
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LARGE LANGUAGE MODEL GUIDED DYNAMIC BRANCH-
ING RULE SCHEDULING IN BRANCH-AND-BOUND

Anonymous authors
Paper under double-blind review

ABSTRACT

Branch-and-bound (B&B) is a core technique in state-of-the-art mixed integer linear
program (MILP) solvers. It reformulates an MILP into a systematic tree search and
recursively partitions it into subproblems using various hard-coded heuristics, among
which the branching rule plays a central role. Different branching rules yield distinct
search trajectories and performance outcomes, making their selection a decisive factor
in solver performance. Traditionally, the configuration of the branching rule heavily
relies on expert knowledge: a rule is manually configured for a given problem and
applied throughout the entire B&B process, or predefined to switch at certain depths.
Such approaches fail to adapt to the evolving structure of the search tree, which often
leads to suboptimal branching decisions and inefficient exploration of the search space.
More recently, learning-based branching policies have been proposed to automate
branching decisions using feature representations, but they often involve costly training
pipelines and exhibit poor generalization across heterogeneous problem types. In this
work, we propose a large language models (LLMs)-guided approach to dynamically
schedule the branching rule throughout the B&B process. The term dynamic scheduling
refers to (i) identifying the problem type and scale at the initial stage to select an
appropriate starting rule, and (ii) monitoring the evolving state of the search tree during
solving to adaptively decide when and which branching rule to switch. By leveraging
the extensive prior knowledge embedded in LLMs, our method eliminates dependence
on human-crafted heuristics, removes the need for dedicated training, and achieves
zero-shot generalization across diverse problem types. Experiments on benchmark
instances demonstrate that our method shows great potential and achieves competitive
performance with state-of-the-art baselines in terms of solving efficiency.

1 INTRODUCTION

Mixed integer linear program (MILP) is a powerful method for modeling combinatorial optimization
problems and have been widely applied in real-world domains (Kacem et al., 2025; Wolf, 2011). The
predominant method for solving MILPs to global optimality is the Branch-and-bound (B&B) algorithm,
which adopts a divide-and-conquer strategy. Specifically, B&B reformulates an MILP into a systematic
tree search and recursively partitions it into subproblems using the branching rule. A variety of branching
rules, such as most infeasible branching (Mostinf), pseudocost branching (Pscost), and fullstrong branching
(Fullstrong) have been implemented in modern solver. These rules differ in the way they select branching
variables and prioritize subproblems for exploration, resulting in distinct search trajectories and solver
performance. Each rule is suited to different scenarios—for example, strong branching is effective for
small-scale problems or at the root, whereas pseudocost branching is better for large-scale problems once
sufficient warm-up has been achieved for stable performance.

Motivation For a given MILP problem, the choice of an appropriate branching rule has a decisive impact on
practical solving performance (Achterberg & Wunderling, 2013). As shown in Figure 1(a), for a set covering
problem with five different branching rules, each executed five times with different random seeds, the
solving times (normalized) vary substantially across rules, highlighting the sensitivity of solver performance
to rule selection. In practice, rule selection largely relies on expert knowledge of the problem structure. Once
selected, the initial branching rule is applied throughout the entire B&B process. However, as optimization
progresses, the structure of the search tree evolves, and adhering to a single rule is often suboptimal for
the solving process. Figure 1(b) shows that switching rules during B&B produces a superadditive effect,
reducing branching steps more effectively than any individual rule alone. Whereas, both the timing and the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

inferencemostinf
nodereoptrandomrelpscost

Branching Rules

0.0

0.5

1.0

So
lv

in
g

Ti
m

e
(s

)

(a) Different branching
rules

0 100 200 300 400 500
Steps

0.00

0.05

0.10

G
ap

switch

Fullstrong -> Pscost
Switch
Fullstrong
Pscost

(b) Switching rule: Pscost,
Switch step = 50

0 100 200 300 400 500
Steps

0.00

0.05

0.10

G
ap

switch

Fullstrong -> Pscost
Switch
Fullstrong
Pscost

(c) Switching rule: Pscost,
Switch step = 150

0 500 1000150020002500
Steps

0.00

0.05

0.10

G
ap

switch

Fullstrong -> Mostinf
Switch
Fullstrong
Mostinf

(d) Switching rule: Mostinf,
Switch step = 150

Figure 1: Preliminary experiment results on capacitated facility location benchmark.

choice of rule have a significant impact on solving performance. For example, switching to the Pseudocost
rule at step 50 reduces the number of branching steps more effectively than switching at step 150, as shown
in Figures 1(b) and (c). Figures 1(c) and (d) show that switching to the Pseudocost rule results in faster
convergence than switching to the Mostinf rule. Further details on the impact of different branching rules
on MILP problems, as well as their effects on the B&B tree search process, are provided in Appendix A.

Based on the above preliminary results, we observe that rule selection/switching play a critical role in solving
performance. However, effective rule selection and switching rely on interpreting search-tree dynamics and
understanding how different branching rules behave under those dynamics, a process that typically requires
considerable expert expertise. Therefore, we aim to address the following challenges in order to minimize
reliance on expert knowledge when switching branching rules during the B&B procedure: (i) selecting an
appropriate branching rule for a given problem and (ii) determining when to switch and which rule to adopt.
These two challenges are critical yet underexplored questions. In this work, we propose dynamic branching
rule scheduling powered by LLMs throughout the B&B procedure. At the initial stage, we leverage the
broad knowledge of LLMs to select a suitable branching rule according to the problem type and scale.
During solving, the evolving B&B search tree is translated into a linguistic representation, enabling LLMs
to assess the state of the tree and provide guidance on whether to switch branching rules for more effective
solving. To ensure efficiency and mitigate the overhead of LLM queries, we adopt an asynchronous real-
time interaction with LLMs, combined with a multi-LLM voting mechanism for branching rule selection.
We evaluate our approach on four classes of NP-hard MILP problems: set covering, combinatorial auctions,
capacitated facility location, and maximum independent set. We compare it against previously proposed
state-of-the-art methods and implement our approach in SCIP (Bestuzheva et al., 2023), a modern open-
source solver. The results demonstrate competitive performance relative to existing models and highlight the
potential of our research for building more intelligent solvers. In summary, our contributions are as follows:

• We investigate the important yet underexplored problem of dynamic branching rule scheduling,
which has traditionally relied heavily on expert knowledge, and propose a novel scheduler that
dynamically selects appropriate rules during the B&B search process.

• We design effective prompting strategies that (i) guide branching rule selection at the initial
stage based on problem type and scale, and (ii) adaptively guide rule switching during solving
by leveraging the evolving dynamics of the search tree.

• We conduct extensive experiments to validate the effectiveness of the proposed scheduler and
demonstrate the potential of LLMs in supporting MILP solving.

2 RELATED WORK

2.1 TRADITIONAL BRANCHING RULES

Branching is a core step in branch-and-bound for mixed-integer programming (MIP), where selecting the
fractional variable at each node critically affects search efficiency. Traditional strategies follow a generic
scheme: evaluate objective degradation in both child LP relaxations, assign a score, and branch on the best
candidate. This scheme underlies many classic rules, such as most-infeasible branching (Achterberg et al.,
2005), which selects the variable closest to 0.5 but rarely outperforms random branching. Over time, more
sophisticated scoring functions were introduced that estimate the degradation in the LP relaxation objective
when branching on a candidate variable. These rules can generally be expressed in a unified framework
that balances the minimum and maximum predicted objective changes of the child nodes, highlighting their
conceptual connections and limitations. Building on this foundation, several influential strategies have been

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

developed. Pseudocost branching (Linderoth & Savelsbergh, 1999) estimates the effect of future branchings
based on accumulated historical outcomes, offering efficiency once sufficient data is gathered but lacking
reliability near the root. Strong branching (Applegate et al., 1995) explicitly tests candidate variables by
temporarily solving child LPs, producing high-quality choices at the cost of significant computational over-
head. To combine their advantages, hybrid rules (Lin & Schrage, 2009) apply strong branching at shallow
depths before switching to pseudocosts, while pseudocost with strong initialization uses strong branching se-
lectively to bootstrap missing statistics. The most effective generalization, reliability branching (Achterberg,
2007), adaptively decides when pseudocosts are “reliable” enough, invoking strong branching only when
necessary. Extensive computational studies demonstrate that reliability branching consistently outperforms
depth-based hybrids, achieving performance close to full strong branching without incurring its high costs.

2.2 MACHINE LEARNING-BASED BRANCHING RULES

In recent years, machine learning techniques have been actively explored to automate the search process
in branch-and-bound (Huang et al., 2022; Mattick & Mutschler, 2024; Achterberg et al., 2005; Tang et al.,
2020). In ML-based B&B, the core idea is to learn effective policies that guide the search more efficiently,
which can be broadly categorized into learning to select variables and learning to select nodes. The former
focuses on identifying the most promising branching variable at each step, while the latter emphasizes
selecting the next node to explore in the search tree.

For learning to select variables, an instance-specific learning-to-rank approach (Khalil et al., 2016) imitates
strong branching decisions, while regression models trained on strong branching scores across families
of similar instances (Alvarez et al., 2017) provide variable selection guidance. A nearly optimal mixture
of branching rules (Balcan et al., 2018) emerges by learning under distributional assumptions over problem
instances. A bipartite graph formulation of MILPs combined with imitation learning (Gasse et al., 2019)
enables graph convolutional neural network (GCN) to handle variable selection in arbitrarily sized problems.
Reinforcement learning is also applied to B&B by modeling it as a tree Markov decision process (tMDP)
(Scavuzzo et al., 2022). A hybrid model (Gupta et al., 2020) replaces costly graph networks with multi-layer
perceptrons (MLPs) except at the root node, making the approach suitable for CPU-limited environments.
A joint use of neural diving and neural branching (Nair et al., 2020) achieves significant improvements in
both runtime and the average primal–dual gap. Although these methods demonstrate strong performance,
their efficiency gains are typically confined to specific classes of MILPs. To improve generalization across
heterogeneous problems, branching policy that parameterize the state of branch-and-bound search trees and
imitate SCIP’s default relpscost rule (Zarpellon et al., 2021) serves as effective expert policies due to their
tree-oriented focus. Extending this idea, tree-based representations combined with transformer-based policy
networks (Lin et al., 2022) provide more expressive feature extractors while still imitating the relpscost rule.

Learning-based node selection plays an important role in branch-and-bound. (He et al., 2014) designs
adaptive node search orders with imitation learning that generalize across different classes of problems
solved by branch-and-bound. (Song et al., 2018) leverages improved traces constructed from its
own roll-outs to iteratively scale policies to larger problem instances. (Khalil et al., 2022) exploits
variable–constraint bipartite graphs to predict variable biases and guide solver decisions such as node
selection, outperforming heuristic baselines. Tree-level reinforcement learning with graph neural networks
enables node selection policies that consider entire tree states rather than isolated nodes, improving
efficiency and generalization (Mattick & Mutschler, 2024). (Zhang et al., 2025) introduces a tripartite
graph representation combined with reinforcement learning to capture sufficient information from the
branch-and-bound tree and evaluate node quality more comprehensively.

2.3 DISCUSSION

We briefly compare the aforementioned methods across four dimensions in Table 1. Traditional branching
rules encode hard-coded expert heuristics that, while generally applicable across problems, lack the
ability to sense the search tree state and schedule different rules. ML-based branching leverages large
collections of branching examples to train intelligent policies, yet collecting and curating such datasets
is time-consuming, and policies trained on one problem type often fail to generalize to unseen types.
These limitations motivate our LLM-based branching rule scheduler, which uses problem descriptors (e.g.,
type and scale) for zero-shot initialization and employs tree state-aware prompts (including depth, gap
trends, cutoff ratios, and candidate entropy) to recommend when and to which rule to switch. Crucially,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Brief comparison of the different branching rules.

Model Gen.(1) Data Inden.(2) Rule Sched.(3) Tree-aware.(4)

Traditional
Fullstrong ✓ ✓ ✗ ✗
Mostinf ✓ ✓ ✗ ✗
Pseudocost ✓ ✓ ✗ ✗

ML-based

(Khalil et al.,
2016)

✗ ✗ ✗ ✗

(Gasse et al.,
2019)

✗ ✗ ✗ ✗

(Gupta et al.,
2020)

✗ ✗ ✗ ✗

(Zarpellon
et al., 2021)

✓ ✗ ✗ ✗

(Lin et al.,
2022)

✓ ✗ ✗ ✓

(Zhang et al.,
2025)

✗ ✗ ✗ ✓

LLM-based Ours ✓ ✓ ✓ ✓
(1) Generalization: Ability to handle unseen problem types and maintain stable performance.
(2) Data Independence: Performance does not rely on the feature engineering or richness of training data.
(3) Rule Scheduling: Ability to dynamically adjust branching rules during the search process.
(4) Tree-awareness: Ability to incorporate the evolving state of the search tree into decision-making.

this approach requires no training pipeline and generalizes across unseen problem types by leveraging
the broad prior knowledge embedded in large language models.

3 PRELIMINARIES

3.1 BRANCH-AND-BOUND

A mixed-integer linear programming (MILP) instance can be written as:

min c⊤x s.t. Ax≤b, l≤x≤u, xj∈Z, ∀j∈I, (1)

where A ∈ Rm×n is the constraint matrix, c ∈ Rn is the cost vector, b ∈ Rm is the right-hand-side
constraint values, l,u denote the variable bounds, and I is the index set of integer-constrained variables.
The branch-and-bound (B&B) algorithm solves such problems by iteratively exploring subsets of the
feasible region. At each node, a linear programming (LP) relaxation is solved by ignoring integrality
constraints, producing a solution x∗ that yields a lower bound on the MILP objective. If x∗ happens to
satisfy all integrality constraints, it is a feasible MILP solution and its objective value becomes an upper
bound. Otherwise, a fractional variable x∗j (j∈I) is selected for branching, and the problem is split into
two subproblems with additional constraints xj≤⌊x∗j⌋ and xj≥⌈x∗j⌉, where ⌊·⌋ and ⌈·⌉ denote the floor
and ceiling operators. During the search, any node whose lower bound exceeds the current best upper
bound is discarded, a process called pruning. This branching–bounding–pruning cycle continues until
all nodes are either solved or pruned, at which point the best feasible solution found is guaranteed to be
globally optimal (or within a specified optimality tolerance).

3.2 BRANCHING RULE

In branch-and-bound (B&B), branching involves two decisions: node selection, which determines the next
node to explore, and variable selection, which chooses the fractional variable to branch on at a given node.
While both are crucial, our work focuses on variable selection, where branching rules guide the evaluation
and ranking of candidate variables. Traditional rules (Achterberg et al., 2005; Linderoth & Savelsbergh,
1999; Applegate et al., 1995) rely on hard-coded heuristics, which are either inefficient or effective only
in limited scenarios. To strike a better balance, recent neural network–based approaches learn branching
policies by collecting large numbers of branching examples for training. However, these methods often

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

�2 ≤ 1 �2 ≥ 1

root

t=1

�4 ≤ 1 �4 ≥ 1

�5 ≤ −2 �5 ≥ −1

t=2

�2 ≤ 1 �2 ≥ 1

�4 ≤ −2 �4 ≥ −1

t=2

 MILP Instance

Problem descriptors

 ...

�2

 Rule

Tree-to-text Representation

 ...

 Rule Rule Rule

Branch-and-bound tree evolution

Figure 2: The overview of our approach.

fail to generalize to unseen problem types, and collecting training data is time-consuming. Orthogonal
to these approaches, our goal is not to design or train yet another branching rule from scratch, but to study
how to schedule existing rules. Since different branching rules are suited to different search tree conditions,
our objective becomes identifying the state of the search tree and knowing which rules are most effective
under which circumstances, so as to schedule appropriate rules at different stages of the search.

4 METHODOLOGY

We propose a dynamic branching rule scheduling approach powered by large language models to enhance
the B&B algorithm, as illustrated in Figure 2. First, during initialization, LLMs recommend an appropriate
branching rule based on the problem type and scale (Section 4.1). Second, throughout the solving process,
the evolving search tree is continuously monitored and represented in a tree-to-text linguistic form, enabling
LLMs to decide whether to switch rules and which rule to adopt (Section 4.2). Finally, to ensure both
efficiency and robustness, the framework incorporates an asynchronous multi-LLM decision mechanism,
where multiple LLMs monitor the tree state in parallel, propose decisions, and consolidate them into the
final choice through a voting scheme (Section 4.3).

4.1 INITIAL BRANCHING RULE

Selecting an appropriate initial branching rule is crucial for guiding the subsequent tree search in B&B. The
performance of different rules varies significantly depending on the problem type (e.g., set covering, max-
imum independent set) and scale (e.g., number of variables and constraints). Traditionally, specifying the
branching rule relies heavily on expert knowledge and manual configuration. To reduce this dependency and
improve solver intelligence, we leverage the broad prior knowledge of LLMs to replace human expertise in
the initialization stage. Specifically, we extract heuristic guidelines from solver documentation and prior liter-
ature. Let R={r1,...,rM} denote the set of candidate branching rules, where each rule ri is associated with
a heuristic guideline function. Given an MILP instanceP, we extract its high-level descriptors, such as prob-
lem type t (e.g., set covering, facility location) and problem scale s∈R+ (e.g., number of variables and con-
straints). The former can be optionally specified by the user when providing the instance, while the latter can
be obtained directly through simple statistical analysis. We then formulate prompts and query a set of LLMs:

Π={π1,...,πM}, πi(Prompt(t,s,R)) 7→ri, (2)
where Π denotes a collection of M LLMs, πi(·) represents the i-th LLM in the ensemble, and ri∈R is the
branching rule it selects from the candidate set R={r1,...,rM}. Here, Prompt(·) refers to the constructed
input prompt based on the problem descriptors, with the full template provided in Appendix B. We extract
prior knowledge of each rule from solver documentation and the existing literature, incorporating it as
prompt augmentation to guide LLM decision-making. The final branching rule is then determined through
majority voting across all LLMs:

r∗=Vote
(
{r1,...,rM}

)
, (3)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where Vote(·) selects the rule with the highest frequency among the LLM outputs. This ensemble
mechanism mitigates the impact of individual LLM hallucinations and enhances the robustness of the
initial rule recommendation.

4.2 DYNAMIC RULE SWITCHING

The structure of the B&B search tree evolves dynamically as solving progresses, and a fixed branching rule
applied throughout the process cannot achieve optimal performance at all stages. To address this limitation,
we introduce a mechanism that adaptively switches branching rules based on the evolving dynamics of the
search tree. Specifically, we convert subtrees of the search tree into linguistic representations and leverage
LLMs to evaluate whether the current rule remains suitable or should be switched to a more effective
alternative given the observed metrics.

Tree-to-text representation At a given branching step k, we construct a decision subtree T L
k consisting

of the current node and its L most recent ancestors. We maintain a queue of length L that records the
explored nodes and their corresponding metrics T L

k ={vk−L+1,vk−L+2,...,vk} during the B&B search,
as illustrated in Step 1 of Figure 3, where v denotes the explored nodes and their corresponding metrics.
Whenever a re-evaluation is triggered, the node information in the queue is retrieved and converted into
a textual representation, as shown in Step 2 of Figure 3. Specifically, we store six key features that
characterize the search state: node depth, number of explored nodes, relative optimality gap, cutoff ratio,
domain reduction strength, number of branching candidates, and candidate entropy. These features provide
a comprehensive description of whether the current branching rule remains effective for guiding the search.

Idx Depth Nodes Cut Dom Cnds Entropy

1 0 0.08 0.45 0.48 0.003 0.012

2 6 0.21 0.33 0.75 0.013 0.018

3 16 0.21 0.33 0.75 0.013 0.018

4 0.20 0.21 0.33 0.75 0.013 0.018

5 0.20 0.21 0.33 0.75 0.013 0.018

 1 | Depth: 0 | Nodes: 1 | Gap: 0.25 | Cut: 0.00 | Dom: 0.02 | Cands:10 | H: 2.20
 2 | Depth: 1 | Nodes: 2 | Gap: 0.20 | Cut: 0.10 | Dom: 0.04 | Cands: 8 | H: 1.95
 3 | Depth: 2 | Nodes: 3 | Gap: 0.17 | Cut: 0.15 | Dom: 0.06 | Cands: 6 | H: 1.60
 4 | Depth: 2 | Nodes: 4 | Gap: 0.15 | Cut: 0.18 | Dom: 0.07 | Cands: 5 | H: 1.40
 5 | Depth: 3 | Nodes: 5 | Gap: 0.14 | Cut: 0.20 | Dom: 0.08 | Cands: 4 | H: 1.20

Reasoning: The cut B represents a cut with a high degree
of parallelism to the objective function, strong efficacy,
and normalized violation, making it a cut plane with
overall good performance. The cut A represents a cut that,
although identical to the red solid line cut in terms of
support and integer support, performs poorly in other
metrics and is therefore not recommended. In summary,
the cut B i s recommended because i t per forms
excellently in multiple key aspects, offering strong
constraint capability and computational efficiency.
Output: Cut B

a1 a2 a3 a4 a5 a6 a7 a8 a9

CutA
(dash) 0.75 0.08 0.45 0.48 0.003 0.012 0.08 0.002 0.01

Cut B
(solid) 0.20 0.21 0.33 0.75 0.013 0.018 0.15 0.007 0.022

Prompt: You are an expert in mathematical
optimization. Given the 2 candidate cuts with
the following feature descriptions, please
directly recommend the cut for better solution.

Reasoning for Cut selection in (b)1

2 3

4 5

�2 ≤ 1 �2 ≥ 1

�4 ≤ −2 �4 ≥ −1

Length: L

12345
In

Out

①

②

Tree-to-text representation

Figure 3: Illustration of tree-to-text representation

Switching instruction We denote the tex-
tual form of the tree state as text(T),
which is then converted into a prompt for
the LLM. In addition, the prompt incor-
porates decision rubrics that evaluate rule
effectiveness through sliding-window com-
parisons of the stored metrics. Specifi-
cally, the LLM is instructed to reason about
the step-wise changes ∆(v[j]), where j in-
dexes the six recorded metrics, and to in-
fer from their trends whether the current
branching rule continues to enable effec-
tive search. If stagnation or inefficiency
is detected, the LLM is guided to decide
whether the rule should be switched. When
a switch is required, the LLM selects a new
branching rule from the available set by
jointly considering the recent search tree
dynamics (e.g., depth, number of candidates, entropy trends) and the heuristic guidelines associated with
each rule, and then activates the chosen rule for subsequent exploration.

During solving, we likewise employ an ensemble of LLMs with a voting scheme to determine branching
rule switches. The interaction with the LLMs is conducted asynchronously, which prevents solver delays
caused by waiting for model responses.

4.3 ASYNCHRONOUS MULTI-LLM DECISION MECHANISM

Although LLMs can provide valuable guidance for branching rule selection and switching, their inference
introduces latency and potential hallucination (Ho et al., 2025), both of which may degrade solver
performance. To address these challenges, we design an asynchronous multi-LLM decision mechanism
that improves efficiency while enhancing robustness.

Asynchronous monitoring Instead of blocking the solver while waiting for LLM responses, we launch
independent asynchronous LLM processes that continuously monitor the evolving search tree.At each
interaction, the solver sends the encoded text subtree T to the LLM ensemble Π. The LLMs reason in
parallel about whether a rule switch is needed, while the solver continues its search using the last validated
rule. Once the new recommendations arrive, the scheduler updates the rule selection without interrupting

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

the ongoing solving process. Although asynchronous responses may arrive a few steps later than the current
tree state, this does not invalidate the feedback: given the large number of steps in the solving process, a
slight delay still provides guidance that remains relevant to the evolving search tree.

Voting scheme To mitigate the impact of hallucination and reduce bias from individual models, we
aggregate the outputs of multiple LLMs through majority voting. Let {r1,r2,...,rM} be the set of candidate
rules from the LLM ensemble. The final decision rule is formulated as:

r∗=Vote
(
{r1,...,rM}

)
=argmax

r∈R

M∑
i=1

I[ri=r], (4)

where I[·] is the indicator function. This ensures that only rules supported by the majority are adopted,
thereby reducing the influence of inconsistent or erroneous outputs from individual LLMs. By combining
asynchronous interaction and ensemble voting, the proposed mechanism simultaneously minimizes solver
slowdown due to LLM inference and increases decision robustness against hallucinations. This design
provides a practical and reliable way to integrate LLM guidance into the B&B process.

5 EXPERIMENTS

We conduct comparative experiments against three representative machine learning baselines and SCIP’s
default branching strategy to evaluate the effectiveness of our method, and further perform an ablation
study to examine the impact of our design choices.

5.1 SETUP

Our experiments are conducted on a machine equipped with an Intel(R) Xeon(R) Silver 4214R CPU @
2.40GHz and 256GB DDR4 memory, with GPUs disabled. The LLM ensemble consists of qwq2-32b,
Claude-3.5, Gemini-2.5, DeepSeek v3.1, and Qwen3-30b-Thinking. All experiments are performed using
SCIP 6.0.1 with a one-hour time limit, while all other parameters are kept at their default values following
(Gasse et al., 2019; Scavuzzo et al., 2022) to ensure fairness and reproducibility.

5.1.1 BENCHMARKS

We evaluate our approach on four NP-hard benchmarks widely used in integer programming. The first is
the set covering problem (Balas & Ho, 2009), with evaluation conducted on instances of size 500 (Easy),
1,000 (Medium), and 2,000 (Hard). The second is the combinatorial auction problem (Leyton-Brown
et al., 2000), with 100 items/500 bids (Easy), 200/1,000 bids (Medium), and 300/1,500 bids (Hard). The
third is the capacitated facility location problem (Cornuéjols et al., 1991), evaluated on 100 (Easy), 200
(Medium), and 400 (Hard) customers. The final benchmark is the maximum independent set problem
(Bergman et al., 2016), with evaluation on graphs of 500 (Easy), 1,000 (Medium), and 1,500 (Hard) nodes.
These benchmarks are both challenging for state-of-the-art solvers and representative of practical integer
programming tasks.

5.1.2 BASELINES

We benchmark our method against SCIP’s default state-of-the-art branching rule, reliability pseudocost
(RPB), a variant of hybrid branching (Achterberg & Berthold, 2009). In addition, we compare with four
learning-based branchers: SVMRANK, a learning-to-rank approach from (Khalil et al., 2016) built on
SVMrank (Joachims, 2002), and LMART, a LambdaMART-based variant proposed in (Hansknecht et al.,
2018). Both SVMRANK and LMART rely on the original feature set introduced in (Khalil et al., 2016).
We further include two policy-learning approaches: GCN (Gasse et al., 2019), which applies imitation
learning with graph convolutional networks (GCN), and tMDP (Scavuzzo et al., 2022), which leverages
reinforcement learning within a temporal Markov decision process framework. Although the GCN and
tMDP methods support GPU acceleration, all other models in our comparison cannot be accelerated
on GPUs. To ensure fairness, we therefore restrict both GCN and tMDP to CPU execution. Moreover,
in reporting the results, we ignore the time required to train the GCN and tMDP branching policies,
and only account for the solving time after training when the learned policies are applied during the
branch-and-bound process.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5.1.3 EVALUATION METRICS

Evaluation is conducted across three difficulty levels (Easy, Medium, Hard). For the Easy and Medium
settings, we use 100 instances each, while for the Hard setting we only evaluate on 20 instances due to
the higher computational cost. We adopt standard MILP benchmarking metrics: (i) the mean solving
time in seconds (Time), including unsolved cases; (ii) the proportion of instances solved to optimality
(Optimal) within the time limit (e.g., “90/100” means 90 out of 100 instances were solved optimally, while
10 were not); and (iii) the number of wins, i.e., how often a method achieves the fastest runtime among
the compared methods (Wins). For clarity, we also report the average per-instance standard deviation. For
example, “14.37 ± 1.5% nodes” indicates an average solving time of 14.37 seconds with a mean variability
of 1.5% across the solved instances.

Table 2: Methods evaluation on separate instances in terms of solving time, number of optimal instances
and number of wins (fastest method)

Model Easy Medium Hard

Time ↓ Optimal ↑ Wins ↑ Time ↓ Optimal ↑ Wins ↑ Time ↓ Optimal ↑ Wins ↑
Set Covering

RPB 14.37 ± 1.5 % 100/100 1/100 141.98 ± 11.3% 100/100 46/100 2479.20 ± 7.9% 16/20 7/20
SVMRANK 11.15 ± 2.4% 100/100 0/100 175.47 ± 13.1% 100/100 0/100 3008.28 ± 7.7% 14/20 0/20
LMART 10.06 ± 3.7% 100/100 14/100 147.77 ± 9.8% 100/100 9/100 3037.52 ± 8.6% 14/20 1/20
GCN 13.26 ± 3.1% 100/100 0/100 248.77 ± 9.7% 100/100 0/100 3334.24 ± 5.3% 17/20 0/20
tMDP 15.17 ± 3.3% 100/100 0/100 256.51 ± 8.3% 100/100 0/100 3617.32 ± 6.5% 16/20 0/20
Ours 10.47 ± 1.7% 100/100 84/100 181.32 ± 3.98% 100/100 45/100 2394.98 ± 8.1% 18/20 12/20

Combinatorial Auction
RPB 3.82 ± 2.3% 100/100 7/100 28.12 ± 7.5% 100/100 52/100 108.68 ± 8.1% 20/20 12/20
SVMRANK 3.40 ± 1.7% 100/100 0/100 39.49 ± 11.6% 100/100 0/100 569.50 ± 9.0% 19/20 0/20
LMART 2.57 ± 1.4% 100/100 18/100 25.24 ± 5.5% 100/100 17/100 443.65 ± 3.1% 20/20 0/20
GCN 3.78 ± 2.8% 100/100 0/100 46.96 ± 10.2% 100/100 0/100 854.63 ± 7.7% 19/20 0/20
tMDP 4.11 ± 2.6% 100/100 0/100 53.37 ± 7.2% 100/100 0/100 717.90 ± 7.1% 19/20 0/20
Ours 2.18 ± 1.6% 100/100 75/100 35.24 ± 5.9% 100/100 31/100 116.51 ± 4.4% 20/20 8/20

Capacitated Facility Location
RPB 72.70 ± 10.7% 100/100 24/100 291.88 ± 6.4% 100/100 25/100 1099.33 ± 4.1% 20/20 8/20
SVMRANK 139.06 ± 13.2% 100/100 0/100 366.63 ± 14.3% 100/100 7/100 1104.27 ± 6.9% 19/20 0/20
LMART 169.37 ± 11.6% 100/100 0/100 378.33 ± 11.0% 100/100 10/100 1170.29 ± 4.0% 20/20 0/20
GCN 223.92 ± 9.6% 100/100 0/100 541.55 ± 11.0% 100/100 0/100 1390.45 ± 9.6% 18/20 0/20
tMDP 251.65 ± 18.9% 100/100 0/100 541.55 ± 14.9% 100/100 0/100 1455.07 ± 5.9% 19/20 0/20
Ours 57.05 ± 12.8% 100/100 76/100 283.47 ± 5.8% 100/100 58/100 1079.44 ± 1.2% 20/20 12/20

Maximum Independent Set
RPB 12.87 ± 4.8% 100/100 24/100 299.00 ± 7.6% 100/100 62/100 2806.84 ± 4.9% 10/20 8/20
SVMRANK 16.28 ± 8.7% 100/100 3/100 773.37 ± 11.8% 100/100 4/100 2866.56 ± 9.4% 14/20 1/20
LMART 9.94± 4.0% 100/100 12/100 715.91 ± 8.8% 100/100 10/100 2922.34 ± 6.7% 14/20 1/20
GCN 22.09 ± 5.6% 100/100 1/100 2028.37 ± 9.4% 100/100 0/100 3600.03 ± 7.2% 0/20 0/20
tMDP 12.86 ± 12.1% 100/100 0/100 1989.29 ± 10.1% 100/100 0/100 3521.22 ± 7.2% 1/20 0/20
Ours 12.41 ± 3.7% 100/100 60/100 430.59 ± 9.2% 100/100 24/100 2742.75 ± 8.1% 10/20 10/20

5.1.4 RESULTS

Main rusults The comparison results are summarized in Table 2. On the easy and medium instances,
all models are able to reach the optimal solution (100/100 success rate). In terms of the time metric, we
observe that on easy instances both LMART and our proposed method perform competitively. LMART
achieves good results because its tree-based ranking model is particularly effective when the problem size
is relatively small and the feature distributions are well captured. Our method performs particularly well at
the Hard level, since the search tree at this scale requires exploring a much larger space. By dynamically
switching branching rules during the search process, our approach is able to adapt more effectively, leading
to superior performance. Notably, since optimal solutions can be reached with only a few branching steps
in easy level, our approach does not perform dynamic rule switching and instead relies solely on the initial
rule selection, highlighting the competitiveness of our initialization selection. We further observe that
GCN and tMDP, the most advanced learning-based approaches, lose much of their advantage once GPU
acceleration is removed. Their efficiency drops substantially and even deteriorates on certain datasets—for
instance, on the medium-level facility location benchmark, both methods take an order of magnitude longer
solving time, and on the hard level they almost fail to reach optimal solutions at all. This performance
gap is especially notable given that our reported results exclude the training time required for these neural
models. These findings indicate that the effectiveness of current learning-based methods depends heavily
on GPU acceleration, limiting their practical applicability in resource-constrained environments.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Abalation study results.

Model Easy Medium Hard

Time ↓ Optimal ↑ Wins ↑ Time ↓ Optimal ↑ Wins ↑ Time ↓ Optimal ↑ Wins ↑
Capacitated Facility Location

RPB 70.70 ± 10.7% 100/100 10/100 291.88 ± 6.4% 100/100 27/100 1099.33 ± 4.1% 20/20 7/20
Stage1 76.28 ± 8.7% 100/100 5/100 307.56 ± 5.8% 100/100 2/100 1135.25 ± 2.5% 20/20 0/20
Stage2 62.94± 4.0% 100/100 10/100 285.19 ± 6.4% 100/100 20/100 1082.33 ± 8.6% 20/20 3/20
Ours 57.05 ± 12.8% 100/100 75/100 283.47 ± 5.8% 100/100 51/100 1079.44 ± 1.2% 20/20 10/20

Abalation study To validate the effectiveness of the two stages in our proposed framework, we conduct an
ablation study by isolating each component as Table 3 shown. Specifically, we retain only the initial rule
recommendation while removing dynamic rule switching, denoted as Stage1, and we fix the initial rule to
fullstrong while enabling switching during solving, denoted as Stage2. We observe that at the Easy level,
Stage1 still outperforms the solver’s default RPB branching rule. However, at the Medium and Hard levels,
Stage1 performs poorly, whereas Stage2 demonstrates strong results. This is because the search space at
Medium and Hard levels is substantially larger, and relying solely on the initial choice of branching rule is
insufficient to adapt to the evolving dynamics of the search tree, while Stage2 provides the flexibility to
adjust rules according to tree states.

0 100 200 300
Time

RPB

Stage1

Stage2

Sequ.

Ours

(a) Time-consuming comparison

0 50 100 150 200 250 300
Steps

0.000

0.002

0.004

0.006

G
ap

Ours
RPB
One

(b) CVisualization of the opti-
mization procedure

Figure 4: Experimental results on the impact of the asyn-
chronous multi-LLM decision mechanism (evaluated on the
capacitated facility location benchmark).

We also evaluate the impact of asyn-
chronous LLM querying on our frame-
work. Specifically, we implement a sequen-
tial querying approach (denoted as Sequ.),
where the solver waits for the LLM’s re-
sponse before executing each branching
decision whenever a tree state update oc-
curs. As shown in Figure 4(a), this serial-
ized interaction introduces substantial de-
lays, severely degrading solver efficiency
compared to all other methods. In contrast,
the asynchronous design avoids blocking
the solver’s progress, effectively masking
the latency of LLM inference and enabling
smoother integration of decision feedback
into the branch-and-bound process. We
also evaluate the single-LLM setting to validate the effectiveness of using multiple LLMs. In this setup, we
adopt Qwen-30B as the sole model due to its strong mathematical reasoning ability. However, as shown in
Figure 4(b), the single-LLM approach does not perform well. This is mainly because a single model is
more prone to biased judgments, and unstable recommendations under complex and evolving tree states.
In contrast, the ensemble of multiple LLMs, combined with a voting mechanism, mitigates these issues by
reducing variance, filtering out unreliable suggestions, and producing more robust branching rule schedules.

6 CONCLUSION

This work introduces a dynamic branching rule scheduler that adapts branching strategies to the evolving
state of the branch-and-bound tree. The main challenge is to assess the intrinsic suitability of different
heuristic branching rules for a given problem and to determine whether the current rule remains effective
as the search progresses. To address this, we introduce large language models (LLMs) to evaluate both
the applicability of branching rules to specific problems and their effectiveness during the tree search. We
further design two specialized prompts to guide the LLM in deciding when and how to switch rules. Unlike
approaches that train branching policies from scratch, our method exploits the broad prior knowledge
encoded in LLMs, removing the need for costly data collection and training while enabling generalization
to unseen problem types. Experiments on four classical MILP benchmarks show competitive performance,
underscoring the potential of LLMs to advance MILP solving.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Tobias Achterberg. Constraint integer programming. PhD thesis, Berlin Institute of Technology, 2007.

Tobias Achterberg and Timo Berthold. Hybrid branching. In Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems, CPAIOR 2009, volume 5547, pp.
309–311, 2009.

Tobias Achterberg and Roland Wunderling. Mixed integer programming: Analyzing 12 years of progress.
In Facets of combinatorial optimization: Festschrift for martin grötschel, pp. 449–481. 2013.

Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branching rules revisited. Oper. Res. Lett., 33
(1):42–54, 2005.

Alejandro Marcos Alvarez, Quentin Louveaux, and Louis Wehenkel. A machine learning-based approxi-
mation of strong branching. INFORMS J. Comput., 29(1):185–195, 2017.

David Applegate, Robert Bixby, Vašek Chvátal, and William Cook. Finding cuts in the tsp (a preliminary
report). Technical report, 1995.

Egon Balas and Andrew Ho. Set covering algorithms using cutting planes, heuristics, and subgradient
optimization: a computational study. In Combinatorial optimization, pp. 37–60. 2009.

Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. Learning to branch. In
Proceedings of the 35th International Conference on Machine Learning, ICML 2018, volume 80, pp.
353–362. PMLR, 2018.

David Bergman, André A. Ciré, Willem-Jan van Hoeve, and John N. Hooker. Decision Diagrams for
Optimization. Artificial Intelligence: Foundations, Theory, and Algorithms. 2016.

Ksenia Bestuzheva, Mathieu Besançon, Weikun Chen, Antonia Chmiela, Tim Donkiewicz, Jasper van
Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath, Ambros M. Gleixner, Leona Gottwald,
Christoph Graczyk, Katrin Halbig, Alexander Hoen, Christopher Hojny, Rolf van der Hulst, Thorsten
Koch, Marco E. Lübbecke, Stephen J. Maher, Frederic Matter, Erik Mühmer, Benjamin Müller, Marc E.
Pfetsch, Daniel Rehfeldt, Steffan Schlein, Franziska Schlösser, Felipe Serrano, Yuji Shinano, Boro
Sofranac, Mark Turner, Stefan Vigerske, Fabian Wegscheider, Philipp Wellner, Dieter Weninger, and
Jakob Witzig. Enabling research through the SCIP optimization suite 8.0. ACM Trans. Math. Softw., 49
(2):22:1–22:21, 2023.

Gérard Cornuéjols, Ranjani Sridharan, and Jean-Michel Thizy. A comparison of heuristics and relaxations
for the capacitated plant location problem. European journal of operational research, 50(3):280–297,
1991.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combinatorial
optimization with graph convolutional neural networks. In Advances in Neural Information Processing
Systems, NeurIPS 2019, pp. 15554–15566, 2019.

Prateek Gupta, Maxime Gasse, Elias B. Khalil, Pawan Kumar Mudigonda, Andrea Lodi, and Yoshua
Bengio. Hybrid models for learning to branch. In Advances in Neural Information Processing Systems,
NeurIPS 2020, 2020.

Christoph Hansknecht, Imke Joormann, and Sebastian Stiller. Cuts, primal heuristics, and learning to
branch for the time-dependent traveling salesman problem. arXiv preprint arXiv:1805.01415, 2018.

He He, Hal Daumé III, and Jason Eisner. Learning to search in branch and bound algorithms. In Advances
in Neural Information Processing Systems Neural 2014, pp. 3293–3301, 2014.

Zheng Yi Ho, Siyuan Liang, Sen Zhang, Yibing Zhan, and Dacheng Tao. Novo: Norm voting off
hallucinations with attention heads in large language models. In The Thirteenth International Conference
on Learning Representations, ICLR 2025. OpenReview.net, 2025.

Zeren Huang, Kerong Wang, Furui Liu, Hui-Ling Zhen, Weinan Zhang, Mingxuan Yuan, Jianye Hao, Yong
Yu, and Jun Wang. Learning to select cuts for efficient mixed-integer programming. Pattern Recognit.,
123:108353, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceedings of the Eighth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 133–142, 2002.

Imed Kacem, Safa Bhar Layeb, Nelson Maculan, and Ali Ridha Mahjoub. New trends of combinatorial
optimization and applications. Ann. Oper. Res., 351(1):1–2, 2025.

Elias B. Khalil, Christopher Morris, and Andrea Lodi. MIP-GNN: A data-driven framework for guiding
combinatorial solvers. In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, pp.
10219–10227, 2022.

Elias Boutros Khalil, Pierre Le Bodic, Le Song, George L. Nemhauser, and Bistra Dilkina. Learning to
branch in mixed integer programming. In Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, pp. 724–731. AAAI Press, 2016.

Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. Towards a universal test suite for combinatorial
auction algorithms. In Proceedings of the 2nd ACM Conference on Electronic Commerce, 2000, pp.
66–76, 2000.

Jiacheng Lin, Jialin Zhu, Huangang Wang, and Tao Zhang. Learning to branch with tree-aware branching
transformers. Knowl. Based Syst., 252:109455, 2022.

Youdong Lin and Linus Schrage. The global solver in the LINDO API. Optim. Methods Softw., 24(4-5):
657–668, 2009.

Jeff T. Linderoth and Martin W. P. Savelsbergh. A computational study of search strategies for mixed
integer programming. INFORMS J. Comput., 11(2):173–187, 1999.

Alexander Mattick and Christopher Mutschler. Reinforcement learning for node selection in branch-and-
bound. Trans. Mach. Learn. Res., 2024, 2024.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Lichocki, Ivan Lobov, Brendan
O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, Ravichandra Addanki,
Tharindi Hapuarachchi, Thomas Keck, James Keeling, Pushmeet Kohli, Ira Ktena, Yujia Li, Oriol
Vinyals, and Yori Zwols. Solving mixed integer programs using neural networks. CoRR, abs/2012.13349,
2020.

Lara Scavuzzo, Feng Yang Chen, Didier Chételat, Maxime Gasse, Andrea Lodi, Neil Yorke-Smith, and
Karen I. Aardal. Learning to branch with tree mdps. In Advances in Neural Information Processing
Systems, NeurIPS 2022, 2022.

Jialin Song, Ravi Lanka, Albert Zhao, Yisong Yue, and Masahiro Ono. Learning to search via self-imitation.
CoRR, abs/1804.00846, 2018.

Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer programming: Learning
to cut. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, volume
119, pp. 9367–9376, 2020.

Gert W. Wolf. Facility location: concepts, models, algorithms and case studies. series: Contributions to
management science. Int. J. Geogr. Inf. Sci., 25(2):331–333, 2011.

Giulia Zarpellon, Jason Jo, Andrea Lodi, and Yoshua Bengio. Parameterizing branch-and-bound search
trees to learn branching policies. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021,
pp. 3931–3939, 2021.

Sijia Zhang, Shuli Zeng, Shaoang Li, Feng Wu, and Xiangyang Li. Learning to select nodes in branch
and bound with sufficient tree representation. In The Thirteenth International Conference on Learning
Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Clarification: We use LLMs both for exploring MILP solver optimization and for refining the writing.
Additional details are provided in the paper.

A PRELIMINARY EXPERIMENTS

Figure 5 presents results on three additional MILP problems, each solved with five different branching rules
provided by SCIP. As shown, the solving times vary substantially across rules, underscoring the sensitivity
of solver performance to the choice of the initial branching rule.

Figure 6 illustrates the impact of rule switching across different problem types. For instance, in the
Maximum Independent Set problem (Figures 6(a), (d)) and the Set Covering problem (Figures 6(b),
(e)), switching branching rules during the B&B process leads to achieving optimal solutions with fewer
branching steps. Moreover, Figures 6(c), (f) show that both the choice of the initial rule and the selection of
the rule to switch to are crucial for optimization. These observations motivate our focus on rule selection
throughout the B&B process.

inferencemostinf
nodereoptrandomrelpscost

Branching Rules

0.0

0.5

1.0

So
lv

in
g

Ti
m

e
(s

)

(a) Combinatorial auction

inferencemostinf
nodereoptrandomrelpscost

Branching Rules

0.0

0.5

1.0

So
lv

in
g

Ti
m

e
(s

)

(b) Capacitated facility location

inferencemostinf
nodereoptrandomrelpscost

Branching Rules

0.0

0.5

1.0

So
lv

in
g

Ti
m

e
(s

)

(c) Maximum independent set

Figure 5: Time-consuming comparison among different branching rules on three datasets.

0 400 800 1200
Steps

0.00

0.05G
ap

switch

Inference -> Pscost
Switch
Inference
Pscost

(a) Maximum independent set

0 100 200 300 400 500
Steps

0.00

0.05

0.10

G
ap

switch

Fullstrong -> Pscost
Switch
Fullstrong
Pscost

(b) Set covering

0 200 400
Steps

0.00

0.05

G
ap

switch

Relpscost -> Vanillafullstrong
Switch
Relpscost
Vanillafullstrong

(c) Combinatorial auction

0 400 800 1200
Steps

0.00

0.05G
ap

switch

Inference -> Pscost
Switch
Inference
Pscost

(d) Maximum independent set

0 100 200 300 400 500
Steps

0.00

0.05

0.10

G
ap

switch

Fullstrong -> Pscost
Switch
Fullstrong
Pscost

(e) Set covering

0 200 400 600 800 1000
Steps

0.00

0.02

0.04

G
ap

switch
Fullstrong -> Pscost

Switch
Fullstrong
Pscost

(f) Combinatorial auction

Figure 6: Branching rule switching performance on different datasets.

B BRANCHING RULE PROMPT

Figure 7 illustrates the construction of the initial branching rule prompt, which consists of the problem type,
available rule descriptions, and problem descriptors. The problem descriptors summarize key structural
statistics of the instance, including the total number of variables, the counts of binary, integer, and continuous
variables, the total number of constraints, the average number of nonzeros per constraint, whether the model
contains indicator constraints, whether the objective function is quadratic, and whether the instance is a
mixed-integer program. Figure 8 illustrates the construction of the dynamic rule switching prompt, which
consists of three main components: (i) the text-based representation of the current subtree, encoding depth,

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Prompt for initial branching rule

Yeou are an expert in mixed-integer optimization and SCIP solver configuration. Your task is to choose the best branching rule from
a known list, based on the following:
 1. Problem type (e.g., set covering, capacitated facility location, combinatorial auctions, maximum independent set).
 2. Problem structural statistics (e.g., number of variables/constraints, LP density, cut usage).
 3. Variable and constraint types (binary-heavy, general integers, continuous coupling, etc.).
Available branching rules and their recommended use cases:
Problem_type = {Set covering}
Available_rules = {Rule1, Rule2, ... , RuleM}
(1) Rule1: Best when: medium-to-deep trees, many nodes already explored so pseudo-costs are informative...
(2) Rule2: Most accurate but very expensive; Best when: root or very shallow depth (D≤2~3)...

(M) RuleM: Best when: problem shows clear variable clustering/community structure...
Problem info (JSON):
 {
 'number of variables': 500,
 'number of constraints: 1000,

 }
 - Select the best matching branching rule to solve the problem efficiently, considering type, structure, and scale.
 - rule_name must exactly match one from the available rule names.
 - Do NOT output explanations, alternatives, or additional fields.
 - Please strictly output ONLY the bare JSON object in this format: {"branching_rule": "rule_name"}

Figure 7: The illustration of initial branching rule prompt.

Prompt for dynamic rule switching

Yeou are an expert in mixed-integer optimization and SCIP solver configuration. you are given the search history with the following
metrics:
Gap[k]: current optimality gap, Nodes[k]: number of explored nodes, Cut[k]: pruning (cutoff) ratio, Dom[k]: domain reduction
ratio, Cands[k]: number of branching candidates, H[k]: candidate entropy, Depth[k]: depth of the current node.
Decide whether to SWITCH the branching rule NOW based on BOTH the historical effects above and the current tree state:

Tree-to-text representation:
 1 | Depth: 0 | Nodes: 1 | Gap: 0.25 | Cut: 0.00 | Dom: 0.02 | Cands:10 | H: 2.20
 2 | Depth: 1 | Nodes: 2 | Gap: 0.20 | Cut: 0.10 | Dom: 0.04 | Cands: 8 | H: 1.95
 3 | Depth: 2 | Nodes: 3 | Gap: 0.17 | Cut: 0.15 | Dom: 0.06 | Cands: 6 | H: 1.60

2. Consider switching rule if stagnation
occurs:
 - ΔGap ≥ -1e-3 AND r ≥ -1e-5 (gap not
improving), AND
 - Progress metrics (Cut, Dom) are worse
than in the previous window.

Compute step-wise according to the definition: ΔGap =
Gap[k] - Gap[k-1]; ΔNodes = Nodes[k] - Nodes[k-1]
Per-node improvement r = ΔGap / max(1, ΔNodes)

1. Keep current rule if progress is
acceptable:
 - ΔGap ≤ -1e-3 (gap is shrinking), or
 - r ≤ -1e-5 (improvement per node is
positive), or
 - Cut[k] is increasing compared to the
previous window.

3. Rule switching heuristics (choose one from
candidates):
 - If Depth ≤ 3 and Cands ≥ 50 → prefer
`fullstrong` or `lookahead`.
 - I f D o m i s h i g h b u t C u t i s l o w →
propagation not converting to pruning →
choose `relpscost` .
 - If Dom and Cut are both low → diversify
with `mostinf` or `distribution`.
 - If Depth ≥ 15 (deep tree) → avoid expensive
rules, choose `relpscost` or `pscost`.
 - I f entropy H i s very h igh → choose
`distribution` or `multinode`.

 - Select the best matching branching rule to solve the problem efficiently, considering the tree
state.
 - rule_name must exactly match one from the available rule names.
 - Do NOT output explanations, alternatives, or additional fields.
 - Please strictly output ONLY the bare JSON object in this format: {"branching_rule":
"rule_name"}

Decision rubric:

Figure 8: The illustration of dynamic rule switching prompt.

explored nodes, gap, cutoff ratio, domain reductions, candidate size, and entropy; (ii) decision rubrics
that compare sliding-window trends of these metrics to assess whether the current branching rule remains
effective and heuristic guidelines that map different tree states to suitable candidate rules. Together, these
elements instruct the LLM to reason about rule effectiveness and determine whether a switch is necessary,
and if so, which rule should be activated for subsequent exploration.

13

	Introduction
	Related Work
	Traditional branching rules
	Machine learning-based branching rules
	Discussion

	Preliminaries
	Branch-and-bound
	Branching rule

	Methodology
	Initial Branching Rule
	Dynamic Rule Switching
	Asynchronous Multi-LLM Decision Mechanism

	Experiments
	Setup
	Benchmarks
	baselines
	Evaluation metrics
	Results

	Conclusion
	Preliminary experiments
	Branching rule prompt

