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Figure 1: Overview of our work. We propose a large-scale Procedural Knowledge Graph constructed from web
how-to data, which can significantly enhance the planning capabilities of LLMs in robot manipulation tasks.

Abstract

Large Language Models (LLMs) have shown the promising planning capabilities
for robotic manipulation, which advances the development of embodied intelligence
significantly. However, existing LLM-driven robotic manipulation approaches ex-
cel at simple pick-and-place tasks but are insufficient for complex manipulation
tasks due to inaccurate procedural knowledge. Besides, for embodied intelligence,
equipping a large scale LLM is energy-consuming and inefficient, which affects
its real-world application. To address the above problems, we propose Hierar-
chical Procedural Knowledge Graphs (HP-KG) to enhance LLMs for complex
robotic planning while significantly reducing the demand for LLM scale in robotic
manipulation. Considering that the complex real-world tasks require multiple
steps, and each step is composed of robotic-understandable atomic actions, we
design a hierarchical knowledge graph structure to model the relationships between
tasks, steps, and actions. This design bridges the gap between human instructions
and robotic manipulation actions. To construct HP-KG, we develop an automatic
knowledge graph construction framework powered by LLM-based multi-agents,
which eliminates costly manual efforts while maintaining high-quality graph struc-
tures. The resulting HP-KG encompasses over 40k activity steps across more than
6k household tasks, spanning diverse everyday scenarios. Extensive experiments
demonstrate that small scale LLMs (7B) enhanced by our HP-KG significantly
improve the planning capabilities, which are stronger than 72B LLMs only. En-
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couragingly, our approach remains effective on the most powerful GPT-40 model.
Our code and data will be publicly availableﬂ

1 Introduction

Embodied Al [} 2] refers to Al that is integrated into physical systems, such as robots, enabling
them to interact with the physical world with the abilities of perception, reasoning, planning, and
execution. Recent achievements of Large Language Models (LLMs) [3H8]] have shown the remarkable
capabilities for robotic task planning [9, [10], greatly advancing the development of embodied Al.
These models usually serve as high-level planners to decompose human instructions into executable
sub-goals [IL1,19, 12} 110} [13]], while relying on pre-defined skills [[14H16] for execution.

Recent studies [17, [18]] show that such LLM-driven planning methods usually generate unrealistic or
logically inconsistent planning steps due to lacking procedural commonsense, especially in complex
manipulation tasks. For instance, LLMs may ignore the agent’s current physical state, thus failing to
include necessary prerequisite actions (e.g., a standup action before any movement) [19], or overlook
physical constraints such as the need to open a closed container before fetching items from inside [20].
Moreover, robots are often limited by a finite energy supply, while LLM-driven planners typically
require large-scale models (e.g., PALM-E [21]] with 562B parameters) to possess sufficient planning
capabilities in complex, long-horizon scenarios. For embodied intelligence, equipping a large scale
LLM is energy-consuming and inefficient, which affects its real-world application.

To address the above problems, we propose to construct an effective Procedural Knowledge Graph to
enhance LLM-driven planners. Procedural knowledge refers to the understanding of how to perform
specific tasks, typically expressed as sequences of steps required to achieve a specific goal [22}[19].
Since the Procedural Knowledge Graph provides the commonsense needed for planning, injecting the
correct Procedural Knowledge into LLMs can effectively enhance their reasoning accuracy. Therefore,
a small-scale LLM equipped with the Procedural Knowledge Graph has sufficient capability to
perform planning, alleviating the computational cost demands of embodied Al

However, developing an effective representation of procedural knowledge to enhance robotic planning
capabilities remains a challenge. Existing methods usually adopt coarse-grained task decomposition
and simply represent procedural knowledge as reference documents [23} 124} [19], without specific
structure design. The main challenge in robot planning lies in translating high-level goals into feasible
steps, due to the domain gap between language comprehension and robotic execution. A natural
observation is that procedures of robot manipulation can be divided into a finite set of atomic actions
that the robot can understand and execute. These atomic actions can be combined into a series of
steps, which can further be combined into tasks that are highly abstract as human instruction in the
real world. Motivated by this, we design a novel and effective Hierarchical Procedural Knowledge
Graph (HP-KG) to organize procedures into three distinct layers: tasks, steps, and actions, as shown
in Figure[2] Each procedure is further enriched with textual attributes (description, name, and tips).

Furthermore, to eliminate the need for manual knowledge engineering and reduce human effort, we
introduce a framework to automatically construct the procedural knowledge graph through multi-
agents calibration [25, |5} [26]]. Specifically, we focus on household activities in this work as they are
frequently performed by everyone and represent a promising area for robotic assistance to facilitate
daily living [27]. We systematically filter household-related tasks from the WikiHow corpus [28] and
combine them with the BEHAVIOR dataset [27] as knowledge source. We then prompt an LLM to
extract steps from each household task and complete them by generating corresponding actions and
their textual attributes. Subsequently, two LLM agents are employed to iteratively verify and refine
the generated procedures based on designed rules. To enrich information while reducing redundancy,
we perform semantic similarity clustering and LLM-based knowledge merging.

Finally, we propose a retrieval approach to leverage the constructed HP-KG. Given a language
instruction, a refined query is generated to retrieve relevant knowledge nodes based on semantic
similarity. Through K-hop breadth-first search and re-ranking, it identifies the most pertinent nodes
and converts their sub-graphs into textual descriptions for contextual planning. Extensive experiments
on ActPlan-1K [[18] and RLBench [29] demonstrate that our HP-KG enables smaller models (7B) to
achieve stronger capabilities than larger models (72B) only. Encouragingly, our approach remains
effective on the most powerful GPT-40 model. Overall, the contributions of our work are as follows:
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e We design a novel hierarchical procedural knowledge graph structure that effectively formalizes
complex household tasks through a structure of tasks, steps, and actions.

e We introduce a novel automated framework that leverages LLM-based multi-agents to construct
hierarchical procedural knowledge graphs, eliminating the need for manual knowledge engineering.

o We present HP-KG, a large-scale procedural knowledge graph, containing 42,000+ activity steps
across 6,000+ household tasks in daily scenarios.

o Our method significantly improves the planning capability (+17.64% on 7B LLMs) and reduces the
scale demand for LLMs.

2 Related Works

Knowledge Graph Construction. Traditional Knowledge Graph Construction methods typically
involve multiple tasks, including entity extraction [30,|31] and relation classification [32, [33]], which
incur substantial human effort and cost [34]. With the advancement of pre-trained language models
like BERT [35]], GPT-3 [36], end-to-end triplet extraction emerges as a promising paradigm [34}[37].
Contemporary graph construction approaches [38-H40]] leverage large language models (LLMs)
[3 150 18] for entity extraction via prompting or fine-tuning.

LLMs with Knowledge Graph. Knowledge graphs (KGs), which provide structured factual repre-
sentations, have emerged as a powerful tool to enhance LLM performance [41-43]]. Recent advances
in Knowledge Graph Augmented Generation [44-46] demonstrate that KGs can serve as external
knowledge bases to provide accurate factual information, effectively enhancing the factual correctness
in LLM-generated responses [47-50]]. Furthermore, several studies have shown that leveraging the
structural relationships inherent in KGs can enhance the reasoning capabilities of LLMs [51H53]].

Foundation Models for Robotics Manipulation. Recent achievements of vision-language founda-
tion models [54H56] have significantly influenced the field of robotics manipulation. These models
demonstrate the potential for controlling robots to perform complex tasks. Recent studies can be
broadly categorized into two paradigms: One stream adopts vision-language-action models [57, 58]
such as RT-2 [59]], RT-X [60], and OpenVLA [61] to directly map visual inputs and language instruc-
tions to robotic actions. The other paradigm leverages vision-language models (VLMs) to decompose
high-level instructions into sub-goals [[11} 9, [62H64], which are then solved through pre-defined
skills [[14} 165} 151166]. For example, Yang et al. [[67]] leverages Vision Language Models to generate
subgoals, then employs dynamics-based planning to solve the subgoal. Our method is orthogonal
to these approaches. Benefiting from the in-context understanding capabilities of vision language
models, our HP-KG can integrate seamlessly with various methods’ subgoal generation processes.

3 Approach

In this section, we first present our structure design of the Hierarchical Procedural Knowledge Graph
(HP-KG) for household activities. Second, we propose an automated procedural knowledge graph
construction framework for building our HP-KG. Third, we introduce a retrieval method that retrieves
relevant procedural knowledge as contextual input to enhance LLM-based planning.

3.1 Hierarchical Structure Design for Procedural Knowledge Graph
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and atomic actions, as well as how to effectively con-

nect them. Second, the knowledge graph should include

safety-critical guidelines to prevent potential accidents, which is essential for ensuring correct proce-
dure execution [[68]]. We observe that complex procedures in household activities are composed of
a set of atomic procedures (e.g., open container). Some atomic actions combine to form a simple
step. A series of steps, in turn, combine to create complex tasks that approach high-level human
instructions (e.g., clean the room), naturally forming a hierarchical structure of procedural knowledge.

Based on these considerations, as Figure [2] shows, we design a simple yet effective Hierarchical
Structure that encompasses multiple characteristics. To represent the hierarchical nature of procedural
knowledge, we categorize procedures into three levels: tasks, steps, and actions, which correspond to
complex composite procedures, simple composite procedures, and atomic procedures, respectively.
A task node links to step nodes via HasStep edges, and step nodes link to action nodes through
HasAction edges. The temporal sequence is captured by NextStep edges between steps and NextAction
edges between actions. Additionally, each procedure contains two key attributes: HasDescription
specifies what needs to be performed, HasTips provides tips and warnings.

3.2 Automatic Graph Construction Framework

To construct our HP-KG, we propose an LLM-based multi-agent framework for automatic Procedural
Knowledge Graph construction. As Figure [3|shows, the framework comprises four key stages: (1)
data source cleaning and processing, (2) procedures generation and completion, (3) rules-guided
iterative verification and refinement, and (4) hierarchical clustering and summarization.

Data Source Cleaning and Processing. In our work, we utilize two main data sources. The first
is the WikiHow corpus [28]], one of the largest online databases containing comprehensive how-to
articles across multiple domains. Each article in WikiHow typically consists of a title, a main goal,
and several methods to achieve this goal, where each method contains multiple steps with detailed
descriptions. The second is the BEHAVIOR-1K dataset [27], which comprises approximately 1,000
most common household activities. Each activity is defined through a BDDL (Behavior Domain
Definition Language) file that specifies the activity goals and available objects in the environment.

The WikiHow corpus contains numerous articles across various domains, while only household
activities are needed in this paper. Moreover, documents in the corpus may contain semantically
similar activities, which could lead to redundancy in the extracted procedures. Therefore, we first
filter documents by categories, retaining only household-related categories. Subsequently, we employ
Deepseek-V3 [4] to determine whether each document describes a household activity based on its title
and descriptions (detailed prompt template is provided in Appendix E). Finally, we cluster documents
based on semantic similarity. We obtain approximately 5.8K unique household activities from the
WikiHow corpus. Furthermore, we standardize input formats for BDDL-defined activities in the
BEHAVIOR-1K dataset by using LLMs to generate WikiHow-style content.

Procedures Generation and Completion. Based on collected documents, we prompt the LLM
agent as the Procedure Generator to extract and complete procedures. During the extraction phase,
the generator extracts each activity’s tasks, steps, and corresponding textual attributes (e.g., task
content, task tips) from each document. According to our hierarchical graph structure, we build
the interconnection between tasks and steps through the hasStep relation. After extraction, we
design an action completion prompt to generate atomic action procedures with minimal redundancy.
Using this prompt, the generator produces corresponding atomic actions and their attributes for each
step procedure. These actions along with their attributes constitute action procedures, which are
then linked to their respective step procedures through the hasAction relation. These hierarchical
procedures interconnect through defined relations, forming a preliminary procedures graph.

Rules-Guided Iterative Verification and Refinement. Due to the inherent limitations in Large
Language Models (LLMs), the generated preliminary procedures inadequately adhere to procedural
principles (e.g., they contain redundant information and tend to be overly specific). To address these
challenges, we propose an Iterative Verification and Refinement method to improve the quality of
procedures. A Rules-Guided Verifier invokes multiple rule-checking models to assess the given
procedure’s compliance with established rules, subsequently aggregating these results to generate a
validation score and feedback. Additionally, we prompt an LLM as a Procedure Refiner to iteratively
modify the provided procedures until the score surpasses the predefined threshold.
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Figure 3: Overview of our automatic construction pipeline: (a) Data source cleaning and processing.
(b) A Generator extracts steps with attributes from the data source and performs actions completion.
(c) A Verifier and A Refiner iteratively validate procedures against designed rules while progressively
refining them. (d) A Summary Agent hierarchically clusters and merges redundant procedures.

Specifically, based on fundamental principles of our Hierarchical Structure Design, we construct a
comprehensive set of validation rules (e.g., check if content accurately describes a procedure, check if
action is atomic, etc.), denoted as R = {ry,ra, ..., 7 }, where n is the total number of rules. Given a
generated procedure p; and its corresponding sub-procedures p. = (p., ..., p¥), we concatenate them
into p = [ps; pl; ...; p¥] to serve as input to the Verifier, where sub-procedures represent nodes that
are linked by p; via hasStep or hasAction relations. The agent then invokes a rule-checking language
model M to evaluate whether generated procedures p comply with rules in R. For each rule r; € R,
the model outputs a binary decision M (p, ;) € {0, 1}, where 1 indicates compliance and 0 indicates
violation of the respective rule. Therefore, we obtain rule compliance scores, denoted as:

s(p,R; M) = (M(p,ri),M(p,rg),...,M(p,rn)). )]

To identify redundant elements across sub-procedures p., the agent also employs an embedding
modeﬁ to encode both the name and description of each procedure. It then groups sub-procedures
whose pairwise embedding cosine similarity exceeds a threshold, resulting in a list of clusters
C = (C4,C4,...C}), where t is the number of groups. Furthermore, the Verifier converts rule
validation results s and aggregation results C' into textual descriptions separately. It then uses these
results and procedures p to prompt a powerful LLM (e.g., GPT-40) to generate a score and feedback.

After the verification, we use a Procedure Refiner to modify given procedures p. The Refiner
utilizes feedbacks, textual result descriptions, and given procedures p as inputs to generate modified
procedures p’. These refined procedures are then iteratively verified until their scores surpass a
predefined threshold. We provide the complete prompts and detailed framework rules in Appendix E.

Hierarchical Cluster and Summary. Although our iterative verification and refinement process
enhances the quality of hierarchical procedures (e.g., tasks and their sub-steps, steps and their sub-
actions), redundancy persists among procedures at the same level. To address this problem, we cluster
and merge procedures of the same level via a Summary Agent.

We first match all procedures at a given level (e.g., task procedures) as the input of the Summary
Agent. This agent uses the same embedding model to encode each procedure’s name and content and
computes the cos similarity between each pair of procedures. Procedures with similar semantics will
be aggregated into a group U;, together forming the group list U = (Uy, Us, .. .).

For each group U; that contains multiple procedures, the Summary Agent employs an LLM to generate
comprehensive summaries based on designed prompt “Given multiple semantically similar procedures,
analyze and synthesize them into a single and actionable summary...". After the summarization
process, we merge these newly generated procedures into the existing graph. We iteratively repeat the
summarization process from task level to action level, ultimately deriving the final procedural graph.

*https://huggingface.co/NovaSearch/stella_en_400M_v5



3.3 Graph Retrieval-Augmented Planning

In this section, we propose a graph retrieval-augmented reasoning approach that utilizes HP-KG to
enhance LLM planning and robotic manipulation. We aim to retrieve the top-K relevant nodes at
specified target levels and transform their sub-graphs into textual descriptions to facilitate contextual
planning. Our retrieval-augmented method consists of (1) Node Indexing, (2) Query Retrieval, (3)
Entity Expansion and Re-Ranking, (4) Procedural Graph Augmented Planning.

Node Indexing. For each node n with textual attributes x,,, we apply a pre-trained embedding
encoder (e.g., Zhang et al. [69]) to obtain its representation z,, € R*:

2, = Encoder(z,,). )

Query Retrieval. Let G = (V, £, X) denote our HP-KG, where V and £ denote the sets of nodes and

edges respectively. Additionally, X € RIVI*? represents the node feature matrix, where || denotes
the number of nodes and d is the feature dimension.

We begin with a general instruction and a retrieval target level Liarget. First, we prompt LLMs to
extract the task objectives as query x4, and apply same embdding model to encode x, as follows:

2z, = Encoder(z,) € R%. ©)
We then retrieve the top-k; most semantically similar procedure nodes V.
Vi, = TopK,, ¢y sim(zg, 2, ), 4)

where z, denotes the embeddings of node n and sim(zg, 2,,) denotes the cosine similarity between
zq and z,,. The TopK returns the top-k nodes with highest similarity.

Entity Expansion and Re-Ranking. Since neighboring nodes often encapsulate complementary
or contextually relevant semantic information for the initially retrieved nodes, we aim to expand
our retrieved nodes to discover additional relevant procedures. Specifically, we expand the retrieved
nodes Vj,, by performing a K-hop breadth-first traversal from each retrieved node as follows:

Vk/1 = U {n" ] dist(n/,n) < K,n’ € V}, (5)

neVi,

where dist(-) denotes the path distance between nodes in HP-KG. Furthermore, we filter out nodes
that do not match the target level Liarger from Vkll, obtaining a refined set:

Vvtarget - {TL S Vk/l | LeVEl(n) - Ltarget}a (6)

Where Level(-) denotes the level of node. Then, we re-rank the candidate nodes Viarget based on
query x4, and select the top-ky nodes V4, as follows:

Vie, = TopK e, sim(zq, 2n)- @)
Procedural Graph Augmented Planning. After obtaining the retrieved nodes V},, we aim to convert
these nodes into textual context for LLM planning. To this end, we require not only the retrieved
nodes but also the associated sub-procedures for each procedure node. These sub-procedures detail

the sequential steps of each task and the specific actions required within each step.

Therefore, we extract associated lower-level nodes based on predefined relations (e.g., HasStep,
HasAction, etc.), constructing hierarchical subgraphs where each retrieved node serves as the root.
Furthermore, we convert each hierarchical subgraph into a textual description (detailed templates are
in Appendix E). To enable the procedural graph augmented planning, we feed the converted textual
descriptions into the LLM as additional context. The detailed algorithm is presented in Appendix B.

4 Experiments

In this section, we conduct comprehensive experiments on LLM planning and robotic manipulation
benchmarks to evaluate the effectiveness and efficiency of our HP-KG. Extensive ablation studies are
also conducted to show the effectiveness of our hierarchical structure and the construction framework.



Table 1: Comparison of task success rates (%) for zero-shot robotic manipulation on RLBench. Our
proposed HP-KG improves baseline success rates when retrieving the Top-K (K=3,5) most relevant
procedures (numbers in parentheses indicating absolute gains).

Method HP-KG Top-K Open_wine Take_scale Take_umbrella Slide_block Play_jenga Average

- - 10% 15% 60% 50% 0% 27%
Voxposer [9] v Top-3 40% 25% 60% 45% 0% 34%(+7 %)
v Top-5 40% 20% 65% 60% 0% 37%(+10%)

- - 20% 0% 35% 10% 20% 17%
MA [ v Top-3 20% 0% 50% 30% 40% 28%(+11%)
v Top-5 10% 0% 40% 30% 35% 23%(+6 %)

Table 2: We compare the effectiveness of our HP-KG against Chain of Thought (COT) prompting for
action planning. In both cases, we employ RVT as the action executor.

Method Top-K Open_wine Take_lid Take_scale Take_umbrella Slide_block Average
RVT [57] - 65% 5% 0% 30% 15% 23%
RVT wi cor - 70% 10% 15% 35% 5% 27%(+4%)
RVT wnpkG  Top-3 75% 10% 10% 55% 20% 34%(+11%)
RVT wnpkG  Top-b 85% 5% 15% 50% 10% 33%(+10%)

4.1 Experimental Settings

Benchmarks. We mainly evaluate our HP-KG on RLBench [29] and Blocks Arrange [70] tasks for
robotics manipulation. Furthermore, we also evaluate our approach on ActPlan-1K [18] for LLM
planning. Detailed environment setup is provided in the Appendix A.

* RLBench. This benchmark comprises 100 distinct hand-crafted manipulation tasks with
varying complexity, ranging from basic target reaching and door opening to complex multi-stage
operations. Each task is specified by a natural language instruction that defines the manipulation
goal. In our experiments, we select a set of 6 complex tasks, each requiring multiple actions.

* Blocks Arrange. This task requires robots to arrange randomly located colored boxes according
to given textual instructions. In our experiments, we selected 5 complex tasks with varying
difficulty levels, ranging from relatively simple one like put_blocks_in_corners to more
challenging ones such as stack_blocks_into_three_towers.

* ActPlan-1K. This dataset contains multi-modal household activity planning instances. The task
in ActPlan-1K requires a MLLM to generate procedural plans P given a task description 7" and
a sequence of environment images {I;, I, ...} as input. Each instance is annotated with two
reference procedural plans P}, P5, where each plan consists of multi-step action sequences.

Baselines. In RLBench, we compare different zero-shot manipulation approaches that leverage large
language models (e.g., VoxPoser [9], MA [11]). We enhance their sub-task planning process by
incorporating procedural knowledge and compare the results against their baseline performance. In
the ActPlan-1K benchmark, we evaluate various multi-modal large language models with different
scales (e.g., GPT-4o [54], Gemini [55], Qwen2-VL [72]]) both with and without HP-KG augmentation.
We also leverage LLMs to generate subgoals and employ a pretrained policy [S7] for execution on
RLBench. In this context, we compare our HP-KG against Chain of Thought (COT)[73] method.
Additionally, we compare with SayCan[71]] on Blocks Arrange task.

Metrics. We employ Success Rate (SR) for RLBench and Blocks Arrange, while using the Longest
Common Subsequence (LCS) metric for the ActPlan-1K benchmark. Detailed metrics are as follows:

* Success Rate. Similar to VoxPoser, we conduct 20 trials per task and calculate the success rate.

e LCS. On the ActPlan-1K benchmark, we use the longest common subsequence (LCS) metric to
evaluate the generated plans against annotated reference plans (using the first one as default).
Following [18]], we encode each step with a language embedding modeﬂ and consider those
with similarity above 0.8 as matching steps in the LCS calculation.

* Mix LCS. Given the diversity in planning approaches and individual preferences, we propose a
Mixed Longest Common Subsequence (MIX LCS) metric. In our LCS similarity comparison,
we consider a generated plan step to be similar if it matches any step in either reference plan.

Implementation details. In our Iterative Verification and Refinement process, the maximum iterations
is set to 3. In our Retrieval process, we set k1 to 100 and set k2 to 3 or 5 depending on the experimental

Ssentence-transformers/all-MiniLM-L6-v2



Table 4: Comparison of multimodal large models of differ-

Table 3: Comparison of Different ent scales on Actplan-1K.

Planning method on the Blocks Ar- Model HP-KG TopK LCS{T MixLCS?T Average T

range task. - - 117848 12.2700 12.0274
GPT-40-2024-11-20 [54 v Top-3 11.8987 125063  12.2025(+1.45%)
Method Top-K  Average SR v Top-5 122616 127552  12.5084(+3.99%)

- , B 104261 11.0717 10,7486
SayCan [71] - 26% Gemini-2.0-Flash [53 v Top-3 11.0210 115316  11.2763(+4.90%)
v Top-5 109746 114767  11.2256(+4.43%)

GPT-40 w/ COT - 33% B B 72909 7.8045 75477
Qwen2-VL-7B-Instruct [56 v Top-3 82067  9.5527  8.8797(+17.64%)
Top-3 45% v Top-5 84092  9.0084  8.7088(+15.38%)

GPT-40 w/HPKG . & 42% - 85180 0.046 87826
P Qwen2-VL-72B-Instruct [56 v Top-3 95527 10.0759  9.8143(+11.74%)

v Top-5  9.2784 9.7637 9.5210(+8.41%)

Table 5: Comparison of Different Graph Structures on Table 6: Effectiveness analysis of each stage
the Actplan-1K. All methods use Top-K=3. in our automated graph construction frame-
work on Actplan-1K.

Graph Structure LCS Mix LCS  Average
. Procedures Iterative Summary Average
Qwen2-VL-72B-Instruct [26] Generator  Verification Agent ' LCSg
- 8.5189  9.0464 8.7826 < % < 8.7826
Unstructured Docs 8.9118  9.4345 9.1771 v % x 9.4809
Coarse Graph Structure  8.9113  9.2953 9.1033 v v X 9.5968
Hierarchical Graph (ours) 9.5527 10.0759  9.8143 v v v 9.8143

conditions. For zero-shot manipulation approaches, we utilize GPT-40 as the primary planner unless
explicitly stated in experiments. Appendix A provides comprehensive implementation details.

4.2 Main Results

Results on RLBench. Table |l| presents a comprehensive performance comparison of whether
the method is enhanced with our proposed HP-KG. Compared to Voxposer and MA, our HP-KG
significantly improves their success rates by up to 10% and 11%, respectively. For all baselines, we
achieve improvements on more than half of the tasks, while the remaining tasks are not completed due
to the limitations of the baselines’ manipulation capabilities. For instance, we find that MA struggles
with tasks requiring precise operations due to its lack of precision in identifying target positions,
which prevents it from accurately grasping the lid handle during lid-removal tasks. Nevertheless,
our HP-KG still shows promising improvements in handling these challenging scenarios. We also
compare our HP-KG with COT method, and results are presented in Table 2]

Results on Blocks Arrange. Table 3| compares the » o HPKG

task success rates of different methods, with GPT-40 i HPKG gzzjizg;
serving as the base LLM for all approaches. The re- * ¢
sults demonstrate that LLMs enhanced with our HP-KG
achieve higher success rates compared to both SayCan
and COT methods. This performance gain stems from our
approach’s ability to inject explicit procedural knowledge
into LLMs, whereas SayCan and COT methods merely 4 1285
leverage the implicit knowledge embedded in LLMs.
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Results on ActPlan-1K. Table 4| presents a comprehen- 0 B B 0
sive comparison of planning abilities across multi-modal

large models with/without HP-KG enhancement. Our  Fjgure 4: Performance and inference time
HP-KG improves the planning abilities of models across  comparison across different model sizes.
all scales. Specifically, our approach significantly boosts

the average LCS of the small-scale model (Qwen2-VL-7B) by 17.64% compared to the 7B baseline,
even surpassing the performance of the 72B model baseline. Furthermore, for large-scale models
with high capability, such as GPT-40, Gemini-2.0-Flash, and Qwen2-VL-72B, our approach achieves
performance improvements of up to 3.99%, 4.90%, 11.74%, respectively. Comparing results of
different retrieval number (top-3 v.s. top-5), we find that the performance of smaller models decreases
as the Top-K increases, due to their limited long context comprehension ability. In contrast, for larger
models like GPT-4o0, the additional procedural knowledge further enhances their performance.
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Figure 5: Qualitative Results: Voxposer with small LLM (Qwen2.5-7B) correctly decomposes tasks
and executes them successfully when enhanced with our HP-KG framework.

4.3 Ablation Studies

Ablation Study on Hierarchical Structure Design. To assess the effectiveness of our hierarchical
structure, we transform retrieved nodes into various alternative structures and evaluate each variant
on the Actplan-1K. Specifically, we introduce two variants: (1) Unstructured Docs, where we directly
convert the retrieved nodes into text without sub-graphs; and (2) Coarse Graph Structure, where we
extract sub-steps for each retrieved task node and only transform these tasks and their steps into
textual descriptions without actions. Table [5] demonstrates that our Hierarchical Graph Structure
shows promising improvements over two variants. We find that providing procedural knowledge
enhances LLMs’ planning capabilities by supplementing limited procedural commonsense. Our
hierarchical structure is more effective at organizing procedural knowledge than alternative variants.

Ablation Study on Graph Construction. We perform ablation experiments across the three stages
in our Automatic Graph Construction Framework. We evaluate Qwen2-VL-72B-Instruct enhanced
with HP-KGs from each stage on Actplan-1K, and report Average LCS metric. Table [f] shows
that our preliminary procedures graph provides modest improvement over the baseline. Both our
Iterative Verification and Refinement process and Summary Agent further enhance the quality of the
procedural graph, leading to additional improvements in overall performance.

Efficiency Analysis. We also compare the inference time across MLLMs of various scales to evaluate
the efficiency of our HP-KG. We deploy Qwen2-VL-7B-Instruct and Qwen2-VL-72B-Instruct on the
same hardware platform and evaluate them on the Actplan-1K benchmark, measuring both average
inference time and Average LCS metric. Results are presented in Figure[d As the retrieval number
increases (from top-3 to top-5), inference time of LLMs increases slightly due to longer context
length. Notably, Qwen2-VL-7B enhanced with our HP-KG achieved performance comparable to the
Qwen2-VL-72B baseline while saving 50% of inference time, demonstrating that our method can
effectively reduce reliance on large-scale LLMs. We also compare different LLMs within Voxposer
for robotics manipulation tasks and evaluate their computational efficiency in Appendix C.

4.4 Case Studies

Figure[5|presents a qualitative analysis by comparing scenarios with and without HP-KG enhancement.
We utilize Qwen2.5-7B as the planner in Voxposer to decompose tasks into different subtasks and
execute them sequentially. The Qwen2.5-7B model alone struggles with proper task decomposition,
hindering the robotic arm’s ability to complete assigned tasks. In contrast, with HP-KG enhancement,
the model generates more logical subtasks, enabling successful execution of the overall task objective.
We also conduct experiments in a long-horizon robot task planning benchmark using the Kitchen-
World environment [67]]. Due to space constraints, detailed results are presented in Appendix D.

5 Limitations and Conclusion

In this work, we propose Hierarchical Procedural Knowledge Graphs (HP-KG) to advance long-
horizon planning capabilities of LLMs. We introduce a hierarchical graph structure that captures



complex real-world task relationships. We also develop an automatic knowledge graph construction
framework powered by LLM-based multi-agents. Furthermore, we propose a retrieval approach to
leverage the constructed HP-KG enhancing LLMs for robotic manipulation. Extensive experiments
on multiple benchmarks demonstrate our improvements compared to existing approaches. However,
our knowledge graph is limited to household activities, constraining its applicability in general
scenarios. We plan to develop a general procedural graph and apply it to wider field in the future.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: yes.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: we discuss the limitations in our paper.
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Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer:
Justification: we do not provide a theoretical conclusion
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: we provide via detailed instructions for how to replicate the results in our
paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

16



* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: we promise to make code public and help the community reproduce our results
when our work is accepted.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: we provide via detailed instructions for how to replicate the results in our paper
and promise to make code public and help the community reproduce our results when our
work is accepted.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: No need to calculate error bars.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [TODO]
Justification: we provide detailed instructions about computer resources in our paper.
Guidelines:

* The answer NA means that the paper does not include experiments.
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9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: our research conforms, in every respect, with the NeurIPS Code of Ethics.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: In our paper, we propose mainly an effective method to enhance the planning
capacity of LLM, which is not subject to high risk of abuse.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:
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Justification: In our paper, we propose mainly an effective method to enhance the planning
capacity of LLM, which is not subject to high risk of abuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: we have credited all asset creators and respected the associated licenses and
terms of use.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: we promise to make code public and help the community reproduce our results
when our work is accepted.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:
Justification: we did not use crowdsourcing or conducted research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:
Justification: we did not use crowdsourcing or conducted research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:
Justification: No.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Overall Experimental Details

Software and Hardware Configurations. We conduct our experiments on servers equipped with
NVIDIA A6000 GPUs (48GB VRAM), with NVIDIA CUDA Toolkit version 11.8. For inference time
comparison, we deploy different-sized models (7B and 72B) using the vVLLM inference framework
and use the AWQ quantized version for the 72B model to fit within the available GPU memory.

Experimental Parameter Settings. In our Iterative Verification and Refinement process, the
maximum iterations is set to 3. For all clustering operations, we employ cosine similarity with
a threshold of 0.85. In our Procedural Graph Retrieval process, we set k1 to 100 and set ko
to 3 or 5 depending on the experimental conditions. For zero-shot manipulation approaches,
we utilize GPT-40 as the primary planner unless explicitly stated in experiments and we set
the target retrieval level Lyarger to the step procedure. For experiments on Actplan-1K, we set
the target retrieval level Liarger to the Task procedure due to its more complex task objectives.

Details of the Constructed Graph. Our HP-KG  Typle 7: Statistics of nodes and their corre-
encompasses a rich variety of actions and objects, sponding average number of child nodes.
enabling comprehensive coverage of diverse tasks in
common daily scenarios. Additionally, we present _ Node Type  Node Count Average Sub-Nodes
the task distribution of our HP-KG, demonstrating its Task Nodes 6380 6.58
potential for assisting robots in complex task comple- ~ Step Nodes 40659 4.11

tion. The specific details are shown below: Action Nodes 136943 -

» Graph Statistics. Our HP-KG comprises 6K Task Nodes, 40K Step Nodes, and 136K Action
Nodes in total, with comprehensive statistics detailed in Tablem Furthermore, HP-KG incor-
porates over 1,300 distinct verbs and approximately 26,275 objects, whose distributions are
illustrated through word cloud visualizations in Figure [f]

» Task Length Distribution. We present the distribution of total task lengths in HP-KG in Figure
[71 Our tasks span from simple procedures (approximately 3-7 actions) to complex operations
(over 30 actions). This diversity highlights HP-KG’s capability to support robotic systems in
executing both straightforward and complex task sequences.
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Figure 6: Statistical analysis of verbs and objects in HP-KG actions. (Left) Word cloud visualization
of verbs. (Right) Word cloud visualization of objects.

B Procedural Graph Retrieval-Augmented Planning Algorithm

The complete formulation of the retrieval algorithm is detailed in Algorithm [T}

C Additional Experiments Results

In this section, we present additional experimental results on both ActPlan-1K and RLBench bench-
marks.

Additional comparison on ActPlan-1K. Table 8] presents a broader comparison of diverse large
vision-language models (e.g., InternVL-2.5-26B [74], Llama-3.2-90B-Vision-Instruct [[73]]) on the
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Figure 7: Distribution of total task lengths in HP-KG.

Algorithm 1 Procedural Knowledge Graph Retrieval and Planning.

Input: General instruction, hierarchical procedural knowledge graph G = (V, £, X), target level
Litarget, parameters kq, ko, hop limit K, encoder model

Output: Retrieved procedural knowledge in textual format

: Query Retrieval:

Extract task objectives as query x, using LLM

Encode query: z, = Encoder(z,) € R?

Retrieve initial candidates: Vi, = TopK,, ¢y, sim(z4, z,) > Top-k; semantically similar nodes

Entity Expansion and Re-Ranking:

Expand retrieved nodes: V,;1 =U {n'| dist(n/,n) < K,n’ € V} > K-hop expansion

n€Vi,

Filter by target level: Viargee = {n € V. | Level(n) = Lyarget }

Re-rank candidates: V;, = TopK sim(zq, 2n,) > Final top-k2 nodes
9: Procedural Text Formatting:

10: Text < > Initialize formatted text collection

11: for each node n € Vy, do

12:  Retrieve attributes and child nodes of n

13:  Format node information into structured text segment t,,

14: Text « TextU {¢,}

15: end for

16: Concatenate all text segments in Text into final textual context 7'

17: Return: T > Formatted procedural text

AU S

Nn€Viarget

ActPlan-1K [18] benchmark. Since some models cannot fully adhere to instructions and produce
complete planning outputs, we record the count of successfully generated planning solutions for each
model. Our HP-KG approach demonstrates consistent effectiveness across models of varying scales.
We present detailed ablation results of our construction framework in Table 9]

Additional comparison on RLBench. In addition to GPT-40, we integrate several open-source
models (Qwen2.5-7B-Instruct, Qwen2.5-72B-Instruct [76]]) into Voxposer and conduct efficiency
analysis. The success rates across different tasks and inference time comparisons are presented
in Table[T0] and Figure [8] respectively. Compared to these models without HP-KG, our approach
improves their success rates by up to 10.83% and 5.83%, respectively. Furthermore, with HP-KG
enhancement, Qwen2.5-7B-Instruct achieves performance comparable to Qwen2.5-72B-Instruct
while requiring less than 20% of its inference time.

Detailed Inference Time Analysis. We conduct experiments to evaluate the efficiency of our retrieval
method. Specifically, we measure the average Instruction Encode Time (Encode Time),Retrieval
Time, K-hop Time, Reranking Time, Graph Conversion Time and LLM Inference Time during
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Table 8: We evaluated additional large multimodal language models on the ActPlan-1K benchmark.
In our analysis, the Success metric indicates the number of instances where models successfully
generated planning solutions in the required format.

Model HP-KG Top-K Success LCST MixLCS T Average T

- 237/237  8.4430 8.6920 8.5675
Top-3  237/237  8.5147 8.9915 8.7531(+2.16%)
Top-5  237/237  8.4599 8.9957 8.7278(+1.87%)

- - 197/237  10.3756 10.9086 10.6421
Llama-3.2-90B-Vision-Instruct [75] v Top-3  204/237 11.6715 12.4166 12.0440(+13.17%)
v Top-5  181/237 10.8563 11.1602 11.0082(+3.44%)

InternVL-2.5-26B [74]

<

Table 9: Detailed results of each stage in our automated graph construction framework on Actplan-1K.

Procedures Iterative Verification Summary LCS Mix LCS  Average LCS
Generator and Refinement Agent

X X X 8.5189  9.0464 8.7826

v X X 9.2320  9.7299 9.4809

v v X 9.2953  9.9578 9.6265

v v v 9.5527 10.0759 9.8143

the Top-3 and Top-5 search processes on the Actplan-1K[[18]. All settings are consistent with the
Experimental Details in Appendix [A] Table[TT] presents the detailed timing breakdown. Our retrieval
pipeline is highly efficient, with the combined overhead (encoding, retrieval, k-hop, reranking, and
graph conversion) being significantly smaller than the MLLM inference time.

Additional experiments on complex manipulation w0 10
benchmark. We conduct experiments on a more N P (Top=)
complex benchmark, VLABench[77], which con- WHPKG (fort=s) |
tains multiple complex tasks involving common sense 3

25.83%
23.33% 6

knowledge, physical rules, and reasoning capabilities.
VLABench is designed to evaluate not only VLAs
but also MLLMs. In the MLLM evaluation setting,
models must output both the skills to be invoked and

20.00%
18.33%
4.09s
15.00% 3.77s 3.85s. 4

Success Rate (%)
Inference Time (s)

their corresponding parameters. 10

7.50% 2
We select four task categories: CommonSense, Com- 5|
plex, M&T, and PhysicsLaw, with each category con- 0 0

Voxposer (Qwen2.5 78) Voxposer (Qwen2.5 72B)

taining 5-8 tasks. The CommonSense, M&T, and

PhysicsLaw categories evaluate the model’s under-  Fjgure 8: Performance and inference time
standing of world procedural knowledge, while the  comparison of different model sizes in the
Complex category requires not only world knowledge  voxposer framework.

but also long-horizon planning capabilities.

We compare the accuracy of MLLMs enhanced with

our HP-KG against those without such enhancement, with each task evaluated over 50 trials. As
shown in Table our HP-KG consistently improves planning performance even on complex
manipulation benchmark. This indicates that our approach effectively enhances MLLMs’ planning
capabilities by providing structured prior knowledge that guides decision-making in challenging
scenarios.

Table 10: Additional comparison of task success rates (%) for zero-shot robotic manipulation on
RLBench using Voxposer [9]. We integrated various open-source large language models into the
Voxposer framework.

Models HP-KG Top-K Open_wine Take_lid Take_scale Take_ umbrella Slide_block Play_jenga Average
Voxposer - - 15.00% 0.00% 5.00% 10.00% 15.00% 0.00% 7.50%
(Qwen2 5-7Blihlmruct (7)) v Top-3 25.00% 0.00% 15.00% 5.00% 45.00% 0.00% 15.00%(+7.50 %)
- i v Top-5 30.00% 0.00% 25.00% 20.00% 35.00% 0.00% 18.33%(+10.83%)
Voxposer - - 5.00% 0.00% 25.00% 55.00% 35.00% 0.00% 20.00%
(Qwen2 5»72]§»Instruct (o)) ' Top-3 30.00% 0.00% 25.00% 65.00% 20.00% 0.00% 23.33%(+3.33%)
) v Top-5 35.00% 0.00% 35.00% 65.00% 20.00% 0.00% 25.83%(+5.83%)
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Table 11: Detailed Inference Time Analysis with Qwen2-VL-72B-Instruct on ActPlan.

Top-k Encode Retrieval K-hop Reranking Graph Conv. LLM Inference

Time Time Time Time Time Time
Top-3 0.038s 0.045s 0.001s 0.025s 0.001s 1.28s
Top-5 0.039s 0.046s 0.001s 0.027s 0.001s 1.49s

Table 12: Performance Comparison with Different Top-k Settings on VLABench

Models HP-KG Top-k CommonSense M&T PhysicsLaw Complex Average
- - 26.15 28.19 10.21 19.01 20.89

Intern3-VL-8B [78] v 3 28.70 29.21 18.95 21.47 24.58
v 5 29.55 28.70 18.22 21.16 24.41

D Long-Horizon Planning Experiments

We further investigate the capability of our HP-KG to support embodied robots in long-horizon
planning tasks by conducting evaluations in the more sophisticated simulated environment Kitchen
World [67]].

Kitchen World Settings. The environment comprises either a single-arm or dual-arm robot and
generated kitchen scenarios containing multiple movable objects and articulated objects or surfaces.
The robot is required to complete tasks based on given natural language instructions. Following
Yang et al. [[67], we consider a task where a single-arm robot is required to make chicken soup
in this kitchen environment. It is worth noting that this represents a highly complex long-horizon
task, requiring approximately a dozen sequential actions for successful completion. Specifically, we
consider a complex scenario where all cabinet doors are initially closed and the pot is covered with
its lid.

We adopt GPT-40 [54] as our base model for generating sub-goals and apply the default TAMP
approach from Yang et al. [[67] to solve the generated sub-goals. Similar to Yang et al. [67]], we use
Task Completion Percentage as our metric, defined as the proportion of solved subproblems among
all subgoals.

Results. Table [13|presents a performance
comparison between models enhanced with  Table 13: Comparison of Task Completion Percentage
our proposed HP-KG and those without for Kitchen Task Execution.

such enhancement. The results Qemon— Method Top-K
strate that base models enhanced with HP-

Task Completion Percentage

‘ X X GPT-4o [54] - 77.4%
KG achl‘eve. hlgher Task Completion Per- GPT-do wHPKG  Top-3 86.9%(+9.5%)
centage, indicating that our HP-KG can ef-  Gpr.40 wHP.KG Top-5 83.5%(+6.1%)

fectively facilitate robot execution of com-
plex long-horizon tasks. Additionally, we present a qualitative comparison in Figure 0} which
illustrates the subgoals generated by different methods during the experiments. GPT-4o0 enhanced
with our HP-KG can generate more reasonable subgoals, while the baseline model without HP-KG
may omit certain essential operations (e.g., opening cabinets and picking up salt and pepper).

E Implementation Details of the Automated Graph Construction Framework

Details of Verification Rules In our Iterative Verification and Refinement process, we construct
a comprehensive set of validation rules to evaluate whether the generated procedures adhere to
procedural principles. We categorize these rules based on their application types (e.g., tasks, steps,
actions) and present several examples in Table[T4]

Instruction Template in Construction Framework. We provide the prompt templates used at
each stage of our Framework. Specifically, Table[T5]and Table [I6] present the prompts for procedure
generation and completion. Table [17| shows the prompt that guides the model to aggregate rule
verification results and generate corresponding feedback and scores, while the prompt in Table
instructs the Refiner to modify procedures based on this feedback. Finally, the Summary Agent
employs the prompt in Table|19|to merge redundant procedures. In each stage of our framework, we
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Goal: Using chicken and water, make a chicken soup.

Environment:

¢ The pot lid is on the pot body.

* The chicken leg is on the fridge shelf.

* Both salt and pepper shakers are in the cabinet.
* All doors are closed.

* All knobs and handles are turned off.

Generated Planning Results Generated Planning Results

1. Open the fridge door. 1. Open the fridge door. 12. Place chicken leg into the pot body.

2. Pick up the chicken leg from fridge. 2. Pick chicken leg from the fridge.  13. Sprinkle salt into the pot body.

3. Close the fridge door. 3. Close fridge door. 14. Sprinkle pepper into the pot body.

4. Remove the pot lid from pot body. GPT-40 4. Open cabinet door. 15. Place the pot lid on the pot body.
GPT-40 5. Place the chicken leg into the pot body. + 5. Pick salt shaker. 16. Move the pot body to the stove.

6. Turn on the faucet handle. 6. Pick pepper shaker. 17. Turn on the stove knob.

7. Fill the pot body with water. HP-KG 7. Close cabinet door.

8. Turn off the faucet handle. 8. Remove the pot lid from pot body.

9. Place the pot lid back on the pot body. 9. Turn on the faucet handle.

10. Move the pot body to the stove. 10. Fill the pot body with water.

11. Turn on the stove knob. 11. Turn off the faucet handle.

Figure 9: Qualitative Results in the Kitchen World Environment. GPT-40 enhanced with our HP-KG
generates more reasonable subgoals, while the baseline model without HP-KG may omit certain
essential operations.

Table 14: Validation rules based on established procedural principles

Procedure Type Rules

Check if task name contains specific and unambiguous descriptors.
Task Procedure Check if task name avoids vague terms.
Check if task name clearly indicates the purpose.

Check if step name avoids ambiguous terms descriptors.
Check if description explains purpose and necessity.
Check if description avoids redundant information.
Check if steps follows logical sequence.

Step Procedure

Check if action follows basic structure.

Check if action is atomic and independently executable.
Check if description explains specific goal.
Check if actions follows logical sequence.
Check if actions follows logical sequence.

Check if actions avoids redundancy with other actions.

Action Procedure

employ GPT-40 as our primary LLLM to generate outputs based on the prompts. Notably, for verifying
procedures’ compliance with rules, we utilize Deepseek-V3, which offers comparable performance
to GPT-40 but at a lower operational cost.

F Example of Procedural Graph

We present an example of our HP-KG, as illustrated in Figure[I0] This case details the procedural
steps and associated actions for completing the task ’clean broom and remove stains’. Each procedure
includes three components: a name, detailed description, and practical tips.
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Table 15: This designed prompt is used to extract tasks and their corresponding step-by-step instruc-
tions from WikiHow documents.

Analyze multiple similar Wikihow examples to extract canonical procedural knowledge.

Input:
{ }

Thinking Process:

1. Compare all examples to identify:

- Common goal across all tasks

- Essential steps present in examples

- Conflicting instructions (resolve via majority vote)

2. For each step:
- Find the most precise action verb used
- Note critical tips from all variants

Output in the following JSON format:

"task": "[specific purpose/goal] [main how-to]",
"description": "Contextual summary containing: [Operational significance and scope boundaries, Key differentiators
from alternative approaches, Optimal application scenarios]",
"tips": "Comprehensive list of potential issues, important tips, and warnings",
"steps": [{
"step": "[PrecisionVerb] [TargetObject] [specific purpose]",
"description": "Detailed step description including: [ What actions to take, Why these actions are necessary,
Expected outcomes, Important considerations or precautions"],
"tips": "Step-specific considerations, timing requirements, measurements, or safety precautions”
1l
}

Please ensure your analysis:

- Includes safety considerations and edge cases

- Provides clear, actionable steps

- Lists relevant tips and warnings for each step

- Provides generalized solutions that can be adapted to various scenarios

- Considers different environmental conditions and constraints that might affect the task execution

Naming and Description Requirements:

1. Task Names:

- Follow the structure: "[specific purpose/goal] [main purpose]”
- Use clear, specific, and unambiguous descriptions

- Clearly indicate the purpose

2. Task Descriptions:

- Explain the purpose and importance

- Include task-specific tips

- Highlight key warnings or special requirements

3. Step Names:

- Follow a logical sequence

- Avoid ambiguous terms

- Focus on what to do, not why or how
- Ensure logical flow between steps

4. Step Descriptions:

- Detail specific actions and their purposes
- Explain why each action is necessary

- Describe expected outcomes

- Provide step-specific tips and precautions
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Table 16: This action completion prompt facilitates the generation of specific actions.

| will provide a complete task breakdown with the following components:
Task Objective: { <=1}

Task Description: {

Important Tips and Considerations: {7}

Detailed Steps: { }

Please Generate Action For All Steps.

Requirements for Action Generation:
1. Action Requirements
Action sentences structure: [Action] [Object] [Spatial: Object] [Orientation] [Direction][State]

2. Required Information for Each Action:

- Description: Detailed explanation including specific goal of this atomic action, Why it's necessary at this step,
Required preconditions, Expected outcome/success criteria.

- Tips: List of specific considerations: Safety precautions, Quality control points, Common mistakes to avoid,
Environmental considerations.

3. Anti-Redundancy Guidelines:

A. Consolidate Actions When: Identical action verbs on similar object types, Same execution method/tool/pattern,
Order is flexible/interchangeable, Common success metrics apply, Single verification works for all items.

B. Keep Separate When: 1. Different tools/methods per item, 2. Strict sequence dependencies exist, 3. Unique
safety protocols per item, 4. Individual verification required, 5. Different quality standards apply.

Please, think through this step:

1. What is the goal of this step?

2. What are the key constraints and requirements?
3. What safety factors need consideration?

4. What tools or resources are needed?

Then, break down the step into atomic actions, finally provide your response in this JSON format:
{

"action": "[Action:verbnet verb] [Object:wordnet noun] ...",

"tips": "Key safety and execution tips",

"description": "Why this action and what to expect”

Table 17: This prompt is used for rule-based validation, compiling different rules results and generated
procedures, then prompting the language model to produce comprehensive feedback and score.

Given validation results from rule checks, please analyze the findings and generate improvement recommendations.

Input:
Original Prompt: { }
Generated Response: { }
Rule Check Results: { }

Analysis Tasks:
1. Review each rule validation result
2. Identify patterns in rule violations
3. Determine root causes
4. Provide corrections feedback

Please provide your evaluation in the following JSON format:

{
"reason": "Detailed analysis explaining the scoring rationale and key observations",
"score": number
"feedback”: [
"Clear and actionable improvement suggestions"”,
"Each point focusing on a specific aspect to enhance”,
]
}
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Table 18: This prompt is utilized to optimize generated procedures based on verification results.

Given an original response and multiple feedback points, along with their corresponding refined versions, please
synthesize a final refined response.

Original Response:{ }
Feedback Points:{ }
Rule Cheks: { }

Please analyze all refinements and combine their improvements to generate an optimized final response that
addresses all feedback points cohesively.

Please return only the final refined response.
Please provide your response refinements in the following JSON format:

{
"reason": "Detailed analysis of why these refinements are suggested”
"refined": {refine result}

Table 19: We employ this prompt to synthesize multiple candidate procedures into a consolidated
summary.

Given multiple semantically similar items, analyze and synthesize them into a single, comprehensive and actionable
summary.

Input:
{ }

Follow these steps to analyze and summarize the items:

1. Semantic Analysis:
- Identify core actions and objectives in each item
- Find common elements and key differences
- Extract the essential meaning and purpose

2. Content Synthesis:
- Use specific verbs and nouns, avoid abstract terms.
- Preserve all critical operational steps and important details.
- Distill redundant information while keeping context-specific requirements.
- Synthesize similar concepts into unified expressions.

3. Structured Output Requirements:
- Title: Use concrete verbs that reflect the main task, include both the action and the target object, keep it brief but
specific, make it immediately understandable.

-Description: Start with the concrete purpose and scope, detail specific steps or methods, include key conditions or
requirements, explain the expected outcome, use precise, actionable language.

-Tips: List specific, executable actions, include crucial warnings or requirements, focus on practical guidance,
avoid vague suggestions, synthesize similar tips into stronger, unified points.
4. Quality Verification:

- Ensure it capture all essential information from original items.

- Ensure all instructions specific and actionable.

- Ensure all content logically organized.

- Ensure the language clear and concrete.
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Figure 10: An example of cleaning and removing stains from brooms in our procedural knowledge
graph.
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