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Abstract

Most of today’s data is time-series data from sensors, transactions systems, and
production systems. However, much of this data is sensitive and consequently
unusable. Generative models have shown promise in generating non-sensitive
synthetic data, to share and drive applications with. However, current generative
time-series models are limited in their ability to capture the data distribution,
limiting their usability. In this paper we propose a transformer-based diffusion
model, TDDPM, for time-series which outperforms and scales substantially better
than state-of-the-art. The focus is primarily on mobility data, such as trajectories
of people’s movement in cities, and we propose a conditional distribution approach
which demonstrate out-of-distribution generalization to city-areas not trained on.
We further propose a comprehensive benchmark across several sequence lengths,
standard datasets, and evaluation measures, considering key distribution properties.

1 Introduction

Time-series data of human mobility is important because it enables pandemic forecasting and
management [1], smart city development [2], urban governance [3], human rights violation detection
[4] and monitoring of global migration induced by war and climate change [5, 6]. Two major
challenges stand in the way for using time-series data to these ends. The first is a shortage of publicly
available data [7]. Data can only be collected and shared in limited capacity due to privacy concerns,
business concerns and national security, creating a silo effect. Secondly, predictions about unobserved
parts in space, about the future or even possible futures - given that different actions are taken - is
often a necessary complement to the readily collectable data. One such case is generating high-fidelity
realistic spatio-temporal mobility data, such as individual pedestrians navigating a city or a building.

A solution to both challenges is to use time-series generative models to accurately capture the data
distribution. These generative models can then be adapted to generate samples that are privacy-
preserving [8, 9], resulting in synthetic non-private datasets that can be made publicly available.
Further adaptation allows for tasks such as imputation [10] or forecasting [10, 11]. However, current
approaches have crucial limitations limiting their real-world applicability: they can only generate
short sequence length and they struggle to model complex distributions with sparse support.

In this work, we introduce a new method for generating long and realistic sequences of spatio-
temporal data, Temporal Denoising Diffusion Probabilistic Model (TDDPM), capable of out-of-
distribution generalization via deaggregation from spatial statistics to temporal time-series samples.
More specifically, we first adapt the denoising diffusion model to generate time-series data and
show that it scales to significantly longer sequences than what is possible with previous models.
Secondly, we ask: Can a deep generative model (in our case a diffusion model) be made to stay
true to a marginal probability distribution, while generating samples from the full distribution?
We demonstrate how this can be achieved via conditioning the model on a non-temporal marginal
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Figure 1: TDDPM is trained on real 2D trajectories (left) to generate synthetic trajectories (right),
conditioned on how likely it should be for the population of synthetic trajectories to occupy space on
the 2D plane. The latter is represented as a discrete distribution over occupancy frequency, i.e., the
marginal distribution over the trajectory probability distribution if integrating out time. This yields
both high-fidelity in-distribution generalization (top) and out-of-distribution generalization (bottom),
the latter when conditioning on a marginal distribution not part of the training data (dashed rectangle).

distributions of the trajectory data, making deaggregation to individual trajectories possible. A
consequence of this is that the model can generalize to environment changes and even to new
environments without retraining, requiring only a statistic (i.e., an aggregate) of the new environment
as input. Figure 1 illustrates the full capabilities of TDDPM in a setting of mobility data.

2 Temporal Denoising Diffusion Probabilistic Model (TDDPM)

The task of learning an unconditional generative model is defined as learning a mapping f from
samples drawn from a known distribution Dknown, e.g. standard normal distribution, to samples
from an unknown target distribution Dunknown. The mapping is learned without direct access to
the unknown distribution, and is instead limited to a set of samples Xtrain = {x1, . . . , xN}, where
xi ∼ Dunknown. Once the mapping has been learned, synthetic data can be generating by first
sampling the known distribution, then passing the individual samples through the mapping function
Xsynthetic = {f(yi)}Mi=0, where yi ∼ Dknown. The goal of this mapping is for the synthetic samples
to be similar to samples from the known distribution.

The notion of similarity is often broken into several desirable properties[12–14] for the mapping
function and the resulting synthetic data points. In this work we propose the following set of
properties to evaluate the quality of synthetic data: (I) Fidelity: [13] The individual synthetic samples
should have similar characteristics to, or be indistinguishable from, samples from the original
distribution. (II) Diversity: [13] It should be possible for synthetic data to be drawn from any part of
the unknown distribution’s support. (III) Proportionality: [14] The probability of a sample occurring
in the synthetic distribution should be proportional to the probability of a sample occurring in the
unknown distribution. (IV) Usefulness: [12] The synthetic data should capture aspects of the unknown
distribution that is useful for downstream tasks. (V) Generalization: [13] Synthetic samples should
not be mere copies of the training data.

Further, we separate the generative task into two steps by extracting local information l from the
training data. We can then condition the generation on this local information. This allows for more
accurate modelling on challenging distributions, as well as enabling generalization in some cases
where l can include sufficient information. More precisely, instead of learning to generate samples
from p(x) directly, we learn to generate samples from the joint distribution p(x, l) via the chain
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rule: p(x, l) = p(x | l) p(l), where p(x | l) is a conditional deep generative model and p(l) can be
modeled using a explicit and more interpretable distribution.

Creating synthetic samples from p(x) is then done by first sampling p(l) and then use these samples
to sample the conditional distribution p(x | l). In practice, we learn a conditional mapping function g
which maps samples from a known distribution and local information l to synthetic samples, which
should be similar to samples from the unknown distribution Dunknown. More precisely, a dataset
for a collection of local information L = {li}Mi=0 is generated Xsynthetic =

{
g(yi, li)

}M
i=0

, where
yi ∼ Dknown. For certain problems, if the choice of l is sufficiently informative, we can learn to
generate data for a new distribution p∗(x) without having to retrain p(x | l). This is achieved by
estimating a new distribution p∗(x, l), s.t. p∗(x, l) ≈ p(x | l) p∗(l). This is not only a computationally
efficient way to estimate p∗(x), but can also be useful in cases where we only have access to l, e.g. to
model hypothetical scenarios or account for data distribution shifts.

To approximate p(x | l) we propose an architecture based on the denoising diffusion architecture [15],
using a transformer encoder [16] for denoising. At each denoising step, the transformer takes the
entire noisy sequence, the current denoising step and the optional local information as input and
predicts the noise added at the current step. See Appendix A.2 for full details, including tokenization.

The training data consists of a set of N trajectories, consisting of trajectories ti = {p1, p2, . . . , pLi
},

each with observations pj ∈ RD. We set l to be a local heatmap of the training data trajectories for
a given region r = (x, y, θ) where θ is rotation in [0, 2π). See Figure 1 for examples of heatmaps.
During training we sample these regions uniformly (including rotation) and extract pairs of heatmap
and sub-trajectories in the region. When generating synthetic datasets for evaluation, the regions
are placed on a grid that spans the target geographical area. We start by calculating the heatmap for
each region. Then, the model is sampled once for each region by conditioning on the corresponding
heatmap. This allows for both interpolation, i.e. generating for regions that are not part of the training
set, but that are from the same physical space and time, as well as extrapolation, generating sequences
for previously unseen regions and different points in time. To ensure a representative dataset, the
number of samples from each region is proportional to the total number of trajectories in each region.

3 Evaluation

In this section we first study the performance in unconditional mode, i.e. without local information,
on a mix of spatio-temporal and time-series (non-spatial) data. Second, we evaluate TDDPM in
conditional mode, i.e. using local information, which the other methods do not support, and validate
the out-of-distribution generalization capability. Last, we show how local information can be used to
generalize to new areas, and a proof-of-concept of generating data for a hypothetical what-if scenario.

Unconditional Generation
We evaluate TDDPM w.r.t. unconditional SOTA approaches representing GAN, VAE and Diffusion
approaches: TimeGAN [17], TimeVAE [18], COSCI-GAN [19] and DiffusionTS [20]. We use six
real-world datasets, four non-spatial datasets from the generative time-series field: Stock [17], Energy
[17], Solar [21] and Electricity [21] and two spatio-temporal datasets from robotics / large-scale
mobility: ATC [22] and Geolife [23]. The synthetic datasets from the trained models are compared to
the original data using the standard measures: train on synthetic, test on real (TSTR) [17], t-SNE [24]
and KL divergence. We also introduce TimeFID, an adaptation of the widely used Fréchet Inception
Distance (FID) [25] to time-series generation by replacing the pre-trained image-specific inception
network with a domain-specific time-series embedding network [26]. Prevalent numerical issues has
also been addressed [27].

Evaluation using TimeFID (Table 1) show that TDDPM is on-par with top contenders, which vary
between datasets, apart from for Solar and Electricity where TDDPM is better. TDDPM is also the
only method which can scale to long sequences for all datasets. Both TimeGAN and COSCI-GAN
can both take a long time to run, especially for larger datasets and longer sequence lengths. Other
models crash due to allocating too much RAM or in rare circumstances VRAM. This indicates
that the quadratic scaling of the Transformer architecture is not the limiting factor for time-series
generation, rather optimistic memory allocation during preprocessing and sampling. We address this
by dynamically loading windows, see Algorithms 1 and 2. We also evaluated TSTR (2) for which
most methods are on-par on most datasets. In addition to the quantitative measures, we investigate
qualitative aspects by plotting the training and synthetic datasets using t-SNE, see Figure 6. For
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Figure 2: Generalization experiment. TDDPM is trained on the lower left quadrant and then sampled
to generate trajectories for the remaining geographical area. From the left: (1) Data from Geolife,
dashed area used for training, (2) heatmap of training data, (3) synthetic trajectories, and (4) heatmap
of the synthetic data.

Geolife, we also calculate the spatial marginal distribution for the resulting synthetic trajectories,
shown in Figure 7. These are then used to calculate the divergence between synthetic and training data
distributions (Table 3, 4). Low KL(real || synthetic) indicate that the synthetic distribution captures
the real distribution well, which is distinctly seen for TDDPM. DiffusionTS, which is slightly worse,
show better results for KL(synthetic || real), indicating that its synthetic distribution has captured
some modes in the real data well, but not across the full support of the real distribution. In both tables
we can see that conditional TDDPM on out-of-distribution generation outperforms all other methods.

Large-scale human mobility conditional generative model
In these experiments, we validate the conditional method for generating large-scale spatio-temporal
data. For this we use a quadrant of Geolife (Large) which is 40 km2. After having trained on the
region, we use the model to generate trajectories for the entire region (Figure 5). We observe that the
synthetic trajectories are similar to the training data and when used to calculate a spatial marginalized
distribution, the resulting distribution is almost indistinguishable from the original.

Generalizing to new environments
We generate heatmaps outside of the area used for training the model. In regions outside the
geographical area, the heatmaps are generated with data previously not observed by the model.
To evaluate the quality of the resulting synthetic trajectories, we calculate a spatial marginalized
distribution with all synthetic trajectories from all regions. This distribution can then be compared to
a distribution of the original, previously unobserved, data. The distribution and trajectories are all
shown in Figure 2. We observe that the model successfully manages to generate trajectories for areas
outside of the training region and the distribution of the synthetic data is similar to that of the original
data. Finally, a proof of concept of what-if-scenario modelling is shown in Figure 4.

4 Conclusion

Scaling time-series generative models to long sequences and large-scale settings, not least for mobility
data applications, has been very challenging. By conditioning denoising diffusion probabilistic models
on a spatial marginal distribution, we demonstrate that TDDPM scales to problem sizes far beyond
current state-of-the-art, without compromising fidelity in the generated trajectories. Moreover,
TDDPM stays on-par in performance on unconditional tasks at smaller scales while including less
induction bias on trajectories and being more efficient at both training time and sampling time
than comparable high-fidelity approaches. Finally, high-quality out-of-distribution generalization is
demonstrated at scale, including for what-if scenario modeling of road traffic. The accompanying
comprehensive benchmark invite continued improvements as future work and a range of applications.
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A Appendix / supplemental material

A.1 Related Work

Previous work on unconditional generation of time-series data has focused on variations of the
generative adversarial networks (GAN) architecture [12, 17, 21, 28] and, more recently diffusion
models [29, 20, 11]. There has also been an interest in using time-series generation for imputation
and forecasting [10, 30–33]. Transformer-based time-series foundation models has been proposed as
a general purpose forecasting tool [7], but has not been evaluated on the unconditional generation
task.

TimeGAN [17] consists of a generative adversarial network (GAN) operating inside the latent space
of an autoencoder. To further improve performance, they add an additional network with the task of
predicting one time step ahead. The encoder, decoder, supervisor, generator and discriminator are all
implemented using autoregressive models and in practice they use gated recurrent units (GRUs).

The TimeVAE [18] architecture is a variant of the popular variational autoencoder architecture.The
autoencoder is trained with an additional loss component to have the latent space conform to a known
statistical distribution, in this instance a multivariate normal distribution. The autoencoder is trained
to both minimize the reconstruction loss, as well as minimizing the divergence between the embedded
data and the prior set for the latent space.

COSCI-GAN [19] proposes to use a separate generative adversarial network for each channel of the
data. The individual GANs all share single source of noise as input to the generator and, additionally
they a central discriminator that is given the stacked output from the all the generators as input.

DiffusionTS [20] adapts the denoising diffusion architecture [15] to generate time-series data by
implementing the denoising step with a multilayer neural network each consisting of a transformer
block, a fully connected neural network as well as time-series specific layers with the aim of improved
interpretability. The transformer architecture [16] proposed attention as an alternative to recurrence
in neural networks and the architecture itself became a common architecture. The vision transformer
(ViT) [34] is based on the transformer encoder and splits images into several equally sized patches
which are projected before given as input tokens to the encoder.

Another track of generative models are based on the structured state-space architecture (S4) [35].
The SSSD architecture [10] combines DiffWave [29], a denoising diffusion model for audo synthesis,
with S4 to use denoising diffusion for imputation and forecasting. This was later extended into the
TSDiff architecture with various capabilities, including unconditional generation, although limited to
univariate data.

In this work, we focus on using denoising diffusion to generate time-series data. This is similar to [20],
but we introduce less inductive bias by using a simpler architecture without any time-series specific
layers, and instead we rely on time-embeddings [16]. In practice, local information is expressed as
heatmaps and similar to ViT processes images, we split our heatmaps into 8x8 equally sized patches
and use linear projection to convert them into tokens.

A.2 Architecture Additional Details

An overview of the approach is shown in Figure 3. Positional encoding [15]:

PE(pos,2i) = sin

(
−ei log(10000)

d
2 − 1

)
(1)

PE(pos,2i+1) = cos

(
−ei log(10000)

d
2 − 1

)
(2)

The input to the transformer encoder is:

• L input tokens, each token corresponding to a time point in the noisy sequence. Note: The
token size depends on the number of features of the dataset. It is a concatenation of:

– x ∈ RDN , each corresponding to a dimension observed at each time point encoded
using positional encoding
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Figure 3: Overview of the architecture. In the unconditional part, each time point of the noisy
trajectory is converted into a separate token with positional embedding [16] used to embed its values
and the time point, as well as a learned vector representing its type. The denoising step token encodes
the denoising step, the step is encoding using positional encoding and then concatenated with a type
vector. The transformer can also optionally take a marginal distribution to guide the denoising process
to generate samples with particular properties, improving in-distribution performance as well as
enabling generalization to previously unobserved areas. The marginal distribution is split into tokens,
taking inspiration from ViT [34], concatenated with a learned type vector and the corresponding
position using positional embedding.

– x ∈ RN , the time point encoded using the positional encoding introduced in [16]
– x ∈ RN , a learned vector encoding denoting that this is a token that corresponds to a

noisy sequence

• Optional conditional information: 64 tokens, each corresponding to a patch of the heatmap
and being a concatenation of:

– x ∈ RN , corresponding to the x position of the patch. Encoded using positional
encoding [16].

– x ∈ RN , corresponding to the y position of the patch. Encoded using positional
encoding [16].

– x ∈ RN , corresponding to the intensity of the heatmap. Encoded using a linear
projection [34].

– x ∈ RN , a learned vector encoding denoting that this is a token that corresponds to the
conditional information

• A token encoding the current denoising step:

– x ∈ RN(D+1), the denoising step encoded using positional encoding [16]
– x ∈ RN , a learned vector encoding denoting that this is a token that corresponds to the

denoising step

A.3 Data Preprocessing Details

The datasets used are summarized in Table 5. The ATC shopping center dataset consist of pedestrians
being tracked indoors between 2012 and 2013. We use the first day (2012/10/24) of the dataset,
and drop all features except position (x,y) scaled to meters. Time is also dropped in favor for index
since time between observations is roughly constant. Geolife is a GPS trajectory dataset collected
by Microsoft Research Asia, consists of 178 users and was collected between 2007 and 2011. The
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Algorithm 1 Pre-compute and save indices for (valid) sliding windows
Input: Raw dataset X = x1, . . . , xN , Length of the raw sequences T ∈ NN , Sequence length L
Output: List l which maps from window indices to indices in X
Initialize l = [ ].
for i = 1 to N do

for j = 1 to Ti − L do
Optional: if not valid(Xi,j:j+T ) continue
Append (i, j) to l

end for
end for

Algorithm 2 Lookup window index to sequence window
Input: Raw dataset X , Sequence length L, list that maps from window indices to sequence indices
and time points l, a window index k
Output: A window wk

(i, j)← lk
wk ← Xi,j:j+T

majority of the data is centered on Beijing, China. We use two subsets of the full Geolife dataset:
Geolife (Small) at 10 km2 and Geolife (Large) at 161 km2.

To save on memory in order to not crash on long sequences, it is often necessary to save a list of valid
sliding window indices rather than save all sliding windows in memory. To calculate these, we use
Algorithm 1. For Geolife, we only save windows that are within the target geographic area, where
less than 10 seconds have elapsed between observations and where the velocity is less than 140 km/h.
Once the indices are pre-computed, we look up the window sequences when collecting the current
batch using Algorithm 2.

A.4 Additional Metrics Details

TSTR: Train on synthetic, test on real. We follow the evaluation done by TimeGAN [17] and use the
synthetic data to train a GRU-based RNN on task of one step prediction using the synthetic data. The
resulting model is then evaluated on the training data and the mean absolute value is reported. This
evaluates the usefulness, fidelity and diversity of the synthetic data. A lower score is better.

t-SNE: We refine the process of visual evaluation by using an embedding network to first embed
the real and synthetic time-sequences into fixed-size vectors. The vectors are then passed to t-SNE
which places the vectors on a 2D plane, similar vectors are placed close to each other and vectors
that are different further away. The points are then colored, with different colors for the training and
synthetic datasets. This allows us to visually evaluate the similarity between the synthetic and real
data. More similar data are more similar in terms of fidelity and diversity, while having points that
cover the entire range of real data points indicates support coverage. If all synthetic points share the
same location as the training data, this suggests poor generalization.

KL Divergence: Evaluates support coverage as well as proportionality. KL(real || synthetic) mea-
sures how well the synthetic distribution represents the real distribution, with 0 being identical.
KL(synthetic || real) measures how well the synthetic distribution fits inside the real distribution, i.e.
it is sufficient that the synthetic distribution matches a single mode of the real distribution in order to
get a low divergence value. The synthetic distribution consequently do not need to have the same
support, nor have any probability density outside of this mode. Symmetric KL weight these two
together and Jensen–Shannon divergence is a more stable version of symmetric KL with regions
without probability in either of the distributions.
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Figure 4: What-if-scenario where a road is removed and added.

A.5 Additional Results

A.5.1 What-if analysis

Current approaches also struggle with environmental and context changes. The environment (and
how people behave within it) often undergo rapid changes. This necessitates data ageing mechanisms
that allow models to adapt their prediction to changing circumstances [36], such as for example road
construction, traffic accidents, traffic-light malfunction or other traffic flow and road topology changes.
For analysis and what-if scenario modeling, it is further important that the distributions of synthetic
data is proportional to the probability distribution of the real data: Certain locations and motion
patterns are more frequently occurring than others. This is important for policy making, planning and
decisions to be resting on correct risk assessments using for example Bayesian inference.

Proof-of-concept of this capability by TDDPM is shown in Figure 4.

A.5.2 Unconditional and conditional experiments

11



Table 1: Evaluation of unconditional generation using TimeFID. Lower is better. Several experiments
ran out of 128 GB system memory (RAM) or 24GB of video memory (VRAM) (oom) or did not
finish (dnf ) in under 100 hours.

Dataset Len. TimeGAN TimeVAE COSCI-GAN DiffusionTS TDDPM

Stock

24 0.49± 0.49 0.15± 0.15 0.12± 0.12 0.15± 0.15 0.13± 0.13
32 0.56± 0.56 0.13± 0.13 0.12± 0.12 0.12± 0.12 0.19± 0.19
64 0.25± 0.25 0.19± 0.19 0.21± 0.21 0.11± 0.11 0.20± 0.20

128 2.40± 2.40 0.52± 0.52 0.22± 0.22 0.16± 0.16 0.40± 0.40
256 1.87± 1.87 0.29± 0.29 0.14± 0.14 0.09± 0.09 0.15± 0.15
512 dnf 1.37± 1.37 0.05± 0.05 oom 0.28± 0.28

1024 dnf 130.71± 130.71 0.04± 0.04 oom 0.30± 0.30

Energy

24 0.69± 0.69 0.43± 0.43 1.73± 1.73 0.27± 0.27 0.40± 0.40
32 0.77± 0.77 0.44± 0.44 2.14± 2.14 0.30± 0.30 0.45± 0.45
64 0.50± 0.50 0.35± 0.35 1.47± 1.47 0.22± 0.22 0.37± 0.37

128 1.42± 1.42 0.52± 0.52 1.74± 1.74 0.19± 0.19 0.51± 0.51
256 3.46± 3.46 0.50± 0.50 0.90± 0.90 0.21± 0.21 0.52± 0.52
512 dnf 0.37± 0.37 0.81± 0.81 oom 0.43± 0.43

1024 dnf oom 0.56± 0.56 oom 0.37± 0.37

Solar

24 oom 3.54± 3.54 2e8± 2e8 0.73± 0.73 0.66± 0.66
32 oom 2.87± 2.87 2e7± 2e7 0.74± 0.74 0.48± 0.48
64 oom 1.73± 1.73 4e6± 4e6 0.74± 0.74 0.53± 0.53

128 oom 0.54± 0.54 4e7± 4e7 0.88± 0.88 0.80± 0.80
256 oom oom 4e7± 4e7 0.79± 0.79 0.38± 0.38
512 oom oom 4e7± 4e7 oom 0.52± 0.52

1024 oom oom dnf oom 1.24± 1.24

Electricity

24 oom 5.27± 5.27 dnf 4.86± 4.86 2.29± 2.29
32 oom 4.42± 4.42 dnf 4.49± 4.49 2.13± 2.13
64 oom 4.65± 4.65 dnf 4.73± 4.73 1.35± 1.35

128 oom oom dnf 4.73± 4.73 1.09± 1.09
256 oom oom dnf 4.67± 4.67 1.52± 1.52
512 oom oom dnf oom 0.68± 0.68

1024 oom oom dnf oom 0.77± 0.77

ATC

24 dnf 50.34± 50.34 dnf 0.13± 0.13 0.14± 0.14
32 dnf 76.20± 76.20 dnf 0.14± 0.14 0.19± 0.19
64 dnf 413.52± 413.52 dnf 0.11± 0.11 0.18± 0.18

128 dnf oom dnf 0.14± 0.14 0.16± 0.16
256 dnf oom dnf 0.22± 0.22 0.24± 0.24
512 dnf oom dnf oom 0.29± 0.29

1024 dnf oom dnf oom 0.42± 0.42

24 1.05± 1.05 0.24± 0.24 0.29± 0.29 0.12± 0.12 0.18± 0.18
32 0.54± 0.54 0.41± 0.41 0.98± 0.98 0.16± 0.16 0.19± 0.19
64 0.36± 0.36 0.35± 0.35 0.27± 0.27 0.17± 0.17 0.25± 0.25

Geolife 128 0.76± 0.76 0.21± 0.21 0.16± 0.16 0.21± 0.21 0.21± 0.21
(Small) 256 0.96± 0.96 0.18± 0.18 0.25± 0.25 0.28± 0.28 0.37± 0.37

512 dnf 0.26± 0.26 0.21± 0.21 oom 0.40± 0.40
1024 dnf 0.46± 0.46 0.14± 0.14 oom 0.17± 0.17
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Table 2: Evaluation of unconditional generation using TSTR. Lower is better. Several experiments
ran out of 128 GB system memory (RAM) or 24GB of video memory (VRAM) (oom) or did not
finish (dnf ) in under 100 hours.

Dataset Len. TimeGAN TimeVAE COSCI-GAN DiffusionTS Ours

Stock

24 0.01± 0.01 0.03± 0.03 0.02± 0.02 0.02± 0.02 0.02± 0.02
32 0.01± 0.01 0.01± 0.01 0.01± 0.01 0.02± 0.02 0.01± 0.01
64 0.01± 0.01 0.01± 0.01 0.02± 0.02 0.01± 0.01 0.02± 0.02
128 0.02± 0.02 0.02± 0.02 0.01± 0.01 0.01± 0.01 0.01± 0.01
256 0.04± 0.04 0.03± 0.03 0.01± 0.01 0.02± 0.02 0.01± 0.01
512 dnf 0.02± 0.02 0.02± 0.02 oom 0.01± 0.01
1024 dnf 0.04± 0.04 0.01± 0.01 oom 0.01± 0.01

Energy

24 0.07± 0.07 0.06± 0.06 0.05± 0.05 0.05± 0.05 0.05± 0.05
32 0.06± 0.06 0.06± 0.06 0.05± 0.05 0.05± 0.05 0.05± 0.05
64 0.06± 0.06 0.06± 0.06 0.05± 0.05 0.05± 0.05 0.05± 0.05
128 0.09± 0.09 0.06± 0.06 0.05± 0.05 0.05± 0.05 0.05± 0.05
256 0.21± 0.21 0.06± 0.06 0.05± 0.05 0.05± 0.05 0.05± 0.05
512 dnf 0.05± 0.05 0.06± 0.06 oom 0.06± 0.06
1024 dnf oom 0.13± 0.13 oom 0.05± 0.05

Solar

24 oom 0.01± 0.01 0.92± 0.92 0.07± 0.07 0.07± 0.07
32 oom 0.01± 0.01 0.54± 0.54 0.07± 0.07 0.07± 0.07
64 oom 0.01± 0.01 0.07± 0.07 0.07± 0.07 0.07± 0.07
128 oom 0.01± 0.01 0.80± 0.80 0.01± 0.01 0.07± 0.07
256 oom oom 0.92± 0.92 0.07± 0.07 0.07± 0.07
512 oom oom 0.93± 0.93 oom 0.07± 0.07
1024 oom oom dnf oom 0.07± 0.07

Electricity

24 oom 0.00± 0.00 dnf 0.00± 0.00 0.00± 0.00
32 oom 0.00± 0.00 dnf 0.00± 0.00 0.00± 0.00
64 oom 0.00± 0.00 dnf 0.00± 0.00 0.00± 0.00
128 oom oom dnf 0.01± 0.01 0.00± 0.00
256 oom oom dnf 0.00± 0.00 0.00± 0.00
512 oom oom dnf oom 0.00± 0.00
1024 oom oom dnf oom 0.00± 0.00

ATC

24 dnf 0.31± 0.31 dnf 0.04± 0.04 0.09± 0.09
32 dnf 0.27± 0.27 dnf 0.04± 0.04 0.04± 0.04
64 dnf 0.26± 0.26 dnf 0.04± 0.04 0.04± 0.04
128 dnf oom dnf 0.04± 0.04 0.04± 0.04
256 dnf oom dnf 0.04± 0.04 0.04± 0.04
512 dnf oom dnf oom 0.04± 0.04
1024 dnf oom dnf oom 0.05± 0.05

Geolife (Small)

24 0.12± 0.12 0.10± 0.10 0.11± 0.11 0.13± 0.13 0.09± 0.09
32 0.09± 0.09 0.09± 0.09 0.10± 0.10 0.09± 0.09 0.09± 0.09
64 0.13± 0.13 0.08± 0.08 0.11± 0.11 0.09± 0.09 0.10± 0.10
128 0.08± 0.08 0.12± 0.12 0.08± 0.08 0.08± 0.08 0.08± 0.08
256 0.07± 0.07 0.06± 0.06 0.07± 0.07 0.07± 0.07 0.07± 0.07
512 dnf 0.05± 0.05 0.04± 0.04 oom 0.04± 0.04
1024 dnf 0.10± 0.10 0.02± 0.02 oom 0.02± 0.02
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Table 3: KL divergence between spatial marginal distributions. TDDPM in unconditional mode
except for sequence length 128∗. Then TDDPM is trained on one quarter of the map and KL is
calculated over full dataset including both in- and out-of-distribution data. Lower is better.

Metric Len. TimeGAN TimeVAE COSCI-GAN DiffusionTS TDDPM

KL(real || synthetic)

24 2.78 1.51 1.07 0.75 0.75
32 1.41 1.49 1.30 0.70 0.69
64 1.40 1.25 1.00 0.68 0.72
128 1.77 1.08 1.01 0.80 0.76
128∗ - - - - 0.41
256 2.73 1.47 1.78 2.23 1.01
512 dnf 3.57 2.88 dnf 1.19
1024 dnf 6.40 3.98 dnf 0.61

KL(synthetic || real)

24 3.31 1.83 1.65 0.94 0.94
32 1.80 1.92 1.82 0.85 0.86
64 1.83 1.71 1.44 0.73 0.89
128 2.01 1.46 1.49 0.77 1.02
128∗ - - - - 0.45
256 4.08 2.07 2.93 1.79 1.25
512 dnf 6.05 4.98 dnf 1.22
1024 dnf 8.76 6.50 dnf 0.61

Table 4: Divergence between spatial marginal distributions. TDDPM in unconditional mode except
for sequence length 128∗. Then TDDPM is trained on one quarter of the map and KL is calculated
over full dataset including both in- and out-of-distribution data. Lower is better.

Dataset Len. TimeGAN TimeVAE COSCI-GAN DiffusionTS TDDPM

Symmetric KL

24 3.04 1.67 1.36 0.84 0.85
32 1.60 1.70 1.56 0.78 0.78
64 1.61 1.48 1.22 0.71 0.80
128 1.89 1.27 1.25 0.79 0.89
128∗ - - - - 0.43
256 3.40 1.77 2.36 2.01 1.13
512 dnf 4.81 3.93 oom 1.20
1024 dnf 7.58 5.24 oom 0.61

JS

24 0.44 0.28 0.23 0.16 0.16
32 0.26 0.28 0.26 0.15 0.14
64 0.26 0.24 0.20 0.14 0.15
128 0.29 0.21 0.21 0.15 0.16
128∗ - - - - 0.09
256 0.42 0.27 0.34 0.31 0.20
512 dnf 0.51 0.48 dnf 0.19
1024 dnf 0.66 0.58 dnf 0.11

Table 5: Selected properties of the datasets used in evaluation of unconditional generation. A dataset
consists of one or more sequences, each sequence consist of one or more observation across time and
at each time point one or more dimensions are observed.

Name Number of sequences Sequence length Observations Dimensions

Stock 1 3,685 3,865 6
Energy 1 19,735 19,735 28
Solar 137 105,121 14,401,440 1
Electricity 370 [16,032, 140,256] 41,855,506 1
ATC 49,688 [24, 187766] 47,290,292 2
Geolife (Smaller) 16,708 [24, 3,322] 1,957,039 2
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Figure 5: Interpolation experiment. The model has trained on this region is tasked to reconstruct it
from the heatmaps. Top left: Data from Geolife used for training. Top right: heatmap of training data
and areas used for creating query heatmaps for sampling the model, Bottom left: synthetic trajectories.
Bottom right: heatmap of the synthetic data.
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Figure 6: t-SNE analysis for sequence length 64. Blank figures are unsuccessful experiments (Table
1).
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Figure 7: Heatmaps of the unconditionally generated trajectories for Geolife. Training dataset is
shown in the left column. Blank figures are unsuccessful experiments (Table 1).
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