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Abstract

A critical challenge in multi-agent reinforcement learning (MARL) is for multiple
agents to efficiently accomplish complex, long-horizon tasks. The agents often
have difficulties in cooperating on common goals, dividing complex tasks, and
planning through several stages to make progress. We propose to address these
challenges by guiding agents with programs designed for parallelization, since
programs as a representation contain rich structural and semantic information, and
are widely used as abstractions for long-horizon tasks. Specifically, we introduce
Efficient Multi-Agent Reinforcement Learning with Parallel Program Guidance (E-
MAPP), a novel framework that leverages parallel programs to guide multiple
agents to efficiently accomplish goals that require planning over 10+ stages. E-
MAPP integrates the structural information from a parallel program, promotes
the cooperative behaviors grounded in program semantics, and improves the time
efficiency via a task allocator. We conduct extensive experiments on a series
of challenging, long-horizon cooperative tasks in the Overcooked environment.
Results show that E-MAPP outperforms strong baselines in terms of the completion
rate, time efficiency, and zero-shot generalization ability by a large margin.

1 Introduction

Multi-agent reinforcement learning (MARL) has achieved significant progress by advancing the co-
operation of multiple agents to accomplish complex tasks, e.g., multi-robot control [20], autonomous
driving [48, 54], and video games [50, 4]. Most recent advances in MARL focus on tasks that feature
behavior coordination [39] or joint motion planning [41]. However, for long-horizon tasks such
as preparing a dish, existing methods often suffer from the inability to understand the task compo-
sitionality and subtasks’ dependencies, resulting in inefficient cooperation and frequent conflicts.
Therefore, a natural question to ask here is how we can solve long-horizon tasks in MARL, in the
face of large state/action spaces and sparse feedback.

Long-horizon tasks are usually blessed with rich structure, and thus can be divided into a sequence
of subtasks that can be resolved separately. Previous work [45, 52] has introduced programs as
instructions to help a single agent understand the task hierarchy and accomplish the task. Inspired
by them, we develop a general multi-agent framework, where agents can leverage programs for
accomplishing long-horizon tasks together. This is a challenging problem, and three substantial issues
will emerge if multiple agents are naively enforced to follow sequential programs: first, sequential
programs do not explicitly express the dependencies among subtasks, thus hindering the division
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of jobs among agents; second, different agents might have different abilities to accomplish certain
subtasks or lines of programs; third, when assigned to a subtask together, multiple agents might need
to collaborate without blocking resources with each other.

As modern CPUs dispatch instructions to parallel processors, we propose a new multi-agent frame-
work, Efficient Multi-Agent Reinforcement Learning with Parallel Program Guidance (E-MAPP),
guiding cooperation and execution by automatically inferring the structure of parallelism from pro-
grams. Specifically, we first design a domain-specific language (DSL) for multi-agent cooperation,
and use multi-stage learning to ground subroutines of a given program into the agents’ policy. Then,
we learn feasibility functions, which entail the ability of agents to complete specific subroutines in
the program in the status quo. Finally, we leverage the learned task structure to automatically enforce
cooperation and division of labor among agents.

We conduct experiments on gradually more difficult challenges in the Overcooked [50] environment.
The Overcooked environment requires the agents to cooperate on very long-horizon tasks, such as
preparing dishes, while avoiding conflicting behaviors. Our method significantly outperforms other
strong baselines in completion rates and efficiency. The program structure also enables E-MAPP to
deliver superior compositional generalization to novel scenes.

Our main contributions can be summarized as follows:

• We formulate a novel task of learning multi-agent cooperation via the guidance of parallel
programs.

• We present a novel framework for program grounding and long-horizon planning and
instantiate the framework into practical multi-agent reinforcement learning algorithms.

• We demonstrate the effectiveness of E-MAPP in completion rates and generalization ability
over existing strong baselines and provide empirical analysis in long-horizon tasks.

2 Related Work

Cooperative Multi-Agent Reinforcement Learning. In a multi-agent cooperative game, agents
collaborate with each other on a common goal [33]. Researchers have investigated many ways
to facilitate agent coordination [21, 12, 53, 34, 19]. Value-based MARL algorithms engage in
discovering the relationship between global value function and local value functions [46, 38], while
policy-based MARL algorithms use a centralized critic [51, 26] to coordinate agent behaviors. More
specifically, MAPPO [51] and MADDPG [26] leverage a fully-observable central critic to solve the
issue of non-stationarity [33]. Value factorization approaches [38, 46, 37] decompose the global
value function into a combination of local agent-wise utilities to cope with scalability, while policy
factorization approaches [18] factorize the joint action space to coordinate marginal policies.

Reinforcement Learning for Long-horizon Tasks. Reinforcement learning agents usually lack
the ability to plan and reason over a long time horizon due to sparse rewards [49, 14, 40, 15, 16, 30].
Goal-conditioned reinforcement learning [36] is one of the popular paradigms to address the sparse
supervision problem. Imitation learning [17, 16] is another approach to solving the sparse reward
problem. Another line of work has presented automatic goal generation and selection algorithms [3,
35, 24, 9]; however, this introduces new challenges to design a suitable goal space that enjoys
rich semantic meanings [13]. By contrast, our work uses the subtasks corresponding to possible
subroutines in a program as goals, which are associated with domain knowledge. Hierarchical
reinforcement learning [HRL; 47, 42, 28, 43, 29] is another path to solve long-horizon tasks, using
a high-level policy for long-term planning and low-level policies for motion planning or specific
behaviors. While our work is related to multi-agent hierarchical reinforcement learning [27], which
explicitly provides the directed acyclic task graph and the necessity of cooperation of each subtask,
we focus on learning task structure such as subtask dependencies, loops, and branchings from the
program and judging the necessity of cooperation without additional information.

Instruction-Guided Agents. Many recent advances have testified the advantages of leveraging
structured prior knowledge such as task graphs [1, 22], natural languages [2, 6, 23] and programs [45,
52] to promote efficient policy learning. In contrast to other structured priors, programs stand out
because of their strictly formatted and composable subroutines [5, 7]. Previous works leverage
programs to enable a single agent to learn complex tasks by following programs [45, 52]. However, a
plethora of new challenges have been introduced, including task dependencies, collaboration schemes,
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Figure 1: The overall framework of E-MAPP. E-MAPP includes four components: 1) A perception
module that maps a query q and the current state s to boolean responses. 2) A program executor that
maintains a pool of possible subtasks and updates them according to the perceptive results. 3) A task
allocator that chooses proper subtasks from the subtask pool and assigns those to agents. 4) A policy
module that instructs agents in taking actions to accomplish specific subtasks.

and others; hence, it is difficult to trivially extend the existing works in the MARL settings. To enable
multi-thread orderless policy execution, we leverage “plug-and-play” auxiliary functions to infer the
relationships among subtasks.

3 Problem Statement

3.1 Program Guided Cooperative Markov Game

An infinite-horizon Markov Game is defined by a tuple (N ,S,A, T ,R, γ), where N = {1, . . . , N}
denotes the set of N engaging agents, S denotes the state space, A = A1 × · · · × AN denotes the
Cartesian product of all the N agents’ action space, T : S×A → S denotes the state transition function
from current state s to the next state s′ for the joint action a = (a1, . . . , aN ), R = R1 × · · · × RN

denotes the Cartesian product of all the N agents’ reward functions, where each Ri determines the
immediate reward for the i-th agent from the current state s and joint action a, and γ is the discount
factor.

At each time t, each agent i observes the current state st, makes the decision ait, and re-
ceives the reward rit. In a cooperative game, the collective goal is to optimize the joint pol-
icy π : S → A to maximize the sum of each agent’s expected cumulative discounted rewards
Eai

t∼πi(·|st),st∼P

[∑∞
t=1

∑N
i=1 γ

trit
(
st,a

i
t

)]
.

A program-guided Markov game is a Markov game with a factorized state space. Specifically, state
S = Se × Sp, where Se is the common state space of the environment and Sp is the multi-pointer
program space (see Section 3.2). Accordingly, the state transition function takes as input the current
compounded states (se, sp) and joint actions a and then returns the next joint state (s′e, s

′
p). In this

study, the transition function of the program space is based on predefined rules.

3.2 Parallel Programs

The program space consists of three components: a domain-specific language (DSL) that contains
all the possible subroutines, a set of pointers that point to relevant subroutines, and a control flow
that manages the pointers. A complete specification of the DSL used by our framework is in
the Appendix A.1. Inside this DSL, a subroutine is a minimal executable unit in the program
that corresponds to a subtask in the domain (e.g., Chop(Tomato)). As in previous works [45,
52], we consider two types of subroutines: perception primitives (e.g., IsOnFire()), which query
about the status of the environment; and behavior primitives (e.g., Chop(Tomato), which issue an
instruction. Control flow involves branching statements (if/else), loops (for/while), and parallelism
indicators (repeat/parallel). The parallelism indicators are designed for multi-thread execution.
The subroutines in a parallel block are possible but not guaranteed to run concurrently, i.e., the
agents should reason about what subroutines in a parallel block can be executed concurrently. The
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Figure 2: The perception module. The perception module encodes the perception primitive into mod-
ulation parameters, which operate on the state embeddings to get the goal-conditioned embeddings.
These embeddings are then fed into another encoder, followed by a sigmoid function. The output is a
real number in [0, 1], and will be binarized for branching selection by the program executor.

subroutine in a repeat block can be executed many times simultaneously. We summarize all the
current subroutines that are possible and executable as the Possible Subroutine Set. The set of pointers
points to all the subroutines in this set.

3.3 Multi-Agent RL with Parallel Programs

In our study, we aim to develop a framework for optimizing the joint policy in a parallel program-
guided cooperative Markov game. To this end, the agents must keep track of the pointers in the
program, learn to reason the primitives to choose the right branches, and perform the action either
collaboratively or individually to pursue high efficiency.

4 Method

Our goal is to enable multiple agents to cooperate to solve long-horizon tasks guided by parallel
programs. There are three important factors we should consider: first, the agents should learn subtask-
conditioned policies that can be composed together to accomplish long-horizon tasks and further
generalize compositionally to unseen tasks; second, the agents should reason about task dependencies
so that they can automatically parallelize tasks among them; and third, the agents should distinguish
between cooperative tasks and non-cooperative tasks that can be achieved by a single agent to avoid
competition for common resources.

We propose Efficient Multi-Agent Reinforcement Learning with Parallel Programs (E-MAPP), a
multi-agent reinforcement learning framework where agents can cooperate to solve long-horizon
tasks by following program guidance. As shown in Figure 1, E-MAPP includes four components:
a perception module that is able to judge whether the queried status exists in the state; a parallel
program executor that keeps track of subroutines and updates them based on the perception module
output; a task allocator, which extracts queries of interest and obtains the corresponding set of possible
subtasks from the program executor, and assigns tasks to agents; and a multi-agent policy module,
which agents use to make their decisions based on the input subtask. The following of this section will
introduce these four key components of E-MAPP. The complete algorithm is shown in Appendix A.3.

4.1 Parallel Program Executor

The program executor keeps a set of pointers pointing to possible subroutines in a domain-specific
Possible Subroutine Set. There are four types of control flows: if -routine, while-routine, parallel-
routine, and repeat-routine. Meanwhile, there are two types of subroutines in our program: behavior
primitives and perception primitives.

Control flows. An if -routine contains a condition statement (usually a perception primitive) and
subroutines in the corresponding blocks. A while-routine contains a condition statement and a looping
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Figure 3: The policy module. We adopt a goal-conditioned reinforcement learning framework to
determine the policy. We encode goals with a goal encoder and fuse them into the state features. If an
agent is assistive, the goal is encoded with an altruistic goal encoder instead. The network has three
outputs, including the value function, the action distribution, and the auxiliary functions.

block of subroutines. A parallel-routine contains parallel blocks of subroutines that are possible to be
executed simultaneously. A repeat-routine contains an unconditioned block of subroutines that can
be executed multiple times by different agents.

Subroutines. A behavior primitive (e.g., Chop(Tomato)) corresponds to a subtask that must be
completed by the agents. As for a perception primitive (e.g., IsOnFire()), it is a query that requires a
boolean response.

After an action is performed or a response to a perceptive query is received, the program executor up-
dates its pointers and the Possible Subroutine Set. Detailed updating rules are shown in Appendix A.2.
We note that if an achieved subtask does not correspond to any subroutine in the Possible Subroutine
Set, the program executor will terminate the program immediately. This guarantees that no exceptions
will occur due to violating the instructed order of subtasks.

4.2 Perception Module

The perception module learns to map a query q and the current state st to a boolean answer h =
ϕ(q, st). For example, when a perception primitive IsOnFire() is passed to the perception module,
it learns to check the existence of fire in the environment and returns true/false. The architecture is
shown in Figure 2. Specifically, we randomly sample states, queries, and the ground-truth perception
hgt as the training dataset and train the network ϕ in a supervised manner. We use binary cross entropy
(BCE) loss Lperception = BCELoss(hpred, hgt) as the objective, where hpred denotes the perception
output. In terms of architecture, we encode the perception primitive sp and the common state se
with a neural encoder. The encoded primitives are represented as γ and β to modulate the encoded
common state. At the last layer, we use a sigmoid function to obtain the binary output. Training
details and detailed architecture descriptions can be found in Appendix A.5. In this way, this module
can determine whether the queried primitive exists in the state to aid the agents’ decision-making.

4.3 Policy Module

The policy module grounds agents’ actions with the programs and encourages cooperation in complet-
ing the tasks. The overall policy learning procedure advocates a subtask-conditioned reinforcement
learning framework as shown in Figure 3. Our algorithm backbone is MAPPO [51] and consists
of two stages. More concretely, we first learn a policy for each agent where other agents’ policies
are fixed. The input is the state and the encoded subtask. The reward signal is based on whether a
subroutine is executed correctly. Then we enable multiple agents to coordinate by learning a joint
policy for accomplishing collective goals cooperatively and efficiently, with the help of auxiliary
functions and a task allocator. We use the same architecture to fuse state and goal features as that in
the perception module in Figure 2. We also leverage self-imitation learning to tackle the challenge of
sparse rewards, which is shown in Appendix A.4

5



I can reach

I can reach

(a) reachability

I have to put out the 
fire to reach

I can deliver the 
extinguisher to you

(b) feasibility

I am closer to 

I am closer to

(c) cost-to-go

Figure 4: The auxiliary functions. Figure 4a shows the reachability that indicates if an agent can
reach an object. Figure 4b shows the feasibility that indicates whether a subtask can be achieved by
the agents collectively. Figure 4c shows the cost-to-go function that indicates time consumption.

Learning to cooperate on a subtask. After obtaining single-agent policies, we then encourage
agents to accomplish harder tasks that require cooperation. When assigned a cooperative subtask,
one of the agents is in charge of finalizing the task. The rest of the agents are assistive. For example,
the assistive agents might pass an onion to the leading agents to chop. In practice, we randomly
appoint one agent as the leading agent and the others as the assistive agents. The leading agent is
rewarded if this subtask is completed. The reward function for the assistive agents is calculated based
on the reachability improvement of the leading agent. We defer the formal definition of this reward
function to Section 4.4. Such reward function encourages the assistive agents to help the leading
agents to obtain rewards. Then, we use a MAPPO-style algorithm to obtain a cooperation policy. We
also encode the leading agent’s goal into the observation space of the assistive agents to enhance
information sharing.

4.4 Task Allocator

The task allocator assigns subtasks to each agent to accomplish a long-horizon task together. Specifi-
cally, we design the task allocator for efficient coordination based on the following principles: 1) It
only assigns subtasks that are feasible for the agent(s) without additional prerequisite subtasks. 2) If a
subtask is cooperative, the task allocator would assign the subtask to a number of agents. 3) It assigns
a subtask to the agent that has the lowest cost in terms of execution time.

To facilitate the task allocation, we propose to learn three auxiliary functions: a reachability function,
a feasibility function, and a cost-to-go function as illustrated in Figure 4. Training details of the
auxiliary functions are in Appendix A.6

Reachability. The reachability function freach = freach(st, i, τ) is defined as a boolean value
to indicate if agent i can complete task τ alone at the state st. For a cooperative subtask τ and
a selected leading agent i, an extrinsic reward freach(s

′

t, i, τ) − freach(st, i, τ) is provided to the
assistive agents for learning altruistic behaviors. To train this reachability function, we randomly
sample triplets (st, i, τ) and obtain the ground-truth value fgt

reach through running the pre-trained
non-cooperative policy. Then we optimize the network by minimizing the binary cross entropy
BCE(fpred

reach, f
gt
reach).

Feasibility. The feasibility function ffeas = ffeas(st, i, τ) is defined as a boolean variable indi-
cating if an agent i can complete a subtask τ with others’ assistance at the state st. The training
procedure of the feasibility function is similar to that of the reachability function, except that we
leverage the cooperative policy instead of the single agent policy to collect training data.

Cost-to-go. The cost-to-go function fcost = fcost-to-go(st, i, τ) denotes the remaining timesteps
for agent i to accomplish the subtask from the state st. We leverage trajectories generated by a
pre-trained intermediate cooperative policy from E-MAPP to train this cost function. Specifically,
we randomly sample triplets (st, i, τ) and execute the pre-trained cooperative policy in Section 4.3
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to obtain the ground-truth timesteps fgt
cost-to-go to complete the subtask τ . Then we optimize the

network by reducing the Mean Squared Error (MSE) Lcost-to-go = MSE(fpred
cost-to-go, f

gt
cost-to-go).

Criteria for subtask allocation. For a specific Possible Subroutine Set {τ1, . . . , τm}, we denote a
legal subtask allocation as {T1, T2, . . . , Tm} such that

• Ti is a list of ni agents where ni = |Ti|. The agents are those in the agent set {1, . . . , N}
who aim at completing the subtask τi.

• For all i ∈ {1, . . . ,m}, if ni is larger than one, then the agent T 1
i is selected as the leading

agent and the agent(s) T 2
i , . . . , T

ni
i are selected as the assistive agent(s).

• For 1 ≤ i < j ≤ m, we have that Ti ∩ Tj = ∅, which means no agent is assigned two
subtasks simultaneously.

We compute the cost of each possible subtask allocation {T1, T2, . . . , Tm} as the sum of three terms

ctotal = cfeas + ccost-to-go + creach (1)

,where

cfeas =

m∑
i=1

−niwfeas log ffeas(s, Ti[1], τi) (2)

ccost-to-go =

m∑
i=1

−niwcostfcost(s, Ti[1], τi) (3)

creach =

m∑
i=1

I[ni = 1]wreach log freach(s, Ti[1], τi) (4)

wfeas, wreach, and wcost are tunable hyperparameters and I[·] is the indicator function. The feasibility
term encourages the agents to choose the feasible subtasks, the cost-to-go term encourages the agents
to choose the less costly subtasks, and the reachability term guarantees that the subtask assigned
to only one agent is non-cooperative. The log operator operating on a value approximating 1 will
induce a huge cost, thus preventing the allocation of an infeasible or unreachable subtask to an agent.
We search from the possible allocations {T1, T2, . . . , Tm} and apply the one with minimal cost as
the final allocation.

In practice, we also use two hyperparameters: cr to be subtracted from the cost-to-go function to
encourage the agents to finish their ongoing subtasks, and ci to be added to the cost-to-go function to
avoid allocating subtasks to an agent who can never accomplish a task within a timeout threshold to.

4.5 Complexity Analysis

In an environment with M subtasks and N agents, the brute force search for an optimal allocation
indeed has a complexity of O(MN ). However, the practical complexity is much smaller than it. The
reasons are as follows:

1. In a certain stage of a long-horizon task, only a small amount of subtasks are feasible. Thus,
the subtask amount M can be pruned into a smaller number L by checking the feasibility
function O(M ×N) times and ignoring the subtasks whose feasibility functions are less
than a given threshold.

2. The engaging N agents can be classified into C roles. The agents sharing the same role
have the same reachability functions. C is often a property of the task that does not scale
with N . For example, in the overcooked environment, C can be the number of connected
components of the map. Note that, in E-MAPP, the assistive agents aim to increase the
reachability of the leading agents. We define C × L new subtasks (τ, c), where τ comes
from the L feasible subtasks and c comes from the C roles. The goal of each new subtask
(τ, c) is to help agents with role c to gain reachability on subtask τ . We can obtain a new
subtask set of size O(C × L) by extending the original subtask set with these newly defined
subtasks. Assume that the number of agents is smaller than the number of feasible subtasks
(otherwise, idle agents will inevitably emerge). Under this assumption, each agent will
choose to either complete a subtask alone or assist a certain group of agents with the same
role, and each subtask in the new subtask set is allocated to at most one agent to avoid
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conflict. Then the task allocation problem turns into finding the best matching of N agents
and O(C × L) subtasks with the smallest total cost, which can be solved by the Hungarian
algorithm. The computational complexity is O((N +CL)3) ≤ O((N +CM)3) that scales
well.

5 Experiments

In this section, we aim to investigate the following key questions. First, is the program guidance
helpful for agents to understand long-horizon tasks in comparison with other structured information
guidance? Second, are the parallel structures in the programs bring forth cooperative behaviors
among the agents? Third, does the task allocator improve the completion rates and the time efficiency
of the long-horizon tasks by virtue of the auxiliary functions?

5.1 Environment Description

Figure 5: A sample from the
Overcooked environment.

To evaluate the proposed framework, we adapted the previous envi-
ronment [50]mimicking the video game to a more challenging one
“Overcooked v2”. Concretely, we extend temporally for the horizon
length of a task by adding additional behaviors such as “wash dishes”
and “put out fire”. As shown in Figure 5, agents can navigate through
the grid world, interact with objects (e.g., tomatoes, knives), and
deliver the dishes to the customers (the yellow star). The goal of the
agents is to serve dishes according to the given recipes that can be
divided into subtasks. More details about the environment can be
found in Appendix A.7.

5.2 Setup

Tasks. We test the agents on a variety of tasks with different difficulty
levels. The easy tasks contain only one subroutine for verification.
The medium tasks contain two or three subroutines. The hard task
requires the agents to complete multiple dishes that require at least two subroutines each while putting
out the randomly appearing fire. We conduct evaluation in two different patterns, based on seen
or unseen tasks. Note that both evaluation scheme are conducted on novel maps, which makes the
task more challenging. The unseen tasks share the subroutines with the seen tasks but is never used
as a goal during training. The unseen tasks are used to test whether the methods can generalize
compositionally. We also note that for the tasks with a repeat command (e.g., repeatedly pick an
onion from the supply), a targeted repeat number is preset.

Metrics. We use the completion rates and the average scores as the metrics. The completion rate
is defined as the percentage of tasks that can be completed in an episode. The average score is the
discounted cumulative rewards in an episode across all testing tasks. Agents will receive a reward of
1 when the final goal is achieved and receive a reward of 0.2 when a correct subtask is completed.
Each algorithm is tested in 1000 environments and we report their average in the tables.

Baselines. We compare our model with two baselines: MAPPO [51] and a natural language-guided
agent. Detailed descriptions are in Appendix A.9.

5.3 Results

Results with seen tasks in novel maps. Table 1 shows the completion rate and average scores
on seen tasks in novel maps, demonstrating that E-MAPP excels at understanding the structure
of complex tasks. As expected, the end-to-end MAPPO model performs well on short-horizon
tasks, but suffers from a significant performance drop when the task becomes complex. The natural
language–guided model also has a large performance drop when the horizon of the tasks becomes
longer. We attribute this to the agents’ failure to understand the complex task structure described in
natural language without explicit structure. By contrast, E-MAPP performs well even when the tasks
have a long horizon with various accidental events happening.
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Table 1: Results on the seen tasks in novel maps. Completion rates and average scores of seen tasks
in the Overcooked environment with three difficulty levels.

Completion Rates Average Scores

Methods Easy Medium Hard Easy Medium Hard

E-MAPP (ours) 98.0% 97.5% 56.3% 1.06±0.17 1.12±0.22 1.58±0.60
Natural language guidance 81.9% 48.1% 1.01% 0.87±0.43 0.63±0.51 0.82 ± 0.31
MAPPO [51] 100.0% 65.7% 0.00% 1.11±0.04 0.79±0.31 0.59± 0.27

Generalization with unseen tasks in novel maps. Table 2 shows the results on the zero-shot
generalization scheme. The scenarios and tasks are very different from the training domain, posing
an extra challenge to all the algorithms, including the auxiliary functions of E-MAPP. We find that E-
MAPP is significantly better than both the previous multi-agent RL algorithms and a language-guided
agent. We attribute the success of E-MAPP to the fact that programs have better compositionality and
less ambiguity. In the training time, E-MAPP learns certain subroutines from other tasks; it applies
the behavior compositionally to achieve goals never seen during training. More visualized results are
in Appendix A.8.

Table 2: Results on the unseen tasks in novel maps. Completion rates and average scores of unseen
tasks with two difficulty levels.

Completion Rates Average Scores

Methods Medium Hard Medium Hard

E-MAPP (ours) 100.0% 43.7% 1.13 ± 0.10 0.99 ± 0.22
Natural language–guided model 58.4% 0.0% 0.58 ± 0.50 0.48 ± 0.21

Ablation of auxiliary functions. We analyze the significance of the proposed key components in
our model by comparing our model with the variants that removes 1) the feasibility predictor 2) the
reachability predictor 3) the cost-to-go predictor. The completion rates and the average scores are
shown in Table 3. We find that all the components are important to E-MAPP. Specifically, we find
that removing the reachability predictor from E-MAPP leads to a significantly increased average
timestep, and this is the component that provides the largest performance gain. We attribute this to
the reachability function that pointed out the subtasks that can be completed individually, providing
an impetus for agents to parallelize.

Ablation of parallelism in the programs. We compare the proposed parallel programs with
sequential programs in the same environments. In Table 3, we find that the agents with parallel
programs use 15% fewer time steps to accomplish the same goal as those with sequential programs.
These results show that the parallel programs are central to E-MAPP in terms of time efficiency.

Table 3: Ablation study. Completion rates, average scores, and timesteps when one of the key
components of E-MAPP is removed.

Completion Rates ↑ Average Scores ↑ Average Timesteps ↓
E-MAPP 56.3% 1.58 ± 0.60 17.6
w/o feasibility predictor 38.5% 1.42 ± 0.56 21.24
w/o reachability predictor 43.8% 1.45 ± 0.50 23.37
w/o cost-to-go predictor 52.0% 1.46 ± 0.45 20.42
sequential program 48.8% 1.51 ± 0.47 20.33

Partially observable environments. We conduct an experiment to show that E-MAPP can still
outperform other methods in a partially observable environment. In the new setting, the observation
of each agent is only part of the map within reach. Table 4 shows the results. Under the new setting,
E-MAPP can still learn to allocate sub-tasks to agents and accomplish tasks efficiently.
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Table 4: Additional experiment in partially observable environments we conduct an experiment
to show that E-MAPP can still outperform other methods in a partially observable environment.

model score completion rate

E-Mapp(partial obs) 1.01±0.38 27.1%
E-MAPP(original) 1.58±0.60 56.3%

MAPPO 0.59± 0.27 0.0%

5.4 Visualization of Learned Behaviors

(a) parallel (b) repeat (c) assist

Figure 6: Learned behaviors of E-MAPP. Figure 6a shows that two agents are assigned two
subtasks concurrently. Figure 6b shows that both agents are trying to repeatedly perform the same
task. Figure 6c shows that one agent is passing an onion to the agent who can chop it.

In Figure 6, we show the representative learned behaviors of E-MAPP. In Figure 6(a), the two
subroutines are allocated to two agents separately. This demonstrates the effectiveness of the
feasibility function, with which the task allocator successfully identified the parallelizable subtasks
that can be executed concurrently. We note that the parallel indicator in the program only suggests
the agent trying to identify what subtasks are parallelizable rather than providing a ground-truth
task structure. In Figure 6(b), we find that the two agents are performing the same task in a repeat
subroutine independently. We show the allocator can assign tasks to multiple agents that are reachable
to the goal. In Figure 6(c), we show that an assistive agent is passing an onion to the leading agent
to chop. This shows how the agents learn to cooperate with each other. More visualizations can be
found in Appendix A.8.

5.5 Scalability to New Domains

We also investigate whether E-MAPP can be effective on tasks with continuous action space based
on the Stacking environment. More details and demos in Stacking can be found in Appendix A.10.
We discuss some potential parallel-program synthesis approaches when applying E-MAPP to a new
domain in Appendix A.14

6 Conclusion

In this paper, we first formulate the problem of program-guided multi-agent tasks. We propose
Efficient Multi-Agent Reinforcement Learning with Parallel Programs (E-MAPP), an effective
framework that uses a type of parallelism-aware program for multi-agent collaboration and a task
allocation strategy via a set of learnable auxiliary functions. The results show that our algorithm can
infer the task structure and significantly boost completion rates, efficiency, and generalization ability
on long-horizon tasks.

Limitations. Our current framework does not consider more challenging scenarios such as dynamic
scenes or generalization to novel objects. We believe that this work opens a welcoming avenue to this
research direction, and more future works will address additional challenges.

Acknowledgements. We thank Yuping Luo and Zhecheng Yuan for their careful proofreading and
writing suggestions.
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