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Abstract

Deep neural models for low-resource named
entity recognition (NER) have shown impres-
sive results by leveraging distant supervision
or other meta-level information (e.g. explana-
tion). However, the costs of acquiring such ad-
ditional information are generally prohibitive,
especially in domains where existing resources
(e.g. databases to be used for distant supervi-
sion) may not exist. In this paper, we present a
novel two-stage framework (AUTOTRIGGER)
to improve NER performance by automati-
cally generating and leveraging “entity triggers”
which are essentially human-readable clues in
the text that can help guide the model to make
better decisions. Thus, the framework is able to
both create and leverage auxiliary supervision
by itself. Through experiments on three well-
studied NER datasets, we show that our auto-
matically extracted triggers are well-matched to
human triggers, and AUTOTRIGGER improves
performance over a ROBERTa-CRF architec-
ture by nearly 0.5 F1 points on average and
much more in a low resource setting.!

1 Introduction

Named Entity Recognition (NER) serves as a key
building block in information extraction systems.
Recent advances in deep neural models for NER
have yielded state-of-the-art performance when suf-
ficient human annotations are available (Lample
etal., 2016; Liu et al., 2018; Peters et al., 2017; Ma
and Hovy, 2016). However, such success cannot
easily transfer to practitioners developing NER sys-
tems in specific domains (e.g., biomedical papers,
financial reports, legal documents), where domain-
expert annotations are expensive and slow to obtain.
Recent attempts addressing label scarcity have ex-
plored various types of human-curated resources
as auxiliary supervision, such as entity dictionar-
ies (Peng et al., 2019; Shang et al., 2018; Yang et al.,
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Figure 1: Existing explanation-based learning frame-
works mostly rely on humans provided labeling expla-
nations while our framework automatically generates
and leverages explanations to NER.

2018; Liu et al., 2019a), labeling rules (Safranchik
et al., 2020; Jiang et al., 2020), and labeling expla-
nations (Hancock et al., 2018; Wang et al., 2020;
Ye et al., 2020; Lin et al., 2020; Lee et al., 2020).
In particular, prior works on label-efficient learn-
ing for classification (e.g., relation extraction) (Han-
cock et al., 2018; Wang et al., 2020; Zhou et al.,
2020) and question answering (Ye et al., 2020) with
explanations show that human provided explana-
tions as auxiliary supervision signals are more cost-
effective than collecting label-only annotations for
larger number of instances. For the NER task, Lin
et al. (2020) introducted the concept of an entity
trigger, an effective way to represent explanations
for the labeling decisions. An entity trigger is de-
fined as a group of words in a sentence that helps
to explain why humans would assign a type to an
entity in a sentence, and it serves as an effective
proxy of rationale, as shown in Figrue 1 (a) vs. (b).
Prior works primarily use a limited number of
crowd-soured triggers for improving data (label)
efficiency of model training. While such human-



curated auxiliary supervision are of high quality,
the crowd-sourcing procedure can be very expen-
sive and time-consuming. This largely limits the
scale and domains of the collected entity triggers.
In addition, trigger-aware NER models (e.g., Trig-
ger Matching Networks (Lin et al., 2020)) are built
on conventional sequence tagging architectures,
e.g., BLSTM-CRFs (Lample et al., 2016), while re-
cent NER models are incorporating pre-trained lan-
guage models as contextualized embedding, which
can be highly beneficial for low-resource languages.
In this paper, we propose a novel two-stage NER
framework, named AUTOTRIGGER, that automat-
ically generates and exploits entity triggers as ex-
plainable inductive bias to enhance NER models
with little human effort (see Figure 1 (c)).

The first stage of our framework (Sec. 3.2) aims
to automatically extract entity triggers using a
saliency map technique based on input perturba-
tions. Here, we propose to exploit the syntactic fea-
tures of sentences for assigning importance scores
to a group of input tokens such that we can ex-
tract useful entity triggers as auxiliary supervision.
Specifically, for a given sentence and a target entity
in it, we first extract phrases from its constituency
parsing tree (Joshi et al., 2018) to form a collec-
tion of trigger candidates. Then, we score each
trigger candidate by testing its ability to predict the
target entity in a variety of sampled contexts. The
rationale here is the intuition that a better trigger
should be robust and help recognize the target en-
tity in many different contexts. Here, we compare
the system’s ability to identify the target entity in
versions of the sentence with and without the can-
didate trigger; if a trigger is indeed a meaningful
clue, then removing it should cause a noticeable
drop in score.

The second stage (Sec. 3.3) focuses on how to
use our triggers as structured priors to reinforce
the model to focus on useful contextual clues in
making the prediction. We propose Trigger Inter-
polation Network (TIN), a novel architecture that
effectively uses trigger-labeled NER data to train
a model. Here, we employ two separate masking
passes when learning our model’s embeddings: one
masking the entity words (forcing the model to rely
more on the triggers) and one masking the trig-
gers (forcing the model to rely more on the entity
words). We then interpolate the embeddings of both
entity-masked and trigger-masked sentences as the
input to learn a mixed sentence representation as

L= ({2,5,6} > e)  ¢:p-rESTAURANT

Danny had a fantastic dinner at Sunnongdan last week
2 5 6

5= ({10,1112) o)

where the food is delicious.
10 11 12

Figure 2: Example of entity trigger. Entity trigger ¢; is
a cue phrase toward the entity e in the sentence, which
is represented by a set of corresponding word indices.
Both entity triggers (¢1,t2) are associated to the same
entity e (“Sunnongdan’) typed as restaurant.

the input to standard sequence labeling. In this
manner, the TIN can effectively learn to focus on
useful contextual clues to infer entity boundaries
and types with contextualized embeddings from
pre-trained language models such as BERT (De-
vlin et al., 2019).

Extensive experimental results on several do-
mains show that AUTOTRIGGER framework con-
sistently outperforms baseline methods by 0.5 F1
points on average in fully supervised setting. Our
work shows the strong performance especially in
low-resource setting for technical domains where
expert annotations are limited due to the high cost.
In the low-resource setting ranging from extreme
to moderate, assuming a task that needs to be anno-
tated from scratch, our model gains more than 3-4
F1 score on average.

2 Background and Formulation

We consider the problem of automatically extract-
ing cue phrases as entity triggers (Lin et al., 2020)
and using them to improve NER models. In this sec-
tion, we introduce basic concepts about named en-
tity recognition, entity triggers and trigger-labeled
datasets. We then formally introduce our goal —
creating trigger-labeled NER datasets without hu-
man annotation and then developing a learning
framework that uses them to improve NER models.

Named Entity Recognition. We let x =
[z, 22 2] denote the sentence consist-
ing of a sequence of n words and y =
[y, y@ ... y™)] denote the NER-tag sequence.
The task is to predict the entity tag y(?) € ) for
each word l‘(i), where ) is a pre-defined set of
tags such as {B-PER, I-PER, ..., O}. We let
D1, denote the labeled dataset consisting of the set
of instances {(xj,yi)}, where x; is the i-th input
sentence and yj is its output tag sequence.

Entity Trigger. Lin et al. (2020) introduce the



concept of “entity trigger,” a novel form of explana-
tory annotation for NER, which is defined as a
group of words that can help explain the recogni-
tion process of an entity in the sentence. For ex-
ample, in Figure 2, “had ... dinner at” and “where
the food” are two distinct triggers associated with
the RESTAURANT entity “Sunnongdan.” These
explanatory cue phrases enable NER models to
interpret a particular prediction and help them to
generalize in a low-resource learning setting. For-
mally, given a particular NER example (x,y), we
have T" denoting the set of entity triggers for that
example. Each trigger ¢; € T is associated with
an entity e and a set of word indices {w; }. That is,
t = ({w1,ws, ...} — e) represents an entity trig-
ger,e.g.,t1 = {2,5,6} — e in Figure 2. A trigger-
labeled NER dataset, Dr = {(xi,yi, T'(x1,¥1)) }
consists of examples in a labeled NER dataset Dy,
with their associated entity triggers.

Our goal. Prior works mainly focus on creat-
ing D7 via manual annotation. Although trigger-
labeled human annotations are cost-effective than
entity-only annotations, they are still expensive
and need domain experts for specialized domains.
Therefore, in this work, we focus on how to auto-
matically create such a trigger-labeled dataset D
from Dy, without manual effort, and then we pro-
pose a more label-efficient learning framework to
use such Dr to improve NER models.

3 Approach

This section introduces the concepts in AUTOTRIG-
GER, and provides details of the framework design.
We first present an overview of our AUTOTRIG-
GER framework (Sec. 3.1) and then discuss each
of its components in detail (Sec. 3.2- 3.3).

3.1 Framework Overview

AUTOTRIGGER is a two-stage architecture that
begins with a automatic trigger extraction stage
followed by a trigger interpolation network (T IN).
It automatically extracts and scores entity trig-
ger phrases in the first stage (Sec. 3.2) and uses
them in the later stage to learn the NER model
(Sec. 3.3). Prior work (Lin et al., 2020) on incor-
porating such entity triggers focused on encoding
human-provided entity triggers. In contrast, AU-
TOTRIGGER automatically generates triggers and
directly uses them for learning (Figure. 3). Note
that once we train the NER model, it is able to tag
an entity token sequence without trigger extraction.
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Figure 3: Overview of AUTOTRIGGER. It trains an
entity-token classifier M; with entity-labeled corpus
Dy, and uses the sampling-and-occlusion (SOC) algo-
rithm to extract triggers. There is a provision for lever-
aging human feedback in the framework for refining
automatically generated triggers. Trigger Interpolation
Network (TIN) learns the NER model from the trigger-
labeled corpus. At inference time we do not need to
extract triggers and only use the NER model.

Thus we do not have the additional complexity for
trigger extraction at inference time.

3.2 Automatic Trigger Extraction

Automatic trigger extraction is the first stage of our
AUTOTRIGGER framework. To extract triggers,
here we adopt the sampling and occlusion (SOC)
algorithm (Jin et al., 2020), which is a saliency map
technique for model interpretation. Previous works
on such input analysis techniques primarily focus
on modeling the relative importance of each input
token based on its 1) attention intensity (Li et al.,
2016b), 2) gradients (Ribeiro et al., 2016) or 3)
the changes of the output by excluding it from the
input (Koh and Liang, 2017). These methods can
indeed produce useful explanations for some sen-
tence classification tasks such as sentiment analysis,
however, they are not well-aligned to our desired
entity triggers — a group of input tokens that often
poses structural constraints to a target entity.

In contrast, SOC aims to compute context-
independent phrase-level importance for sequence
classification tasks such as sentiment analysis and
relation extraction (Jin et al., 2020). We reformu-
late and apply this technique for a sequence tagging
task and retrieve important phrases as entity trig-
gers. Given an input instance of the labeled corpus
(xi,¥i) € Dr, we consider four primary steps to
generate entity triggers: 1) phrase candidate P, 2)



entity token classifier M, 3) phrase scoring, and
4) phrase selection.

Phrase Candidate. Given a training sentence,
we construct a constituency parse tree and consider
the set of phrase nodes P from the tree as auto
trigger candidates. Figure. 4 shows auto trigger
candidates generated from constituency parsing of
a sentence. The target entity mention “Cary Moon”
is not included as a candidate. Note that the original
SOC computes the word-level scores and extends
to phrases by agglomerative clustering. Since clus-
tering creates a large number of combinations of
words to construct phrases, output phrases can be
incomplete and noisy. By limiting the search space
to a set of complete phrases, we could avoid such
noisy triggers. Mathematically, given an input in-
stance (xj,yi) € Dy, and a target entity e € x;,
we generate a set of phrase candidate P = {p;}
where p; = (ws, w,) and (ws, we) is denoting the
start and end index of the phrase span p;. To gen-
erate P, we parse the input sentence x; using con-
stituency parsing and collect p; corresponding to
phrase nodes of the constituency-based parse tree.
To avoid considering target entity as part of an en-
tity trigger, we discard a set of entity-overlapped
phrases {pj|e € p;}.

Entity Token Classifier. The second component
is entity token classifier M;, which is a neural
network for modeling the scoring module. Given
an input sentence X; = [xz(l),:cgz), . xl(n)], M;
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classifies each token x
yz-(j ) € Y where ) is a predefined set of named
entity tags such as B-PER, I-PER and O. After
training M with labeled corpus Dy, we can derive
the prediction score function s of the target entity e
in the input sentence x; € Dy,. Let the conditional
probability P(y|x) denote the output of M. Then,
the prediction score function s of the target entity e
is computed as the average conditional probability
over tokens of the target entity e as follows:

> PR

z() e

to the named entity tag

s(x,e) = el

Phrase Scoring. We use the phrase candidate
‘P and prediction score function s of the M; to
measure the importance score of each phrase p
towards target entity e by sampling and occlusion
(80C) algorithm. SOC is composed of two core
methods: (1) input occlusion, (2) context sampling.

B-PER I-PER
[X : My preferred candidate is Cary Moon, but she won't be of Seattle. ]
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Figure 4: Overview of the Sampling and Occlusion
(SOC). It creates a set of phrase candidates with phrase
nodes of the constituency parse tree, and then com-
putes the phrase importance by average prediction differ-
ence between context sampled sentences and its phrase-
masked sentences.

Input occlusion (Li et al., 2016b) computes the
importance of p specific to the entity e in the input
x by measuring the prediction difference caused by
replacing the phrase p with padding tokens Op:

¢(p,x,€) = s(x,€) —s(X_p,e;0p)  (2)

For example, in Figure. 4, “the next mayor” is re-
placed by pad tokens to compute its importance
towards the entity “Cary Moon”. However, the
importance score ¢(p, X, ) from equation 2 has a
drawback that the p is dependent on context words
around p. It may neglect the fact that the impor-
tance score of p can vary depending on which con-
text words are around the p.

To eliminate the dependence, context sampling
samples the context words around the phrase p and
computes the average prediction differences over
the samples. Specifically, it samples the context
words Zs from a trained language model p(Z5|z_s)
and obtains a set of context word replacements
S. For each replacement 25 € S, we measure
the prediction difference caused by replacing the
phrase p with padding tokens. We take the average
of these prediction differences to be the context-
independent score ¢(p, x, ) of the phrase p, as
expressed in equation 3:

\5% Ysses |8 (x5, 65%5) — 5 (X_(s5,p},€:%5;0p) | (3)

In Figure. 4, context words “won’t be” and “of
Seattle” around the phrase “the next mayor” are



replaced into “will be” and “of LA” which are sam-
pled from the language model. Then, the classifier
computes the prediction difference between the
sampled sentences with and without the phrase.

Phrase Selection. After obtaining the impor-
tance score ¢(p,x,e) for all phrase candidates
P = {pi}, we pick the top k candidate phrases
with the highest importance score as the entity trig-
gers, where k is a hyperparameter. Specifically, for
each input instance (xj,y;) € Dr, we pick the top
k candidate phrases as entity triggers 7'(x;, yj) to
create a form {(x;, y;, T'(xi,¥i))}-

3.3 Trigger Interpolation Network (TIN)

The second stage of AUTOTRIGGER is the trigger
interpolation network (TIN), which we define as
a neural network that learns from a trigger-labeled
dataset Dt consisting of a set of instances of the
form {(x,y,T(x,y))}. Since triggers are the most
important non-entity words in an input sentence,
we want to strengthen such prior knowledge in
a neural network model, instead of solely memo-
rizing the entity words themselves. However, in
many training instances, the entity words them-
selves are sufficient to learn an entity type, diluting
the model’s need to understand the surrounding
context (including any triggers). To force the model
to learn both words typically involved in entities as
well as these “most important” trigger phrases, we
employ two separate masking passes when learning
our model’s embeddings, one masking the entity
words and one masking the triggers. We then lin-
early interpolate the entity-masked representation
and the trigger-masked representation to force the
model to understand the impact of each representa-
tion for predicting the entity type.

TIN encodes the input with a transformer en-
coder F (.;0) and feeds the output to a CRF tag-
ger. This part is similar to a standard transformer-
based architecture for NER. Our proposal is to cre-
ate two different representations of a token in a
sequence and interpolate them. Figure 5 shows
how a transformer architecture is used to serve this
purpose. Specifically, for a given input instance
{(x,y,T(x,y))}, we first create entity-masked
sentence x_. and trigger-masked sentence x_i,
and then compute the interpolations in the output
space of transformer encoder F (.; 6) as follows:

h=F (x_¢0),h =F (x_40)
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Figure 5: Overview of the Trigger Interpolation Net-
work (TIN). Given an input sentence we create an
Entity-masked sentence and a Trigger-masked Sentence.
Then we interpolate token level representations h; and
R/, to create new hidden state representation, /{7 Inter-
polated hidden representations are fed to a CRF.

Here, the transformer encoder F (.; 6) for both x_,
and x_; is sharing the weights. Then we use h
as the input to the final CRF tagger. When infer-
encing tags on unlabeled sentences which have no
entity triggers, we expect the trained F (.; 0) is en-
forced to find the entity and trigger information
from the input x € D,, and infuse both for generat-
ing enriched-information output. We then use it as
an input to the final CRF tagger to get predictions.

4 Experimental Setup

In this section we describe datasets along with the
baseline methods followed by experimental details.

4.1 Datasets

We consider three NER datasets as target tasks. We
consider two datasets for a bio-medical domain:
BCSCDR (Li et al., 2016a), JNLPBA (Collier and
Kim, 2004) and one dataset for a general domain:
CoNLLO03 (Tjong Kim Sang, 2002). Details are
presented in Appendix A.3

For BC5CDR and CoNLLO03, we also have
crowd-sourced entity trigger dataset Dy (Lin
et al., 2020) to compare the quality of our auto-
matically extracted triggers with. They randomly
sample 20% of the data from each of the train sets
and ask crowd-workers to select triggers for entities
in those sets. Data statistics are shown in Tab. 5.

4.2 Compared Methods

To show the effectiveness of entity triggers, we
compare models that have same base model but use



BC5CDR JNLPBA CoNLL03

Method / Percentage

20%  40%  60%  80% 100% 20%  40% 60%  80% 100% 20% 40% 60%  80%  100%
BLSTM+CRF 7192 7629 79.04 80.72 81.07 6636 6931 7125 7190 7279 85.06 88.33 8898 89.84 90.72
BERT+BLSTM+CRF 4451 65.88 7423 80.65 8256 59.26 69.39 72.04 7324 7326 68.60 87.09 89.42 90.20 90.86
BERT+CRF 7530 80.52 8294 84.00 8502 69.02 7084 7258 73.06 73.18 88.61 90.20 91.10 91.37 9148
RoBERTa+CRF 8285 85.63 87.08 8744 8780 72.07 73.19 7432 7450 7637 91.53 9193 9290 92.96 93.09
TMN 7470 78.15 80.57 82.77 8337 66.78 70.23 7141 717 7255 87.46 88.88 89.39 90.16 90.24
BERT-TIN 7737 81.40 83.23 8525 8574 6948 71.10 7281 7371 7383 87.84 89.64 89.71 9039 90.75
RoBERTa-TIN 8445 86.09 875 87.84 88.09 7312 7423 7445 7476 7698 9137 92.03 92.03 9251 93.24

Table 1: Performance comparison (F1-score) of named entity recognition on BCSCDR, JINLPBA, and CoNLLO03
datasets by different percentage usage of the train data. For entity+trigger baselines, we use the top 2 candidate
phrases from SOC with constituency parsing as triggers. Best models for each encoder ( BLSTM , BERT ,

RoBERTa ) are bold.

different training data. Here, we present baseline
models that learn Dy, and Dy respectively.

Entity-Only Baseline Models. We apply the fol-
lowing models on Dy,: (1) BLSTM+CREF adopts
bidirectional LSTM on the external word vectors
from GloVE (Pennington et al., 2014) to produce
token embeddings, which are fed into a CRF tag-
ger to predict the optimal path of entity tags. (2)
BERT+BLSTM+CREF extends the BLSTM+CRF
by replacing the word vectors from GloVE with
contextualized embeddings from pre-trained lan-
guage model BERT (Devlin et al., 2019). (3)
BERT+CREF adopts a token-level classifier on top
of the BERT. Token-level classifier is a linear layer
that takes as input the last hidden state of the se-
quence. Here, we feed the output of token-level
classifier into a CRF tagger to make entity tag pre-
diction. (4) RoOBERTa+CREF replaces the BERT
of BERT+CRF with RoBERTa (Liu et al., 2019b)
which is a robustly improved BERT.

Entity+Trigger Baseline Models. We apply the
following models on Dr: (1) TMN (Lin et al.,
2020) first adopts the structured self-attention
layer (Lin et al., 2017) above the bidirectional
LSTM, which uses GloVE for embeddings, to en-
code the sentence and entity trigger into vector
representation respectively. Then, it jointly learns
trigger representations and a soft matching mod-
ule with self-attention such that can generalize to
unseen sentences easily for tagging named entities.
(2) BERT-TIN is trigger interpolation network
where the transformer encoder F(.; 0) is BERT. (3)
RoBERTa-TIN is also trigger interpolation net-
work where F(.; 0) is RoBERTa.

4.3 Implementation Details

We implement all the baselines using Py-
Torch (Paszke et al., 2019) and HuggingFace (Wolf
et al., 2020). We set the batch size and learning rate

to 10 and 0.01 for BLSTM encoder models (i.e.,
BLSTM+CRF, TMN, BERT+BLSTM+CRF) while
we set 30 and 2e-5 for all other transformer models
(i.e., BERT+CRF, ROBERTa+CRF, BERT-TIN,
RoBERTa-TIN). For TIN, we set the interpola-
tion A to 0.5. For automatic trigger extraction stage,
we set the batch size and learning rate to 16 and
le-4 for training the entity token classifier model.
To run context sampling in the SOC algorithm, we
use a LSTM language model which is pre-trained
on the training data. TIN takes 2X longer than
baselines since it needs to extract triggers using
SOC algorithm. Note that for experiments in ex-
treme low resource setting (Sec. 5.2), we set the
batch size to 4 for both training TIN and entity to-
ken classifier due to the extremely limited training
data.

5 Results and Performance Analysis

We first compare the overall performance of all
baseline models and our proposed framework.
Here, we test all models by varying the amount
of training data from 20% to 100% to show the
impact of train data size. We then discuss the ef-
fectiveness of our framework in an extremely low
resource setting, assuming a task that needs to be
annotated from scratch. Next, we provide a com-
parison of auto-triggers with human-triggers, and
further show that auto-triggers can be more use-
ful when a human judge provides binary feedback
on their utility. For the ablation study, we inves-
tigate how the different variants of creating a set
of trigger candidates, sensitivity of interpolation
hyperparameter (\), and number of triggers affect
our framework.

5.1 Performance Comparison

In Table 1, we report the performance of the base-
line approaches and our model variants on three dif-



Type BERT-CRF BERT-TIN
Precision Recall Fl-score Precision Recall Fl-score
LOC 0.92 0.94 0.93 0.91 0.93 0.92
MISC 0.81 0.82 0.82 0.75 0.84 0.79
ORG 0.88 0.90 0.89 0.86 0.90 0.88
PER 0.97 0.96 0.96 0.96 0.96 0.96

Table 2: Classification Report (F1-score) of BERT-CRF
and BERT-TIN on 100% CoNLLO03.
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Figure 6: Performance Comparison (F1-score) on
CoNLLO03 and BC5CDR by different numbers of train
data (50, 100, 150, 200) which are small.

ferent datasets. We observe that models that receive
both entities and triggers as input generally out-
perform the entity-only baselines. ROBERTa-TIN
outperforms all the baselines in domain-specific
datasets BCSCDR and JNLPBA regardless of the
amount of data that is used to train it. We only
observe a performance drop in CoONLLO03 when the
amount of data is in the lower range. We further
investigated this phenomenon and found a large
drop in F1 score (from 0.82 to 0.79) for the MISC
class from the ROBERTa-TIN model as shown in
Table 2. Auto triggers provided a precision decreas-
ing signal for the MISC entity type.

5.2 Performance under Low-resource Setting

We hypothesize that our models will have larger
performance gains in extreme low-resource set-
tings, because of their ability to leverage additional
information from auto-triggers which enables them
to reap more benefits from given training data. To
investigate this we observe the performance of our
models and baselines starting with only 50-200
sentences to train them. Figure 6 shows the per-
formance of our models and baselines under the
extreme low-resource setting. Even though our best
model, RoBERTa-TIN, was on par with the base-
line, ROBERTa+CREF, in the CoNLLO3 dataset in
the previous setting, it achieves large performance
gain in extremely low-resource setting. Specif-
ically, we observe over 50% relative gain com-

BC5CDR TMN BERT-TIN RoBERTa-TIN
Percentage / Model human auto human auto human auto
5% 2696 2470 6620 6650 7579  76.92

10% 4624 4354 7125 71.84 8092 81.63

15% 51.29 5044 7388 7411 83.54  83.87

20% 56.28 5491 7597 7658 83.88  84.17
CoNLLO03 TMN BERT-TIN RoOBERTa-TIN
Percentage / Model human auto human auto human auto
5% 56.39 5795 78.17 7856 84.72 8571

10% 61.89 66.58 81.67 8219 87.80 88.12

15% 6748 6941 83.67 8513 8840  89.68

20% 71.11 7443 8488 8558 89.68 90.21

Table 3: Performance comparison (Fl-score) of en-
tity+trigger baselines on BC5CDR and CoNLLO03 with
human and auto triggers.

pared to the baseline for 50 training sentences. For
the BC5CDR dataset we observe persistent perfor-
mance gain.

5.3 Human-in-the-loop Trigger Extraction

Human-curated vs. Auto Triggers. We
compare the performance of our model vari-
ants trained with automatically extracted triggers
(auto) and human-provided (crowd-sourced) trig-
gers (human). We use Dy as the source of hu-
man triggers and use the same dataset to extract
auto triggers with SOC algorithm. We then sample
25%, 50%, and 75% of the instances from both to
construct 5%, 10%, 15% percent of our experimen-
tation dataset (since Dy is a 20% random sample
from Dy,). One big difference between human and
auto is whether the triggers are contiguous token
spans or not. For example, humans are asked to an-
notate a group of word tokens that represent “gen-
eral” phrase like “had dinner at” from the sentence
“We had a fantastic dinner at Sunnongdan.”, while
a set of phrase candidates P from the constituency
parse tree can only contain the contiguous token
spans. Figure. 7 shows examples of human and
auto. These examples are from CoNLLO03, and
auto are extracted from the entity token classifier
which is trained on 20% of the train data. Tab. 3
shows that auto triggers are comparable or even
stronger than human-curated triggers even though
created with no human labeling. The success of
auto triggers can be attributed to their capacity of
directly altering the entity labels. Their impact on
the entity labeling is directly at the model level,
while human triggers, even if they are meaningful
on the surface level, might have lesser impact in
determining the entity label as they do not mimic
what the model thinks. We manually inspected the
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Figure 8: Performance Comparison (F1-score) by anno-
tators’ labeling time cost.

auto triggers and human triggers and found that
auto triggers are consecutive while human-curated
triggers are usually non-consecutive. Even though
there could be many reasons for the sub-optimal
performance of human selected triggers available
in the dataset (Lin et al., 2020), we do not rule out
the possibility of leveraging human expertise to
help.

Label Efficiency. We conduct experiments to
demonstrate the label efficiency of our model. We
found that the time for labeling on instance plus
providing entity triggers takes 1.5X times more
time than just simply providing a label. Given this
observation, we compare the performance between
TIN models with human and auto by holding
annotation time constant. We present the study in
Figure. 8. Each marker on the x-axis of the plots
indicate a certain annotation time, which is repre-
sented by approximate time. We see that our model
not only is more time and label efficient compared
to both entity baselines and entity+trigger baselines
with human triggers, but it also outperforms.
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. Auto
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Figure 9: Performance Comparison (F1-score) on
BCS5CDR by different numbers of train data (50, 100,
150, 200) with auto and human-refined auto triggers.

Human-in-the-loop Trigger Refinement. We con-
duct a small-scale experiment of trigger refinement
by human annotators. For all our previous exper-
iments, we use the top two auto triggers, which
limits our capacity to make the best use of them. In
this experiment, given a training set with labeled en-
tities, we extract five auto triggers (Sec. 3.2), show
them to a human in a minimal interface, and ask for
relevance judgments (relevant/non-relevant). We
judged relevance of the automatically extracted trig-
gers for entities in 50, 100, 150, and 200 sentences.
Figure. 9 shows that we get an additional perfor-
mance boost with more than 50 training sentences,
when human-refined auto triggers are used in train-
ing. This small scale annotation shows promise for
blending human expertise with auto triggers.

6 Conclusion

In this paper, we proposed a novel two-stage frame-
work to generate and leverage explanations for
named entity recognition. It automatically extracts
essentially human-readable clues in the text, which
is called entity triggers, by sampling and occlusion
algorithm and leverage these triggers with trigger
interpolation network. We show that our frame-
work, named AUTOTRIGGER, successfully gener-
ates entity triggers and effectively leverages them to
improve the overall performance, especially in the
low-resource setting for technical domains where
domain-expert annotations are very limited due
to the high cost. Extensive experiments on three
public datasets prove the effectiveness of our frame-
work. We believe that this work opens up future
works that can be extended to semi-supervised
learning or distant supervised learning which can
effectively use automatically extracted triggers to
weakly label the unlabeled corpus.
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A Appendix

A.1 Experimental Settings

We implement all the baselines using Py-
Torch (Paszke et al., 2019) and HuggingFace (Wolf
et al., 2020). To initialize the word embeddings, we
use 100 dimension pre-trained Glove embeddings,
cased BERT-base, and RoBERTa-large for each cor-
responding model. We set the batch size and learn-
ing rate to 10 and 0.01 for BLSTM encoder mod-
els (i.e., BLSTM+CRF, TMN, BERT+BLSTM+CRF)
while we set 30 and 2e-5 for all other transformer
models. For our TIN, we set the interpolation \ to
0.5. The details are present in Table 4. Also note
that for experiments in extreme low resource setting
(Sec. 5.2), we set the batch size to 4 for training the
models due to the extremely limited training data.
For automatic trigger extraction stage, we build
the entity token classifier with cased BERT-base
encoder for BERT-TIN and RoBERTa-large for
RoBERTa-TIN. The entity token classifier con-
sists of the transformer encoder to encode each
word token followed by a token-level Linear layer
that classifies each token to an entity tag. We use
a batch size of 16 and learning rate of le-4 for
training the entity token classifier model. For ex-
periments under extreme low resource setting, we
set batch size to 4 similar to the TIN models. To
run context sampling in the SOC algorithm, we use
a LSTM language model which is pre-trained on
the training data. TIN takes 2X longer than base-
lines since it needs to extract triggers using SOC
algorithm.

A.2 Evaluation Metrics

We evaluate our framework by recall (R), preci-
sion (P), and F1-score (F1), though only report F1
in these experiments. Recall (R) is the number
of correctly recognized named entities divided by
the total number of named entities in the corpus,
and precision (P) is the number of correctly recog-
nized named entities divided by the total number
of named entities recognized by the framework. A
recognized entity is correct if both its boundary and
its entity type are exact matches to the annotations
in the test data. F1-score is the harmonic mean of
precision and recall.

A.3 Data Statistics

BCS5CDR (Li et al., 2016a) is a bio-medical do-
main NER dataset from BioCreative V Chemical
and Disease Mention Recognition task. It has 1,500
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Figure 10: Performance comparison (F1-score) of
entity+trigger baselines on 20% training dataset of
CoNLLO03 and BC5CDR with different trigger candidate
variants.

articles containing 15,935 CHEMICAL and 12,852
DISEASE mentions. JNLPBA (Collier and Kim,
2004) is a bio-medical domain NER dataset for
the Joint Workshop on NLP in Biomedicine and its
Application Shared task. It is widely used for evalu-
ating multiclass biomedical entity taggers and it has
14.6K sentences containing PROTEIN, DNA, RNA,
CELL LINE and CELL TYPE. CoNLLO3 (Tjong
Kim Sang, 2002) is a general domain NER dataset
that has 22K sentences containing four types of
general named entities: LOCATION, PERSON, OR-
GANIZATION, and MISCELLANEOUS entities that
do not belong in any of the three categories.

A4 Performance Analysis

Trigger Candidate Variants. In Sec 3.2, we first
constructed a set of phrase candidates P for which
the importance score is computed. To show the
efficacy of constituency parsing for constructing
trigger candidates, we conduct an ablation study
on different variants of it. For the construction, we
compare three variants: (1) RS is random selec-
tion. It randomly chooses n contiguous tokens to
be grouped as a phrase for k times. Consequently,
P is composed of £ random spans. (2) DP is depen-
dency parsing. Here, to generate P, we first parse
the input sentence using dependency parsing. Then,
we traverse from the position of entity mention in
the input sentence using depth-first-traversal and
get a list of tokens visited for each hop up to 2-hops.
Finally, for each hop, we convert the list of tokens
to a list of phrases by merging the tokens that are
contiguous into a single phrase. (3) CP is con-
stituency parsing, which is our current method (see
Sec. 3.2). We expect each variant to provide differ-
ent syntactic signals to our framework. Figure 10
shows the model’s performance with triggers that
have been selected from different sets of phrase
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Figure 12: Performance comparison (F1-score) of
entity+trigger baselines on 20% training dataset of
BC5CDR with different number of triggers k.

candidates. As we can see, constituency parsing
yields consistently better performance by providing
better quality of syntactic signals than others.

Sensitivity Analysis of interpolation hyper-
parameter (). In Sec 3.3, we linearly interpolated
two different sources of knowledge by weight A
0.5. To show how the weight )\ affects the perfor-
mance, we conduct an ablation study on different
A distribution. As we can see from Figure. 11, the
framework achieves the highest performance when
Ais set to 0.5. It supports that the model achieves
the best when we interpolate the entity and trigger
knowledge in equal.

Number of Triggers. In Sec. 3.2, we pick the top
k candidate phrases with the highest importance
score as the entity triggers after obtaining the im-
portance score for all phrase candidates. For our
main experiment, we use top 2 candidate phrases
(see Table 1). To show how the number of triggers
affects the performance, we conduct an ablation
study on model performance by different k. As we
can see from Figure. 12, the framework achieves
the highest performance when we use top 2 phrase
candidates as triggers.

A.5 Related Works

NER with Additional Supervision Previous and
recent research has shown that encoding syntactic
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information into NER models compensate for the
lack of labeled data (Tian et al., 2020). The im-
provement is consistent across word embedding
based encoding (e.g. biLSTM) as well as un-
supervised language model based encoding (e.g.
BioBERT) of the given text. Typically, the exter-
nal information that is encoded include POS labels,
syntactic constituents, and dependency relations
(Nie et al., 2020; Tian et al., 2020). The general
mechanism to include linguistic information into
NER model is to represent them using word vectors
and then concatenate those representations with the
original text representation. This approach fails to
identify the importance of different types of syn-
tactic information. Recently, Tian et al. (2020)
and Nie et al. (2020) both showed that key-value
memory network (KVMN) (Miller et al., 2016) are
effective in capturing importance of linguistic in-
formation arising from different sources. KVMN
has been shown to be effective in leveraging extra
information, such as knowledge base entities, to
improve question answering tasks. Before apply-
ing KVMN, contextual information about a token
is encoded as the key and syntactic information
are encoded as values. Finally, weights over the
values are computed using the keys to obtain a rep-
resentation of the values and concatenate it with the
context features. Our approach uses token level fea-
tures extracted by an explanation generation model,
but later train to be able to pick-up those explana-
tions directly from the text at inference time.

Limited Training Data for NER. The simplest
way to approach the problem of limited data for
NER is to use dictionary based weak supervision.
An entity dictionary is used to retrieves unlabeled
sentences from a corpus and weakly label them to
create additional noisy data. This approach suf-
fers from low recall as the training data covers a
limited number of entities. The models tend to
bias towards the surface form of the entities it has
observed in the dictionary. There has also been ap-
proaches to retrieve sentences from a large corpus
that are similar to sentences in the low-resource
corpus to enrich it. These self-training approaches
have been shown to be effective both in extremely
limited data (Foley et al., 2018; Sarwar et al., 2018)
as well as limited data scenario (Du et al., 2021).
Even though these data enhancement approaches
explore a corpus to find related data cases, they
do not exploit the explanation-based signals that is
available within the limited data.
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Figure 13: Case examples of aut o trigger and human trigger. Entities are bold and underlined with red color, and
its triggers are highlighted. Different triggers are color-coded.

Learning from Explanations. Recent works on
Explainable Al are primarily focused on debugging
the black box models by probing internal represen-
tations (Adi et al., 2017; Conneau et al., 2018),
testing model behavior using challenge sets (Mc-
Coy et al., 2019; Gardner et al., 2020; Ribeiro et al.,
2020), or analyzing an impact of input examples by
input perturbations or influence function looking
at input examples (Ribeiro et al., 2016; Koh and
Liang, 2017). However, for an explanation of the
model to be effective, it must provide not only the
reasons for the model’s prediction but also sugges-
tions for corresponding actions in order to achieve
an objective. Efforts to cope with this issue by
incorporating human explanations into the model
are called Explanation-based learning (DeJong and
Mooney, 2004). These works are aiming to exploit
generalized explanations for drawing inferences
from unlabeled data while maintaining model trans-
parency. Most prior works on explanation-based
learning are mainly focused on facilitating logical
rules as an explanation. They use such rules to
create weak supervision (Ratner et al., 2017) and
regularize posterior (Hu et al., 2016, 2017). An-
other form of explanations can be specific words
in the sentence which aligns to our work. Notable
work in this line asks annotators to highlight im-
portant words, then learn a generative model over
parameters given these rationales (Zaidan and Eis-
ner, 2008).

B Related Work

NER with Additional Supervision Previous and
recent research has shown that encoding syntactic
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information into NER models compensate for the
lack of labeled data (Tian et al., 2020). The im-
provement is consistent across word embedding
based encoding (e.g. biLSTM) as well as un-
supervised language model based encoding (e.g.
BioBERT) of the given text. Typically, the exter-
nal information that is encoded include POS labels,
syntactic constituents, and dependency relations
(Nie et al., 2020; Tian et al., 2020). The general
mechanism to include linguistic information into
NER model is to represent them using word vectors
and then concatenate those representations with the
original text representation. This approach fails to
identify the importance of different types of syn-
tactic information. Recently, Tian et al. (2020)
and Nie et al. (2020) both showed that key-value
memory network (KVMN) (Miller et al., 2016) are
effective in capturing importance of linguistic in-
formation arising from different sources. KVMN
has been shown to be effective in leveraging extra
information, such as knowledge base entities, to
improve question answering tasks. Before apply-
ing KVMN, contextual information about a token
is encoded as the key and syntactic information
are encoded as values. Finally, weights over the
values are computed using the keys to obtain a rep-
resentation of the values and concatenate it with the
context features. Our approach uses token level fea-
tures extracted by an explanation generation model,
but later train to be able to pick-up those explana-
tions directly from the text at inference time.

Limited Training Data for NER. The simplest
way to approach the problem of limited data for
NER is to use dictionary based weak supervision.



An entity dictionary is used to retrieves unlabeled
sentences from a corpus and weakly label them to
create additional noisy data. This approach suffers
from low recall as the training data covers a limited
number of entities. The models tend to bias towards
the surface form of the entities it has observed in
the dictionary. There has also been approaches
to retrieve sentences from a large corpus that are
similar to sentences in the low-resource corpus to
enrich it. These self-training approaches have been
shown to be effective both in extremely limited
data (Foley et al., 2018; Sarwar et al., 2018) as well
as limited data scenario (Du et al., 2021).

Learning from Explanations. Recent works on
Explainable Al are primarily focused on debugging
the black box models by probing internal represen-
tations (Adi et al., 2017; Conneau et al., 2018),
testing model behavior using challenge sets (Mc-
Coy et al., 2019; Gardner et al., 2020; Ribeiro et al.,
2020), or analyzing an impact of input examples by
input perturbations or influence function (Ribeiro
et al., 2016; Koh and Liang, 2017). However, for
an explanation of the model to be effective, it must
provide not only the reasons for the model’s pre-
diction but also suggestions for corresponding ac-
tions in order to achieve an objective. Efforts to
cope with this issue by incorporating human ex-
planations into the model are called Explanation-
based learning (DeJong and Mooney, 2004). These
works are aiming to exploit generalized explana-
tions for drawing inferences from unlabeled data
while maintaining model transparency. Most prior
works on explanation-based learning are mainly
focused on facilitating logical rules as an expla-
nation. They use such rules to create weak su-
pervision (Ratner et al., 2017) and regularize pos-
terior (Hu et al., 2016, 2017). Another form of
explanations can be specific words in the sentence
which aligns to our work. Notable work in this line
asks annotators to highlight important words, then
learn a generative model over parameters given
these rationales (Zaidan and Eisner, 2008).
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Transformer

Encoder BLSTM
BERT RoBERTa
model BLSTM+CRF, TMN, BERT+CRF,BERT-TIN RoBERTa+CRF,
BERT+BLSTM+CRF ROBERTa-TIN
batch size 10 30 30
learning rate 0.01 2e-5 2e-5
epochs 10 10 10
LSTM hidden dimension 200 - -
Table 4: Experimental setting details.
Dataset Entity Type Original Dy, Crowd-sourced trigger Dyt
# of Entities  # of Entities  # of Human Triggers
CONLL 2003 PER 6,599 1,608 3,445
ORG 6,320 958 1,970
MISC 3,437 787 2,057
LOC 7,139 1,781 3,456
Total 23,495 5,134 10,938
BC5CDR DISEASE 4,181 906 2,130
CHEMICAL 5,202 1,085 1,640
Total 9,383 1,991 3,770
JNLPBA PROTEIN 27,802 - -
DNA 8,480 - -
RNA 843 - -
CELL LINE 3,429 - -
CELL TYPE 6,191 - -
Total 46,745 - -

Table 5: Train data statistics.
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