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Abstract

Deep neural models for low-resource named001
entity recognition (NER) have shown impres-002
sive results by leveraging distant supervision003
or other meta-level information (e.g. explana-004
tion). However, the costs of acquiring such ad-005
ditional information are generally prohibitive,006
especially in domains where existing resources007
(e.g. databases to be used for distant supervi-008
sion) may not exist. In this paper, we present a009
novel two-stage framework (AUTOTRIGGER)010
to improve NER performance by automati-011
cally generating and leveraging “entity triggers”012
which are essentially human-readable clues in013
the text that can help guide the model to make014
better decisions. Thus, the framework is able to015
both create and leverage auxiliary supervision016
by itself. Through experiments on three well-017
studied NER datasets, we show that our auto-018
matically extracted triggers are well-matched to019
human triggers, and AUTOTRIGGER improves020
performance over a RoBERTa-CRF architec-021
ture by nearly 0.5 F1 points on average and022
much more in a low resource setting.1023

1 Introduction024

Named Entity Recognition (NER) serves as a key025

building block in information extraction systems.026

Recent advances in deep neural models for NER027

have yielded state-of-the-art performance when suf-028

ficient human annotations are available (Lample029

et al., 2016; Liu et al., 2018; Peters et al., 2017; Ma030

and Hovy, 2016). However, such success cannot031

easily transfer to practitioners developing NER sys-032

tems in specific domains (e.g., biomedical papers,033

financial reports, legal documents), where domain-034

expert annotations are expensive and slow to obtain.035

Recent attempts addressing label scarcity have ex-036

plored various types of human-curated resources037

as auxiliary supervision, such as entity dictionar-038

ies (Peng et al., 2019; Shang et al., 2018; Yang et al.,039
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Generate
Explanation

USER Model

(a) Supervised Learning

Paris is the leader of the class.
B-PER

Label

(b) Explanation-based Learning

USER Model

Paris is the leader of the class.
B-PER

Label + Explanation
Explanation

(c) AutoTriggER

USER

Model

Paris is the leader of the class.
B-PER

Label

Paris is the leader of the class.

Explanation
Explanation

Figure 1: Existing explanation-based learning frame-
works mostly rely on humans provided labeling expla-
nations while our framework automatically generates
and leverages explanations to NER.

2018; Liu et al., 2019a), labeling rules (Safranchik 040

et al., 2020; Jiang et al., 2020), and labeling expla- 041

nations (Hancock et al., 2018; Wang et al., 2020; 042

Ye et al., 2020; Lin et al., 2020; Lee et al., 2020). 043

In particular, prior works on label-efficient learn- 044

ing for classification (e.g., relation extraction) (Han- 045

cock et al., 2018; Wang et al., 2020; Zhou et al., 046

2020) and question answering (Ye et al., 2020) with 047

explanations show that human provided explana- 048

tions as auxiliary supervision signals are more cost- 049

effective than collecting label-only annotations for 050

larger number of instances. For the NER task, Lin 051

et al. (2020) introducted the concept of an entity 052

trigger, an effective way to represent explanations 053

for the labeling decisions. An entity trigger is de- 054

fined as a group of words in a sentence that helps 055

to explain why humans would assign a type to an 056

entity in a sentence, and it serves as an effective 057

proxy of rationale, as shown in Figrue 1 (a) vs. (b). 058

Prior works primarily use a limited number of 059

crowd-soured triggers for improving data (label) 060

efficiency of model training. While such human- 061
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curated auxiliary supervision are of high quality,062

the crowd-sourcing procedure can be very expen-063

sive and time-consuming. This largely limits the064

scale and domains of the collected entity triggers.065

In addition, trigger-aware NER models (e.g., Trig-066

ger Matching Networks (Lin et al., 2020)) are built067

on conventional sequence tagging architectures,068

e.g., BLSTM-CRFs (Lample et al., 2016), while re-069

cent NER models are incorporating pre-trained lan-070

guage models as contextualized embedding, which071

can be highly beneficial for low-resource languages.072

In this paper, we propose a novel two-stage NER073

framework, named AUTOTRIGGER, that automat-074

ically generates and exploits entity triggers as ex-075

plainable inductive bias to enhance NER models076

with little human effort (see Figure 1 (c)).077

The first stage of our framework (Sec. 3.2) aims078

to automatically extract entity triggers using a079

saliency map technique based on input perturba-080

tions. Here, we propose to exploit the syntactic fea-081

tures of sentences for assigning importance scores082

to a group of input tokens such that we can ex-083

tract useful entity triggers as auxiliary supervision.084

Specifically, for a given sentence and a target entity085

in it, we first extract phrases from its constituency086

parsing tree (Joshi et al., 2018) to form a collec-087

tion of trigger candidates. Then, we score each088

trigger candidate by testing its ability to predict the089

target entity in a variety of sampled contexts. The090

rationale here is the intuition that a better trigger091

should be robust and help recognize the target en-092

tity in many different contexts. Here, we compare093

the system’s ability to identify the target entity in094

versions of the sentence with and without the can-095

didate trigger; if a trigger is indeed a meaningful096

clue, then removing it should cause a noticeable097

drop in score.098

The second stage (Sec. 3.3) focuses on how to099

use our triggers as structured priors to reinforce100

the model to focus on useful contextual clues in101

making the prediction. We propose Trigger Inter-102

polation Network (TIN), a novel architecture that103

effectively uses trigger-labeled NER data to train104

a model. Here, we employ two separate masking105

passes when learning our model’s embeddings: one106

masking the entity words (forcing the model to rely107

more on the triggers) and one masking the trig-108

gers (forcing the model to rely more on the entity109

words). We then interpolate the embeddings of both110

entity-masked and trigger-masked sentences as the111

input to learn a mixed sentence representation as112

Danny had a fantastic dinner at Sunnongdan last week
𝑒 ∶ B-RESTAURANT

2 5

10 11 12

6

𝑡! = 2,5,6 → 𝑒

𝑡" = 10,11,12 → 𝑒

where the food is delicious.

Figure 2: Example of entity trigger. Entity trigger ti is
a cue phrase toward the entity e in the sentence, which
is represented by a set of corresponding word indices.
Both entity triggers (t1,t2) are associated to the same
entity e (“Sunnongdan”) typed as restaurant.

the input to standard sequence labeling. In this 113

manner, the TIN can effectively learn to focus on 114

useful contextual clues to infer entity boundaries 115

and types with contextualized embeddings from 116

pre-trained language models such as BERT (De- 117

vlin et al., 2019). 118

Extensive experimental results on several do- 119

mains show that AUTOTRIGGER framework con- 120

sistently outperforms baseline methods by 0.5 F1 121

points on average in fully supervised setting. Our 122

work shows the strong performance especially in 123

low-resource setting for technical domains where 124

expert annotations are limited due to the high cost. 125

In the low-resource setting ranging from extreme 126

to moderate, assuming a task that needs to be anno- 127

tated from scratch, our model gains more than 3-4 128

F1 score on average. 129

2 Background and Formulation 130

We consider the problem of automatically extract- 131

ing cue phrases as entity triggers (Lin et al., 2020) 132

and using them to improve NER models. In this sec- 133

tion, we introduce basic concepts about named en- 134

tity recognition, entity triggers and trigger-labeled 135

datasets. We then formally introduce our goal — 136

creating trigger-labeled NER datasets without hu- 137

man annotation and then developing a learning 138

framework that uses them to improve NER models. 139

Named Entity Recognition. We let x = 140

[x(1), x(2), . . . x(n)] denote the sentence consist- 141

ing of a sequence of n words and y = 142

[y(1), y(2), . . . y(n)] denote the NER-tag sequence. 143

The task is to predict the entity tag y(i) ∈ Y for 144

each word x(i), where Y is a pre-defined set of 145

tags such as {B-PER, I-PER, . . . , O}. We let 146

DL denote the labeled dataset consisting of the set 147

of instances {(xi,yi)}, where xi is the i-th input 148

sentence and yi is its output tag sequence. 149

Entity Trigger. Lin et al. (2020) introduce the 150
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concept of “entity trigger,” a novel form of explana-151

tory annotation for NER, which is defined as a152

group of words that can help explain the recogni-153

tion process of an entity in the sentence. For ex-154

ample, in Figure 2, “had ... dinner at” and “where155

the food” are two distinct triggers associated with156

the RESTAURANT entity “Sunnongdan.” These157

explanatory cue phrases enable NER models to158

interpret a particular prediction and help them to159

generalize in a low-resource learning setting. For-160

mally, given a particular NER example (x,y), we161

have T denoting the set of entity triggers for that162

example. Each trigger ti ∈ T is associated with163

an entity e and a set of word indices {wi}. That is,164

t = ({w1, w2, . . . } → e) represents an entity trig-165

ger, e.g., t1 = {2, 5, 6} → e in Figure 2. A trigger-166

labeled NER dataset, DT = {(xi,yi, T (xi,yi))},167

consists of examples in a labeled NER dataset DL168

with their associated entity triggers.169

Our goal. Prior works mainly focus on creat-170

ing DT via manual annotation. Although trigger-171

labeled human annotations are cost-effective than172

entity-only annotations, they are still expensive173

and need domain experts for specialized domains.174

Therefore, in this work, we focus on how to auto-175

matically create such a trigger-labeled dataset DT176

from DL without manual effort, and then we pro-177

pose a more label-efficient learning framework to178

use such DT to improve NER models.179

3 Approach180

This section introduces the concepts in AUTOTRIG-181

GER, and provides details of the framework design.182

We first present an overview of our AUTOTRIG-183

GER framework (Sec. 3.1) and then discuss each184

of its components in detail (Sec. 3.2- 3.3).185

3.1 Framework Overview186

AUTOTRIGGER is a two-stage architecture that187

begins with a automatic trigger extraction stage188

followed by a trigger interpolation network (TIN).189

It automatically extracts and scores entity trig-190

ger phrases in the first stage (Sec. 3.2) and uses191

them in the later stage to learn the NER model192

(Sec. 3.3). Prior work (Lin et al., 2020) on incor-193

porating such entity triggers focused on encoding194

human-provided entity triggers. In contrast, AU-195

TOTRIGGER automatically generates triggers and196

directly uses them for learning (Figure. 3). Note197

that once we train the NER model, it is able to tag198

an entity token sequence without trigger extraction.199

USER

SOC

Entity-Labeled
Corpus 𝑫𝑳

Entity Token 
Classifier 𝑴𝒕

Human Feedback

T𝐫𝐢𝐠𝐠𝐞𝐫 𝐈𝐧𝐭𝐞𝐫𝐩𝐨𝐥𝐚𝐭𝐢𝐨𝐧
𝐍𝐞𝐭𝐰𝐨𝐫𝐤𝑴𝒏

Annotate

Train Scoring

Rank

Trigger-Labeled
Corpus 𝑫𝑻

Triggers Top-2 Triggers

Figure 3: Overview of AUTOTRIGGER. It trains an
entity-token classifier Mt with entity-labeled corpus
DL and uses the sampling-and-occlusion (SOC) algo-
rithm to extract triggers. There is a provision for lever-
aging human feedback in the framework for refining
automatically generated triggers. Trigger Interpolation
Network (TIN) learns the NER model from the trigger-
labeled corpus. At inference time we do not need to
extract triggers and only use the NER model.

Thus we do not have the additional complexity for 200

trigger extraction at inference time. 201

3.2 Automatic Trigger Extraction 202

Automatic trigger extraction is the first stage of our 203

AUTOTRIGGER framework. To extract triggers, 204

here we adopt the sampling and occlusion (SOC) 205

algorithm (Jin et al., 2020), which is a saliency map 206

technique for model interpretation. Previous works 207

on such input analysis techniques primarily focus 208

on modeling the relative importance of each input 209

token based on its 1) attention intensity (Li et al., 210

2016b), 2) gradients (Ribeiro et al., 2016) or 3) 211

the changes of the output by excluding it from the 212

input (Koh and Liang, 2017). These methods can 213

indeed produce useful explanations for some sen- 214

tence classification tasks such as sentiment analysis, 215

however, they are not well-aligned to our desired 216

entity triggers — a group of input tokens that often 217

poses structural constraints to a target entity. 218

In contrast, SOC aims to compute context- 219

independent phrase-level importance for sequence 220

classification tasks such as sentiment analysis and 221

relation extraction (Jin et al., 2020). We reformu- 222

late and apply this technique for a sequence tagging 223

task and retrieve important phrases as entity trig- 224

gers. Given an input instance of the labeled corpus 225

(xi,yi) ∈ DL, we consider four primary steps to 226

generate entity triggers: 1) phrase candidate P , 2) 227
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entity token classifier Mt, 3) phrase scoring, and228

4) phrase selection.229

Phrase Candidate. Given a training sentence,230

we construct a constituency parse tree and consider231

the set of phrase nodes P from the tree as auto232

trigger candidates. Figure. 4 shows auto trigger233

candidates generated from constituency parsing of234

a sentence. The target entity mention “Cary Moon”235

is not included as a candidate. Note that the original236

SOC computes the word-level scores and extends237

to phrases by agglomerative clustering. Since clus-238

tering creates a large number of combinations of239

words to construct phrases, output phrases can be240

incomplete and noisy. By limiting the search space241

to a set of complete phrases, we could avoid such242

noisy triggers. Mathematically, given an input in-243

stance (xi,yi) ∈ DL and a target entity e ∈ xi,244

we generate a set of phrase candidate P = {pi}245

where pi = (ws, we) and (ws, we) is denoting the246

start and end index of the phrase span pi. To gen-247

erate P , we parse the input sentence xi using con-248

stituency parsing and collect pi corresponding to249

phrase nodes of the constituency-based parse tree.250

To avoid considering target entity as part of an en-251

tity trigger, we discard a set of entity-overlapped252

phrases {pj|e ∈ pj}.253

Entity Token Classifier. The second component254

is entity token classifier Mt, which is a neural255

network for modeling the scoring module. Given256

an input sentence xi = [x
(1)
i , x

(2)
i , . . . x

(n)
i ], Mt257

classifies each token x
(j)
i to the named entity tag258

y
(j)
i ∈ Y where Y is a predefined set of named259

entity tags such as B-PER, I-PER and O. After260

training Mt with labeled corpus DL, we can derive261

the prediction score function s of the target entity e262

in the input sentence xi ∈ DL. Let the conditional263

probability P(y|x) denote the output of Mt. Then,264

the prediction score function s of the target entity e265

is computed as the average conditional probability266

over tokens of the target entity e as follows:267

s(x, e) =
1

|e|
∑

x(j)∈e

P(y(j)|x(j)) (1)268

Phrase Scoring. We use the phrase candidate269

P and prediction score function s of the Mt to270

measure the importance score of each phrase p271

towards target entity e by sampling and occlusion272

(SOC) algorithm. SOC is composed of two core273

methods: (1) input occlusion, (2) context sampling.274

275
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My preferred candidate is Cary Moon,  but she won’t be the next mayor of Seattle.

Phrase Importance 
∅(“𝒕𝒉𝒆 𝒏𝒆𝒙𝒕𝒎𝒂𝒚𝒐𝒓”, Χ, “Cary Moon”)

My preferred candidate is Cary Moon,  
but she will be the next mayor of LA.

Input OcclusionContext Sampling

My preferred candidate is Cary Moon,  
but she will be ___<pad>___ of LA.

Entity Token Classifier
Prediction Difference

Χ ∶

My preferred candidate is Cary Moon,  but she won’t be the next mayor of Seattle.Χ ∶

Constituency Parse Tree

Figure 4: Overview of the Sampling and Occlusion
(SOC). It creates a set of phrase candidates with phrase
nodes of the constituency parse tree, and then com-
putes the phrase importance by average prediction differ-
ence between context sampled sentences and its phrase-
masked sentences.

Input occlusion (Li et al., 2016b) computes the 276

importance of p specific to the entity e in the input 277

x by measuring the prediction difference caused by 278

replacing the phrase p with padding tokens 0p: 279

ϕ(p,x, e) = s(x, e)− s (x−p, e;0p) (2) 280

For example, in Figure. 4, “the next mayor” is re- 281

placed by pad tokens to compute its importance 282

towards the entity “Cary Moon”. However, the 283

importance score ϕ(p,x, e) from equation 2 has a 284

drawback that the p is dependent on context words 285

around p. It may neglect the fact that the impor- 286

tance score of p can vary depending on which con- 287

text words are around the p. 288

To eliminate the dependence, context sampling 289

samples the context words around the phrase p and 290

computes the average prediction differences over 291

the samples. Specifically, it samples the context 292

words x̂δ from a trained language model p(x̂δ|x−δ) 293

and obtains a set of context word replacements 294

S. For each replacement x̂δ ∈ S, we measure 295

the prediction difference caused by replacing the 296

phrase p with padding tokens. We take the average 297

of these prediction differences to be the context- 298

independent score ϕ(p,x, e) of the phrase p, as 299

expressed in equation 3: 300

1
|S|

∑
x̂δ∈S

[
s (x−δ, e; x̂δ)− s

(
x−{δ,p}, e; x̂δ;0p

)]
(3) 301

In Figure. 4, context words “won’t be” and “of 302

Seattle” around the phrase “the next mayor” are 303
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replaced into “will be” and “of LA” which are sam-304

pled from the language model. Then, the classifier305

computes the prediction difference between the306

sampled sentences with and without the phrase.307

Phrase Selection. After obtaining the impor-308

tance score ϕ(p,x, e) for all phrase candidates309

P = {pi}, we pick the top k candidate phrases310

with the highest importance score as the entity trig-311

gers, where k is a hyperparameter. Specifically, for312

each input instance (xi,yi) ∈ DL, we pick the top313

k candidate phrases as entity triggers T (xi,yi) to314

create a form {(xi,yi, T (xi,yi))}.315

3.3 Trigger Interpolation Network (TIN)316

The second stage of AUTOTRIGGER is the trigger317

interpolation network (TIN), which we define as318

a neural network that learns from a trigger-labeled319

dataset DT consisting of a set of instances of the320

form {(x,y, T (x,y))}. Since triggers are the most321

important non-entity words in an input sentence,322

we want to strengthen such prior knowledge in323

a neural network model, instead of solely memo-324

rizing the entity words themselves. However, in325

many training instances, the entity words them-326

selves are sufficient to learn an entity type, diluting327

the model’s need to understand the surrounding328

context (including any triggers). To force the model329

to learn both words typically involved in entities as330

well as these “most important” trigger phrases, we331

employ two separate masking passes when learning332

our model’s embeddings, one masking the entity333

words and one masking the triggers. We then lin-334

early interpolate the entity-masked representation335

and the trigger-masked representation to force the336

model to understand the impact of each representa-337

tion for predicting the entity type.338

TIN encodes the input with a transformer en-339

coder F (.; θ) and feeds the output to a CRF tag-340

ger. This part is similar to a standard transformer-341

based architecture for NER. Our proposal is to cre-342

ate two different representations of a token in a343

sequence and interpolate them. Figure 5 shows344

how a transformer architecture is used to serve this345

purpose. Specifically, for a given input instance346

{(x,y, T (x,y))}, we first create entity-masked347

sentence x−e and trigger-masked sentence x−t,348

and then compute the interpolations in the output349

space of transformer encoder F (.; θ) as follows:350

h = F (x−e; θ) ,h
′ = F (x−t; θ)

h̃ = λh+ (1− λ)h′ (4)351

[MASK] is class Paris [MASK] [MASK]

Entity-masked Sentence Trigger-masked Sentence

ℎ! ℎ" ℎ# ℎ!$ ℎ"$ ℎ%$ ℎ#$

Interpolate (Mixup)

"ℎ! "ℎ" "ℎ& "ℎ' "ℎ% "ℎ( "ℎ#

CRF

B-PER O O O O O O

⋯

Paris is the leader of the class

class ⋯

⋯ ⋯

⋯ ⋯

TransformerTransformer

Figure 5: Overview of the Trigger Interpolation Net-
work (TIN). Given an input sentence we create an
Entity-masked sentence and a Trigger-masked Sentence.
Then we interpolate token level representations hi and
h′
i to create new hidden state representation, h̃i. Inter-

polated hidden representations are fed to a CRF.

Here, the transformer encoder F (.; θ) for both x−e 352

and x−t is sharing the weights. Then we use h̃ 353

as the input to the final CRF tagger. When infer- 354

encing tags on unlabeled sentences which have no 355

entity triggers, we expect the trained F (.; θ) is en- 356

forced to find the entity and trigger information 357

from the input x ∈ Du and infuse both for generat- 358

ing enriched-information output. We then use it as 359

an input to the final CRF tagger to get predictions. 360

4 Experimental Setup 361

In this section we describe datasets along with the 362

baseline methods followed by experimental details. 363

4.1 Datasets 364

We consider three NER datasets as target tasks. We 365

consider two datasets for a bio-medical domain: 366

BC5CDR (Li et al., 2016a), JNLPBA (Collier and 367

Kim, 2004) and one dataset for a general domain: 368

CoNLL03 (Tjong Kim Sang, 2002). Details are 369

presented in Appendix A.3 370

For BC5CDR and CoNLL03, we also have 371

crowd-sourced entity trigger dataset DHT (Lin 372

et al., 2020) to compare the quality of our auto- 373

matically extracted triggers with. They randomly 374

sample 20% of the data from each of the train sets 375

and ask crowd-workers to select triggers for entities 376

in those sets. Data statistics are shown in Tab. 5. 377

4.2 Compared Methods 378

To show the effectiveness of entity triggers, we 379

compare models that have same base model but use 380
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Method / Percentage BC5CDR JNLPBA CoNLL03

20% 40% 60% 80% 100% 20% 40% 60% 80% 100% 20% 40% 60% 80% 100%

BLSTM+CRF 71.92 76.29 79.04 80.72 81.07 66.36 69.31 71.25 71.90 72.79 85.06 88.33 88.98 89.84 90.72
BERT+BLSTM+CRF 44.51 65.88 74.23 80.65 82.56 59.26 69.39 72.04 73.24 73.26 68.60 87.09 89.42 90.20 90.86
BERT+CRF 75.30 80.52 82.94 84.00 85.02 69.02 70.84 72.58 73.06 73.18 88.61 90.20 91.10 91.37 91.48
RoBERTa+CRF 82.85 85.63 87.08 87.44 87.80 72.07 73.19 74.32 74.50 76.37 91.53 91.93 92.90 92.96 93.09

TMN 74.70 78.15 80.57 82.77 83.37 66.78 70.23 71.41 71.7 72.55 87.46 88.88 89.39 90.16 90.24
BERT-TIN 77.37 81.40 83.23 85.25 85.74 69.48 71.10 72.81 73.71 73.83 87.84 89.64 89.71 90.39 90.75
RoBERTa-TIN 84.45 86.09 87.5 87.84 88.09 73.12 74.23 74.45 74.76 76.98 91.37 92.03 92.03 92.51 93.24

Table 1: Performance comparison (F1-score) of named entity recognition on BC5CDR, JNLPBA, and CoNLL03
datasets by different percentage usage of the train data. For entity+trigger baselines, we use the top 2 candidate
phrases from SOC with constituency parsing as triggers. Best models for each encoder ( BLSTM , BERT ,
RoBERTa ) are bold.

different training data. Here, we present baseline381

models that learn DL and DT respectively.382

Entity-Only Baseline Models. We apply the fol-383

lowing models on DL: (1) BLSTM+CRF adopts384

bidirectional LSTM on the external word vectors385

from GloVE (Pennington et al., 2014) to produce386

token embeddings, which are fed into a CRF tag-387

ger to predict the optimal path of entity tags. (2)388

BERT+BLSTM+CRF extends the BLSTM+CRF389

by replacing the word vectors from GloVE with390

contextualized embeddings from pre-trained lan-391

guage model BERT (Devlin et al., 2019). (3)392

BERT+CRF adopts a token-level classifier on top393

of the BERT. Token-level classifier is a linear layer394

that takes as input the last hidden state of the se-395

quence. Here, we feed the output of token-level396

classifier into a CRF tagger to make entity tag pre-397

diction. (4) RoBERTa+CRF replaces the BERT398

of BERT+CRF with RoBERTa (Liu et al., 2019b)399

which is a robustly improved BERT.400

Entity+Trigger Baseline Models. We apply the401

following models on DT : (1) TMN (Lin et al.,402

2020) first adopts the structured self-attention403

layer (Lin et al., 2017) above the bidirectional404

LSTM, which uses GloVE for embeddings, to en-405

code the sentence and entity trigger into vector406

representation respectively. Then, it jointly learns407

trigger representations and a soft matching mod-408

ule with self-attention such that can generalize to409

unseen sentences easily for tagging named entities.410

(2) BERT-TIN is trigger interpolation network411

where the transformer encoder F(.; θ) is BERT. (3)412

RoBERTa-TIN is also trigger interpolation net-413

work where F(.; θ) is RoBERTa.414

4.3 Implementation Details415

We implement all the baselines using Py-416

Torch (Paszke et al., 2019) and HuggingFace (Wolf417

et al., 2020). We set the batch size and learning rate418

to 10 and 0.01 for BLSTM encoder models (i.e., 419

BLSTM+CRF, TMN, BERT+BLSTM+CRF) while 420

we set 30 and 2e-5 for all other transformer models 421

(i.e., BERT+CRF, RoBERTa+CRF, BERT-TIN, 422

RoBERTa-TIN). For TIN, we set the interpola- 423

tion λ to 0.5. For automatic trigger extraction stage, 424

we set the batch size and learning rate to 16 and 425

1e-4 for training the entity token classifier model. 426

To run context sampling in the SOC algorithm, we 427

use a LSTM language model which is pre-trained 428

on the training data. TIN takes 2X longer than 429

baselines since it needs to extract triggers using 430

SOC algorithm. Note that for experiments in ex- 431

treme low resource setting (Sec. 5.2), we set the 432

batch size to 4 for both training TIN and entity to- 433

ken classifier due to the extremely limited training 434

data. 435

5 Results and Performance Analysis 436

We first compare the overall performance of all 437

baseline models and our proposed framework. 438

Here, we test all models by varying the amount 439

of training data from 20% to 100% to show the 440

impact of train data size. We then discuss the ef- 441

fectiveness of our framework in an extremely low 442

resource setting, assuming a task that needs to be 443

annotated from scratch. Next, we provide a com- 444

parison of auto-triggers with human-triggers, and 445

further show that auto-triggers can be more use- 446

ful when a human judge provides binary feedback 447

on their utility. For the ablation study, we inves- 448

tigate how the different variants of creating a set 449

of trigger candidates, sensitivity of interpolation 450

hyperparameter (λ), and number of triggers affect 451

our framework. 452

5.1 Performance Comparison 453

In Table 1, we report the performance of the base- 454

line approaches and our model variants on three dif- 455
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Type BERT-CRF BERT-TIN

Precision Recall F1-score Precision Recall F1-score

LOC 0.92 0.94 0.93 0.91 0.93 0.92
MISC 0.81 0.82 0.82 0.75 0.84 0.79
ORG 0.88 0.90 0.89 0.86 0.90 0.88
PER 0.97 0.96 0.96 0.96 0.96 0.96

Table 2: Classification Report (F1-score) of BERT-CRF
and BERT-TIN on 100% CoNLL03.
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Figure 6: Performance Comparison (F1-score) on
CoNLL03 and BC5CDR by different numbers of train
data (50, 100, 150, 200) which are small.

ferent datasets. We observe that models that receive456

both entities and triggers as input generally out-457

perform the entity-only baselines. RoBERTa-TIN458

outperforms all the baselines in domain-specific459

datasets BC5CDR and JNLPBA regardless of the460

amount of data that is used to train it. We only461

observe a performance drop in CoNLL03 when the462

amount of data is in the lower range. We further463

investigated this phenomenon and found a large464

drop in F1 score (from 0.82 to 0.79) for the MISC465

class from the RoBERTa-TIN model as shown in466

Table 2. Auto triggers provided a precision decreas-467

ing signal for the MISC entity type.468

5.2 Performance under Low-resource Setting469

We hypothesize that our models will have larger470

performance gains in extreme low-resource set-471

tings, because of their ability to leverage additional472

information from auto-triggers which enables them473

to reap more benefits from given training data. To474

investigate this we observe the performance of our475

models and baselines starting with only 50-200476

sentences to train them. Figure 6 shows the per-477

formance of our models and baselines under the478

extreme low-resource setting. Even though our best479

model, RoBERTa-TIN, was on par with the base-480

line, RoBERTa+CRF, in the CoNLL03 dataset in481

the previous setting, it achieves large performance482

gain in extremely low-resource setting. Specif-483

ically, we observe over 50% relative gain com-484

BC5CDR TMN BERT-TIN RoBERTa-TIN

Percentage / Model human auto human auto human auto

5% 26.96 24.70 66.20 66.50 75.79 76.92
10% 46.24 43.54 71.25 71.84 80.92 81.63
15% 51.29 50.44 73.88 74.11 83.54 83.87
20% 56.28 54.91 75.97 76.58 83.88 84.17

CoNLL03 TMN BERT-TIN RoBERTa-TIN

Percentage / Model human auto human auto human auto

5% 56.39 57.95 78.17 78.56 84.72 85.71
10% 61.89 66.58 81.67 82.19 87.80 88.12
15% 67.48 69.41 83.67 85.13 88.40 89.68
20% 71.11 74.43 84.88 85.58 89.68 90.21

Table 3: Performance comparison (F1-score) of en-
tity+trigger baselines on BC5CDR and CoNLL03 with
human and auto triggers.

pared to the baseline for 50 training sentences. For 485

the BC5CDR dataset we observe persistent perfor- 486

mance gain. 487

5.3 Human-in-the-loop Trigger Extraction 488

Human-curated vs. Auto Triggers. We 489

compare the performance of our model vari- 490

ants trained with automatically extracted triggers 491

(auto) and human-provided (crowd-sourced) trig- 492

gers (human). We use DHT as the source of hu- 493

man triggers and use the same dataset to extract 494

auto triggers with SOC algorithm. We then sample 495

25%, 50%, and 75% of the instances from both to 496

construct 5%, 10%, 15% percent of our experimen- 497

tation dataset (since DHT is a 20% random sample 498

from DL). One big difference between human and 499

auto is whether the triggers are contiguous token 500

spans or not. For example, humans are asked to an- 501

notate a group of word tokens that represent “gen- 502

eral” phrase like “had dinner at” from the sentence 503

“We had a fantastic dinner at Sunnongdan.”, while 504

a set of phrase candidates P from the constituency 505

parse tree can only contain the contiguous token 506

spans. Figure. 7 shows examples of human and 507

auto. These examples are from CoNLL03, and 508

auto are extracted from the entity token classifier 509

which is trained on 20% of the train data. Tab. 3 510

shows that auto triggers are comparable or even 511

stronger than human-curated triggers even though 512

created with no human labeling. The success of 513

auto triggers can be attributed to their capacity of 514

directly altering the entity labels. Their impact on 515

the entity labeling is directly at the model level, 516

while human triggers, even if they are meaningful 517

on the surface level, might have lesser impact in 518

determining the entity label as they do not mimic 519

what the model thinks. We manually inspected the 520
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Figure 7: Top 2 highlighted auto and human triggers
corresponding to the underlined entity.
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Figure 8: Performance Comparison (F1-score) by anno-
tators’ labeling time cost.

auto triggers and human triggers and found that521

auto triggers are consecutive while human-curated522

triggers are usually non-consecutive. Even though523

there could be many reasons for the sub-optimal524

performance of human selected triggers available525

in the dataset (Lin et al., 2020), we do not rule out526

the possibility of leveraging human expertise to527

help.528

Label Efficiency. We conduct experiments to529

demonstrate the label efficiency of our model. We530

found that the time for labeling on instance plus531

providing entity triggers takes 1.5X times more532

time than just simply providing a label. Given this533

observation, we compare the performance between534

TIN models with human and auto by holding535

annotation time constant. We present the study in536

Figure. 8. Each marker on the x-axis of the plots537

indicate a certain annotation time, which is repre-538

sented by approximate time. We see that our model539

not only is more time and label efficient compared540

to both entity baselines and entity+trigger baselines541

with human triggers, but it also outperforms.542

50 100 150 200
Number of Training Data

56

58

60

62

64

66

68

70

F1
 S

co
re

BERT-TIN
Auto
Human-refined

(a) BERT-TIN

50 100 150 200
Number of Training Data

66

68

70

72

74

76

78

80

F1
 S

co
re

RoBERTa-TIN
Auto
Human-refined

(b) RoBERTa-TIN

Figure 9: Performance Comparison (F1-score) on
BC5CDR by different numbers of train data (50, 100,
150, 200) with auto and human-refined auto triggers.

Human-in-the-loop Trigger Refinement. We con- 543

duct a small-scale experiment of trigger refinement 544

by human annotators. For all our previous exper- 545

iments, we use the top two auto triggers, which 546

limits our capacity to make the best use of them. In 547

this experiment, given a training set with labeled en- 548

tities, we extract five auto triggers (Sec. 3.2), show 549

them to a human in a minimal interface, and ask for 550

relevance judgments (relevant/non-relevant). We 551

judged relevance of the automatically extracted trig- 552

gers for entities in 50, 100, 150, and 200 sentences. 553

Figure. 9 shows that we get an additional perfor- 554

mance boost with more than 50 training sentences, 555

when human-refined auto triggers are used in train- 556

ing. This small scale annotation shows promise for 557

blending human expertise with auto triggers. 558

6 Conclusion 559

In this paper, we proposed a novel two-stage frame- 560

work to generate and leverage explanations for 561

named entity recognition. It automatically extracts 562

essentially human-readable clues in the text, which 563

is called entity triggers, by sampling and occlusion 564

algorithm and leverage these triggers with trigger 565

interpolation network. We show that our frame- 566

work, named AUTOTRIGGER, successfully gener- 567

ates entity triggers and effectively leverages them to 568

improve the overall performance, especially in the 569

low-resource setting for technical domains where 570

domain-expert annotations are very limited due 571

to the high cost. Extensive experiments on three 572

public datasets prove the effectiveness of our frame- 573

work. We believe that this work opens up future 574

works that can be extended to semi-supervised 575

learning or distant supervised learning which can 576

effectively use automatically extracted triggers to 577

weakly label the unlabeled corpus. 578
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A Appendix889

A.1 Experimental Settings890

We implement all the baselines using Py-891

Torch (Paszke et al., 2019) and HuggingFace (Wolf892

et al., 2020). To initialize the word embeddings, we893

use 100 dimension pre-trained Glove embeddings,894

cased BERT-base, and RoBERTa-large for each cor-895

responding model. We set the batch size and learn-896

ing rate to 10 and 0.01 for BLSTM encoder mod-897

els (i.e., BLSTM+CRF, TMN, BERT+BLSTM+CRF)898

while we set 30 and 2e-5 for all other transformer899

models. For our TIN, we set the interpolation λ to900

0.5. The details are present in Table 4. Also note901

that for experiments in extreme low resource setting902

(Sec. 5.2), we set the batch size to 4 for training the903

models due to the extremely limited training data.904

For automatic trigger extraction stage, we build905

the entity token classifier with cased BERT-base906

encoder for BERT-TIN and RoBERTa-large for907

RoBERTa-TIN. The entity token classifier con-908

sists of the transformer encoder to encode each909

word token followed by a token-level Linear layer910

that classifies each token to an entity tag. We use911

a batch size of 16 and learning rate of 1e-4 for912

training the entity token classifier model. For ex-913

periments under extreme low resource setting, we914

set batch size to 4 similar to the TIN models. To915

run context sampling in the SOC algorithm, we use916

a LSTM language model which is pre-trained on917

the training data. TIN takes 2X longer than base-918

lines since it needs to extract triggers using SOC919

algorithm.920

A.2 Evaluation Metrics921

We evaluate our framework by recall (R), preci-922

sion (P), and F1-score (F1), though only report F1923

in these experiments. Recall (R) is the number924

of correctly recognized named entities divided by925

the total number of named entities in the corpus,926

and precision (P) is the number of correctly recog-927

nized named entities divided by the total number928

of named entities recognized by the framework. A929

recognized entity is correct if both its boundary and930

its entity type are exact matches to the annotations931

in the test data. F1-score is the harmonic mean of932

precision and recall.933

A.3 Data Statistics934

BC5CDR (Li et al., 2016a) is a bio-medical do-935

main NER dataset from BioCreative V Chemical936

and Disease Mention Recognition task. It has 1,500937
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Figure 10: Performance comparison (F1-score) of
entity+trigger baselines on 20% training dataset of
CoNLL03 and BC5CDR with different trigger candidate
variants.

articles containing 15,935 CHEMICAL and 12,852 938

DISEASE mentions. JNLPBA (Collier and Kim, 939

2004) is a bio-medical domain NER dataset for 940

the Joint Workshop on NLP in Biomedicine and its 941

Application Shared task. It is widely used for evalu- 942

ating multiclass biomedical entity taggers and it has 943

14.6K sentences containing PROTEIN, DNA, RNA, 944

CELL LINE and CELL TYPE. CoNLL03 (Tjong 945

Kim Sang, 2002) is a general domain NER dataset 946

that has 22K sentences containing four types of 947

general named entities: LOCATION, PERSON, OR- 948

GANIZATION, and MISCELLANEOUS entities that 949

do not belong in any of the three categories. 950

A.4 Performance Analysis 951

Trigger Candidate Variants. In Sec 3.2, we first 952

constructed a set of phrase candidates P for which 953

the importance score is computed. To show the 954

efficacy of constituency parsing for constructing 955

trigger candidates, we conduct an ablation study 956

on different variants of it. For the construction, we 957

compare three variants: (1) RS is random selec- 958

tion. It randomly chooses n contiguous tokens to 959

be grouped as a phrase for k times. Consequently, 960

P is composed of k random spans. (2) DP is depen- 961

dency parsing. Here, to generate P , we first parse 962

the input sentence using dependency parsing. Then, 963

we traverse from the position of entity mention in 964

the input sentence using depth-first-traversal and 965

get a list of tokens visited for each hop up to 2-hops. 966

Finally, for each hop, we convert the list of tokens 967

to a list of phrases by merging the tokens that are 968

contiguous into a single phrase. (3) CP is con- 969

stituency parsing, which is our current method (see 970

Sec. 3.2). We expect each variant to provide differ- 971

ent syntactic signals to our framework. Figure 10 972

shows the model’s performance with triggers that 973

have been selected from different sets of phrase 974
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Figure 11: Performance comparison (F1-score) of
entity+trigger baselines on 20% training dataset of
BC5CDR with different interpolation weight λ.
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Figure 12: Performance comparison (F1-score) of
entity+trigger baselines on 20% training dataset of
BC5CDR with different number of triggers k.

candidates. As we can see, constituency parsing975

yields consistently better performance by providing976

better quality of syntactic signals than others.977

Sensitivity Analysis of interpolation hyper-978

parameter (λ). In Sec 3.3, we linearly interpolated979

two different sources of knowledge by weight λ980

0.5. To show how the weight λ affects the perfor-981

mance, we conduct an ablation study on different982

λ distribution. As we can see from Figure. 11, the983

framework achieves the highest performance when984

λ is set to 0.5. It supports that the model achieves985

the best when we interpolate the entity and trigger986

knowledge in equal.987

Number of Triggers. In Sec. 3.2, we pick the top988

k candidate phrases with the highest importance989

score as the entity triggers after obtaining the im-990

portance score for all phrase candidates. For our991

main experiment, we use top 2 candidate phrases992

(see Table 1). To show how the number of triggers993

affects the performance, we conduct an ablation994

study on model performance by different k. As we995

can see from Figure. 12, the framework achieves996

the highest performance when we use top 2 phrase997

candidates as triggers.998

A.5 Related Works999

NER with Additional Supervision Previous and1000

recent research has shown that encoding syntactic1001

information into NER models compensate for the 1002

lack of labeled data (Tian et al., 2020). The im- 1003

provement is consistent across word embedding 1004

based encoding (e.g. biLSTM) as well as un- 1005

supervised language model based encoding (e.g. 1006

BioBERT) of the given text. Typically, the exter- 1007

nal information that is encoded include POS labels, 1008

syntactic constituents, and dependency relations 1009

(Nie et al., 2020; Tian et al., 2020). The general 1010

mechanism to include linguistic information into 1011

NER model is to represent them using word vectors 1012

and then concatenate those representations with the 1013

original text representation. This approach fails to 1014

identify the importance of different types of syn- 1015

tactic information. Recently, Tian et al. (2020) 1016

and Nie et al. (2020) both showed that key-value 1017

memory network (KVMN) (Miller et al., 2016) are 1018

effective in capturing importance of linguistic in- 1019

formation arising from different sources. KVMN 1020

has been shown to be effective in leveraging extra 1021

information, such as knowledge base entities, to 1022

improve question answering tasks. Before apply- 1023

ing KVMN, contextual information about a token 1024

is encoded as the key and syntactic information 1025

are encoded as values. Finally, weights over the 1026

values are computed using the keys to obtain a rep- 1027

resentation of the values and concatenate it with the 1028

context features. Our approach uses token level fea- 1029

tures extracted by an explanation generation model, 1030

but later train to be able to pick-up those explana- 1031

tions directly from the text at inference time. 1032

Limited Training Data for NER. The simplest 1033

way to approach the problem of limited data for 1034

NER is to use dictionary based weak supervision. 1035

An entity dictionary is used to retrieves unlabeled 1036

sentences from a corpus and weakly label them to 1037

create additional noisy data. This approach suf- 1038

fers from low recall as the training data covers a 1039

limited number of entities. The models tend to 1040

bias towards the surface form of the entities it has 1041

observed in the dictionary. There has also been ap- 1042

proaches to retrieve sentences from a large corpus 1043

that are similar to sentences in the low-resource 1044

corpus to enrich it. These self-training approaches 1045

have been shown to be effective both in extremely 1046

limited data (Foley et al., 2018; Sarwar et al., 2018) 1047

as well as limited data scenario (Du et al., 2021). 1048

Even though these data enhancement approaches 1049

explore a corpus to find related data cases, they 1050

do not exploit the explanation-based signals that is 1051

available within the limited data. 1052
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Original Sentence / Entity Human Trigger Auto Trigger

Only Seat and Porsche had fewer registrations in 
July 1996 compared to last year 's July .

Only Seat and Porsche had fewer registrations in 
July 1996 compared to last year 's July .

Only Seat and Porsche had fewer registrations in 
July 1996 compared to last year 's July .

Speaking only hours after Chinese state media said 
the time was right to engage in political talks with 
Taiwan , Foreign Ministry spokesman Shen 
Guofang told Reuters : " The necessary 
atmosphere for the opening of the talks has been 
disrupted by the Taiwan authorities . "

Speaking only hours after Chinese state media said 
the time was right to engage in political talks with 
Taiwan , Foreign Ministry spokesman Shen 
Guofang told Reuters : " The necessary 
atmosphere for the opening of the talks has been 
disrupted by the Taiwan authorities . "

Speaking only hours after Chinese state media said 
the time was right to engage in political talks with 
Taiwan , Foreign Ministry spokesman Shen 
Guofang told Reuters : " The necessary 
atmosphere for the opening of the talks has been 
disrupted by the Taiwan authorities . "

They included a black lacquer and mother of pearl 
inlaid box used by Hendrix to store his drugs , 
which an anonymous Australian purchaser bought 
for 5,060 pounds ( $ 7,845 ) .

They included a black lacquer and mother of pearl 
inlaid box used by Hendrix to store his drugs , 
which an anonymous Australian purchaser bought 
for 5,060 pounds ( $ 7,845 ) .

They included a black lacquer and mother of pearl 
inlaid box used by Hendrix to store his drugs , 
which an anonymous Australian purchaser bought 
for 5,060 pounds ( $ 7,845 ) .

A Florida restaurant paid 10,925 pounds 
( $ 16,935 ) for the draft of " Ai n't no telling " , 
which Hendrix penned on a piece of London hotel 
stationery in late 1966 .

A Florida restaurant paid 10,925 pounds 
( $ 16,935 ) for the draft of " Ai n't no telling " , 
which Hendrix penned on a piece of London hotel 
stationery in late 1966 .

A Florida restaurant paid 10,925 pounds 
( $ 16,935 ) for the draft of " Ai n't no telling " , 
which Hendrix penned on a piece of London hotel
stationery in late 1966 .

Figure 13: Case examples of auto trigger and human trigger. Entities are bold and underlined with red color, and
its triggers are highlighted. Different triggers are color-coded.

Learning from Explanations. Recent works on1053

Explainable AI are primarily focused on debugging1054

the black box models by probing internal represen-1055

tations (Adi et al., 2017; Conneau et al., 2018),1056

testing model behavior using challenge sets (Mc-1057

Coy et al., 2019; Gardner et al., 2020; Ribeiro et al.,1058

2020), or analyzing an impact of input examples by1059

input perturbations or influence function looking1060

at input examples (Ribeiro et al., 2016; Koh and1061

Liang, 2017). However, for an explanation of the1062

model to be effective, it must provide not only the1063

reasons for the model’s prediction but also sugges-1064

tions for corresponding actions in order to achieve1065

an objective. Efforts to cope with this issue by1066

incorporating human explanations into the model1067

are called Explanation-based learning (DeJong and1068

Mooney, 2004). These works are aiming to exploit1069

generalized explanations for drawing inferences1070

from unlabeled data while maintaining model trans-1071

parency. Most prior works on explanation-based1072

learning are mainly focused on facilitating logical1073

rules as an explanation. They use such rules to1074

create weak supervision (Ratner et al., 2017) and1075

regularize posterior (Hu et al., 2016, 2017). An-1076

other form of explanations can be specific words1077

in the sentence which aligns to our work. Notable1078

work in this line asks annotators to highlight im-1079

portant words, then learn a generative model over1080

parameters given these rationales (Zaidan and Eis-1081

ner, 2008).1082

B Related Work1083

NER with Additional Supervision Previous and1084

recent research has shown that encoding syntactic1085

information into NER models compensate for the 1086

lack of labeled data (Tian et al., 2020). The im- 1087

provement is consistent across word embedding 1088

based encoding (e.g. biLSTM) as well as un- 1089

supervised language model based encoding (e.g. 1090

BioBERT) of the given text. Typically, the exter- 1091

nal information that is encoded include POS labels, 1092

syntactic constituents, and dependency relations 1093

(Nie et al., 2020; Tian et al., 2020). The general 1094

mechanism to include linguistic information into 1095

NER model is to represent them using word vectors 1096

and then concatenate those representations with the 1097

original text representation. This approach fails to 1098

identify the importance of different types of syn- 1099

tactic information. Recently, Tian et al. (2020) 1100

and Nie et al. (2020) both showed that key-value 1101

memory network (KVMN) (Miller et al., 2016) are 1102

effective in capturing importance of linguistic in- 1103

formation arising from different sources. KVMN 1104

has been shown to be effective in leveraging extra 1105

information, such as knowledge base entities, to 1106

improve question answering tasks. Before apply- 1107

ing KVMN, contextual information about a token 1108

is encoded as the key and syntactic information 1109

are encoded as values. Finally, weights over the 1110

values are computed using the keys to obtain a rep- 1111

resentation of the values and concatenate it with the 1112

context features. Our approach uses token level fea- 1113

tures extracted by an explanation generation model, 1114

but later train to be able to pick-up those explana- 1115

tions directly from the text at inference time. 1116

Limited Training Data for NER. The simplest 1117

way to approach the problem of limited data for 1118

NER is to use dictionary based weak supervision. 1119
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An entity dictionary is used to retrieves unlabeled1120

sentences from a corpus and weakly label them to1121

create additional noisy data. This approach suffers1122

from low recall as the training data covers a limited1123

number of entities. The models tend to bias towards1124

the surface form of the entities it has observed in1125

the dictionary. There has also been approaches1126

to retrieve sentences from a large corpus that are1127

similar to sentences in the low-resource corpus to1128

enrich it. These self-training approaches have been1129

shown to be effective both in extremely limited1130

data (Foley et al., 2018; Sarwar et al., 2018) as well1131

as limited data scenario (Du et al., 2021).1132

Learning from Explanations. Recent works on1133

Explainable AI are primarily focused on debugging1134

the black box models by probing internal represen-1135

tations (Adi et al., 2017; Conneau et al., 2018),1136

testing model behavior using challenge sets (Mc-1137

Coy et al., 2019; Gardner et al., 2020; Ribeiro et al.,1138

2020), or analyzing an impact of input examples by1139

input perturbations or influence function (Ribeiro1140

et al., 2016; Koh and Liang, 2017). However, for1141

an explanation of the model to be effective, it must1142

provide not only the reasons for the model’s pre-1143

diction but also suggestions for corresponding ac-1144

tions in order to achieve an objective. Efforts to1145

cope with this issue by incorporating human ex-1146

planations into the model are called Explanation-1147

based learning (DeJong and Mooney, 2004). These1148

works are aiming to exploit generalized explana-1149

tions for drawing inferences from unlabeled data1150

while maintaining model transparency. Most prior1151

works on explanation-based learning are mainly1152

focused on facilitating logical rules as an expla-1153

nation. They use such rules to create weak su-1154

pervision (Ratner et al., 2017) and regularize pos-1155

terior (Hu et al., 2016, 2017). Another form of1156

explanations can be specific words in the sentence1157

which aligns to our work. Notable work in this line1158

asks annotators to highlight important words, then1159

learn a generative model over parameters given1160

these rationales (Zaidan and Eisner, 2008).1161
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Encoder BLSTM Transformer

BERT RoBERTa

model BLSTM+CRF, TMN, BERT+CRF, BERT-TIN RoBERTa+CRF,
BERT+BLSTM+CRF RoBERTa-TIN

batch size 10 30 30
learning rate 0.01 2e-5 2e-5

epochs 10 10 10
LSTM hidden dimension 200 - -

Table 4: Experimental setting details.

Dataset Entity Type Original DL Crowd-sourced trigger DHT

# of Entities # of Entities # of Human Triggers

CONLL 2003 PER 6,599 1,608 3,445
ORG 6,320 958 1,970
MISC 3,437 787 2,057
LOC 7,139 1,781 3,456

Total 23,495 5,134 10,938

BC5CDR DISEASE 4,181 906 2,130
CHEMICAL 5,202 1,085 1,640

Total 9,383 1,991 3,770

JNLPBA PROTEIN 27,802 - -
DNA 8,480 - -
RNA 843 - -

CELL LINE 3,429 - -
CELL TYPE 6,191 - -

Total 46,745 - -

Table 5: Train data statistics.
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