. Let Dcal = {(Xi, Yi)}ni=1 be a calibration set and Dhold = {(XH

i , Y H
i )}mi=1 be

held-out examples. Define α̃ to be the STANDARD CP threshold obtained by applying s̃ on the
holdout set:

1− α̃ = Quantile1−α

( 1

m+ 1

m∑

i=1

δs̃(XH
i ,Y H

i ) +
1

m+ 1
δ∞

)
. (20)

Then, if the scores evaluated on the held-out dataset s̃(XH
i , Y H

i ) are exchangeable with the score
of the test point, the set CFUZZY(x) = {y : s̃(x, y) ≤ 1− α̃} will achieve 1− α marginal coverage.

The score function s̃ depends on the calibration set Dcal, but the assumption of exchangeability is
easily satisfied, e.g., if the points of the calibration set and the held-out set and the test point are
exchangeable. A careful reader may also notice that CFUZZY is not exactly equivalent to apply Raw
FUZZY at level α̃ as a strict inequality has been replaced by a non strict one to get the coverage
guarantee. As a result, we implement FUZZY as Raw FUZZY at level α̃ − ε for a small enough
perturbation ε > 0 (ε < mini,y ω

y
i ).

Note that, if desired, we could use full conformal techniques (Vovk et al., 2005) instead of data
splitting (i.e., let Dcal = Dhold), but this incurs higher computational costs that are undesirable for
practical applications (see Proposition 8 for details).

Choosing a mapping Π. To instantiate FUZZY, we must define a mapping Π from Y to a space
in which we can compute distances between classes. What makes a good mapping? Intuitively,
we want classes with similar score distributions to be mapped close together. This is similar to the
motivation behind the clustering procedure from Ding et al. (2023). However, in long-tailed settings,
many classes do not have sufficient calibration examples for us to estimate their score distributions.
A “zero-shot” way of attempting to group together classes with similar score distributions is to group
together classes based on their prevalence, with the intuition that the underlying classifier is likely
to assign small softmax scores to infrequently seen classes and large scores to more frequently seen
classes. Specifically, we map each class y to its number of train examples ntrain

y , normalize, and
then add a small amount of random noise to ensure that the uniqueness condition of Proposition 4
is satisfied with probability one: Πprevalence(y) = cntrain

y + εy where εy ∼ Unif([−0.01, 0.01])
independently for each for y ∈ Y . We normalize using c = 1/(maxy′∈Y ntrain

y′ ) to ensure that
Πprevalence(y) ∈ [0, 1] so that the same bandwidth σ has similar effects on different datasets. This
is just one possible choice for Π and is what we use in our main experiments; other options are
explored in Appendix D.2.
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B THEORETICAL GUARANTEES

B.1 OPTIMAL PREDICTION SETS FOR (WEIGHTED) MACRO-COVERAGE

In this section, we state and prove a more formal version of Proposition 2, of which Proposition 1 is
a special case.
Proposition 6 (Formal version of Proposition 2). Let ω : Y → [0, 1] be a non-negative weighting
function summing to one. For t ∈ R, define

C̃t(x) = {y ∈ Y : s̃(x, y) ≥ t} where s̃(x, y) =
ω(y)

p(y)
· p(y|x) (21)

and p(y|x) denotes the conditional density of Y given X = x and p(y) is the marginal density of Y .

(a) Let α ∈ [0, 1]. If there exists tα such that MacroCovω(C̃tα) = 1 − α, then C̃tα is the
optimal solution to

min
C:X 7→2Y

E[|C(X)|] subject to
∑

y∈Y
ω(y)P (y ∈ C(X) | Y = y) ≥ 1− α. (22)

(b) Let κ ≥ 0. If there exists tκ such that E[|C̃tκ |] = κ, then C̃tκ is the optimal solution to

max
C:X 7→2Y

∑

y∈Y
ω(y)P (y ∈ C(X) | Y = y) subject to E[|C(X)|] ≤ κ. (23)

Remark 1. If thresholds tα or tκ achieving exact equality do not exist, the optimal set remains of
the form (21) but must be combined with randomization to achieve the optimal solution (that has
weighted macro-coverage of exactly 1−α or expected set size of exactly κ). See, for instance, Shao
(2008, Theorem 6.1) for a formal statement of Lemma B.1 for this case.

Proof. This result is a consequence of the Neyman-Pearson Lemma, which we state below using the
formulation of Sadinle et al. (2019) (see also Casella & Berger, 2001, Theorem 8.3.12). We provide
a proof of this lemma in Appendix B.2.

Lemma B.1 (Neyman & Pearson, 1933). Let µ be a measure on X ×Y and let f, g : X ×Y → R≥0

be two non-negative functions. For ν ≥ 0, consider the problem

min
C:X→2Y

∫

X×Y
1{y ∈ C(x)}g(x, y)dµ(x, y) (24)

subject to
∫

X×Y
1{y ∈ C(x)}f(x, y)dµ(x, y) ≥ ν.

If there exists tν such that
∫

X×Y
1{f(x, y) ≥ tν · g(x, y)}f(x, y)dµ(x, y) = ν, (25)

then

C∗ν (x) = {y ∈ Y : f(x, y) ≥ tν · g(x, y)} (26)

is the optimal solution to (24): Any other minimizer C of (24) is equal to C∗ν µf and µg-almost
everywhere, i.e., for h ∈ {f, g}, µh

(
{(x, y) : y ∈ C∗ν (x)}∆{(x, y) : y ∈ C(x)}

)
= 0 where ∆

denotes the symmetric distance between the sets and µh is defined as µh(A) =
∫
A
hdµ.

Remark 2. An analogous statement of Lemma B.1 holds where we replace the “≥” with “>” in
(25) and (26).

PROOF OF PROPOSITION 6(a). We assume that X has a density p with respect to the Lebesgue mea-
sure λ, but the proof can be adapted for any measure. Define the functions f(x, y) := ω(y)p(x|y)
and g(x, y) = p(x) and the measure µ = λ ×

(∑
y∈Y δy

)
, which is the product measure between

15
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the Lebesgue measure (denoted by λ) and the counting measure on Y . Let ν = 1− α. Observe that
plugging these values of f , g, µ, and ν into (24) yields (22), because

∫

X×Y
1{y ∈ C(x)}f(x, y)dµ(x, y) =

∑

y∈Y
ω(y)

∫

X
1{y ∈ C(x)}p(x|y)dx

=
∑

y∈Y
ω(y)P (y ∈ C(X) | Y = y) ,

and
∫

X×Y
1{y ∈ C(x)}g(x, y)dµ(x, y) =

∑

y∈Y

∫

X
1{y ∈ C(x)}p(x)dx

=

∫

X

∑

y∈Y
1{y ∈ C(x)}p(x)dx

=

∫

X
|C(X)|p(x)dx

= E (|C(X)|) .

By Lemma B.1, it follows that the optimal solution to (22) is given by (26), which for our choice of
f and g can be rewritten as C∗1−α(x) = {y ∈ Y : ω(y)p(y|x)

p(y) ≥ t1−α} by observing that

f(x, y)

g(x, y)
=

ω(y)p(x|y)
p(x)

=
ω(y)p(x, y)

p(x)p(y)
=

ω(y)p(y|x)
p(y)

.

PROOF OF PROPOSITION 6(b). Let us now derive the optimal solution to the dual problem. To do
so, we must rewrite the problem in a form where Lemma B.1 can be applied. First, observe that

∑

y∈Y
ω(y)P (y ∈ C(X)|Y = y) =

∑

y∈Y
ω(y)

(
1− P (y /∈ C(X) | Y = y)

)

= 1−
∑

y∈Y
ω(y)P (y ∈ Cc(X) | Y = y) ,

where Cc(X) := Y \ C(X) denotes the complement of C(X). Similarly, observe that expected set
size can be written in terms of the complement as E(|C(X)|) = |Y| − E(|Cc(X)|). Thus, we can
obtain the optimal solution to (23) by taking the complement of the optimal solution to

min
C̄:X 7→2Y

∑

y∈Y
ω(y)P

(
y ∈ C̃(X) | Y = y

)
subject to E(|C̄(X)|) ≥ |Y| − κ. (27)

Applying Lemma B.1, combined with Remark 2, with f(x, y) = p(x), g(x, y) = ω(y)p(x|y), the
same measure µ as in the proof of Proposition 6(a), and ν = |Y| − κ tells us that if there exists t̄κ
such that ∫

X×Y
1{f(x, y) > t̄κ · g(x, y)}f(x, y)dµ(x, y) = |Y| − κ , (28)

then the optimal solution to (27) is

C̄∗κ(x)=
{
y ∈ Y :

f(x, y)

g(x, y)
> t̄κ

}
=

{
y ∈ Y :

p(y)

ω(y)p(y|x)
> t̄κ

}
=

{
y ∈ Y :

ω(y)p(y|x)
p(y)

< t̄−1
κ

}
.

Thus, the optimal solution to our original problem (23) is

C∗κ(x) := (C̄∗κ)c(x) =
{
y ∈ Y :

ω(y)p(y|x)
p(y)

≥ t̄−1
κ

}
.
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B.2 PROOF OF LEMMA B.1
For completeness we give a proof of the Neyman-Pearson Lemma, as stated in Lemma B.1.

Proof. We will show that C∗(x) = {y : f(x, y) ≥ tνg(x, y)} is the optimal solution to (24). We
first demonstrate that it is an optimal solution and then that it is unique.

Optimality. By definition of tν , we have
∫

X×Y
1{y ∈ C∗(x)}f(x, y)dµ(x, y) = ν, (29)

which is trivially greater than or equal to ν, so C∗(x) is indeed a feasible solution. To show that
C∗(x) is optimal, we must argue that it achieves a smaller objective value than any other feasible
solution. Let C : X → 2Y be any other set-generating procedure that satisfies the constraint in (24).
We want to show that

∫

X×Y
1{y ∈ C∗(x)}g(x, y)dµ(x, y) ≤

∫

X×Y
1{y ∈ C(x)}g(x, y)dµ(x, y) .

We prove this by showing their difference is negative:
∫

X×Y
1{y ∈ C∗(x)}g(x, y)dµ(x, y)−

∫

X×Y
1{y ∈ C(x)}g(x, y)dµ(x, y)

=

∫

X×Y
1{y ∈ C∗(x)\C(x)}g(x, y)dµ(x, y)−

∫

X×Y
1{y ∈ C(x)\C∗(x)}g(x, y)dµ(x, y)

≤ 1

tν

∫

X×Y
1{y ∈ C∗(x)\C(x)}f(x, y)dµ(x, y)− 1

tν

∫

X×Y
1{y ∈ C(x)\C∗(x)}f(x, y)dµ(x, y)

=
1

tν

[∫

X×Y
1{y ∈ C∗(x)}f(x, y)dµ(x, y)−

∫

X×Y
1{y ∈ C(x)}f(x, y)dµ(x, y)

]

≤ 1

tν
(ν − ν) ≤ 0 .

The first inequality follows from y ∈ C∗(x) ⇐⇒ g(x, y) ≤ t−1
ν f(x, y). The second inequality

comes from applying the equality stated in (29) to the first integral and then using the definition of
C as satisfying the constraint of (24) to lower bound the second integral.

Uniqueness. Let C : X → 2Y be another optimal set-generating procedure, so it achieves the same
objective value as C∗,

∫

X×Y
1{y ∈ C(x)}g(x, y)dµ(x, y) =

∫

X×Y
1{y ∈ C∗(x)}g(x, y)dµ(x, y) , (30)

and it is a feasible solution,
∫

X×Y
1{y ∈ C(x)}f(x, y)dµ(x, y) ≥ ν .

Let us first note the following non-negativity relationship:

(1{y ∈ C∗(x)} − 1{y ∈ C(x)}) (f(x, y)− tνg(x, y)) ≥ 0, ∀(x, y) ∈ X × Y . (31)

Integrating (31) over X × Y , then applying (30), we get
∫

X×Y
1{y ∈ C∗(x)}f(x, y)dµ(x, y)−

∫

X×Y
1{y ∈ C(x)}f(x, y)dµ(x, y) ≥ 0 .

Combining this with the definition of C∗ and the feasibility of C, we must have
∫
X×Y 1{y ∈

C(x)}f(x, y)dµ(x, y) = ν. Thus, (31) integrates to zero. Since we also know that (31) is non-
negative, it must be true that, µ-almost everywhere,

(1{y ∈ C∗(x)} − 1{y ∈ C(x)}) (f(x, y)− tνg(x, y)) = 0.
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For (x, y) ∈ X × Y such that f(x, y) ̸= tνg(x, y), then 1{y ∈ C∗(x)} = 1{y ∈ C(x)}, which
implies, using the definition of C∗(x) = {y : f(x, y) ≥ tνg(x, y)}, that µ-almost everywhere,
C(x) ⊆ C∗(x) and C∗(x) ⊆ C(x) ∪ {y : f(x, y) = tνg(x, y)}. It remains to show that the sets are
equal almost everywhere by showing that the set

D :=
{
(x, y) : y /∈ C(x) and y ∈ C∗(x)

}
=
{
(x, y) : y /∈ C(x) and f(x, y) = tνg(x, y)

}

is of measure 0 under µf . By definition of C∗,

ν =

∫

X×Y
1{y ∈ C∗(x)}f(x, y)dµ(x, y)

=

∫

X×Y
1{y ∈ C(x)}f(x, y)dµ(x, y) +

∫

X×Y
1{(x, y) ∈ D}f(x, y)dµ(x, y)

= ν +

∫

D

fdµ .

Thus we must have µf (D) = 0. Since tνg = f on D, we also get that µg(D) = 0.

The version of the Neyman-Pearson Lemma described in Remark 2 can be proven in the same
way.

B.3 PROOF OF PROPOSITION 3

Proposition 3 (restated). Using calibration data {(Xi, Yi)}ni=1, let q̂ be the STANDARD quantile
threshold (4) computed for α ∈ [0, 1] and, for y ∈ Y , let q̂CW

y be the CLASSWISE quantile threshold
(6) computed for the same α. If the test point (Xn+1, Yn+1) is exchangeable with the calibration
data {(Xi, Yi)}ni=1, then the INTERP-Q prediction sets satisfy

P(Yn+1 ∈ CINTERP-Q(Xn+1)) ≥ 1− 2α. (32)

Proof. Observe that for the test score Sn+1 = s(Xn+1, Yn+1), we have the following inclusion of
events:

{
Sn+1 ≤ τ q̂CW

Yn+1
+ (1− τ)q̂

}
⊃
{
Sn+1 ≤ min(q̂CW

Yn+1
, q̂)
}
.

Thus,

P
(
Sn+1 ≤ τ q̂CW

Yn+1
+ (1− τ)q̂

)
≥ P

(
Sn+1 ≤ min(q̂CW

Yn+1
, q̂)
)

= 1− P
(
Sn+1 > q̂CW

Yn+1
or Sn+1 > q̂)

)

≥ 1− P
(
Sn+1 > q̂CW

Yn+1

)
− P (Sn+1 > q̂) ,

using a union bound for the last inequality. By the coverage guarantees for STANDARD and
CLASSWISE, which follow from classical conformal prediction arguments using exchangeability
(see, e.g., Vovk et al., 2005), we have P

(
Sn+1 > q̂CW

Yn+1

)
≤ α and P (Sn+1 > q̂) ≤ α, which

concludes the proof.

B.4 RAW FUZZY RECOVERS STANDARD AND CLASSWISE CP
We first more formally state the result of Proposition 4.
Proposition 7. Let α ∈ [0, 1] and assume α satisfies mα /∈ N for all m ∈ [n + 1].2 Also assume
Π : Y → Λ maps each class to a unique point.

If, for all u, v ∈ Λ with u ̸= v, the kernel h satisfies

hσ(u, v)→ 0 as σ → 0 and hσ(u, v)→ hσ(u, u) as σ →∞,

2If the desired miscoverage level α does not satisfy this assumption, note that there exists an α̃ that is
infinitesimally close to α that does satisfy the assumption. Stated formally, for any α ∈ [0, 1] and any ϵ > 0,
there exists α̃ such that |α̃− α| ≤ ϵ and mα̃ ̸∈ N for all m ∈ [n+ 1]. This is due to the density of irrationals
in real numbers and the fact that any irrational α̃ satisfies the assumption.
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then, for sufficiently small σ, for any x ∈ X and calibration set, we have

CRAWFUZZY(x) = CCLASSWISE(x),

and, for sufficiently large σ, for any x ∈ X and calibration set, we have

CRAWFUZZY(x) = CSTANDARD(x).

Proof. Let us first recall that CRAWFUZZY(X) = CLW(X;wFUZZY). In the rest of the proof, we will
write wσ to refer to the weighting function wFUZZY with bandwidth σ > 0. As described in (17),
the weighting function wσ in the second argument of CLW(·) is used to obtain the class-specific
thresholds q̂wσ

y , and the label-weighted conformal prediction set is constructed as {y ∈ Y : s(x, y) ≤
q̂wσ
y }. For all y ∈ Y , we will show that as σ → 0, we eventually have q̂wσ

y = q̂, and as σ →∞, we
eventually have q̂wσ

y = q̂CW
y , where q̂ and q̂CW

y are the STANDARD and CLASSWISE quantiles from
(4) and (6).

To show that a scalar x is equal to the 1− α quantile of a distribution Q, we will show

• Step 1: PX∼Q (X ≤ x) ≥ 1− α.

• Step 2: For any t < x, we have PX∼Q (X ≤ t) < 1− α.

In the remainder of this proof, we will use two ways of indexing the calibration scores. First, for
i ∈ [n], we let Si := s(Xi, Yi). Second, we index the calibration scores by class: for each class
y ∈ Y , we use Sy

i for i ∈ [ny] to denote the calibration scores for class y. Before beginning, we
also note that the assumption that mα /∈ N for all m ∈ [n + 1] ensures ⌈(ny + 1)(1 − α)⌉ >
(ny + 1)(1− α) > ⌊(ny + 1)(1− α)⌋ for all y ∈ Y . This will be used below.

CONVERGENCE TO CCLASSWISE FOR SMALL σ. We will show that for sufficiently small σ, we have
q̂CW
y = q̂wFUZZY

y for all y ∈ Y , where

q̂wFUZZY
y = Quantile1−α

( ∑n
i=1 wσ(Yi, y)δSi

+ wσ(y, y)δ∞∑n
i=1 wσ(Yi, y) + wσ(y, y)︸ ︷︷ ︸

:=Qy

)
.

In other words, q̂wFUZZY
y is the 1 − α quantile of Qy . We now apply the two-step procedure outlined

above to show that q̂CW
y is equal to the 1− α quantile of Qy when σ is sufficiently small.

Step 1. We begin by observing

PS∼Qy

(
S ≤ q̂CW

y

)
=

∑n
i=1 wσ(Yi, y)1{Si ≤ q̂CW

y }∑n
i=1 wσ(Yi, y) + wσ(y, y)

=
wσ(y, y)

∑ny

i=1 1{S
y
i ≤ q̂CW

y }+
∑

z∈Y\{y} wσ(z, y)
∑nz

i=1 1{Sz
i ≤ q̂CW

y }
(ny + 1)wσ(y, y) +

∑
z∈Y\{y} nzwσ(z, y)

≥ wσ(y, y)⌈(1− α)(ny + 1)⌉
(ny + 1)wσ(y, y) +

∑
z∈Y\{y} nzwσ(z, y)

, (33)

where we have used for the last inequality the definition of the CLASSWISE quantile and have lower
bounded the second term of the numerator by 0. By assumption, we know that wσ(z, y) → 0 as
σ → 0 for all classes z ̸= y. Thus, for σ small enough, we have

∑

z∈Y\{y}

nzwσ(z, y) ≤
wσ(y, y)

1− α

(
⌈(ny + 1)(1− α)⌉ − (ny + 1)(1− α)

)
.

For such σ, (33) becomes
PS∼Qy

(
S ≤ q̂CW

y

)
≥ 1− α,

which implies that q̂CW
y ≥ q̂wFUZZY

y .
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Step 2. We now show the converse inequality. Given any t < q̂CW
y , we want to show

PS∼Qy (S ≤ t) < 1− α. Similar to above, we begin by writing

PS∼Qy
(S ≤ t) =

wσ(y, y)
∑ny

i=1 1{S
y
i ≤ t}+

∑
z∈Y\{y} wσ(z, y)

∑nz

i=1 1{Sz
i ≤ t}

(ny + 1)wσ(y, y) +
∑

z∈Y\{y} nzwσ(z, y)

≤
wσ(y, y)⌊(ny + 1)(1− α)⌋+

∑
z∈Y\{y} nzwσ(z, y)

(ny + 1)wσ(y, y)
. (34)

The inequality is obtained by (i) removing a positive term from the denominator and (ii) observing
that if t < q̂CW

y , then at most ⌊(ny+1)(1−α)⌋ scores of class y are smaller or equal to t. Otherwise, t
would be higher than the class-conditional quantile q̂CW

y . By assumption, we know that wσ(z, y)→
0 as σ → 0 for all classes z ̸= y. Thus, for σ small enough, we have

∑

z∈Y\{y}

nzwσ(z, y) < wσ(y, y)
(
(1− α)(ny + 1)− ⌊(ny + 1)(1− α)⌋

)
.

For such σ, (34) becomes

PS∼Qy
(S ≤ t) < 1− α.

Thus, q̂CW
y ≤ q̂wFUZZY

y . Together, Step 1 and Step 2 tell us that for σ small enough, we have q̂wFUZZY
y =

q̂CW
y , which concludes the proof for the convergence of CFUZZY to CCLASSWISE.

CONVERGENCE TO CSTANDARD FOR LARGE σ. Recall that we assume as σ → ∞, we have
wσ(z, y) → wσ(y, y) for all y, z ∈ Y . Then for any ε > 0, there exists σ large enough such
that

max
y,z∈Y

∣∣∣wσ(z, y)

wσ(y, y)
− 1
∣∣∣ ≤ ε (35)

Step 1. As in the previous case, we write

PS∼Qy
(S ≤ q̂) =

∑n
i=1 wσ(Yi, y)1{Si ≤ q̂}∑n
i=1 wσ(Yi, y) + wσ(y, y)

=

∑
z∈Y wσ(z, y)

∑nz

i=1 1{Sz
i ≤ q̂}∑

z∈Y nzwσ(z, y) + ωσ(y, y)

≥
wσ(y, y)(1− ε)

∑n
i=1 1{Si ≤ q̂}

(n(1 + ε) + 1)wσ(y, y)

≥ 1− ε

1 + ε

⌈(n+ 1)(1− α)⌉
n+ 1

.

The first inequality is obtained by lower bounding ωσ(z, y) by (1− ε)ωσ(y, y) in the numerator and
upper bounding ωσ(z, y) by (1+ ε)ωσ(y, y) in the denominator. The last inequality comes from the
fact that q̂ is the empirical quantile of the scores. By choosing ε small enough, specifically,

ε ≤ ⌈(n+ 1)(1− α)⌉ − (n+ 1)(1− α)

⌈(n+ 1)(1− α)⌉+ (n+ 1)(1− α)
,

we get that for σ large enough, PS∼Qy
(S ≤ q̂) ≥ 1− α. Thus for such σ, we have q̂ ≥ q̂wFUZZY

y for
all y ∈ Y .

Step 2. We now show the converse inequality. Given any t < q̂, we want to show PS∼Qy
(S ≤ t) <

1− α. We start by observing

PS∼Qy
(S ≤ t) =

∑
z∈Y wσ(z, y)

∑nz

i=1 1{Sz
i ≤ t}∑

z∈Y nzwσ(z, y) + wσ(y, y)

≤ 1 + ε

1− ε

∑n
i=1 1{Si ≤ t}

n+ 1
≤ 1 + ε

1− ε

⌊(n+ 1)(1− α)⌋
n+ 1

.
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We have used (35) again for the first inequality. For the last inequality, since t < q̂, there are at
most ⌊(n + 1)(1 − α)⌋ scores which are smaller or equal t. Otherwise, t would be higher than q̂.
Choosing ε small enough such that

1 + ε

1− ε

⌊(n+ 1)(1− α)⌋
n+ 1

< 1− α

yields PS∼Qy (S ≤ t) ≤ 1− α, which implies that q̂ ≤ q̂wFUZZY
y . Combining the results from Step 1

and Step 2, we get that q̂wFUZZY
y = q̂ for σ large enough, so CFUZZY(X) ≡ CSTANDARD(X).

INFINITE QUANTILES CASE. The above proof assumes that the STANDARD and CLASSWISE quan-
tiles are not infinite. In the infinite case where q̂ = ∞ or q̂CW

y = ∞, we directly get Step 1 as then
PS∼Qy

(S ≤ q) = 1 ≥ 1− α for q ∈ {q̂, q̂CW
y }. The rest of the proof remains similar to before.

B.5 RECONFORMALIZATION OF RAW FUZZY

Proof of Proposition 5. This follows from the exchangeability of the held-out set Dhold and test
point (Xn+1, Yn+1). We first link the set CRAWFUZZY to the score function s̃. For x ∈ X , y ∈ Y , let
ωy
y = wFUZZY(y, y)

/(∑n
i=1 wFUZZY(Yi, y) + wFUZZY(y, y)

)
, then:

y ∈ CRAWFUZZY(x)⇐⇒ s(x, y) ≤ Quantile1−α

(
n∑

i=1

wy
i δs(Xi,Yi) + wy

yδ∞

)

⇐⇒
n∑

i=1

wy
i 1{s(Xi, Yi) < s(x, y)} < 1− α⇐⇒ s̃(x, y) < 1− α . (36)

By exchangeability, the set
{
y : s̃(x, y) ≤ Quantile1−α

(
1

m+1

∑m
i=1 δs̃(XH

i ,Y H
i ) +

1
m+1δ∞

)}
has a

marginal coverage of 1− α.

We now briefly present a possible adaptation of the reconformalization step for FUZZY CP that
avoids the need for an additional dataset Dhold. To do so, we adapt the score s̃ from (19) to recali-
brate the weighted quantile with the same dataset Dcal using full conformal techniques (Vovk et al.,
2005).
Proposition 8 (Reconformalization with Dcal). Let us define for (x, y) and a finite subset D of
X × Y the score

s̃full
(
(x, y),D

)
:=

∑
(x′,y′)∈D wFUZZY(y

′, y)1{s(x′, y′) < s(x, y)}
∑

(x′,y′)∈D wFUZZY(y′, y)
.

Given a calibration set Dcal = {(Xi, Yi)}ni=1, let Si(x, y) = s̃full
(
(Xi, Yi),Dcal ∪ (x, y)

)
. Then

the set

CFULL(x) =

{
y ∈ Y : s̃full

(
(x, y),Dcal∪(x, y)

)
≤ Quantile1−α

( 1

n+ 1

n+1∑

i=1

δSi(x,y) +
1

n+ 1
δ∞

)}

has marginal coverage of 1− α for the test point, as long as it is exchangeable with Dcal.

Proof. As long as the test point (Xn+1, Yn+1) and the points in Dcal are exchangeable, the scores
Si(Xn+1, Yn+1) and Sn+1(Xn+1, Yn+1) := s̃full

(
(Xn+1, Yn+1),Dcal ∪ (Xn+1, Yn+1)

)
are also

exchangeable, which yields the marginal validity of CFULL.

In cases where the amount of calibration data is limited, this full-conformal adaptation allows us to
avoid data-splitting. It is also computationally feasible in such scenarios, as the burden of recalcu-
lating the ensemble thresholds for each test point is tolerable when Dcal is small.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C EXPERIMENT DETAILS

C.1 DATASET PREPARATION

Overview. Our dataset preparation has two steps. We first identify or create train/val/test
splits to replicate the standard machine learning pipeline. After obtaining train/val/test splits,
we further split val into two subsets: the first for selecting the number of epochs (containing a
random 30% of val) and the second for use as the calibration set Dcal (containing the remaining
70%). This split is necessary to ensure that Dcal is exchangeable with the test points; had we reused
val for both epoch selection and calibration, this would violate exchangeability.

We now describe the train/val/test splits for each of the datasets we use.

Pl@ntNet-300K. We use the provided train/val/test splits of Pl@ntNet-300K.3 The creation
of the dataset is described in Garcin et al. (2022).

iNaturalist-2018. We use the 2018 version of iNaturalist4 because it has the most “natural” class
distribution (i.e., not truncated). Unfortunately, the provided train/val/ test splits are not well-
suited to applying and evaluating conformal prediction methods for two reasons: First, the provided
test set is not labeled and cannot be used for evaluation purposes. Second, the provided val set
is class-balanced (with three examples per class), which means that it is not a representative sample
of the test distribution. If we used this validation set as our conformal calibration set, this would
violate the key assumption that the calibration points are exchangeable with the test points. To
remedy these two problems, we create our own train/val/ test splits where all splits have the
same distribution. Specifically, we aggregate the train and val data, then for each class randomly
select 80% of examples to put in our train, and then put 10% each in our val and test.

Truncated versions. A key challenge of the long-tailed datasets we work with is that their test
sets are also long-tailed, which hinders reliable class-conditional evaluation for rare classes. To
address this, we create truncated versions of the datasets by removing classes with fewer than 101
examples, resulting in 330 Pl@ntNet-300K classes and 857 iNaturalist classes. For each remaining
class, we assign 100 examples to test, then divide the remainder 90%/10% into train/val.
For rare classes, we prioritize training set allocation, which may lead to zero-calibration examples.
Specifically, to obtain Pl@ntNet-300K-truncated, we apply the above procedure to the combined
train, val, and test splits of Pl@ntNet-300K. To obtain iNaturalist-2018-truncated, we apply
the procedure to the combined train and val splits of the original iNaturalist dataset.5

C.2 MODEL TRAINING

After following the procedures described in Appendix C.1 to obtain train, val, and test splits
of each dataset, we train a ResNet-50 (He et al., 2016) initialized to ImageNet pretrained weights
for 20 epochs using a learning rate of 0.0001. We use train for training the neural network and
the randomly selected 30% of val for computing the validation accuracy. We then select the epoch
number that results in the highest validation accuracy (up to 20 epochs).

C.3 COMPUTATIONAL RESOURCES

The system we use is equipped with a 4x Intel Xeon Gold 6142 (64 cores/128 threads total @ 2.6-3.7
GHz, 88MB L3 cache) while the GPUs are 2x NVIDIA A10 (24GB VRAM each) and 2x NVIDIA
RTX 2080 Ti (11GB VRAM each), for a total of 70GB GPU VRAM.

D ADDITIONAL EXPERIMENTAL RESULTS

Overview. In this section, we extend the experimental results from the main paper in the following
ways:

3https://github.com/plantnet/PlantNet-300K
4https://github.com/visipedia/inat_comp/tree/master/2018
5For truncated datasets, we must compute marginal metrics differently when doing evaluation: due to the

uniform class distribution of the test splits of these datasets, a simple average over all test examples does
not reflect marginal performance on the true distribution. We estimate the marginal coverage as

∑
y∈Y p̂(y)ĉy

where p̂(y) is estimated using train and ĉy is the empirical class-conditional coverage as defined in (16). A
similar weighting procedure is used to estimate the average set size.
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1. We include additional methods: We include one additional baseline method called EXACT
CLASSWISE, a randomized version of classwise conformal that is designed to achieve exact
(rather than at least) 1 − α coverage, as described in Appendix C.3 of Ding et al. (2023).
We also include the Raw FUZZY and FUZZY methods we propose in Appendix A.

2. We evaluate on the truncated versions of Pl@ntNet-300K and iNaturalist-2018, as de-
scribed in Appendix C.1.

In Appendix D.1, we provide additional results to complement Figure 3 in the main paper. In
Appendix D.2, we provide results for additional methods. In Appendix D.3, we recreate Figure 3
using a ResNet-50 trained using focal loss rather than cross-entropy loss. In Appendix D.4, we do a
case study of the implications of our methods for plant identification. In Appendix D.5, we visualize
the score thresholds we obtain from our methods to demonstrate how they interpolate between the
STANDARD and CLASSWISE thresholds.

D.1 RESULTS FOR MAIN METHODS

To aid interpretation of Figure 3, we extract the metric values for select methods for α = 0.1 and
present them in Table 3 for Pl@ntNet-300K and Table 4 for iNaturalist-2018. We also include
a comprehensive visualization of all methods on all datasets, including the truncated versions, in
Figure 7.

Table 3: Set size and coverage metrics for Pl@ntNet-300K using the softmax score and α = 0.1.
The arrows next to the coverage metric names indicate whether it is better for the metric to be smaller
(↓) or larger (↑).

Method FracBelow50% ↓ UnderCovGap ↓ MacroCov ↑ MarginalCov
(desired ≥ 0.9) Avg. set size ↓

STANDARD 0.389 0.398 0.525 0.907 1.57
CLASSWISE 0.000 0.006 0.976 0.912 780.00
CLUSTERED 0.398 0.406 0.513 0.882 1.57
STANDARD w. PAS 0.167 0.193 0.755 0.902 2.57
INTERP-Q (τ = 0.9) 0.248 0.265 0.671 0.901 2.24
INTERP-Q (τ = 0.99) 0.151 0.168 0.785 0.905 3.95
INTERP-Q (τ = 0.999) 0.098 0.109 0.856 0.908 7.58

Table 4: Set size and coverage metrics for iNaturalist-2018 using the softmax score and α = 0.1.

Method FracBelow50% ↓ UnderCovGap ↓ MacroCov ↑ MarginalCov
(desired ≥ 0.9) Avg. set size ↓

STANDARD 0.058 0.116 0.849 0.902 10.9
CLASSWISE 0.000 0.002 0.992 0.954 7430.0
CLUSTERED 0.059 0.118 0.845 0.880 8.4
STANDARD w. PAS 0.042 0.093 0.875 0.900 11.3
INTERP-Q (τ = 0.9) 0.034 0.081 0.891 0.907 16.8
INTERP-Q (τ = 0.99) 0.020 0.055 0.924 0.923 31.1
INTERP-Q (τ = 0.999) 0.010 0.037 0.947 0.934 55.8

D.2 RESULTS FOR ADDITIONAL METHODS

FUZZY with other class mappings. Recall that in order to instantiate FUZZY CP, we must choose
a mapping Π that maps each class y ∈ Y to some low-dimensional space in which we can compute
distances in a meaningful way. Depending on the setting, some mappings may work better than
others. The mapping we proposed in the main paper, Πprevalence is a simple mapping that works
well in the long-tailed settings we considered. In this section, we present results for two additional
mappings. We describe all three mappings here.
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Figure 7: Average set size vs. FracBelow50%, UnderCovGap, MacroCov, and MarginalCov for
various methods on full and truncated datasets. For methods with tunable parameters, lines are used
to trace out the trade-off curve achieved by running the method with different values for a fixed α.
For FracBelow50% and UnderCovGap, it is better to be closer to the bottom left. For MacroCov, the
bottom right is better. For MarginalCov, we want to be at the bottom and to the right of the dotted
line at 1− α for the α at which the method is run.

1. Prevalence: This is the mapping presented before, which maps each class to its popularity
in the train set:

Πprevalence(y) = cntrain
y + εy,

where εy ∼ Unif([−0.01, 0.01]) independently for each for y ∈ Y . We normalize using
c = 1/(maxy′∈Y ntrain

y′ ) to ensure that Πprevalence(y) ∈ [0, 1] so that the same bandwidth
σ has similar effects on different datasets.

2. Random. As a baseline, we try mapping each class to a random value. Specifically,

Πrandom(y) = Uy where Uy
iid∼ Unif([0, 1]) for y ∈ Y.

3. Quantile. Recall the intuition described in the last paragraph of Section 2, which says
that we want a mapping that groups together classes with similar score distributions. To
further develop this intuition, suppose that when computing q̂y , we assign non-zero weights
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only to classes with the same 1 − α score quantile as class y. Taking the 1 − α weighted
quantile would then recover the 1 − α quantile of class y as the number of samples with
non-zero weight grows. This is because the mixture of distributions with the same 1 − α
quantile has that same 1 − α quantile. Motivated by this idea, we map each class to the
linearly interpolated empirical 1 − α quantile of its scores in the calibration set. This
is similar to q̂CW

y but not the same due to the linear interpolation. We chose to linearly
interpolate to avoid the problem of rare classes being mapped to ∞, which happens if
we apply no interpolation and directly apply Quantile1−α as it is defined in Section 1.2.
Linear interpolation of quantiles is described in Definition 7 of Hyndman & Fan (1996) and
is the default interpolation method implemented in numpy.quantile() (Harris et al.,
2020). Given a finite set A ⊂ R and level τ ∈ [0, 1], let LinQuantileτ (A) denote the
linearly interpolated τ quantile of the elements of A or smax if A is empty, where smax =
maxi∈[n] s(Xi, Yi) is the maximum observed calibration score. The quantile projection is
given by

Πquantile(y) = LinQuantile1−α

(
{s(Xi, Yi)}i∈Iy

)
.

Results from applying FUZZY CP with Πrandom and Πquantile are shown in Figure 8. We observe
that Πprevalence achieves a better trade-off than Πrandom, which is expected, but it also performs
better than Πquantile, which is perhaps less expected. We believe that the reason that the quantile
projection does not do well, despite being intuitively appealing, is that it is very sensitive to noise
due to the low number of calibration examples per class. This likely causes classes that do not
actually have similar score distributions to be mapped to similar values.
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Figure 8: The performance of FUZZY CP under different class mappings Π.

FUZZY and INTERP-Q with PAS. Recall that we proposed two solution approaches in the main
paper. One led to a conformal score function, PAS, and the other led to new procedures, INTERP-Q
and FUZZY. One may wonder if combining the two approaches provides additional benefit over
using just one, so we test this idea. In Figure 9, we plot the results of running FUZZY and INTERP-Q
using PAS as the conformal score function. The thick blue ×’s correspond to STANDARD with PAS
(previously shown as green triangles in the main text), and we observe that the interpolation methods,
FUZZY with PAS and INTERP-Q with PAS, do provide some additional benefit at appropriately
chosen parameter values by more optimally trading off set size and UnderCovGap, while doing no
worse than STANDARD with PAS in terms of other metrics.
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Figure 9: This plot is similar to Figure 3 except here we use PAS as the conformal score function
instead of softmax. Note that the thick blue ×’s in this plot are equivalent to the gold triangles in
Figure 3.
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Figure 10: This figure is identical to Figure 3 except the base model is trained using focal loss (Lin
et al., 2017)

D.3 RESULTS USING FOCAL LOSS

To understand how our proposed conformal prediction methods can be combined with existing
strategies for dealing with long-tailed distributions, we run additional experiments where we replace
the cross-entropy loss with the focal loss in our ResNet-50 training. The focal loss was proposed
by Lin et al. (2017) to improve model accuracy on rare classes by modifying the cross-entropy
loss. We use the PyTorch implementation of focal loss from https://github.com/AdeelH/
pytorch-multi-class-focal-losswith the default parameter values of γ = 2 and α = 1.
The results are shown in Figure 10 and are qualitatively similar to the cross-entropy results in Figure
3 in the main paper.
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D.4 PL@NTNET CASE STUDY

In this section, we highlight the importance of conformal prediction for settings like Pl@ntNet, a
phone-based app that allows users to identify plants from images (Joly et al., 2014). Conformal
prediction provides value to such applications by generating sets of possible labels instead of point
predictions. These prediction sets should balance several desiderata:

1. Marginal coverage. For the general public, prediction sets improve the user experience
relative to point predictions by offering multiple potential identifications, increasing the
likelihood of accurate identification even with ambiguous or low-quality images. In order
for users to have a good chance of making the correct identification most of the time, we
want the marginal coverage to be high.

2. Class-conditional coverage (especially in the tail). Ecologists would like to focus more
on identifying (near) endangered or less commonly observed species for the purpose of
scientific data collection. This calls for improving coverage of classes in the tail of the
label distribution.

3. Set size. For both the general public and ecologists, maintaining reasonable set sizes is
crucial, as sifting through large sets is impractical.

An additional challenge in plant identification is that visually similar species often have imbalanced
labeled images, with one species significantly more represented. Standard conformal methods can
suffer from occlusion, where the dominant species overshadows the rarer one at prediction time,
so that the classifier always assigns low probability to the rare class. If the rare species is never
included in the prediction sets, this can lead to a vicious cycle of increasing imbalance, as users
simply confirm the classifier’s suggestions.

For this case study, we focus on comparing our proposed method STANDARD with PAS against
STANDARD and CLASSWISE when run at the α = 0.1 level. All methods have a marginal coverage
guarantee, so we focus on comparing class-conditional coverage and set size between the methods.
Figure 11 shows the class-conditional coverage and average set size for the three methods. Species
that are considered endangered by the International Union for Conservation of Nature (IUCN) are
highlighted in red. We observe that CLASSWISE results in huge prediction sets. On the other hand,
STANDARD with PAS enhances the coverage of classes that have low coverage under STANDARD
with softmax without producing huge sets. We provide visual examples of some endangered species
from the Pl@ntNet-300K dataset in Figure 12.
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Figure 11: A detailed look at results by class on Pl@ntNet-300K dataset for three methods:
STANDARD (with softmax), CLASSWISE (with softmax), and STANDARD with PAS. All meth-
ods are run at the α = 0.1 level. Species are ordered according to the prevalence (computed on
train), and the ones considered “threatened” according to the IUCN are highlighted in red.
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Species: Metasequoia glyp-
tostroboides Hu & W.C.Cheng
# of examples: 410

Method Coverage Size

Standard 0.50 1.3
Classwise 1.00 717.4
Std w. PAS 1.00 4.6

Species: Vanilla planifolia Jacks.
ex Andrews
# of examples: 35

Method Coverage Size

Standard 0.00 2.8
Classwise 1.00 721.8
Std w. PAS 1.00 8.6

Species: Abeliophyllum distichum
Nakai
# of examples: 4

Method Coverage Size

Standard 0.00 3.0
Classwise 1.00 723.0
Std w. PAS 1.00 8.0

Figure 12: Examples of three species in Pl@ntNet-300K considered as “endangered” by the IUCN.
Each table reports the empirical class-conditional coverage and the average size of the prediction
sets when the given species is the true label for two baseline methods (STANDARD with softmax
and CLASSWISE with softmax), as well as one of our proposed methods (STANDARD with PAS).

D.5 UNDERSTANDING MOVEMENTS IN q̂y

Figure 13 visualizes the q̂y vectors that result from each of our methods. Recall that STANDARD has
a single score threshold q̂, which we plot as a horizontal line (q̂y = q̂ for all classes y). As a reminder,
a smaller value of q̂y means that the class is less likely to be included in the prediction set, whereas
classes with q̂y = 1 (or ∞) are always included in the prediction set. For STANDARD with PAS,
we plot the effective q̂y by observing that the class-uniform q̂ threshold in terms of the PAS score
implies classwise q̂y thresholds in terms of the softmax score. Specifically, observe that

sPAS(x, y) ≤ q̂

⇐⇒ − p̂(y|x)
p̂(y)

≤ q̂ definition of sPAS

⇐⇒ 1− p̂(y|x) ≤ 1 + q̂p̂(y)

⇐⇒ ssoftmax(x, y) ≤ 1 + q̂p̂(y)

where ssoftmax denotes the softmax score function described in Section 1.2. Thus, for a class y ∈ Y ,
we refer to 1 + q̂p̂(y) as the effective q̂y of STANDARD with PAS.

All of our methods are intended to “interpolate” between STANDARD (with softmax) and
CLASSWISE (with softmax). INTERP-Q interpolates in a very literal sense by linearly interpolating
q̂ and q̂CW

y . The other three methods appear to interpolate in an alternative geometry and allow the
q̂y for each class to be adjusted in a different way. These plots also reveal why CLASSWISE yields
such large sets in this setting: there are many classes for which q̂CW

y = 1 (or ∞), and all of these
classes are always included in the prediction set.

D.6 ADDITIONAL DECISION ACCURACY PLOTS

In the main text we present decision accuracy plots for only one of our methods, STANDARD with
PAS. In Figure 14, we present results for our other method, INTERP-Q.
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Figure 13: Score thresholds q̂y of our proposed methods (STANDARD with PAS, Raw FUZZY,
FUZZY, and INTERP-Q) on Pl@ntNet-300K for α = 0.1. For visualization purposes, infinite values
of q̂y are replaced with one, the maximum possible softmax score value. Furthermore, for ease of
comparison, we sort the classes in ascending value of the CLASSWISE thresholds q̂CW

y (plotted as a
dashed red line).
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Figure 14: Class-conditional decision accuracies for a range of decision makers when presented
with sets from INTERP-Q run with different values of τ . Recall that τ = 0 recovers STANDARD and
τ = 1 recovers CLASSWISE. Classes are ordered by decreasing decision accuracy of Hexpert under
each method.
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