

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CONFORMAL PREDICTION FOR LONG-TAILED CLASSIFICATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Many real-world classification problems, such as plant identification, have extremely long-tailed class distributions. In order for prediction sets to be useful in such settings, they should *(i) provide good class-conditional coverage*, ensuring that rare classes are not systematically omitted from the prediction sets, and *(ii) be a reasonable size*, allowing users to easily verify candidate labels. Unfortunately, existing conformal prediction methods, when applied to the long-tailed setting, force practitioners to make a binary choice between small sets with poor class-conditional coverage or sets with very good class-conditional coverage but that are extremely large. We propose methods with marginal coverage guarantees that smoothly trade off between set size and class-conditional coverage. First, we introduce a new conformal score function called prevalence-adjusted softmax that targets macro-coverage, a relaxed notion of class-conditional coverage. Second, we propose a new procedure that interpolates between marginal and class-conditional conformal prediction by linearly interpolating their conformal score thresholds. We demonstrate our methods on PI@ntNet-300K and iNaturalist-2018, two long-tailed image datasets with 1,081 and 8,142 classes, respectively.

1 INTRODUCTION

Prediction sets are useful because they replace a single fallible point prediction with a set that is likely to contain the true label. In classification, prediction sets are most useful in settings *with many classes*, as they provide a selection of candidate labels that human decision makers can verify. Consider an amateur plant enthusiast who wants to identify a plant. The enthusiast struggles to identify plants on their own, but when presented with a short list of possible matches, it is easy for them to go through the list and select the correct species (e.g., by comparing their plant with images of potential matches).

Another key characteristic of plant identification is its *extremely long-tailed class distribution*. As shown in Figure 1, there are thousands of images of common plants but only a handful for rare plants. Such skewed distributions also appear in animal identification and disease diagnosis. An added challenge is that we often care even more about identifying instances of the rare classes than the popular ones. In botany, scientists may want to prioritize the acquisition of examples of endangered plant species, which fall in the tail (Figure 1). In medicine, catching the few cases of an aggressive cancer early matters more than perfectly classifying common benign lesions. In collaborative human-AI systems where a human generates labels based on AI recommendations and these labels are used to improve the predictive model in future training rounds, neglecting niche classes can accelerate “model collapse” (Shumailov et al., 2024), shrinking the model’s effective label space over time and degrading accuracy. This motivates pursuing prediction sets where all classes have a high probability of being correctly included in the prediction set. Beyond training good predictive models in this setting, an additional challenge for post-hoc uncertainty quantification is that most available examples of rare classes are used for model training, leaving these classes with few or zero holdout examples to use for calibrating uncertainty quantification methods.

Formally, let $X \in \mathcal{X}$ be features with unknown label $Y \in \mathcal{Y} = \{1, 2, \dots, |\mathcal{Y}|\}$. Our goal is to construct a set-generating procedure $\mathcal{C} : \mathcal{X} \rightarrow 2^{\mathcal{Y}}$, where $2^{\mathcal{Y}}$ denotes the set of all subsets of \mathcal{Y} , with good class-conditional coverage. For $y \in \mathcal{Y}$, the *class-conditional coverage* of \mathcal{C} for class y is $\text{CondCov}(\mathcal{C}, y) = \mathbb{P}(Y \in \mathcal{C}(X) \mid Y = y)$. This can be contrasted with *marginal coverage*, which is simply $\text{MarginalCov}(\mathcal{C}) = \mathbb{P}(Y \in \mathcal{C}(X))$. To ensure that our prediction sets are useful for identifying instances of all classes, including rare ones, we aim for high class-conditional coverage

Figure 1: The number of `train` examples of each species in Pl@ntNet-300K (Garcin et al., 2021). We highlight threatened species, as defined by the International Union for Conservation of Nature (<https://iucn.org>), which are particularly important to identify for biodiversity monitoring purposes. Note that most of these species are in the tail of the distribution.

across all classes. In addition to coverage, set size is also crucial, as large sets are often impractical. For instance, in plant identification, enthusiasts lack the time to review prediction sets containing hundreds of species. Ideally, we would generate prediction sets with both high class-conditional coverage and small size. Unfortunately, there is an inherent trade-off between small set sizes and class-conditional coverage in the long-tailed setting.

Conformal prediction (CP) provides methods guaranteed to achieve marginal or class-conditional coverage under no distributional assumptions. STANDARD CP, the most basic conformal prediction method, yields small sets but only guarantees marginal coverage and often has poor class-conditional coverage for some classes. However, approaches targeting class-conditional coverage struggle in scenarios where many classes have few examples. In such settings, CLASSWISE CP (a Mondrian conformal variant Vovk et al., 2005) and rank-calibrated class-conditional CP (Shi et al., 2024) produce large sets, and Clustered CP (Ding et al., 2023) effectively defaults to STANDARD CP for rare classes that it is unable to assign to a cluster.

Objective. Our goal is to produce prediction sets that maintain marginal coverage while striking a more useful trade-off between set size and class conditional coverage than STANDARD or CLASSWISE CP. We approach this in two ways.

APPROACH I: Target a relaxed notion of class-conditional coverage. Motivated by the multi-class classification concept of “macro-accuracy,” which is the average of class-wise accuracies (Lewis, 1991), we aim to construct sets with high **macro-coverage**, which is the average of class-conditional coverages:

$$\text{MacroCov}(\mathcal{C}) = \frac{1}{|\mathcal{Y}|} \sum_{y \in \mathcal{Y}} \mathbb{P}(Y \in \mathcal{C}(X) \mid Y = y) = \frac{1}{|\mathcal{Y}|} \sum_{y \in \mathcal{Y}} \text{CondCov}(\mathcal{C}, y). \quad (1)$$

In contrast, marginal coverage is a weighted average of class-conditional coverages where the weight of class y is its prevalence $p(y)$:

$$\text{MarginalCov}(\mathcal{C}) = \sum_{y \in \mathcal{Y}} p(y) \cdot \text{CondCov}(\mathcal{C}, y). \quad (2)$$

This emphasizes coverage of more frequent classes. We derive the form of the prediction set that optimally trades off set size and macro-coverage under oracle knowledge of the underlying distribution and design a conformal score function, called **prevalence-adjusted softmax** (PAS), which approximates these oracle optimal sets given an imperfect classifier $\hat{p}(y|x)$ and estimated label distribution $\hat{p}(y)$.

APPROACH II: Target class-conditional coverage, then back off (until the set size is reasonable). We propose a simple procedure called **INTERP-Q** that interpolates between CLASSWISE CP and STANDARD CP in a literal sense by linearly interpolating their quantile thresholds. This method allows the user to choose their position on the trade-off curve between set size and class-conditional coverage via the interpolation parameter.

The choice between these two approaches depends on the setting. Targeting macro-coverage (APPROACH I) implies that we care equally about the coverage of all classes, but it is acceptable if a few classes have poor coverage, so long as the average class-conditional coverage is high. On the other hand, starting from CLASSWISE and softening (APPROACH II) implies that we want *all* classes to have good coverage. This approach also comes with a parameter that the user can vary depending on their preference between small sets and class-conditional coverage.

108

1.1 RELATED WORK

109

110

111

112

113

114

115

116

117

Class-conditional conformal prediction. Conformal prediction provides a way to construct prediction sets with coverage guarantees given a calibration dataset that is exchangeable with the test point (Vovk et al., 2005; Angelopoulos & Bates, 2023). We are specifically interested in class-conditional coverage, which is difficult to achieve in a useful way when many classes have very few calibration examples, as is the case in long-tailed settings. Previous works on class-conditional conformal focus on easy settings with at most ten classes (Shi et al., 2013; Löfström et al., 2015; Hechtlinger et al., 2018; Sadinle et al., 2019), or the harder setting of many classes with some class imbalance but still lacking a truly long tail (Ding et al., 2023; Shi et al., 2024).

118

119

120

121

122

123

124

125

126

127

Optimally trading off set size and coverage. Prediction sets should achieve the desired coverage while being as small as possible, so as to be maximally informative. In general, the set-generating procedures that optimally navigate the coverage-size trade-off depend on the density of the underlying distribution (Lei et al., 2013; Lei & Wasserman, 2014; Vovk et al., 2016; Sadinle et al., 2019). Although the true density is unknown in practice, these theoretically optimal sets serve as guidelines for designing effective conformal score functions or new conformal procedures for various target quantities, such as X -conditional coverage (e.g., APS from Romano et al., 2020, RAPS from Angelopoulos et al., 2021, SAPS from Huang et al., 2023, CQC from Cauchois et al., 2021) or size (Denis & Hebiri, 2017; Kiyani et al., 2024). In APPROACH I, we construct a score function inspired by the oracle sets that optimally trade-off set size and *macro-coverage*, a coverage target that has not been previously explored in this context.

128

129

130

131

132

133

134

135

136

137

138

139

140

Learning from long-tailed data. Many real-world classification problems exhibit long-tailed distributions, a challenge particularly pronounced in *fine-grained visual categorization*, a field that has recently attracted substantial interest, especially in biodiversity (Van Horn et al., 2015; 2018; Garcin et al., 2021; Wang et al., 2022). The goal is to classify images into highly specific subcategories (e.g., plant species), which often differ only subtly. While extensive research has focused on improving class-conditional top-1 or top- k accuracy for such tasks (Russakovsky et al., 2015; Lapin et al., 2015; Liu et al., 2019; Garcin et al., 2021; Zhang et al., 2023), less attention has been devoted to constructing high-quality prediction sets in long-tailed settings, beyond the naive approach of selecting the top- k predictions. While methods like logit adjustment for long-tail learning (Menon et al., 2021) and focal loss for dense object detection (Lin et al., 2017) address class imbalance through reweighting or output adjustment to improve classification performance, designing robust prediction sets under long-tailed distributions remains understudied. Addressing this gap is critical for systems like PI@ntNet (Joly et al., 2014), a plant identification app where users upload images and receive candidate species matches.

141

142

1.2 PRELIMINARIES

143

144

145

146

147

148

Notation. For a positive integer n , let $[n] := \{1, \dots, n\}$. Let $\mathcal{D}_{\text{cal}} = \{(X_i, Y_i) \text{ for } i \in [n]\}$ be a calibration set, where (X_i, Y_i) for $i = 1, \dots, n$ are exchangeable with the test point (X_{n+1}, Y_{n+1}) , where the label Y_{n+1} is unknown. For a class $y \in \mathcal{Y}$, we use $\mathcal{I}_y = \{i \in [n] : Y_i = y\}$ to denote the set of calibration points with label y and $n_y = |\mathcal{I}_y|$ the number of calibration points with label y . Let $\alpha \in [0, 1]$ be a user-specified probability of miscoverage. We use $s : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ to denote a conformal score function, where smaller values of $s(x, y)$ indicate that the pair (x, y) conforms better with previously seen data.

149

150

151

152

153

154

155

156

Score function. We focus on the split conformal setting in which the score function s is constructed using a predictive model trained on data separate from the calibration set \mathcal{D}_{cal} . We use the softmax conformal score function, defined as $s_{\text{softmax}}(x, y) = 1 - \hat{p}(y|x)$, where $\hat{p}(y|x)$ is the predicted probability for class y for input x obtained from the softmax output of a trained neural network. **This is also known as the Least Ambiguous Classifier (LAC) score** (Sadinle et al., 2019). Our methods can be readily adapted to other scoring functions but we focus on this score because alternatives like APS (Romano et al., 2020) and its variants produce larger sets and are primarily designed for X -conditional coverage, which is outside our scope.

157

158

159

Conformal prediction as thresholded sets. Let $\mathbf{q} = (q_1, q_2, \dots, q_{|\mathcal{Y}|})$ be a $|\mathcal{Y}|$ -dimensional vector of score thresholds. Define the \mathbf{q} -thresholded set as

$$\mathcal{C}(X; \mathbf{q}) = \{y \in \mathcal{Y} : s(X, y) \leq q_y\}. \quad (3)$$

160

161

Conformal prediction provides principled ways to set \mathbf{q} as a function of the calibration data \mathcal{D}_{cal} and the chosen miscoverage level α so as to achieve coverage guarantees.

162 **Algorithm 1** Conformal prediction

163 **Require:** Score function $s : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$, miscoverage level $\alpha \in [0, 1]$, calibration set $\mathcal{D}_{\text{cal}} =$
 164 $\{(X_i, Y_i)\}_{i=1}^n$, test point X_{n+1} , threshold function $\hat{\mathbf{q}} : \mathbb{R}^n \times [0, 1] \rightarrow \mathbb{R}^{|\mathcal{Y}|}$
 165 Compute scores: $S_i \leftarrow s(X_i, Y_i)$ for $i = 1, \dots, n$
 166 Compute thresholds: $\mathbf{q} \leftarrow \hat{\mathbf{q}}((S_i)_{i=1}^n, \alpha)$
 167 **return** Prediction set $\mathcal{C}(X_{n+1}) = \{y : s(X_{n+1}, y) \leq q_y\}$, where q_y is the y -th entry of \mathbf{q}

169
 170 STANDARD conformal prediction constructs sets as $\mathcal{C}_{\text{STAND.}}(X) := \mathcal{C}(X; \hat{\mathbf{q}}_{\text{STAND.}})$ for $\hat{\mathbf{q}}_{\text{STAND.}} =$
 171 $(\hat{q}, \dots, \hat{q})$ where

173
 174
$$\hat{q} = \text{Quantile}_{1-\alpha} \left(\frac{1}{n+1} \sum_{i=1}^n \delta_{s(X_i, Y_i)} + \frac{1}{n+1} \delta_\infty \right), \quad (4)$$

 175

176 and where $\text{Quantile}_\gamma(P) = \inf\{x \in \mathbb{R} : \mathbb{P}(V \leq x) \geq \gamma\}$ denotes the level- γ quantile of a random
 177 variable $V \sim P$ and δ_s is the Dirac measure at point s (this follows the notation of Tibshirani
 178 et al., 2019). By setting the thresholds in this way, STANDARD conformal prediction sets achieve a
 179 *marginal coverage* guarantee (Vovk et al., 2005):
 180

181
$$\mathbb{P}(Y \in \mathcal{C}(X; \hat{\mathbf{q}}_{\text{STAND.}})) \geq 1 - \alpha. \quad (5)$$

 182

183 CLASSWISE conformal prediction constructs sets as $\mathcal{C}_{\text{CLASSWISE}}(X) := \mathcal{C}(X; \hat{\mathbf{q}}_{\text{CLASSWISE}}(s, \mathcal{D}_{\text{cal}}))$
 184 where the y -th entry of $\hat{\mathbf{q}}_{\text{CLASSWISE}}(s, \mathcal{D}_{\text{cal}})$ is
 185

186
$$\hat{q}_y^{\text{CW}} = \text{Quantile}_{1-\alpha} \left(\frac{1}{n_y + 1} \sum_{i \in \mathcal{I}_y} \delta_{s(X_i, Y_i)} + \frac{1}{n_y + 1} \delta_\infty \right). \quad (6)$$

 187
 188

189 CLASSWISE conformal prediction sets achieve a *class-conditional coverage* guarantee (Vovk et al.,
 190 2005):

191
$$\mathbb{P}(Y \in \mathcal{C}(X; \hat{\mathbf{q}}_{\text{CLASSWISE}}) \mid Y = y) \geq 1 - \alpha, \quad \text{for all } y \in \mathcal{Y}. \quad (7)$$

 192

193 By marginalizing over y , this implies that $\mathcal{C}_{\text{CLASSWISE}}(X)$ also achieves $1 - \alpha$ marginal cover-
 194 age.

195 We explicitly describe the meta-algorithm for conformal prediction in Algorithm 1. The existing
 196 methods, STANDARD and CLASSWISE, and the methods we will propose in the next section are
 197 instantiations of this meta-algorithm for the score functions and threshold functions described in
 198 Table 1.
 199

200

2 METHODS

201 We take two approaches to the problem of
 202 simultaneously achieving reasonable set sizes
 203 and reasonable class-conditional coverage in
 204 the long-tailed classification setting, each lead-
 205 ing to a method. APPROACH I targets the
 206 weaker guarantee of macro-coverage. From
 207 this, we derive an oracle set that optimally
 208 balances set size and macro-coverage. We
 209 then define a conformal score function (PAS)
 210 by replacing the true conditional density with
 211 its estimate. We also consider an exten-
 212 sion (WPAS) that prioritizes coverage of user-
 213 specified classes. APPROACH II addresses
 214 the trade-off by interpolating between class-
 215 conditional and marginal score quantiles, leading to a simple new procedure (INTERP-Q). We defer
 the formal statements of propositions and their proofs to Appendix B.

202 Table 1: Summary of the conformal methods
 203 considered. MargCov refers to the marginal cov-
 204 erage guarantee of the method.

	Score function	Threshold function	MargCov
STANDARD	any	$\hat{\mathbf{q}}_{\text{STAND.}} \text{ (4)}$	$1 - \alpha$
CLASSWISE	any	$\hat{\mathbf{q}}_{\text{CLASSWISE}} \text{ (6)}$	$1 - \alpha$
PAS*	$s_{\text{PAS}} \text{ (11)}$	$\hat{\mathbf{q}}_{\text{STAND.}} \text{ (4)}$	$1 - \alpha$
WPAS*	$s_{\text{WPAS}} \text{ (14)}$	$\hat{\mathbf{q}}_{\text{STAND.}} \text{ (4)}$	$1 - \alpha$
INTERP-Q*	any	$\hat{\mathbf{q}}^{\text{IQ}} \text{ (15)}$	$1 - 2\alpha$

205 *Our methods

206 APPROACH II addresses
 207 the trade-off by interpolating between class-
 208 conditional and marginal score quantiles, leading to a simple new procedure (INTERP-Q). We defer
 209 the formal statements of propositions and their proofs to Appendix B.

216 2.1 APPROACH I: TARGETING (WEIGHTED) MACRO-COVERAGE VIA A NEW SCORE
217

218 We consider the population optimization problem of minimizing the expected set size subject to a
219 macro-coverage constraint,

$$220 \min_{\mathcal{C}: \mathcal{X} \mapsto 2^{\mathcal{Y}}} \mathbb{E}[|\mathcal{C}(X)|] \quad \text{subject to MacroCov}(\mathcal{C}) \geq \beta, \quad (8)$$

221 and its dual version maximizing macro-coverage subject to an expected set size constraint,

$$223 \max_{\mathcal{C}: \mathcal{X} \mapsto 2^{\mathcal{Y}}} \text{MacroCov}(\mathcal{C}) \quad \text{subject to } \mathbb{E}[|\mathcal{C}(X)|] \leq \kappa \quad (9)$$

225 where $\text{MacroCov}(\mathcal{C})$ is defined in (1) and $\beta \geq 0$ and $\kappa \geq 0$.

226 **Proposition 1** (Informal). *The solutions of (8) and (9) are of the form*

$$227 \mathcal{C}^*(x) = \{y \in \mathcal{Y} : p(y|x)/p(y) \geq t\}, \quad (10)$$

228 for some threshold t that depends on β or κ , respectively.

230 The key takeaway from this proposition is that thresholding on $p(y|x)/p(y)$ optimally balances
231 macro-coverage and expected set size. Specifically, among set-generating procedures with a given
232 expected set size, none achieve better macro-coverage than thresholding on $p(y|x)/p(y)$. Similarly,
233 for a fixed macro-coverage, no other procedure yields a smaller expected set size. We contrast
234 this with the solution to the more classical problem of minimizing the expected set size subject
235 to marginal or class-conditional coverage, which is given by thresholding on $p(y|x)$ (Neyman &
236 Pearson, 1933; Sadinle et al., 2019).

237 Although we do not have access to $p(y|x)$ and $p(y)$ in practice, we have estimates $\hat{p}(y|x)$ and
238 $\hat{p}(y)$ from our classifier and the distribution of empirical training labels, respectively. By creating
239 prediction sets as $\hat{\mathcal{C}}(x) = \{y \in \mathcal{Y} : \hat{p}(y|x)/\hat{p}(y) \geq t\}$ for a threshold t , we approximate an oracle
240 Pareto-optimal set. We choose t to achieve $1 - \alpha$ marginal coverage in the following way: Observe
241 that $\hat{\mathcal{C}}$ can be rewritten as $\hat{\mathcal{C}}(x) = \{y \in \mathcal{Y} : s_{\text{PAS}}(x, y) \leq -t\}$, where

$$242 s_{\text{PAS}}(x, y) = -\hat{p}(y|x)/\hat{p}(y) \quad (11)$$

243 and PAS stands for *prevalence-adjusted softmax*. By setting $-t$ as the STANDARD CP \hat{q} from (4)
244 using s_{PAS} as the score, $\hat{\mathcal{C}}$ inherits the marginal coverage guarantee of STANDARD CP. In summary,
245 the first method we propose is simply running STANDARD CP with the PAS score function (which
246 we will refer to as STANDARD with PAS), as this achieves the desired marginal coverage guarantee
247 while (approximately) optimally trading off set size and macro-coverage. **We emphasize that PAS**
248 **aims to better handle this tradeoff, but does not directly target a macro-coverage guarantee.**

249 **Extension to weighted macro-coverage.** Recall that macro-coverage is the unweighted average
250 of the class-conditional coverages, and the PAS score function is designed to optimize macro-
251 coverage among all set-generating procedures with a certain expected set size. However, in some
252 settings, we may wish instead to optimize for a weighted average of the class-conditional cover-
253 ages (e.g., because it is more important to cover some classes than others). Given user-chosen class
254 weights $\omega(y)$ for $y \in \mathcal{Y}$ that sum to one, we can similarly define the *ω -weighted macro-coverage*
255 as

$$256 \text{MacroCov}_{\omega}(\mathcal{C}) = \sum_{y \in \mathcal{Y}} \omega(y) \mathbb{P}(Y \in \mathcal{C}(X) \mid Y = y). \quad (12)$$

259 For $\omega(y) = |\mathcal{Y}|^{-1}$ we recover MacroCov and for $\omega(y) = p(y)$ we get MarginalCov.

260 **Proposition 2** (Informal). *The solutions of (8) and (9) when MacroCov is replaced with
261 MacroCov $_{\omega}$ are of the form*

$$262 \mathcal{C}^*(x) = \{y \in \mathcal{Y} : \omega(y) \cdot p(y|x)/p(y) \geq t\}, \quad (13)$$

263 for some threshold t that depends on ω and β or κ , respectively.

265 We can approximate these optimal sets by running STANDARD CP with the *weighted prevalence-
266 adjusted softmax* (WPAS),

$$267 s_{\text{WPAS}}(x, y) := -\omega(y) \frac{\hat{p}(y|x)}{\hat{p}(y)}, \quad (14)$$

269 as the score function.

270 2.2 APPROACH II: SOFTENING CLASSWISE CP VIA INTERP-Q
271

272 We now propose a simple way to interpolate between the behaviors of CLASSWISE and STANDARD
273 by linearly interpolating their quantile thresholds. We call this procedure INTERP-Q for “interpo-
274 lated quantile” because it constructs sets as $\mathcal{C}_{\text{INTERP-Q}}(X) := \mathcal{C}(X; \hat{\mathbf{q}}_{\text{IQ}})$ where the y -th entry of $\hat{\mathbf{q}}_{\text{IQ}}$
275 is a weighted average of \hat{q} and \hat{q}_y^{CW} (as defined in (4) and (6)) for some weight $\tau \in [0, 1]$. That
276 is,

$$\hat{q}_y^{\text{IQ}} = \tau \hat{q}_y^{\text{CW}} + (1 - \tau) \hat{q} \quad \text{for all } y \in \mathcal{Y}. \quad (15)$$

277 For classes where $\hat{q}_y^{\text{CW}} = \infty$ due to small n_y , we replace it with one (the maximum possible value
278 of the s_{softmax} conformal score) before interpolating.

279 **Proposition 3.** *If \hat{q} and \hat{q}_y^{CW} (for $y \in \mathcal{Y}$) are the STANDARD and CLASSWISE conformal quantiles
280 for $\alpha \in [0, 1]$, then $\mathcal{C}_{\text{INTERP-Q}}$ achieves a marginal coverage of at least $1 - 2\alpha$.*

281 Theoretically, this bound is almost tight; we can construct a pathological example where INTERP-Q
282 achieves coverage of $1 - 2\alpha + \alpha^2$, which is close to $1 - 2\alpha$ for small α (see Appendix B.3).
283 Empirically, however, we find that INTERP-Q achieves coverage close to $1 - \alpha$. This is because
284 the real data we test on do not exhibit the pathologies from our example (which uses discrete score
285 distributions that differ greatly between classes).

286 In Appendix A, we consider an alternative way of instantiating the interpolation idea used by
287 INTERP-Q. We propose a method called FUZZY Classwise CP that interpolates by computing
288 weighted quantiles using class-dependent weights determined by some notion of class similar-
289 ity.

290 3 EXPERIMENTS
291

292 **Overview.** We consider two datasets for long-tailed classification: Pl@ntNet-300K (Garcin et al.,
293 2021) and iNaturalist-2018 (Van Horn et al., 2018). Figure 2 shows the class distributions of the
294 datasets we use. A key challenge of Pl@ntNet-300K and iNaturalist-2018 is that their test sets are
295 also long-tailed, hindering reliable class-conditional evaluation for rare classes.¹ To address this, we
296 create truncated versions (see Appendix C.1 for details) that preserve some of the long-tail structure
297 while allowing for robust estimation of class-conditional metrics: Classes in the truncated datasets
298 have 100 test examples each, but we assume the test distribution of interest is equivalent to the (long-
299 tailed) train distribution, so we compute marginal metrics by computing a weighted average of the
300 class-conditional metrics where the weight for class y is the prevalence $\hat{p}(y)$ computed on `train`.
301 When it comes to aggregated class-conditional metrics (such as macro-coverage), the full and truncated
302 datasets produce similar results, so we defer the truncated results to Appendix D. However,
303 when reporting unaggregated class-conditional metrics (as is the case in Section 3.3 below), it is
304 necessary to use the truncated versions.

312 Figure 2: Class distributions (sorted by prevalence), plotted using a logarithmic scale, of the classical
313 `train`, `val`, and `test` sets in the datasets we experiment on. We further randomly split 30% of
314 `val` to use for model validation and use the remaining 70% as the calibration set \mathcal{D}_{cal} . We use the
315 truncated versions to have good estimates of class-conditional metrics

316 Unless otherwise stated, we use the s_{softmax} score function described in Section 1.2. The base model
317 is a ResNet-50 (He et al., 2016) trained using the standard cross-entropy loss (see Appendix D.3 for
318 similar results using focal loss Lin et al., 2017, a loss designed for class-imbalanced settings). More
319 details about the experimental setup are available in Appendix C.

320 **Metrics.** We evaluate each set-generating procedure $\mathcal{C} : \mathcal{X} \rightarrow 2^{\mathcal{Y}}$ on a test dataset $\{(X_i^{\mathcal{T}}, Y_i^{\mathcal{T}})\}_{i=1}^N$
321 that is separate from the data used for model training (and validation) and calibration. Let $\mathcal{J}_y \subseteq [N]$

322 ¹69% of classes in Pl@ntNet-300K and 90% of classes in iNaturalist have fewer than 10 test examples.

324 be the set of indices of the test examples with label y , and define
 325

$$326 \quad \hat{c}_y := \frac{1}{|\mathcal{J}_y|} \sum_{i \in \mathcal{J}_y} \mathbb{1}\{Y_i^T \in \mathcal{C}(X_i^T)\} \quad (16)$$

328 as the empirical class-conditional coverage of class y .
 329

330 We consider several ways of aggregating \hat{c}_y across y
 331 to obtain a scalar metric: (i) the fraction of classes
 332 with coverage below a threshold (50% in our ex-
 333 periments), (ii) the undercoverage gap, defined as
 334 the average undercoverage across classes (zero for
 335 classes with coverage at least $1 - \alpha$), and (iii) the av-
 336 erage of \hat{c}_y ’s, yielding the empirical macrocoverage.
 337 This is summarized in the first three rows of Table 2.
 338 Which of these metrics is most natural depends on
 339 the goal of the practitioner. Furthermore, we con-
 340 sider the standard prediction set metrics of marginal
 341 coverage and average set size, as detailed in the last
 342 two rows of Table 2.

343 **Methods.** We run STANDARD with the PAS score
 344 function from Section 2.1, and INTERP-Q from Sec-
 345 tion 2.2 with weights $\tau \in \{0, 0.25, 0.5, 0.75, 0.9,$
 346 $0.95, 0.975, 0.99, 0.999, 1\}$ on the CLASSWISE
 347 thresholds. These weights are chosen to effectively trace out the trade-off between set size and
 348 class-conditional coverage in our experiments. We compare against the following baseline con-
 349 formal prediction methods: STANDARD, as described in (4); CLASSWISE, as described in (6); and
 350 CLUSTERED (Ding et al., 2023), a method that targets class-conditional coverage in the many-
 351 classes setting by grouping together classes with similar score distributions and computing a single
 352 score threshold for each cluster. **Additional baselines with weaker performance, such as RC3P from**
 353 **Shi et al. (2024), are deferred to Appendix D.**

354 3.1 EVALUATING THE SIZE-COVERAGE TRADE-OFF

355 Figure 3 visualizes the trade-off between set size and various notions of coverage (class-conditional,
 356 macro-, and marginal) achieved by each method. We describe some high-level takeaways:

357 (i) *When targeting set size and class-conditional or macro-coverage, it is more effective to optimize*
 358 *for this trade-off directly than trading off set size and marginal coverage.* Adjusting α in STANDARD
 359 CP is a plausible solution to target class-conditional coverage but the results show that this does not
 360 optimally navigate the set size/class-conditional coverage trade-off, which is our goal. In compari-
 361 on, our methods, which explicitly optimize for class-conditional or macro-coverage, consistently
 362 achieve better trade-offs than STANDARD CP.

363 (ii) **CLASSWISE should generally be avoided**, as comparable class-conditional and macro-coverage
 364 can be achieved with significantly smaller sets using our proposed methods.

365 (iii) **INTERP-Q produces reasonable set sizes even for large values of τ .** Linearly interpolating
 366 between the STANDARD quantile and CLASSWISE quantile does not linearly interpolate the average
 367 set sizes of the two methods: At $\tau = 1$, INTERP-Q coincides with CLASSWISE and consequently
 368 has a very large average set size (780 for Pl@ntNet-300K and 7430 for iNaturalist-2018, $\alpha = 0.1$),
 369 but decreasing τ only slightly to $\tau = 0.99$ results in much more reasonable average set sizes of 7.6
 370 on Pl@ntNet-300K and 55.8 on iNaturalist-2018. This nonlinear relationship is likely due to the
 371 fact that the s_{softmax} distribution of rare classes is highly skewed towards one because the classifier
 372 consistently assigns them predicted probabilities near zero.

373 (iv) **STANDARD with PAS is Pareto optimal**, in the sense that at any marginal coverage level, there is
 374 no method that simultaneously achieves better set size and class-conditional/macro- coverage. This
 375 suggests that STANDARD with PAS is a good starting place for practitioners due to its simplicity and
 376 strong performance on all metrics. However, INTERP-Q is also of practical value since its tunable
 377 parameter allows practitioners to choose where they want to be on the trade-off curve between set
 378 size and class-conditional coverage while maintaining marginal coverage. Note that the two methods
 379 can also be combined, as presented in Appendix D.2, Figure 9.

Table 2: Our evaluation metrics. \hat{c}_y is the empirical coverage for class y on the test set of N points, $1 - \alpha$ is the target coverage level, and $|\mathcal{Y}|$ is the number of classes.

Metric name	Definition
FracBelow50%	$\frac{1}{ \mathcal{Y} } \sum_{y \in \mathcal{Y}} \mathbb{1}\{\hat{c}_y \leq 0.5\}$
UnderCovGap	$\frac{1}{ \mathcal{Y} } \sum_{y \in \mathcal{Y}} \max(1 - \alpha - \hat{c}_y, 0)$
MacroCov	$\frac{1}{ \mathcal{Y} } \sum_{y \in \mathcal{Y}} \hat{c}_y$
MarginalCov	$\frac{1}{N} \sum_{i=1}^N \mathbb{1}\{Y_i^T \in \mathcal{C}(X_i^T)\}$
Average set size	$\frac{1}{N} \sum_{i=1}^N \mathcal{C}(X_i^T) $

380 out the trade-off between set size and class-conditional coverage in our experiments. We compare against the following baseline con-
 381 formal prediction methods: STANDARD, as described in (4); CLASSWISE, as described in (6); and
 382 CLUSTERED (Ding et al., 2023), a method that targets class-conditional coverage in the many-
 383 classes setting by grouping together classes with similar score distributions and computing a single
 384 score threshold for each cluster. **Additional baselines with weaker performance, such as RC3P from**
 385 **Shi et al. (2024), are deferred to Appendix D.**

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

Figure 3: Average set size vs. FracBelow50%, UnderCovGap, MacroCov, and MarginalCov for various methods on the two datasets. For INTERP-Q, lines are used to trace out the trade-off curve achieved by running the method with different τ values for a fixed α . For FracBelow50% and UnderCovGap, it is better to be closer to the bottom left. For MacroCov, the bottom right is better. For MarginalCov, we want to be to the right of the dotted line at $1 - \alpha$ for the α at which the method is run.

PI@ntNet-300K case study. Suppose we want sets with 90% marginal coverage on PI@ntNet-300K. STANDARD has a small average set size of 1.57 but 421 of the 1081 plant species have coverage below 50%. Conversely, the CLASSWISE sets have zero classes with coverage below 50%, but an average set size of 780. Our methods provide a middle ground: STANDARD with PAS produces sets that have an average size only slightly bigger than STANDARD (2.57) but more than halves the number of classes with coverage below 50% to 180. INTERP-Q behaves similarly, with the added bonus that the trade-off between set size and class-conditional coverage can be tuned by adjusting τ . We provide a table of the metric values plotted in Figure 3 in Appendix D.1 and an extended PI@ntNet-300K case study in Appendix D.4.

3.2 TARGETING ENDANGERED SPECIES

Motivated by plant conservation, we use the weighted prevalence-adjusted softmax (WPAS) score to target coverage of at-risk species in PI@ntNet-300K.² Let $\mathcal{Y}_{\text{at-risk}} \subseteq \mathcal{Y}$ be the set of at-risk species. The coverage of at-risk species is weighted $\lambda \geq 1$ times more than the coverage of other species, so

$$\omega(y) = \begin{cases} \frac{\lambda}{W} & \text{if } y \in \mathcal{Y}_{\text{at-risk}} \\ \frac{1}{W} & \text{otherwise,} \end{cases}$$

where $W = \lambda |\mathcal{Y}_{\text{at-risk}}| + |\mathcal{Y} \setminus \mathcal{Y}_{\text{at-risk}}|$ is a normalizing factor to ensure $\sum_{y \in \mathcal{Y}} \omega(y) = 1$.

The results are shown in Figure 4. We observe that STANDARD with WPAS improves the class-conditional coverage of at-risk classes relative to STANDARD with softmax or PAS. Comparing WPAS to PAS, we see that increasing λ , the amount we upweight at-risk classes, leads to larger improvements in the class-conditional coverage of at-risk classes, as expected. These increases are “paid for” in terms of a mild increase in average set size and have no discernible effect on the class-conditional coverage of not-at-risk classes, which is appealing from a practical perspective.

3.3 SIMULATED HUMAN DECISION-MAKER

We now examine how coverage and set size can jointly influence human decision accuracy. Human interpretations of prediction sets can vary (Zhang et al., 2024; Hullman et al., 2025), and we focus on

²We consider species with an IUCN status of “endangered”, “vulnerable”, “near threatened”, “critically endangered”, or “lower risk” as *at risk*. Of the 1,081 total species in PI@ntNet-300K, 33 species qualify as *at-risk*.

Figure 4: Results for running STANDARD on Pl@ntNet-300K with different conformal score functions: softmax, PAS, and WPAS with $\lambda \in \{1, 10, 10^2, 10^3\}$. Increasing λ in WPAS improves the class-conditional coverage of at-risk classes, which is measured using \hat{c}_y , the empirical class-conditional coverage of class y . “At-risk average \hat{c}_y ” is computed as $(1/|\mathcal{Y}_{\text{at-risk}}|) \sum_{y \in \mathcal{Y}_{\text{at-risk}}} \hat{c}_y$ and “not-at-risk average \hat{c}_y ” is computed analogously. Note that here the y-axis is on a linear scale.

two models of human decision-making that are impacted by coverage and set size: an *expert verifier* H_{expert} and a *random guesser* H_{random} (equivalent to the uncertainty suppressing decision maker in Hullman et al., 2025). Let $H(\mathcal{C}(X), Y) \in \mathcal{Y}$ be a human’s chosen label given prediction set $\mathcal{C}(X)$ when the true label is Y . The probability $P(H(\mathcal{C}(X), Y) = Y)$ that the human chooses the correct label after seeing prediction set $\mathcal{C}(X)$ is $\mathbb{1}\{Y \in \mathcal{C}(X)\}$ if $H = H_{\text{expert}}$ and $\mathbb{1}\{Y \in \mathcal{C}(X)\}/|\mathcal{C}(X)|$ if $H = H_{\text{random}}$. H_{expert} is only affected by coverage and not set size, whereas random guessers are highly sensitive to set size, as they choose a label uniformly at random from the prediction set. We also consider mixture decision-makers, H_{mixture} , who act as H_{expert} with probability $\gamma_{\text{exp.}}$ and H_{random} with $1 - \gamma_{\text{exp.}}$ for $\gamma_{\text{exp.}} \in [0, 1]$. We are interested in how prediction sets affect the probability that a human correctly labels an instance of a given class, which we formalize as the *class-conditional decision accuracy* for class y under procedure \mathcal{C} , defined as $\mathbb{P}(H(\mathcal{C}(X), Y) = Y \mid Y = y)$. Note that the class-conditional decision accuracy of H_{expert} corresponds to the class-conditional coverage.

Figure 5 shows the class-conditional decision accuracies for various types of decision makers under STANDARD with PAS as compared to baselines (the plots for INTERP-Q are similar; see Appendix D.6). We report results on truncated versions of Pl@ntNet-300K and iNaturalist-2018 that only include classes with enough test examples to reliably estimate class-conditional decision accuracy (see Appendix C.1 for more details). We observe that STANDARD and STANDARD with PAS achieve strong performance regardless of $\gamma_{\text{exp.}}$, whereas CLASSWISE only does well when $\gamma_{\text{exp.}}$ is high. However, STANDARD with PAS has an additional benefit that its performance is more balanced across classes. The worst decision accuracies for STANDARD with PAS are higher than those of STANDARD, which is paid for by only a slight decrease in the best decision accuracies.

4 DISCUSSION

Limitations and future work. To use INTERP-Q, we must choose a value of τ . In practice, if we select a desired average set size and choose the parameter value that achieves this size on the calibration set, this will produce reasonable results (despite the exchangeability violation). More broadly, a promising future research direction that we touched upon is the interaction between set sizes and coverage in determining the utility of prediction sets. In particular, an important aspect of decision-making not addressed by the decision accuracy discussed in Section 3.3 is the concept of “effort”: even if a human can identify the correct label within a set, larger sets require more effort to search through.

Broader impacts. The methods we introduce have the potential to benefit society in the mid- to long- term by improving uncertainty quantification on citizen science platforms like Pl@ntNet. Our methods increase the probability that prediction sets for rare or endangered species contain the true label while keeping the average set size under control. This has important implications for biodiversity monitoring and has the potential to produce a virtuous cycle: As more images of rare species are identified, they can be used to retrain the classifier to better identify such species, which

Figure 5: Class-conditional decision accuracies for a range of decision makers when presented with sets from STANDARD, CLASSWISE or STANDARD with PAS at $\alpha = 0.1$. Classes are ordered by decreasing decision accuracy of H_{expert} under each method. **Note that the decision accuracy when $\gamma_{\text{exp.}} = 100\%$ is equivalent to the class-conditional coverage.**

in turn improves the probability that citizen scientists will correctly classify future images of these species.

REFERENCES

Anastasios N. Angelopoulos and Stephen Bates. A gentle introduction to conformal prediction and distribution-free uncertainty quantification. *Foundations and Trends in Machine Learning*, 16(4):494–591, 2023.

Anastasios N. Angelopoulos, Stephen Bates, Jitendra Malik, and Michael I. Jordan. Uncertainty sets for image classifiers using conformal prediction. In *ICLR*, 2021.

Rina Foygel Barber and Ryan J Tibshirani. Unifying different theories of conformal prediction. *arXiv preprint arXiv:2504.02292*, 2025.

Rina Foygel Barber, Emmanuel J Candès, Aaditya Ramdas, and Ryan J Tibshirani. Conformal prediction beyond exchangeability. *Ann. Statist.*, 51(2):816–845, 2023.

George Casella and Roger Berger. *Statistical Inference*. Duxbury Resource Center, June 2001. ISBN 0534243126.

Maxime Cauchois, Suyash Gupta, and John C Duchi. Knowing what you know: valid and validated confidence sets in multiclass and multilabel prediction. *J. Mach. Learn. Res.*, 22(81):1–42, 2021.

Christophe Denis and Mohamed Hebiri. Confidence sets with expected sizes for multiclass classification. *J. Mach. Learn. Res.*, 18(102):1–28, 2017.

Tiffany Ding, Anastasios Angelopoulos, Stephen Bates, Michael Jordan, and Ryan J Tibshirani. Class-conditional conformal prediction with many classes. In *NeurIPS*, volume 36, pp. 64555–64576, 2023.

Camille Garcin, Alexis Joly, Pierre Bonnet, Jean-Christophe Lombardo, Antoine Affouard, Mathias Chouet, Maximilien Servajean, Titouan Lorieul, and Joseph Salmon. Pl@ntNet-300K: a plant image dataset with high label ambiguity and a long-tailed distribution. In *NeurIPS Datasets and Benchmarks 2021*, 2021.

Camille Garcin, Maximilien Servajean, Alexis Joly, and Joseph Salmon. Stochastic smoothing of the top-k calibrated hinge loss for deep imbalanced classification. In *ICML*, volume 162, pp. 7208–7222, 2022.

540 Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
 541 Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti
 542 Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández
 543 del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy,
 544 Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array program-
 545 ming with NumPy, September 2020.

546 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 547 nition. In *CVPR*, pp. 770–778, 2016.

548 Yotam Hechtlinger, Barnabás Póczos, and Larry Wasserman. Cautious deep learning. *arXiv preprint*
 549 *arXiv:1805.09460*, 2018.

550 Jianguo Huang, Huajun Xi, Linjun Zhang, Huaxiu Yao, Yue Qiu, and Hongxin Wei. Conformal
 551 prediction for deep classifier via label ranking. *arXiv preprint arXiv:2310.06430*, 2023.

552 Jessica Hullman, Yifan Wu, Dawei Xie, Ziyang Guo, and Andrew Gelman. Conformal prediction
 553 and human decision making. *arXiv preprint arXiv:2503.11709*, 2025.

554 Rob J Hyndman and Yanan Fan. Sample quantiles in statistical packages. *The American Statistician*,
 555 50(4):361–365, 1996.

556 Alexis Joly, Hervé Goëau, Pierre Bonnet, Vera Bakić, Julien Barbe, Souheil Selmi, Itheri Yahiaoui,
 557 Jennifer Carré, Elise Mouysset, Jean-François Molino, Nozha Boujemaa, and Daniel Barthélémy.
 558 Interactive plant identification based on social image data. *Ecological Informatics*, 23:22–34,
 559 2014.

560 Shayan Kiyani, George J Pappas, and Hamed Hassani. Length optimization in conformal prediction.
 561 *NeurIPS*, 37:99519–99563, 2024.

562 Maksim Lapin, Matthias Hein, and Bernt Schiele. Top-k multiclass SVM. In *NeurIPS*, pp. 325–333,
 563 2015.

564 Jing Lei and Larry Wasserman. Distribution-free prediction bands for non-parametric regression. *J.
 565 R. Stat. Soc. Ser. B Stat. Methodol.*, 76(1):71–96, 2014.

566 Jing Lei, James Robins, and Larry Wasserman. Distribution-free prediction sets. *J. Amer. Statist.
 567 Assoc.*, 108(501):278–287, 2013.

568 David D. Lewis. Evaluating text categorization I. In *Speech and Natural Language, Proceedings of
 569 a Workshop held at Pacific Grove, California, USA, February 19-22. 1991*. Morgan Kaufmann,
 570 1991.

571 Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
 572 object detection. In *Proceedings of the IEEE international conference on computer vision*, pp.
 573 2980–2988, 2017.

574 Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and Stella X Yu. Large-
 575 scale long-tailed recognition in an open world. In *Proceedings of the IEEE/CVF conference on
 576 computer vision and pattern recognition*, pp. 2537–2546, 2019.

577 Tuve Löfström, Henrik Boström, Henrik Linusson, and Ulf Johansson. Bias reduction through
 578 conditional conformal prediction. *Intelligent Data Analysis*, 19(6):1355–1375, 2015.

579 Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit, and
 580 Sanjiv Kumar. Long-tail learning via logit adjustment. In *International Conference on Learning
 581 Representations*, 2021.

582 Jerzy Neyman and Egon Sharpe Pearson. IX. On the problem of the most efficient tests of statistical
 583 hypotheses. *Philosophical Transactions of the Royal Society of London. Series A, Containing
 584 Papers of a Mathematical or Physical Character*, 231(694-706):289–337, 1933.

585 Aleksandr Podkopaev and Aaditya Ramdas. Distribution-free uncertainty quantification for classi-
 586 fication under label shift. In *UAI*, pp. 844–853. PMLR, 2021.

594 Yaniv Romano, Matteo Sesia, and Emmanuel J. Candès. Classification with valid and adaptive
 595 coverage. In *NeurIPS*, 2020.

596

597 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
 598 Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and Li Fei-
 599 Fei. Imagenet large scale visual recognition challenge. *Int. J. Comput. Vision*, 115(3):211–252,
 600 2015.

601 Mauricio Sadinle, Jing Lei, and Larry Wasserman. Least ambiguous set-valued classifiers with
 602 bounded error levels. *J. Amer. Statist. Assoc.*, 114(525):223–234, 2019.

603

604 Jun Shao. *Mathematical statistics*. Springer Science & Business Media, 2008.

605

606 Fan Shi, Cheng Soon Ong, and Christopher Leckie. Applications of class-conditional conformal
 607 predictor in multi-class classification. In *ICML*, 2013.

608

609 Yuanjie Shi, Subhankar Ghosh, Taha Belkhoudja, Jana Doppa, and Yan Yan. Conformal prediction
 610 for class-wise coverage via augmented label rank calibration. *NeurIPS*, 37:132133–132178, 2024.

611

612 Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas Papernot, Ross Anderson, and Yarin Gal.
 613 AI models collapse when trained on recursively generated data. *Nature*, 631(8022):755–759,
 614 2024.

615

616 Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candès, and Aaditya Ramdas. Conformal pre-
 617 diction under covariate shift. In *NeurIPS*, volume 32, 2019.

618

619 Grant Van Horn, Steve Branson, Ryan Farrell, Scott Haber, Jessie Barry, Panos Ipeirotis, Pietro
 620 Perona, and Serge Belongie. Building a bird recognition app and large scale dataset with citizen
 621 scientists: The fine print in fine-grained dataset collection. In *CVPR*, pp. 595–604, 2015.

622

623 Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alexander Shepard, Hartwig
 624 Adam, Pietro Perona, and Serge J. Belongie. The iNaturalist species classification and detection
 625 dataset. In *CVPR*, pp. 8769–8778, 2018.

626

627 Vladimir Vovk, Alex Gammerman, and Glenn Shafer. *Algorithmic Learning in a Random World*.
 628 Springer, 2005.

629

630 Vladimir Vovk, Valentina Fedorova, Ilia Nouretdinov, and Alexander Gammerman. Criteria of
 631 efficiency for conformal prediction. In *Conformal and Probabilistic Prediction with Applications:
 632 5th International Symposium, COPA 2016, Madrid, Spain, April 20-22, 2016, Proceedings* 5, pp.
 633 23–39. Springer, 2016.

634

635 Jingdong Wang, Zhuowen Tu, Jianlong Fu, Nicu Sebe, and Serge Belongie. Guest editorial: Intro-
 636 duction to the special section on fine-grained visual categorization. *IEEE Trans. Pattern Anal.
 637 Mach. Intell.*, 44(02):560–562, 2022.

638

639 Dongping Zhang, Angelos Chatzimpappas, Negar Kamali, and Jessica Hullman. Evaluating the
 640 utility of conformal prediction sets for AI-advised image labeling. In *Proceedings of the 2024
 641 CHI Conference on Human Factors in Computing Systems*, pp. 1–19, 2024.

642

643 Yifan Zhang, Bingyi Kang, Bryan Hooi, Shuicheng Yan, and Jiashi Feng. Deep long-tailed learning:
 644 A survey. *IEEE Trans. Pattern Anal. Mach. Intell.*, 45(9):10795–10816, 2023.

645

646

647

648 **A FUZZY CLASSWISE CONFORMAL PREDICTION**
649

650 The INTERP-Q method introduced in Section Section 2.2 shrinks \hat{q}_y in a naive way that disregards
651 relationships between classes; in this section, we propose a more sophisticated approach called *fuzzy*
652 *classwise CP* (FUZZY for short) that assigns weights to the score of each calibration example based
653 on the “similarity” between their class and class y and then takes the quantile of this weighted
654 distribution. Notably, this approach comes with a $1 - \alpha$ marginal coverage guarantee (rather than
655 the $1 - 2\alpha$ guarantee of INTERP-Q). Empirically, we find that it does not do better than the simpler
656 INTERP-Q procedure, but we still believe it is useful to present the method, as it may be preferable in
657 settings where a marginal coverage guarantee is desired. Proofs are deferred to Appendix B.
658

659 This method relates to work on weighted conformal prediction, which generalizes standard conformal
660 prediction by computing a *weighted* quantile of calibration scores (Tibshirani et al., 2019;
661 Barber et al., 2023; Barber & Tibshirani, 2025). Methodologically closest to our work is Podkopaev
662 & Ramdas (2021), which uses label-dependent weighting to ensure marginal coverage under label
663 shift.

664 **A.1 PRELIMINARIES**

665 Recall the STANDARD CP and CLASSWISE CP procedures introduced in Section 1.2. We now
666 consider a generalization of these two methods. Let $w : \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}_{\geq 0}$ be a weighting function
667 where $w(y', y)$ is the weight assigned to a point with label y' when computing the weighted quantile
668 threshold for class y . The *w-label-weighted conformal prediction set* (see, e.g., Podkopaev &
669 Ramdas, 2021) is $\mathcal{C}_{\text{LW}}(X; w) := \mathcal{C}(X; \hat{\mathbf{q}}_w)$ where the y -th entry of $\hat{\mathbf{q}}_w$ is

$$670 \hat{q}_y^w = \text{Quantile}_{1-\alpha} \left(\sum_{i=1}^n \frac{w(Y_i, y)}{W_y} \delta_{s(X_i, Y_i)} + \frac{w(y, y)}{W_y} \delta_\infty \right) \quad (17)$$

671 and $W_y = \sum_{i=1}^n w(Y_i, y) + w(y, y)$ is a normalizing factor to ensure the weights sum to one.

672 STANDARD corresponds to label-weighted conformal with equal weights for all classes regardless
673 of y — that is, $w(y', y) \propto 1$. CLASSWISE corresponds to label-weighted conformal where nonzero
674 weights are assigned only to other calibration points of class y , i.e. $w(y', y) \propto \mathbb{1}\{y' = y\}$.
675

676 **A.2 THE FUZZY METHOD**

677 We now present the *fuzzy classwise conformal prediction* (FUZZY) procedure. We begin by presenting
678 a simpler method, Raw FUZZY, that FUZZY builds upon.

679 **Raw FUZZY.** The large sets of CLASSWISE result from not having enough data from each class when computing the score quantiles. A natural solution to this problem is to borrow data from
680 other classes, where more data is borrowed from classes that are more similar.

681 We define the *Raw FUZZY prediction set* to be the label-weighted conformal prediction set obtained using $w_{\text{FUZZY}} : \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}_{\geq 0}$ as the weighting function in (17), i.e., $\mathcal{C}_{\text{RAWFUZZY}}(X) :=$
682 $\mathcal{C}_{\text{LW}}(X; w_{\text{FUZZY}})$.
683

684 To construct this weighting function, we use a class mapping $\Pi : \mathcal{Y} \rightarrow \Lambda \subseteq \mathbb{R}^d$ for some small $d > 0$ (e.g., $\Lambda = (0, 1)$) and kernel
685 functions $h_y^\sigma : \Lambda \times \Lambda \rightarrow \mathbb{R}_{\geq 0}$ parameterized by a bandwidth $\sigma > 0$.
686

687 A good Π should map classes with similar score distributions close together. The kernel h_y^σ takes in
688 two mapped classes and outputs a non-negative scalar that is decreasing with the distance between
689 the two inputs, and it is allowed to depend on y . For example, its bandwidth could be rescaled to
690 decrease with the number of examples we have from class y so that classes with more examples
691 “borrow less” from other classes.
692

693 We then define the weighting function as
694

$$695 w_{\text{FUZZY}}(y', y) = h_y^\sigma(\Pi(y'), \Pi(y)). \quad (18)$$

696 Figure 6 visualizes how Raw FUZZY can be viewed as interpolating between STANDARD and
697 CLASSWISE CP by setting weights that are in between the two extremes.
698

699 Figure 6: The weighting
700 function w of each CP
701 method, when viewed as
702 label-weighted conformal
703 prediction.

702 The following proposition tells us that for most reasonable kernels, such as the Gaussian kernel
 703 $h^\sigma(u, v) \propto \exp(-(v - u)^2/(2\sigma^2))$, Raw FUZZY can recover both STANDARD and CLASSWISE
 704 by setting the bandwidth appropriately.

705 **Proposition 4** (Informal). *Assume Π maps each class to a unique point. If, for all $u, v \in \Lambda$ with
 706 $u \neq v$, the kernel h satisfies $h_\sigma(u, v) \rightarrow 0$ as $\sigma \rightarrow 0$ and $h_\sigma(u, v) \rightarrow h_\sigma(u, u)$ as $\sigma \rightarrow \infty$, then
 707 for sufficiently small σ we have $\mathcal{C}_{\text{RAWFUZZY}}(X) \equiv \mathcal{C}_{\text{CLASSWISE}}(X)$ and for sufficiently large σ we have
 708 $\mathcal{C}_{\text{RAWFUZZY}}(X) \equiv \mathcal{C}_{\text{STANDARD}}(X)$.*

709 **FUZZY = Raw FUZZY + reconformalization for marginal coverage.** To obtain the FUZZY pro-
 710 cedure, we add a reconformalization wrapper around Raw FUZZY to ensure marginal coverage. In
 711 order to do this reconformalization, we use a holdout dataset. In practice, this holdout dataset can
 712 be created by setting aside a relatively small part of the calibration dataset (here, 5000 examples)
 713 since we only use it to estimate a single parameter. The intuition behind our procedure is as follows.
 714 When reconformalizing, we hope to equally affect all class-conditional coverages. One way to do
 715 this is to find the $\tilde{\alpha} \geq 0$ such that running Raw FUZZY at level $1 - \tilde{\alpha}$ achieves the desired $1 - \alpha$
 716 coverage. This can be formulated as an example of STANDARD CP with a special score function
 717 $\tilde{s}(x, y) = \hat{F}_y(s(x, y))$, where

$$718 \hat{F}_y(t) = \sum_{i=1}^n w_i^y \mathbb{1}\{s(X_i, Y_i) < t\} \quad \text{and} \quad w_i^y = \frac{w_{\text{FUZZY}}(Y_i, y)}{\sum_{i=1}^n w_{\text{FUZZY}}(Y_i, y) + w_{\text{FUZZY}}(y, y)}. \quad (19)$$

721 Then, we have the equivalence $y \in \mathcal{C}_{\text{RAWFUZZY}}(x) \iff \tilde{s}(x, y) < 1 - \alpha$. The score \tilde{s} can be
 722 interpreted as (one minus) a weighted conformal p-value (Vovk et al., 2005; Barber & Tibshirani,
 723 2025), which we re-calibrate. To achieve the desired marginal coverage, the method FUZZY does
 724 STANDARD CP with the new score function \tilde{s} and held-out data as a calibration set.

725 **Proposition 5.** *Let $\mathcal{D}_{\text{cal}} = \{(X_i, Y_i)\}_{i=1}^n$ be a calibration set and $\mathcal{D}_{\text{hold}} = \{(X_i^{\mathcal{H}}, Y_i^{\mathcal{H}})\}_{i=1}^m$ be
 726 held-out examples. Define $\tilde{\alpha}$ to be the STANDARD CP threshold obtained by applying \tilde{s} on the
 727 holdout set:*

$$728 \quad 1 - \tilde{\alpha} = \text{Quantile}_{1-\alpha} \left(\frac{1}{m+1} \sum_{i=1}^m \delta_{\tilde{s}(X_i^{\mathcal{H}}, Y_i^{\mathcal{H}})} + \frac{1}{m+1} \delta_\infty \right). \quad (20)$$

731 *Then, if the scores evaluated on the held-out dataset $\tilde{s}(X_i^{\mathcal{H}}, Y_i^{\mathcal{H}})$ are exchangeable with the score
 732 of the test point, the set $\mathcal{C}_{\text{FUZZY}}(x) = \{y : \tilde{s}(x, y) \leq 1 - \tilde{\alpha}\}$ will achieve $1 - \alpha$ marginal coverage.*

733 The score function \tilde{s} depends on the calibration set \mathcal{D}_{cal} , but the assumption of exchangeability is
 734 easily satisfied, e.g., if the points of the calibration set and the held-out set and the test point are
 735 exchangeable. A careful reader may also notice that $\mathcal{C}_{\text{FUZZY}}$ is not exactly equivalent to apply Raw
 736 FUZZY at level $\tilde{\alpha}$ as a strict inequality has been replaced by a non-strict one to get the coverage
 737 guarantee. As a result, we implement FUZZY as Raw FUZZY at level $\tilde{\alpha} - \varepsilon$ for a small perturbation
 738 $\varepsilon > 0$ (specifically, $\varepsilon < \min_{i,y} \omega_i^y$).

739 Note that, if desired, we could use full conformal techniques (Vovk et al., 2005) instead of data
 740 splitting (i.e., let $\mathcal{D}_{\text{cal}} = \mathcal{D}_{\text{hold}}$), but this incurs higher computational costs that are undesirable for
 741 practical applications (see Proposition 8 for details).

743 **Choosing a mapping Π .** To instantiate FUZZY, we must define a mapping Π from \mathcal{Y} to a space
 744 in which we can compute distances between classes. What makes a good mapping? Intuitively,
 745 we want classes with similar score distributions to be mapped close together. This is similar to the
 746 motivation behind the clustering procedure from Ding et al. (2023). However, in long-tailed settings,
 747 many classes do not have sufficient calibration examples for us to estimate their score distributions.
 748 A “zero-shot” way of attempting to group together classes with similar score distributions is to group
 749 together classes based on their prevalence, with the intuition that the underlying classifier is likely
 750 to assign small softmax scores to infrequently seen classes and large scores to more frequently seen
 751 classes. Specifically, we map each class y to its number of `train` examples n_y^{train} , normalize, and
 752 then add a small amount of random noise to ensure that the uniqueness condition of Proposition 4
 753 is satisfied with probability one: $\Pi_{\text{prevalence}}(y) = cn_y^{\text{train}} + \varepsilon_y$ where $\varepsilon_y \sim \text{Unif}([-0.01, 0.01])$
 754 independently for each $y \in \mathcal{Y}$. We normalize using $c = 1/(\max_{y' \in \mathcal{Y}} n_{y'}^{\text{train}})$ to ensure that
 755 $\Pi_{\text{prevalence}}(y) \in [0, 1]$ so that the same bandwidth σ has similar effects on different datasets. This
 756 is just one possible choice for Π and is what we use in our main experiments; other options are
 757 explored in Appendix D.2.

756 **B THEORETICAL GUARANTEES**

757 **B.1 OPTIMAL PREDICTION SETS FOR (WEIGHTED) MACRO-COVERAGE**

759 In this section, we state and prove a more formal version of Proposition 2, of which Proposition 1 is
760 a special case with uniform weights.

761 **Proposition 6** (Formal version of Proposition 2). *Let $\omega : \mathcal{Y} \rightarrow [0, 1]$ be a non-negative weighting
762 function summing to one. For $t \in \mathbb{R}$, define*

$$763 \tilde{\mathcal{C}}_t(x) = \{y \in \mathcal{Y} : \tilde{s}(x, y) \geq t\} \quad \text{where} \quad \tilde{s}(x, y) = \frac{\omega(y)}{p(y)} \cdot p(y|x) \quad (21)$$

766 and $p(y|x)$ denotes the conditional density of Y given $X = x$ and $p(y)$ is the marginal density of Y .

767 (a) *Let $\alpha \in [0, 1]$. If there exists t_α such that $\text{MacroCov}_\omega(\tilde{\mathcal{C}}_{t_\alpha}) = 1 - \alpha$, then $\tilde{\mathcal{C}}_{t_\alpha}$ is the
768 optimal solution to*

$$770 \min_{\mathcal{C} : \mathcal{X} \mapsto 2^\mathcal{Y}} \mathbb{E}[|\mathcal{C}(X)|] \quad \text{subject to} \quad \sum_{y \in \mathcal{Y}} \omega(y) \mathbb{P}(y \in \mathcal{C}(X) \mid Y = y) \geq 1 - \alpha. \quad (22)$$

773 (b) *Let $\kappa \geq 0$. If there exists t_κ such that $\mathbb{E}[|\tilde{\mathcal{C}}_{t_\kappa}|] = \kappa$, then $\tilde{\mathcal{C}}_{t_\kappa}$ is the optimal solution to*

$$775 \max_{\mathcal{C} : \mathcal{X} \mapsto 2^\mathcal{Y}} \sum_{y \in \mathcal{Y}} \omega(y) \mathbb{P}(y \in \mathcal{C}(X) \mid Y = y) \quad \text{subject to} \quad \mathbb{E}[|\mathcal{C}(X)|] \leq \kappa. \quad (23)$$

778 **Remark 1.** If thresholds t_α or t_κ achieving exact equality do not exist, the optimal set remains of
779 the form (21) but must be combined with randomization to achieve the optimal solution (that has
780 weighted macro-coverage of exactly $1 - \alpha$ or expected set size of exactly κ). See, for instance, [Shao \(2008\)](#), Theorem 6.1 for a formal statement of Lemma B.1 for this case.

782 *Proof.* This result is a consequence of the Neyman-Pearson Lemma, which we state below using the
783 formulation of [Sadinle et al. \(2019\)](#) (see also [Casella & Berger, 2001](#), Theorem 8.3.12). We provide
784 a proof of this lemma in Appendix B.2.

786 **Lemma B.1** (Neyman & Pearson, 1933). *Let μ be a measure on $\mathcal{X} \times \mathcal{Y}$ and let $f, g : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}_{\geq 0}$
787 be two non-negative functions. For $\nu \geq 0$, consider the problem*

$$789 \min_{\mathcal{C} : \mathcal{X} \mapsto 2^\mathcal{Y}} \int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}\{y \in \mathcal{C}(x)\} g(x, y) d\mu(x, y) \quad (24)$$

$$791 \quad \text{subject to} \quad \int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}\{y \in \mathcal{C}(x)\} f(x, y) d\mu(x, y) \geq \nu.$$

793 If there exists t_ν such that

$$795 \int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}\{f(x, y) \geq t_\nu \cdot g(x, y)\} f(x, y) d\mu(x, y) = \nu, \quad (25)$$

797 then

$$799 \mathcal{C}_\nu^*(x) = \{y \in \mathcal{Y} : f(x, y) \geq t_\nu \cdot g(x, y)\} \quad (26)$$

801 is the optimal solution to (24): Any other minimizer \mathcal{C} of (24) is equal to \mathcal{C}_ν^* μ_f and μ_g -almost
802 everywhere, i.e., for $h \in \{f, g\}$, $\mu_h(\{(x, y) : y \in \mathcal{C}_\nu^*(x)\} \Delta \{(x, y) : y \in \mathcal{C}(x)\}) = 0$ where Δ
803 denotes the symmetric distance between the sets and μ_h is defined as $\mu_h(A) = \int_A h d\mu$.

804 **Remark 2.** An analogous statement of Lemma B.1 holds where we replace the “ \geq ” with “ $>$ ” in
805 (25) and (26).

807 **PROOF OF PROPOSITION 6(a).** We assume that X has a density p with respect to the Lebesgue
808 measure λ , but the proof can be adapted for any measure. Define the functions $f(x, y) := \omega(y)p(x|y)$
809 and $g(x, y) = p(x)$ and the measure $\mu = \lambda \times \left(\sum_{y \in \mathcal{Y}} \delta_y\right)$, which is the product measure between

the Lebesgue measure (denoted by λ) and the counting measure on \mathcal{Y} . Let $\nu = 1 - \alpha$. Observe that plugging these values of f , g , μ , and ν into (24) yields (22), because

$$\begin{aligned} \int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}\{y \in \mathcal{C}(x)\} f(x, y) d\mu(x, y) &= \sum_{y \in \mathcal{Y}} \omega(y) \int_{\mathcal{X}} \mathbb{1}\{y \in \mathcal{C}(x)\} p(x|y) dx \\ &= \sum_{y \in \mathcal{Y}} \omega(y) \mathbb{P}(y \in \mathcal{C}(X) \mid Y = y), \end{aligned}$$

and

$$\begin{aligned} \int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}\{y \in \mathcal{C}(x)\} g(x, y) d\mu(x, y) &= \sum_{y \in \mathcal{Y}} \int_{\mathcal{X}} \mathbb{1}\{y \in \mathcal{C}(x)\} p(x) dx \\ &= \int_{\mathcal{X}} \sum_{y \in \mathcal{Y}} \mathbb{1}\{y \in \mathcal{C}(x)\} p(x) dx \\ &= \int_{\mathcal{X}} |\mathcal{C}(X)| p(x) dx \\ &= \mathbb{E}(|\mathcal{C}(X)|). \end{aligned}$$

By Lemma B.1, it follows that the optimal solution to (22) is given by (26), which for our choice of f and g can be rewritten as $\mathcal{C}_{1-\alpha}^*(x) = \{y \in \mathcal{Y} : \frac{\omega(y)p(y|x)}{p(y)} \geq t_{1-\alpha}\}$ by observing that

$$\frac{f(x, y)}{g(x, y)} = \frac{\omega(y)p(x|y)}{p(x)} = \frac{\omega(y)p(x, y)}{p(x)p(y)} = \frac{\omega(y)p(y|x)}{p(y)}.$$

PROOF OF PROPOSITION 6(b). Let us now derive the optimal solution to the dual problem. To do so, we must rewrite the problem in a form where Lemma B.1 can be applied. First, observe that

$$\begin{aligned} \sum_{y \in \mathcal{Y}} \omega(y) \mathbb{P}(y \in \mathcal{C}(X) \mid Y = y) &= \sum_{y \in \mathcal{Y}} \omega(y) (1 - \mathbb{P}(y \notin \mathcal{C}(X) \mid Y = y)) \\ &= 1 - \sum_{y \in \mathcal{Y}} \omega(y) \mathbb{P}(y \in \mathcal{C}^c(X) \mid Y = y), \end{aligned}$$

where $\mathcal{C}^c(X) := \mathcal{Y} \setminus \mathcal{C}(X)$ denotes the complement of $\mathcal{C}(X)$. Similarly, observe that expected set size can be written in terms of the complement as $\mathbb{E}(|\mathcal{C}(X)|) = |\mathcal{Y}| - \mathbb{E}(|\mathcal{C}^c(X)|)$. Thus, we can obtain the optimal solution to (23) by taking the complement of the optimal solution to

$$\min_{\tilde{\mathcal{C}}: \mathcal{X} \mapsto 2^{\mathcal{Y}}} \sum_{y \in \mathcal{Y}} \omega(y) \mathbb{P}\left(y \in \tilde{\mathcal{C}}(X) \mid Y = y\right) \quad \text{subject to} \quad \mathbb{E}(|\tilde{\mathcal{C}}(X)|) \geq |\mathcal{Y}| - \kappa. \quad (27)$$

Applying Lemma B.1, combined with Remark 2, with $f(x, y) = p(x)$, $g(x, y) = \omega(y)p(x|y)$, the same measure μ as in the proof of Proposition 6(a), and $\nu = |\mathcal{Y}| - \kappa$ tells us that if there exists \bar{t}_κ such that

$$\int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}\{f(x, y) > \bar{t}_\kappa \cdot g(x, y)\} f(x, y) d\mu(x, y) = |\mathcal{Y}| - \kappa, \quad (28)$$

then the optimal solution to (27) is

$$\bar{\mathcal{C}}_\kappa^*(x) = \left\{ y \in \mathcal{Y} : \frac{f(x, y)}{g(x, y)} > \bar{t}_\kappa \right\} = \left\{ y \in \mathcal{Y} : \frac{p(y)}{\omega(y)p(y|x)} > \bar{t}_\kappa \right\} = \left\{ y \in \mathcal{Y} : \frac{\omega(y)p(y|x)}{p(y)} < \bar{t}_\kappa^{-1} \right\}.$$

Thus, the optimal solution to our original problem (23) is

$$\mathcal{C}_\kappa^*(x) := (\bar{\mathcal{C}}_\kappa^*)^c(x) = \left\{ y \in \mathcal{Y} : \frac{\omega(y)p(y|x)}{p(y)} \geq \bar{t}_\kappa^{-1} \right\}.$$

□

864 B.2 PROOF OF LEMMA B.1

865 For completeness we give a proof of the Neyman-Pearson Lemma, as stated in Lemma B.1.

866
867 *Proof.* We will show that $\mathcal{C}^*(x) = \{y : f(x, y) \geq t_\nu g(x, y)\}$ is the optimal solution to (24). We
868 first demonstrate that it is an optimal solution and then that it is unique.869
870 *Optimality.* By definition of t_ν , we have

871
872
$$\int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}\{y \in \mathcal{C}^*(x)\} f(x, y) d\mu(x, y) = \nu, \quad (29)$$

873

874 which is trivially greater than or equal to ν , so $\mathcal{C}^*(x)$ is indeed a feasible solution. To show that
875 $\mathcal{C}^*(x)$ is optimal, we must argue that it achieves a smaller objective value than any other feasible
876 solution. Let $\mathcal{C} : \mathcal{X} \rightarrow 2^{\mathcal{Y}}$ be any other set-generating procedure that satisfies the constraint in (24).
877 We want to show that

878
879
$$\int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}\{y \in \mathcal{C}^*(x)\} g(x, y) d\mu(x, y) \leq \int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}\{y \in \mathcal{C}(x)\} g(x, y) d\mu(x, y).$$

880

881 We prove this by showing their difference is negative:

882
883
$$\int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}\{y \in \mathcal{C}^*(x)\} g(x, y) d\mu(x, y) - \int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}\{y \in \mathcal{C}(x)\} g(x, y) d\mu(x, y)$$

884
885
$$= \int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}\{y \in \mathcal{C}^*(x) \setminus \mathcal{C}(x)\} g(x, y) d\mu(x, y) - \int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}\{y \in \mathcal{C}(x) \setminus \mathcal{C}^*(x)\} g(x, y) d\mu(x, y)$$

886
887
$$\leq \frac{1}{t_\nu} \int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}\{y \in \mathcal{C}^*(x) \setminus \mathcal{C}(x)\} f(x, y) d\mu(x, y) - \frac{1}{t_\nu} \int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}\{y \in \mathcal{C}(x) \setminus \mathcal{C}^*(x)\} f(x, y) d\mu(x, y)$$

888
889
$$= \frac{1}{t_\nu} \left[\int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}\{y \in \mathcal{C}^*(x)\} f(x, y) d\mu(x, y) - \int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}\{y \in \mathcal{C}(x)\} f(x, y) d\mu(x, y) \right]$$

890
891
$$\leq \frac{1}{t_\nu} (\nu - \nu) \leq 0.$$

892
893

894 The first inequality follows from $y \in \mathcal{C}^*(x) \iff g(x, y) \leq t_\nu^{-1} f(x, y)$. The second inequality
895 comes from applying the equality stated in (29) to the first integral and then using the definition of
896 \mathcal{C} as satisfying the constraint of (24) to lower bound the second integral.897
898 *Uniqueness.* Let $\mathcal{C} : \mathcal{X} \rightarrow 2^{\mathcal{Y}}$ be another optimal set-generating procedure, so it achieves the same
899 objective value as \mathcal{C}^* ,

900
901
$$\int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}\{y \in \mathcal{C}(x)\} g(x, y) d\mu(x, y) = \int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}\{y \in \mathcal{C}^*(x)\} g(x, y) d\mu(x, y), \quad (30)$$

902 and it is a feasible solution,

903
904
$$\int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}\{y \in \mathcal{C}(x)\} f(x, y) d\mu(x, y) \geq \nu.$$

905

906 Let us first note the following non-negativity relationship:

907
908
$$(\mathbb{1}\{y \in \mathcal{C}^*(x)\} - \mathbb{1}\{y \in \mathcal{C}(x)\})(f(x, y) - t_\nu g(x, y)) \geq 0, \quad \forall (x, y) \in \mathcal{X} \times \mathcal{Y}. \quad (31)$$

909
910 Integrating (31) over $\mathcal{X} \times \mathcal{Y}$, then applying (30), we get

911
912
$$\int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}\{y \in \mathcal{C}^*(x)\} f(x, y) d\mu(x, y) - \int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}\{y \in \mathcal{C}(x)\} f(x, y) d\mu(x, y) \geq 0.$$

913

914 Combining this with the definition of \mathcal{C}^* and the feasibility of \mathcal{C} , we must have $\int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}\{y \in \mathcal{C}(x)\} f(x, y) d\mu(x, y) = \nu$. Thus, (31) integrates to zero. Since we also know that (31) is non-negative, it must be true that, μ -almost everywhere,

915
916
$$(\mathbb{1}\{y \in \mathcal{C}^*(x)\} - \mathbb{1}\{y \in \mathcal{C}(x)\})(f(x, y) - t_\nu g(x, y)) = 0.$$

917

918 For $(x, y) \in \mathcal{X} \times \mathcal{Y}$ such that $f(x, y) \neq t_\nu g(x, y)$, then $\mathbb{1}\{y \in \mathcal{C}^*(x)\} = \mathbb{1}\{y \in \mathcal{C}(x)\}$, which
919 implies, using the definition of $\mathcal{C}^*(x) = \{y : f(x, y) \geq t_\nu g(x, y)\}$, that μ -almost everywhere,
920 $\mathcal{C}(x) \subseteq \mathcal{C}^*(x)$ and $\mathcal{C}^*(x) \subseteq \mathcal{C}(x) \cup \{y : f(x, y) = t_\nu g(x, y)\}$. It remains to show that the sets are
921 equal almost everywhere by showing that the set

$$922 D := \{(x, y) : y \notin \mathcal{C}(x) \text{ and } y \in \mathcal{C}^*(x)\} = \{(x, y) : y \notin \mathcal{C}(x) \text{ and } f(x, y) = t_\nu g(x, y)\}$$

923 is of measure 0 under μ_f . By definition of \mathcal{C}^* ,

$$\begin{aligned} 926 \nu &= \int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}\{y \in \mathcal{C}^*(x)\} f(x, y) d\mu(x, y) \\ 927 &= \int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}\{y \in \mathcal{C}(x)\} f(x, y) d\mu(x, y) + \int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}\{(x, y) \in D\} f(x, y) d\mu(x, y) \\ 928 &= \nu + \int_D f d\mu. \\ 929 \\ 930 \\ 931 \end{aligned}$$

932 Thus we must have $\mu_f(D) = 0$. Since $t_\nu g = f$ on D , we also get that $\mu_g(D) = 0$.

933 The version of the Neyman-Pearson Lemma described in Remark 2 can be proven in the same
934 way. \square

937 B.3 PROOF OF PROPOSITION 3

938 We present Proposition 3 in two parts: the lower bound on coverage and the extreme case achieving
939 a coverage close to this lower bound.

940 **Proposition 3** (restated, first part). *Using calibration data $\{(X_i, Y_i)\}_{i=1}^n$, let \hat{q} be the STANDARD
941 quantile threshold (4) computed for $\alpha \in [0, 1]$ and, for $y \in \mathcal{Y}$, let \hat{q}_y^{CW} be the CLASSWISE quantile
942 threshold (6) computed for the same α . If the test point (X_{n+1}, Y_{n+1}) is exchangeable with the
943 calibration data $\{(X_i, Y_i)\}_{i=1}^n$, then the INTERP-Q prediction sets satisfy*

$$944 \mathbb{P}(Y_{n+1} \in C_{\text{INTERP-Q}}(X_{n+1})) \geq 1 - 2\alpha. \quad (32)$$

945 *Proof.* Observe that for the test score $S_{n+1} = s(X_{n+1}, Y_{n+1})$, we have the following inclusion of
946 events:

$$947 \left\{ S_{n+1} \leq \tau \hat{q}_{Y_{n+1}}^{\text{CW}} + (1 - \tau) \hat{q} \right\} \supset \left\{ S_{n+1} \leq \min(\hat{q}_{Y_{n+1}}^{\text{CW}}, \hat{q}) \right\}.$$

948 Thus,

$$\begin{aligned} 949 \mathbb{P}\left(S_{n+1} \leq \tau \hat{q}_{Y_{n+1}}^{\text{CW}} + (1 - \tau) \hat{q}\right) &\geq \mathbb{P}\left(S_{n+1} \leq \min(\hat{q}_{Y_{n+1}}^{\text{CW}}, \hat{q})\right) \\ 950 &= 1 - \mathbb{P}\left(S_{n+1} > \hat{q}_{Y_{n+1}}^{\text{CW}} \text{ or } S_{n+1} > \hat{q}\right) \\ 951 &\geq 1 - \mathbb{P}\left(S_{n+1} > \hat{q}_{Y_{n+1}}^{\text{CW}}\right) - \mathbb{P}(S_{n+1} > \hat{q}), \end{aligned}$$

952 using a union bound for the last inequality. By the coverage guarantees for STANDARD and
953 CLASSWISE, which follow from classical conformal prediction arguments using exchangeability
954 (see, e.g., Vovk et al., 2005), we have $\mathbb{P}(S_{n+1} > \hat{q}_{Y_{n+1}}^{\text{CW}}) \leq \alpha$ and $\mathbb{P}(S_{n+1} > \hat{q}) \leq \alpha$, which
955 concludes the proof. \square

956 The following result exhibits an example of score distribution for which a coverage of $(1 - \alpha)^2$ is
957 attained. For simplicity, the example is constructed as if the distribution and the quantile are exactly
958 known, i.e., in the case of an infinite calibration set ($n = \infty$).

959 **Proposition 3** (restated, second part). *There exists a distribution \mathbb{P} of tuple (score, label) over $[0, 1] \times$
960 \mathcal{Y} with $|\mathcal{Y}| \geq 2$, such that for any $\tau \in (0, 1)$:*

$$961 \mathbb{P}(S \leq \tau q_Y^{\text{CW}} + (1 - \tau) q) = (1 - \alpha)^2, \quad (33)$$

962 where $q := q(\mathbb{P})$ is the (exact) $(1 - \alpha)$ -quantile of S and for $y \in \mathcal{Y}$, $q_y^{\text{CW}} := q_y^{\text{CW}}(\mathbb{P})$ is the (exact)
963 $(1 - \alpha)$ -quantile of $S|Y = y$.

972 *Proof.* Let us define explicitly the distributions \mathbb{P} for which the upper bound is achieved. The tuple
 973 $(S, Y) \sim \mathbb{P}$ is defined by:
 974

$$975 \quad Y \sim (1 - \alpha)\delta_{y_0} + \alpha\delta_{y_1} \\ 976 \quad S|(Y = y_0) \sim (1 - \alpha)\delta_0 + \alpha\delta_{1/2}, \quad S|(Y = y_1) \sim \delta_1,$$

977 for $y_0 \neq y_1 \in \mathcal{Y}$. Then $q = 1/2$, $q_{y_0}^{\text{CW}} = 0$ and $q_{y_1}^{\text{CW}} = 1$. It follows that, for $\tau \in (0, 1)$,
 978

$$979 \quad \mathbb{P}(S \leq \tau q_Y^{\text{CW}} + (1 - \tau)q) = \mathbb{P}(S \leq \tau q_{y_0}^{\text{CW}} + (1 - \tau)q|Y = y_0)(1 - \alpha) \\ 980 \quad + \mathbb{P}(S \leq \tau q_{y_1}^{\text{CW}} + (1 - \tau)q|Y = y_1)\alpha \\ 981 \quad = \mathbb{P}(S \leq (1 - \tau)/2|Y = y_0)(1 - \alpha) \\ 982 \quad + \mathbb{P}(S \leq \tau + (1 - \tau)/2|Y = y_1)\alpha.$$

983 It follows by plugging the exact distributions of $S|Y = y_0$ and $S|Y = y_1$, that:
 984

$$985 \quad \mathbb{P}(S \leq \tau q_Y^{\text{CW}} + (1 - \tau)q) = \mathbb{P}(S = 0|Y = y_0)(1 - \alpha) + 0 = (1 - \alpha)^2,$$

986 where we have used that $(1 - \tau)/2 < 1/2$ and $\tau + (1 - \tau)/2 < 1$. \square
 987

990 B.4 RAW FUZZY RECOVERS STANDARD AND CLASSWISE CP

991 We first more formally state the result of Proposition 4.

992 **Proposition 7.** Let $\alpha \in [0, 1]$ and assume α satisfies $m\alpha \notin \mathbb{N}$ for all $m \in [n + 1]$.³ Also assume
 993 $\Pi : \mathcal{Y} \rightarrow \Lambda$ maps each class to a unique point.

994 If, for all $u, v \in \Lambda$ with $u \neq v$, the kernel h satisfies

$$995 \quad h_\sigma(u, v) \rightarrow 0 \text{ as } \sigma \rightarrow 0 \quad \text{and} \quad h_\sigma(u, v) \rightarrow h_\sigma(u, u) \text{ as } \sigma \rightarrow \infty,$$

996 then, for sufficiently small σ , for any $x \in \mathcal{X}$ and calibration set, we have

$$997 \quad \mathcal{C}_{\text{RAWFUZZY}}(x) = \mathcal{C}_{\text{CLASSWISE}}(x),$$

998 and, for sufficiently large σ , for any $x \in \mathcal{X}$ and calibration set, we have

$$999 \quad \mathcal{C}_{\text{RAWFUZZY}}(x) = \mathcal{C}_{\text{STANDARD}}(x).$$

1000 *Proof.* Let us first recall that $\mathcal{C}_{\text{RAWFUZZY}}(X) = \mathcal{C}_{\text{LW}}(X; w_{\text{FUZZY}})$. In the rest of the proof, we will
 1001 write w_σ to refer to the weighting function w_{FUZZY} with bandwidth $\sigma > 0$. As described in (17),
 1002 the weighting function w_σ in the second argument of $\mathcal{C}_{\text{LW}}(\cdot)$ is used to obtain the class-specific
 1003 thresholds $\hat{q}_y^{w_\sigma}$, and the label-weighted conformal prediction set is constructed as $\{y \in \mathcal{Y} : s(x, y) \leq$
 1004 $\hat{q}_y^{w_\sigma}\}$. For all $y \in \mathcal{Y}$, we will show that as $\sigma \rightarrow 0$, we eventually have $\hat{q}_y^{w_\sigma} = \hat{q}$, and as $\sigma \rightarrow \infty$, we
 1005 eventually have $\hat{q}_y^{w_\sigma} = \hat{q}_y^{\text{CW}}$, where \hat{q} and \hat{q}_y^{CW} are the STANDARD and CLASSWISE quantiles from
 1006 (4) and (6).

1007 To show that a scalar x is equal to the $1 - \alpha$ quantile of a distribution Q , we will show

- 1008 • Step 1: $\mathbb{P}_{X \sim Q}(X \leq x) \geq 1 - \alpha$.
- 1009 • Step 2: For any $t < x$, we have $\mathbb{P}_{X \sim Q}(X \leq t) < 1 - \alpha$.

1010 In the remainder of this proof, we will use two ways of indexing the calibration scores. First, for
 1011 $i \in [n]$, we let $S_i := s(X_i, Y_i)$. Second, we index the calibration scores by class: for each class
 1012 $y \in \mathcal{Y}$, we use S_i^y for $i \in [n_y]$ to denote the calibration scores for class y . Before beginning, we
 1013 also note that the assumption that $m\alpha \notin \mathbb{N}$ for all $m \in [n + 1]$ ensures $\lceil (n_y + 1)(1 - \alpha) \rceil >$
 1014 $(n_y + 1)(1 - \alpha) > \lfloor (n_y + 1)(1 - \alpha) \rfloor$ for all $y \in \mathcal{Y}$. This will be used below.

1015 ³If the desired miscoverage level α does not satisfy this assumption, note that there exists an $\tilde{\alpha}$ that is
 1016 infinitesimally close to α that does satisfy the assumption. Stated formally, for any $\alpha \in [0, 1]$ and any $\epsilon > 0$,
 1017 there exists $\tilde{\alpha}$ such that $|\tilde{\alpha} - \alpha| \leq \epsilon$ and $m\tilde{\alpha} \notin \mathbb{N}$ for all $m \in [n + 1]$. This is due to the density of irrationals
 1018 in real numbers and the fact that any irrational $\tilde{\alpha}$ satisfies the assumption.

1026 CONVERGENCE TO $\mathcal{C}_{\text{CLASSWISE}}$ FOR SMALL σ . We will show that for sufficiently small σ , we have
 1027 $\hat{q}_y^{\text{CW}} = \hat{q}_y^{\text{FUZZY}}$ for all $y \in \mathcal{Y}$, where
 1028

$$1029 \hat{q}_y^{\text{FUZZY}} = \text{Quantile}_{1-\alpha} \left(\underbrace{\frac{\sum_{i=1}^n w_\sigma(Y_i, y) \delta_{S_i} + w_\sigma(y, y) \delta_\infty}{\sum_{i=1}^n w_\sigma(Y_i, y) + w_\sigma(y, y)}}_{:= Q_y} \right).$$

$$1030$$

$$1031$$

$$1032$$

1033 In other words, \hat{q}_y^{FUZZY} is the $1 - \alpha$ quantile of Q_y . We now apply the two-step procedure outlined
 1034 above to show that \hat{q}_y^{CW} is equal to the $1 - \alpha$ quantile of Q_y when σ is sufficiently small.

1035 *Step 1.* We begin by observing

$$1036$$

$$1037 \mathbb{P}_{S \sim Q_y} (S \leq \hat{q}_y^{\text{CW}}) = \frac{\sum_{i=1}^n w_\sigma(Y_i, y) \mathbb{1}\{S_i \leq \hat{q}_y^{\text{CW}}\}}{\sum_{i=1}^n w_\sigma(Y_i, y) + w_\sigma(y, y)} \\ 1038 = \frac{w_\sigma(y, y) \sum_{i=1}^{n_y} \mathbb{1}\{S_i^y \leq \hat{q}_y^{\text{CW}}\} + \sum_{z \in \mathcal{Y} \setminus \{y\}} w_\sigma(z, y) \sum_{i=1}^{n_z} \mathbb{1}\{S_i^z \leq \hat{q}_y^{\text{CW}}\}}{(n_y + 1) w_\sigma(y, y) + \sum_{z \in \mathcal{Y} \setminus \{y\}} n_z w_\sigma(z, y)} \\ 1039 \geq \frac{w_\sigma(y, y) \lceil (1 - \alpha)(n_y + 1) \rceil}{(n_y + 1) w_\sigma(y, y) + \sum_{z \in \mathcal{Y} \setminus \{y\}} n_z w_\sigma(z, y)}, \quad (34)$$

$$1040$$

$$1041$$

$$1042$$

$$1043$$

$$1044$$

1045 where we have used for the last inequality the definition of the CLASSWISE quantile and have lower
 1046 bounded the second term of the numerator by 0. By assumption, we know that $w_\sigma(z, y) \rightarrow 0$ as
 1047 $\sigma \rightarrow 0$ for all classes $z \neq y$. Thus, for σ small enough, we have

$$1048 \sum_{z \in \mathcal{Y} \setminus \{y\}} n_z w_\sigma(z, y) \leq \frac{w_\sigma(y, y)}{1 - \alpha} \left(\lceil (n_y + 1)(1 - \alpha) \rceil - (n_y + 1)(1 - \alpha) \right).$$

$$1049$$

$$1050$$

1051 For such σ , (34) becomes

$$1052 \mathbb{P}_{S \sim Q_y} (S \leq \hat{q}_y^{\text{CW}}) \geq 1 - \alpha,$$

$$1053$$

$$1054$$

which implies that $\hat{q}_y^{\text{CW}} \geq \hat{q}_y^{\text{FUZZY}}$.

1055 *Step 2.* We now show the converse inequality. Given any $t < \hat{q}_y^{\text{CW}}$, we want to show
 1056 $\mathbb{P}_{S \sim Q_y} (S \leq t) < 1 - \alpha$. Similar to above, we begin by writing

$$1057$$

$$1058 \mathbb{P}_{S \sim Q_y} (S \leq t) = \frac{w_\sigma(y, y) \sum_{i=1}^{n_y} \mathbb{1}\{S_i^y \leq t\} + \sum_{z \in \mathcal{Y} \setminus \{y\}} w_\sigma(z, y) \sum_{i=1}^{n_z} \mathbb{1}\{S_i^z \leq t\}}{(n_y + 1) w_\sigma(y, y) + \sum_{z \in \mathcal{Y} \setminus \{y\}} n_z w_\sigma(z, y)} \\ 1059 \leq \frac{w_\sigma(y, y) \lfloor (n_y + 1)(1 - \alpha) \rfloor + \sum_{z \in \mathcal{Y} \setminus \{y\}} n_z w_\sigma(z, y)}{(n_y + 1) w_\sigma(y, y)}. \quad (35)$$

$$1060$$

$$1061$$

$$1062$$

1063 The inequality is obtained by (i) removing a positive term from the denominator and (ii) observing
 1064 that if $t < \hat{q}_y^{\text{CW}}$, then at most $\lfloor (n_y + 1)(1 - \alpha) \rfloor$ scores of class y are smaller or equal to t . Otherwise, t
 1065 would be higher than the class-conditional quantile \hat{q}_y^{CW} . By assumption, we know that $w_\sigma(z, y) \rightarrow$
 1066 0 as $\sigma \rightarrow 0$ for all classes $z \neq y$. Thus, for σ small enough, we have

$$1067 \sum_{z \in \mathcal{Y} \setminus \{y\}} n_z w_\sigma(z, y) < w_\sigma(y, y) \left((1 - \alpha)(n_y + 1) - \lfloor (n_y + 1)(1 - \alpha) \rfloor \right).$$

$$1068$$

$$1069$$

1070 For such σ , (35) becomes

$$1071$$

$$1072 \mathbb{P}_{S \sim Q_y} (S \leq t) < 1 - \alpha.$$

$$1073$$

1074 Thus, $\hat{q}_y^{\text{CW}} \leq \hat{q}_y^{\text{FUZZY}}$. Together, Step 1 and Step 2 tell us that for σ small enough, we have $\hat{q}_y^{\text{FUZZY}} =$
 1075 \hat{q}_y^{CW} , which concludes the proof for the convergence of $\mathcal{C}_{\text{FUZZY}}$ to $\mathcal{C}_{\text{CLASSWISE}}$.

1076 CONVERGENCE TO $\mathcal{C}_{\text{STANDARD}}$ FOR LARGE σ . Recall that we assume as $\sigma \rightarrow \infty$, we have
 1077 $w_\sigma(z, y) \rightarrow w_\sigma(y, y)$ for all $y, z \in \mathcal{Y}$. Then for any $\varepsilon > 0$, there exists σ large enough such
 1078 that

$$1079 \max_{y, z \in \mathcal{Y}} \left| \frac{w_\sigma(z, y)}{w_\sigma(y, y)} - 1 \right| \leq \varepsilon \quad (36)$$

$$1080$$

1080 *Step 1.* As in the previous case, we write
 1081

$$\begin{aligned}
 \mathbb{P}_{S \sim Q_y}(S \leq \hat{q}) &= \frac{\sum_{i=1}^n w_\sigma(Y_i, y) \mathbb{1}\{S_i \leq \hat{q}\}}{\sum_{i=1}^n w_\sigma(Y_i, y) + w_\sigma(y, y)} \\
 &= \frac{\sum_{z \in \mathcal{Y}} w_\sigma(z, y) \sum_{i=1}^{n_z} \mathbb{1}\{S_i^z \leq \hat{q}\}}{\sum_{z \in \mathcal{Y}} n_z w_\sigma(z, y) + w_\sigma(y, y)} \\
 &\geq \frac{w_\sigma(y, y)(1 - \varepsilon) \sum_{i=1}^n \mathbb{1}\{S_i \leq \hat{q}\}}{(n(1 + \varepsilon) + 1) w_\sigma(y, y)} \\
 &\geq \frac{1 - \varepsilon \lceil (n+1)(1 - \alpha) \rceil}{1 + \varepsilon} \frac{n+1}{n+1}.
 \end{aligned}$$

1091
 1092 The first inequality is obtained by lower bounding $w_\sigma(z, y)$ by $(1 - \varepsilon)w_\sigma(y, y)$ in the numerator and
 1093 upper bounding $w_\sigma(z, y)$ by $(1 + \varepsilon)w_\sigma(y, y)$ in the denominator. The last inequality comes from the
 1094 fact that \hat{q} is the empirical quantile of the scores. By choosing ε small enough, specifically,

$$\varepsilon \leq \frac{\lceil (n+1)(1 - \alpha) \rceil - (n+1)(1 - \alpha)}{\lceil (n+1)(1 - \alpha) \rceil + (n+1)(1 - \alpha)},$$

1095 we get that for σ large enough, $\mathbb{P}_{S \sim Q_y}(S \leq \hat{q}) \geq 1 - \alpha$. Thus for such σ , we have $\hat{q} \geq \hat{q}_y^{\text{FUZZY}}$ for
 1096 all $y \in \mathcal{Y}$.
 1097

1100 *Step 2.* We now show the converse inequality. Given any $t < \hat{q}$, we want to show $\mathbb{P}_{S \sim Q_y}(S \leq t) <$
 1101 $1 - \alpha$. We start by observing

$$\begin{aligned}
 \mathbb{P}_{S \sim Q_y}(S \leq t) &= \frac{\sum_{z \in \mathcal{Y}} w_\sigma(z, y) \sum_{i=1}^{n_z} \mathbb{1}\{S_i^z \leq t\}}{\sum_{z \in \mathcal{Y}} n_z w_\sigma(z, y) + w_\sigma(y, y)} \\
 &\leq \frac{1 + \varepsilon \sum_{i=1}^n \mathbb{1}\{S_i \leq t\}}{1 - \varepsilon} \leq \frac{1 + \varepsilon \lceil (n+1)(1 - \alpha) \rceil}{1 - \varepsilon} \frac{n+1}{n+1}.
 \end{aligned}$$

1102 We have used (36) again for the first inequality. For the last inequality, since $t < \hat{q}$, there are at
 1103 most $\lceil (n+1)(1 - \alpha) \rceil$ scores which are smaller or equal t . Otherwise, t would be higher than \hat{q} .
 1104 Choosing ε small enough such that

$$\frac{1 + \varepsilon \lceil (n+1)(1 - \alpha) \rceil}{1 - \varepsilon} < 1 - \alpha$$

1105 yields $\mathbb{P}_{S \sim Q_y}(S \leq t) \leq 1 - \alpha$, which implies that $\hat{q} \leq \hat{q}_y^{\text{FUZZY}}$. Combining the results from Step 1
 1106 and Step 2, we get that $\hat{q}_y^{\text{FUZZY}} = \hat{q}$ for σ large enough, so $\mathcal{C}_{\text{FUZZY}}(X) \equiv \mathcal{C}_{\text{STANDARD}}(X)$.
 1107

1108 **INFINITE QUANTILES CASE.** The above proof assumes that the **STANDARD** and **CLASSWISE** quan-
 1109 tyles are not infinite. In the infinite case where $\hat{q} = \infty$ or $\hat{q}_y^{\text{CW}} = \infty$, we directly get Step 1 as then
 1110 $\mathbb{P}_{S \sim Q_y}(S \leq q) = 1 \geq 1 - \alpha$ for $q \in \{\hat{q}, \hat{q}_y^{\text{CW}}\}$. The rest of the proof remains similar to before.
 1111 \square

1121 B.5 RECONFORMALIZATION OF RAW FUZZY

1122 *Proof of Proposition 5.* This follows from the exchangeability of the held-out set $\mathcal{D}_{\text{held}}$ and test
 1123 point (X_{n+1}, Y_{n+1}) . We first link the set $\mathcal{C}_{\text{RAWFUZZY}}$ to the score function \tilde{s} . For $x \in \mathcal{X}$, $y \in \mathcal{Y}$, let
 1124 $\omega_y^y = w_{\text{FUZZY}}(y, y) / (\sum_{i=1}^n w_{\text{FUZZY}}(Y_i, y) + w_{\text{FUZZY}}(y, y))$, then:

$$\begin{aligned}
 y \in \mathcal{C}_{\text{RAWFUZZY}}(x) &\iff s(x, y) \leq \text{Quantile}_{1-\alpha} \left(\sum_{i=1}^n w_i^y \delta_{s(X_i, Y_i)} + w_y^y \delta_\infty \right) \\
 &\iff \sum_{i=1}^n w_i^y \mathbb{1}\{s(X_i, Y_i) < s(x, y)\} < 1 - \alpha \iff \tilde{s}(x, y) < 1 - \alpha. \quad (37)
 \end{aligned}$$

1132 By exchangeability, the set $\{y : \tilde{s}(x, y) \leq \text{Quantile}_{1-\alpha}(\frac{1}{m+1} \sum_{i=1}^m \delta_{\tilde{s}(X_i^{\mathcal{H}}, Y_i^{\mathcal{H}})} + \frac{1}{m+1} \delta_\infty)\}$ has a
 1133 marginal coverage of $1 - \alpha$. \square

We now briefly present a possible adaptation of the reconformalization step for FUZZY CP that avoids the need for an additional dataset $\mathcal{D}_{\text{hold}}$. To do so, we adapt the score \tilde{s} from (19) to recalibrate the weighted quantile with the same dataset \mathcal{D}_{cal} using full conformal techniques (Vovk et al., 2005).

Proposition 8 (Reconformalization with \mathcal{D}_{cal}). *Let us define for (x, y) and a finite subset \mathcal{D} of $\mathcal{X} \times \mathcal{Y}$ the score*

$$\tilde{s}_{\text{full}}((x, y), \mathcal{D}) := \frac{\sum_{(x', y') \in \mathcal{D}} w_{\text{FUZZY}}(y', y) \mathbb{1}\{s(x', y') < s(x, y)\}}{\sum_{(x', y') \in \mathcal{D}} w_{\text{FUZZY}}(y', y)}.$$

Given a calibration set $\mathcal{D}_{\text{cal}} = \{(X_i, Y_i)\}_{i=1}^n$, let $S_i(x, y) = \tilde{s}_{\text{full}}((X_i, Y_i), \mathcal{D}_{\text{cal}} \cup (x, y))$. Then the set

$$\mathcal{C}_{\text{FULL}}(x) = \left\{ y \in \mathcal{Y} : \tilde{s}_{\text{full}}((x, y), \mathcal{D}_{\text{cal}} \cup (x, y)) \leq \text{Quantile}_{1-\alpha} \left(\frac{1}{n+1} \sum_{i=1}^{n+1} \delta_{S_i(x, y)} + \frac{1}{n+1} \delta_{\infty} \right) \right\}$$

has marginal coverage of $1 - \alpha$ for the test point, as long as it is exchangeable with \mathcal{D}_{cal} .

Proof. As long as the test point (X_{n+1}, Y_{n+1}) and the points in \mathcal{D}_{cal} are exchangeable, the scores $S_i(X_{n+1}, Y_{n+1})$ and $S_{n+1}(X_{n+1}, Y_{n+1}) := \tilde{s}_{\text{full}}((X_{n+1}, Y_{n+1}), \mathcal{D}_{\text{cal}} \cup (X_{n+1}, Y_{n+1}))$ are also exchangeable, which yields the marginal validity of $\mathcal{C}_{\text{FULL}}$. \square

In cases where the amount of calibration data is limited, this full-conformal adaptation allows us to avoid data-splitting. It is also computationally feasible in such scenarios, as the burden of recalculating the ensemble thresholds for each test point is tolerable when \mathcal{D}_{cal} is small.

C EXPERIMENT DETAILS

C.1 DATASET PREPARATION

Overview. Our dataset preparation has two steps. We first identify or create `train/val/test` splits to replicate the standard machine learning pipeline. After obtaining `train/val/test` splits, we further split `val` into two subsets: the first for selecting the number of epochs (containing a random 30% of `val`) and the second for use as the calibration set \mathcal{D}_{cal} (containing the remaining 70%). This split is necessary to ensure that \mathcal{D}_{cal} is exchangeable with the test points; had we reused `val` for both epoch selection and calibration, this would violate exchangeability.

We now describe the `train/val/test` splits for each of the datasets we use.

Pl@ntNet-300K. We use the provided `train/val/test` splits of Pl@ntNet-300K.⁴ The creation of the dataset is described in Garcin et al. (2022).

iNaturalist-2018. We use the 2018 version of iNaturalist⁵ because it has the most “natural” class distribution (i.e., not truncated). Unfortunately, the provided `train/val/test` splits are not well-suited to applying and evaluating conformal prediction methods for two reasons: First, the provided `test` set is not labeled and cannot be used for evaluation purposes. Second, the provided `val` set is class-balanced (with three examples per class), which means that it is not a representative sample of the test distribution. If we used this validation set as our conformal calibration set, this would violate the key assumption that the calibration points are exchangeable with the test points. To remedy these two problems, we create our own `train/val/test` splits where all splits have the same distribution. Specifically, we aggregate the `train` and `val` data, then for each class randomly select 80% of examples to put in our `train`, and then put 10% each in our `val` and `test`.

Truncated versions. A key challenge of the long-tailed datasets we work with is that their `test` sets are also long-tailed, which hinders reliable class-conditional evaluation for rare classes. To address this, we create truncated versions of the datasets by removing classes with fewer than 101 examples, resulting in 330 Pl@ntNet-300K classes and 857 iNaturalist classes. For each remaining class, we assign 100 examples to `test`, then divide the remainder 90%/10% into `train/val`. For rare classes, we prioritize training set allocation, which may lead to zero-calibration examples.

⁴<https://github.com/plantnet/PlantNet-300K>

⁵https://github.com/visipedia/inat_comp/tree/master/2018

1188 Specifically, to obtain *Pl@ntNet-300K-truncated*, we apply the above procedure to the combined
 1189 *train*, *val*, and *test* splits of *Pl@ntNet-300K*. To obtain *iNaturalist-2018-truncated*, we apply
 1190 the procedure to the combined *train* and *val* splits of the original *iNaturalist* dataset.⁶

1191 C.2 MODEL TRAINING

1193 After following the procedures described in Appendix C.1 to obtain *train*, *val*, and *test* splits
 1194 of each dataset, we train a ResNet-50 (He et al., 2016) initialized to ImageNet pretrained weights
 1195 for 20 epochs using a learning rate of 0.0001. We use *train* for training the neural network and
 1196 the randomly selected 30% of *val* for computing the validation accuracy. We then select the epoch
 1197 number that results in the highest validation accuracy (up to 20 epochs).

1198 C.3 COMPUTATIONAL RESOURCES

1199 The system we use is equipped with a 4x Intel Xeon Gold 6142 (64 cores/128 threads total @ 2.6-3.7
 1200 GHz, 88MB L3 cache) while the GPUs are 2x NVIDIA A10 (24GB VRAM each) and 2x NVIDIA
 1201 RTX 2080 Ti (11GB VRAM each), for a total of 70GB GPU VRAM.

1203 D ADDITIONAL EXPERIMENTAL RESULTS

1204 **Overview.** In this section, we extend the experimental results from the main paper in the following
 1205 ways:

- 1207 1. We include additional methods: To ensure that we are evaluating fairly against existing
 1208 procedures, we include two additional baseline methods. The first is called EXACT CLASS-
 1209 WISE, a randomized version of classwise conformal that is designed to achieve *exact* (rather
 1210 than *at least*) $1 - \alpha$ coverage, as described in Appendix C.3 of Ding et al. (2023). The sec-
 1211 ond is rank calibrated class-conditional conformal prediction (RC3P), proposed by Shi et al.
 1212 (2024). We also include the Raw FUZZY and FUZZY methods we propose in Appendix A.
 1213
2. We evaluate on the truncated versions of *Pl@ntNet-300K* and *iNaturalist-2018*, as de-
 1214 scribed in Appendix C.1.

1215 In Appendix D.1, we provide additional results to complement Figure 3 in the main paper. In
 1216 Appendix D.2, we provide results for additional methods. In Appendix D.3, we recreate Figure 3
 1217 using a ResNet-50 trained using focal loss rather than cross-entropy loss. In Appendix D.4, we do a
 1218 case study of the implications of our methods for plant identification. In Appendix D.5, we visualize
 1219 the score thresholds we obtain from our methods to demonstrate how they interpolate between the
 1220 STANDARD and CLASSWISE thresholds.

1221 D.1 RESULTS FOR MAIN METHODS

1222 To aid interpretation of Figure 3, we extract the metric values for select methods for $\alpha = 0.1$ and
 1223 present them in Table 3 for *Pl@ntNet-300K* and Table 4 for *iNaturalist-2018*. We also include a
 1224 comprehensive visualization of all methods on all datasets, including the truncated versions, in Figure
 1225 7. We remark that the two existing conformal prediction methods for many-class classification
 1226 perform poorly in the long-tailed setting. The CLUSTERED CP method from Ding et al. (2023)
 1227 defaults to the score threshold from STANDARD CP for classes that have insufficient examples to
 1228 confidently assign to a cluster, resulting in poor class-conditional coverage. Meanwhile, the RC3P
 1229 method from Shi et al. (2024) suffers from a similar data splitting problem as CLASSWISE CP, as it
 1230 strongly relies on the estimation of the conditional score quantile, which can be very bad for classes
 1231 with few calibration examples. Furthermore, it requires the estimation of the conditional top-k error
 1232 for all classes, which is also hard when classes have few calibration examples. Moreover, as these
 1233 quantities are estimated on the calibration set, the exchangeability assumption is violated which
 1234 explains why the marginal coverage is sometimes below $1 - \alpha$. The methods we propose strictly
 1235 dominate RC3P; for a given average set size, we get much better class-conditional coverage.

1236 This is firstly because RCP3 is based on Classwise CP and strongly relies on the estimation of the
 1237 conditional quantile, which can be very bad for classes with few calibration examples. Secondly,

1238 ⁶For truncated datasets, we must compute marginal metrics differently when doing evaluation: due to the
 1239 uniform class distribution of the *test* splits of these datasets, a simple average over all *test* examples does
 1240 not reflect marginal performance on the true distribution. We estimate the marginal coverage as $\sum_{y \in \mathcal{Y}} \hat{p}(y) \hat{c}_y$
 1241 where $\hat{p}(y)$ is estimated using *train* and \hat{c}_y is the empirical class-conditional coverage as defined in (16). A
 similar weighting procedure is used to estimate the average set size.

1242 RCP3 is based on the estimation of the conditional top-k error for all classes, which is also hard
 1243 when classes have few calibration examples. Moreover, as these quantities are estimated on the
 1244 calibration set, the exchangeability assumption is violated which explains the marginal coverages
 1245 below $1 - \alpha$. The methods we propose strictly dominate RC3P; for a given average set size, we get
 1246 much better class-conditional coverage.

1247
 1248 Table 3: Set size and coverage metrics for Pl@ntNet-300K using the s_{softmax} score and $\alpha = 0.1$. The
 1249 arrows next to the coverage metric names indicate whether it is better for the metric to be smaller
 1250 (\downarrow) or larger (\uparrow).
 1251

Method	FracBelow50% \downarrow	UnderCovGap \downarrow	MacroCov \uparrow	MarginalCov (desired ≥ 0.9)	Avg. set size \downarrow
STANDARD	0.389	0.398	0.525	0.907	1.57
CLASSWISE	0.000	0.006	0.976	0.912	780.00
CLUSTERED	0.398	0.406	0.513	0.882	1.57
STANDARD w. PAS	0.167	0.193	0.755	0.902	2.57
INTERP-Q ($\tau = 0.9$)	0.248	0.265	0.671	0.901	2.24
INTERP-Q ($\tau = 0.99$)	0.151	0.168	0.785	0.905	3.95
INTERP-Q ($\tau = 0.999$)	0.098	0.109	0.856	0.908	7.58

1261
 1262 Table 4: Set size and coverage metrics for iNaturalist-2018 using the s_{softmax} score and $\alpha = 0.1$.
 1263

Method	FracBelow50% \downarrow	UnderCovGap \downarrow	MacroCov \uparrow	MarginalCov (desired ≥ 0.9)	Avg. set size \downarrow
STANDARD	0.058	0.116	0.849	0.902	10.9
CLASSWISE	0.000	0.002	0.992	0.954	7430.0
CLUSTERED	0.059	0.118	0.845	0.880	8.4
STANDARD w. PAS	0.042	0.093	0.875	0.900	11.3
INTERP-Q ($\tau = 0.9$)	0.034	0.081	0.891	0.907	16.8
INTERP-Q ($\tau = 0.99$)	0.020	0.055	0.924	0.923	31.1
INTERP-Q ($\tau = 0.999$)	0.010	0.037	0.947	0.934	55.8

D.2 RESULTS FOR ADDITIONAL METHODS

1276 **FUZZY with other class mappings.** Recall that in order to instantiate FUZZY CP, we must choose
 1277 a mapping Π that maps each class $y \in \mathcal{Y}$ to some low-dimensional space in which we can compute
 1278 distances in a meaningful way. Depending on the setting, some mappings may work better than
 1279 others. The mapping we proposed in the main paper, $\Pi_{\text{prevalence}}$ is a simple mapping that works
 1280 well in the long-tailed settings we considered. In this section, we present results for two additional
 1281 mappings. We describe all three mappings here.

1282 1. *Prevalence*: This is the mapping presented before, which maps each class to its popularity
 1283 in the train set:

$$\Pi_{\text{prevalence}}(y) = cn_y^{\text{train}} + \varepsilon_y,$$

1284 where $\varepsilon_y \sim \text{Unif}([-0.01, 0.01])$ independently for each for $y \in \mathcal{Y}$. We normalize using
 1285 $c = 1/(\max_{y' \in \mathcal{Y}} n_{y'}^{\text{train}})$ to ensure that $\Pi_{\text{prevalence}}(y) \in [0, 1]$ so that the same bandwidth
 1286 σ has similar effects on different datasets.

1287 2. *Random*. As a baseline, we try mapping each class to a random value. Specifically,

$$\Pi_{\text{random}}(y) = U_y \quad \text{where } U_y \stackrel{\text{iid}}{\sim} \text{Unif}([0, 1]) \text{ for } y \in \mathcal{Y}.$$

1288 3. *Quantile*. Recall the intuition described in the last paragraph of Section 2, which says
 1289 that we want a mapping that groups together classes with similar score distributions. To
 1290 further develop this intuition, suppose that when computing \hat{q}_y , we assign non-zero weights
 1291 only to classes with the same $1 - \alpha$ score quantile as class y . Taking the $1 - \alpha$ weighted

Figure 7: Average set size vs. FracBelow50%, UnderCovGap, MacroCov, and MarginalCov for various methods on full and truncated datasets. For methods with tunable parameters, lines are used to trace out the trade-off curve achieved by running the method with different values for a fixed α . For FracBelow50% and UnderCovGap, it is better to be closer to the bottom left. For MacroCov, the bottom right is better. For MarginalCov, we want to be at the bottom and to the right of the dotted line at $1 - \alpha$ for the α at which the method is run.

quantile would then recover the $1 - \alpha$ quantile of class y as the number of samples with non-zero weight grows. This is because the mixture of distributions with the same $1 - \alpha$ quantile has that same $1 - \alpha$ quantile. Motivated by this idea, we map each class to the *linearly interpolated* empirical $1 - \alpha$ quantile of its scores in the calibration set. This is similar to \hat{q}_y^{CW} but not the same due to the linear interpolation. We chose to linearly interpolate to avoid the problem of rare classes being mapped to ∞ , which happens if we apply no interpolation and directly apply $\text{Quantile}_{1-\alpha}$ as it is defined in Section 1.2. Linear interpolation of quantiles is described in Definition 7 of Hyndman & Fan (1996) and is the default interpolation method implemented in `numpy.quantile()` (Harris et al., 2020). Given a finite set $A \subset \mathbb{R}$ and level $\tau \in [0, 1]$, let $\text{LinQuantile}_\tau(A)$ denote the linearly interpolated τ quantile of the elements of A or s_{\max} if A is empty, where $s_{\max} = \max_{i \in [n]} s(X_i, Y_i)$ is the maximum observed calibration score. The quantile projection is given by

$$\Pi_{\text{quantile}}(y) = \text{LinQuantile}_{1-\alpha}(\{s(X_i, Y_i)\}_{i \in \mathcal{I}_y}).$$

1350 Results from applying FUZZY CP with Π_{random} and Π_{quantile} are shown in Figure 8. We observe
 1351 that $\Pi_{\text{prevalence}}$ achieves a better trade-off than Π_{random} , which is expected, but it also performs
 1352 better than Π_{quantile} , which is perhaps less expected. We believe that the reason that the quantile
 1353 projection does not do well, despite being intuitively appealing, is that it is very sensitive to noise
 1354 due to the low number of calibration examples per class. This likely causes classes that do not
 1355 actually have similar score distributions to be mapped to similar values.

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403

Figure 8: The performance of FUZZY CP under different class mappings Π .

FUZZY and INTERP-Q with PAS. Recall that we proposed two solution approaches in the main paper. One led to a conformal score function, PAS, and the other led to new procedures, INTERP-Q and FUZZY. One may wonder if combining the two approaches provides additional benefit over using just one, so we test this idea. In Figure 9, we plot the results of running FUZZY and INTERP-Q using PAS as the conformal score function. The thick blue \times 's correspond to STANDARD with PAS (previously shown as gold triangles in the main text), and we observe that the interpolation methods, FUZZY with PAS and INTERP-Q with PAS, do provide some additional benefit at appropriately chosen parameter values by more optimally trading off set size and UnderCovGap, while doing no worse than STANDARD with PAS in terms of other metrics.

D.3 RESULTS USING FOCAL LOSS

To understand how our proposed conformal prediction methods can be combined with existing strategies for dealing with long-tailed distributions, we run additional experiments where we replace the cross-entropy loss with the focal loss in our ResNet-50 training. The focal loss was proposed by Lin et al. (2017) to improve model accuracy on rare classes by modifying the cross-entropy loss. We use the PyTorch implementation of focal loss from <https://github.com/AdeelH/pytorch-multi-class-focal-loss> with the default parameter values of $\gamma = 2$ and $\alpha = 1$. The results are shown in Figure 10 and are qualitatively similar to the cross-entropy results in Figure 3 in the main paper.

D.4 PL@NTNET CASE STUDY

In this section, we highlight the importance of conformal prediction for settings like Pl@ntNet, a phone-based app that allows users to identify plants from images (Joly et al., 2014). Conformal prediction provides value to such applications by generating sets of possible labels instead of point predictions. These prediction sets should balance several desiderata:

1. *Marginal coverage.* For the general public, prediction sets improve the user experience relative to point predictions by offering multiple potential identifications, increasing the

Figure 9: This plot is similar to Figure 3 except here we use PAS as the conformal score function instead of softmax. Note that the thick blue \times 's in this plot are equivalent to the gold triangles in Figure 3.

Figure 10: This figure is identical to Figure 3 except the base model is trained using focal loss (Lin et al., 2017).

likelihood of accurate identification even with ambiguous or low-quality images. In order for users to have a good chance of making the correct identification most of the time, we want the marginal coverage to be high.

2. *Class-conditional coverage (especially in the tail).* Ecologists would like to focus more on identifying (near) endangered or less commonly observed species for the purpose of scientific data collection. This calls for improving coverage of classes in the tail of the label distribution.

1458
1459 3. *Set size.* For both the general public and ecologists, maintaining reasonable set sizes is
1460 crucial, as sifting through large sets is impractical.
1461

1462 An additional challenge in plant identification is that visually similar species often have imbalanced
1463 labeled images, with one species significantly more represented. Standard conformal methods can
1464 suffer from occlusion, where the dominant species overshadows the rarer one at prediction time,
1465 so that the classifier always assigns low probability to the rare class. If the rare species is never
1466 included in the prediction sets, this can lead to a vicious cycle of increasing imbalance, as users
1467 simply confirm the classifier’s suggestions.
1468

1469 For this case study, we focus on comparing our proposed method STANDARD with PAS against
1470 STANDARD and CLASSWISE when run at the $\alpha = 0.1$ level. All methods have a marginal coverage
1471 guarantee, so we focus on comparing class-conditional coverage and average set size between the methods.
1472 Figure 11 shows the class-conditional coverage and average set size for the three methods. Species
1473 that are considered endangered by the International Union for Conservation of Nature (IUCN) are
1474 highlighted in red. We observe that CLASSWISE results in huge prediction sets. On the other hand,
1475 STANDARD with PAS enhances the coverage of classes that have low coverage under STANDARD
1476 with softmax without producing huge sets. We provide visual examples of some endangered species
1477 from the PI@ntNet-300K dataset in Figure 12.
1478

1494 Figure 11: A detailed look at results by class on PI@ntNet-300K dataset for three methods:
1495 STANDARD (with softmax), CLASSWISE (with softmax), and STANDARD with PAS. All meth-
1496 ods are run at the $\alpha = 0.1$ level. Species are ordered according to the prevalence (computed on
1497 train), and the ones considered “threatened” according to the IUCN are highlighted in red.
1498

1499 D.5 UNDERSTANDING MOVEMENTS IN \hat{q}_y

1500 Figure 13 visualizes the \hat{q}_y vectors that result from each of our methods. Recall that STANDARD has
1501 a single score threshold \hat{q} , which we plot as a horizontal line ($\hat{q}_y = \hat{q}$ for all classes y). As a reminder,
1502 a smaller value of \hat{q}_y means that the class is less likely to be included in the prediction set, whereas
1503 classes with $\hat{q}_y = 1$ (or ∞) are always included in the prediction set. For STANDARD with PAS,
1504 we plot the *effective* \hat{q}_y by observing that the class-uniform \hat{q} threshold in terms of the PAS score
1505 implies classwise \hat{q}_y thresholds in terms of the softmax score. Specifically, observe that
1506

$$\begin{aligned}
 s_{\text{PAS}}(x, y) &\leq \hat{q} \\
 \iff -\frac{\hat{p}(y|x)}{\hat{p}(y)} &\leq \hat{q} \quad \text{definition of } s_{\text{PAS}} \\
 \iff 1 - \hat{p}(y|x) &\leq 1 + \hat{q}\hat{p}(y) \\
 \iff s_{\text{softmax}}(x, y) &\leq 1 + \hat{q}\hat{p}(y)
 \end{aligned}$$

1512			
1513	Species: <i>Metasequoia glyptostroboides</i> Hu & W.C.Cheng	Species: <i>Vanilla planifolia</i> Jacks. ex Andrews	Species: <i>Abeliophyllum distichum</i> Nakai
1514	# of examples: 410	# of examples: 35	# of examples: 4
1515	<hr/>	<hr/>	<hr/>
1516	Method	Coverage	Size
1517	Standard	0.00	1.3
1518	Classwise	1.00	781.3
1519	Std w. PAS	1.00	7.3
1520	<hr/>	<hr/>	<hr/>
1521	Method	Coverage	Size
1522	Standard	0.60	3.2
1523	Classwise	1.00	782.2
1524	Std w. PAS	0.80	10.0
1525	<hr/>	<hr/>	<hr/>
1526	Method	Coverage	Size
1527	Standard	0.00	4.0
1528	Classwise	1.00	784.0
1529	Std w. PAS	0.00	6.0
1530	<hr/>	<hr/>	<hr/>

Figure 12: Examples of three species in Pl@ntNet-300K considered as “endangered” by the IUCN. Each table reports the empirical class-conditional coverage and the average size of the prediction sets when the given species is the true label for two baseline methods (STANDARD with softmax and CLASSWISE with softmax), as well as one of our proposed methods (STANDARD with PAS).

where s_{softmax} denotes the softmax score function described in Section 1.2. Thus, for a class $y \in \mathcal{Y}$, we refer to $1 + \hat{q}p(y)$ as the effective \hat{q}_y of STANDARD with PAS.

All of our methods are intended to “interpolate” between STANDARD (with softmax) and CLASSWISE (with softmax). INTERP-Q interpolates in a very literal sense by linearly interpolating \hat{q} and \hat{q}_y^{CW} . The other three methods appear to interpolate in an alternative geometry and allow the \hat{q}_y for each class to be adjusted in a different way. These plots also reveal why CLASSWISE yields such large sets in this setting: there are many classes for which $\hat{q}_y^{\text{CW}} = 1$ (or ∞), and all of these classes are always included in the prediction set.

D.6 ADDITIONAL DECISION ACCURACY PLOTS

In the main text we present decision accuracy plots for only one of our methods, STANDARD with PAS. In Figure 14, we present results for our other method, INTERP-Q.

1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Figure 13: Score thresholds \hat{q}_y of our proposed methods (STANDARD with PAS, Raw FUZZY, FUZZY, and INTERP-Q) on PI@ntNet-300K for $\alpha = 0.1$. For visualization purposes, infinite values of \hat{q}_y are replaced with one, the maximum possible softmax score value. Furthermore, for ease of comparison, we sort the classes in ascending value of the CLASSWISE thresholds \hat{q}_y^{CW} (plotted as a dashed red line).

Figure 14: Class-conditional decision accuracies for a range of decision makers when presented with sets from INTERP-Q run with different values of τ . Recall that $\tau = 0$ recovers STANDARD and $\tau = 1$ recovers CLASSWISE. Classes are ordered by decreasing decision accuracy of H_{expert} under each method.