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Abstract

Large language models have achieved linguis-
tic fluency and exhibited remarkable perfor-
mances in various natural language tasks with-
out gradient updates because more number of
model parameters could retain more knowledge.
However, large language models are not ap-
plicable to the domain-specific tasks requiring
knowledge not included in the training corpus,
due to the fact that knowledge in the model pa-
rameters is not controllable during generation
and updating the model parameters is costly.
This research introduces efficient embedding
mechanisms to separate knowledge from lan-
guage models. The method divides the previous
end-to-end construction of the language models
into three sub-parts: sentence-level knowledge
encoding, sentence-embedding-based task pro-
cessing, and restoring the processed knowledge
embedding to token-level embedding. The ex-
perimental results verify that most knowledge
consisting of 1 or 2 sentences can be restored
and the performance in the passage retrieval
task is significantly improved.

1 Introduction

Recently decoder (Radford et al., 2019; Wang and
Komatsuzaki, 2021) and encoder-based language
models (Raffel et al., 2020; Zhang et al., 2020;
Lewis et al., 2020) have improved linguistic fluency
by implicitly storing and using knowledge during
language understanding and generation process.
Moreover, large language models (LLMs) have
achieved high performance in zero-shot and few-
shot settings. However, the LLM-based approaches
face several problems from the point of view of
usability.

LLMs are too expensive to be updated because
the number of the model parameters has reached
175B (Brown et al., 2020) and 530B (Narayanan
et al., 2021). To attain the contextualized represen-
tation without updating the gradient or head layers,
prompt inputs are given to LLMs. When domain-

specific knowledge is needed, the prompts must in-
clude adequate domain knowledge because the por-
tion of the specific domain knowledge in the LLM
parameters is likely to be small. As more domain-
specific knowledge is needed, the longer prompt
sharply increases the computation cost due to the
quadratic memory complexity according to the in-
put sequence length in transformer (Vaswani et al.,
2017). To mitigate the computational unfeasibility,
research in the field of sparse attention (Beltagy
et al., 2020; Zaheer et al., 2020; Roy et al., 2021)
has been conducted. Although the input sequence
length capacity in the transformer has increased
about 8 to 10 times, it is still a serious limitation in
knowledge processing on LLMs.

In addition, LLMs sometimes produce a con-
tradiction or a plausible untruth, so-called halluci-
nation (Maynez et al., 2020; Shuster et al., 2021;
Roller et al., 2020). Since knowledge fragments are
mixed and stored in the internal LLM parameters,
it is unclear which knowledge fragments are cho-
sen dynamically in the process of inferences. The
hallucination is a critical issue for commercializing
language processing technologies, such as ethics or
persona representation in dialogue tasks, and logic
consistency in reasoning tasks.

To resolve those limitations, this paper intro-
duces a restorable embedding framework that iso-
lates knowledge into the external memory from the
internal LLM parameters. Separating knowledge
into the external memory makes the knowledge
input length irrelevant to the computation cost of
LLMs, and allows the detection of which knowl-
edge is utilized so that the hallucination can be
avoided. This paper also suggests the mechanisms
referring to the separated knowledge.

The key contributions of this paper are:

* This paper proposes a novel deep-layered neu-
ral model framework to restore the embedding
vector to the original text sequence.



* This paper proves that the proposed mecha-
nisms maintain the performances in various
downstream tasks. In the passage retrieval task
in which minimizing the loss rate of informa-
tion is critical, the performance is consider-
ably improved.

* This paper analyzes the optimal original con-
ditional context length at which the hallucina-
tion occurrences are minimized.

2 Related Works

Research on constructing fine sentence and pas-
sage embeddings has been studied in various fields
such as sentence embedding and passage retrieval.
Since BERT (Devlin et al., 2019) was introduced,
significant research effort has been spent on low-
ering the computational complexity in the process
of scoring or classifying sentences. Sentence em-
bedding studies have also been conducted in long
document summarization and classification tasks,
as a way to alleviate large memory consumption in
long document processing.

2.1 Sentence-Level Embeddings

Various sentence embedding techniques such as
Skip-thought (Kiros et al., 2015), InferSent (Con-
neau et al.,, 2017), and Universal Sentence En-
coder (Cer et al., 2018) have been studied. Espe-
cially to alleviate the need to compute all combina-
tions of sentence pairs, sentence-BERT (Reimers
and Gurevych, 2019) utilizes sentence embeddings
in the classification and similarity scoring tasks.
Sentence-BERT was trained with the semantic tex-
tual similarity (STS) dataset (Jiang et al., 2020)
for semantic embeddings and shows high perfor-
mances and computational efficiencies in various
sentence classification and regression tasks.

2.2 Embeddings in Natural Language Tasks

Passage retrieval aims to retrieve passages related
to a query from a huge corpus. In the case of the
open-domain question answering (QA) datasets
such as Natural Question(Kwiatkowski et al., 2019)
and TriviaQA(Joshi et al., 2017) and the docu-
ment augmented conversation datasets such as
Wizlnt(Komeili et al., 2022), the relevant pas-
sages must be found from the large-scaled texts
like Wikipedia'! and Common Crawl(Carlini et al.,
2021). Because the number of passages is in mil-
lions, measuring the correlation with all documents
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for each query causes tremendous computation
requirements. Therefore, recent studies represent
queries and passages as embedding vectors and
measure their correlations by cosine similarity or
inner product between the vectors. Several meth-
ods (Karpukhin et al., 2020; Xiong et al., 2021;
Zhang et al., 2021) propose to encode queries and
passages with LLM encoders.

When the sequence to be summarized is lengthy
in the long document summarization task, the
quadratic memory complexity according to the se-
quence length makes the transformer intractable.
To mitigate the quadratic memory complexity
problem, research has been conducted on low-
ering memory complexity through sparse atten-
tion (Wang et al., 2020; Kitaev et al., 2020; Tay
et al., 2020; Huang et al., 2021), and generating
a summary with a hierarchical transformer based
on embeddings (Rohde et al., 2021; Zhang et al.,
2019; Liu and Lapata, 2019; Wu et al., 2021). The
hierarchical transformer utilizes embedding vec-
tors to generate a summary through an end-to-end
encoder-decoder, but restoring the embeddings to
lexical sentences has not been studied yet.

3 Restorable Embedding Framework

In the previous transformer structures, semantic
embeddings and their corresponding lexical fea-
tures are merged in the architectures. Those struc-
tures find a document involving an answer for the
given tasks such as open-domain QA, and facilitate
models to extract the answer from the document.
Because the previous structures inevitably require
large-scale modeling, our proposed restorable em-
bedding framework aims to isolate knowledge into
external memory by converting embedding vectors
to their corresponding texts. With a certain range
of knowledge input length, this framework suc-
cessfully restores the embedding vectors to their
original texts, resulting in enhancing memory and
storage efficiency since mapping information of
the original text and its corresponding embedding
vector is not required.

The proposed framework to separate language
models and knowledge is shown in Fig. 1. This
framework consists of three stages: (1) creating
knowledge embedding vectors for sentence-level
knowledge to minimize the loss of information and
to express what it stands for; (2) processing natural
language tasks using the generated embeddings and
knowledge embeddings stored in external memory,
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Figure 1: Conceptual diagram of the proposed restorable
embedding framework.

and producing the result in the form of embedding;
(3) converting the resulting embedding into natu-
ral language that humans can understand. If this
framework is applied to natural language process-
ing tasks, more contexts can be added with the
same memory size. Moreover, contexts are con-
verted into sentence-level knowledge embeddings
so that looking up large contexts is avoidable.

To properly restore knowledge units in external
memory, the proposed models must reconstruct
their original sentences describing the correspond-
ing knowledge semantics. Thus, this paper suggests
the red box in Fig. 1, which represents our study
to express the token-level embedding sequence as
one embedding and to restore the expressed embed-
ding into the original text. The proposed embed-
ding techniques are also designed to improve the
performances of various downstream tasks.

The notations in the paper are defined as follows.

e x = {z1,---,zp}: Token sequence to be ex-
pressed as embedding vector.

ey ={yi,---,ym}, 2z = {z1,--- ,2n}: In-
put token sequences to encoder and decoder
respectively.

* dmodel: Model dimensionality
* drepr: Representation vector dimensionality
* e(y;): Embedding vector of i-th token in y

* h(y;): Contextualized embedding of y; by en-
coder

* €¢pr: Encoded vector from encoder

3.1 Description of Conventional Embeddings

The encoder generating text embeddings utilizes
the following methods: (a) employing the embed-
ding vector whose CLS token is located at the
start, and (b) exploiting the vector obtained through
mean pooling. In the case of (a), the CLS token and
text sequence are concatenated and then given to
the encoder. The contextualized embedding value
of the CLS token position is projected with a linear
layer and creates an embedding vector. The e, of
x is defined as Eq. 1 with the learnable projection
matrix W.

Crepr = Wh(yl)’ W € RdmodeleTepr

6]
where y= {[CLSL;UI) e 7xT}

For (b), the embedding vector is achieved by pro-
jecting the vector obtained from mean pooling of
all contextualized embedding values into a linear
layer with the text sequence. The embedding vector
€r¢pr Of X is defined as Eq. 2.

T

erepr = W(_(h(@)/VT)) (@

=1

For the decoding process, there are two vanilla
methods to restore e, to the original x as
shown in (a) and (b) of Fig. 2. (a) employs a
decoder structure without cross-attention blocks
like GPT. The decoder is trained to generate the
original sentence with the concatenation of e,
and the original text sequence x. (b) utilizes €.y,
as the key/value of the cross attention block in
the decoder structure, concatenates the BOS to-
ken and x as the decoder input, and trains the
model to output the original sentence. (a) is named
as the input decoder whose input and target se-
quences are e(z) = {epepr,e(z1), -+ ,e(xr)}
and {e(z1),--- ,e(xr),e([FOS])} in each. (b)
is designated as the cross-attention-based de-
coder whose input and target sequences are
e(z) = {e([BOS]),e(x1), - ,e(xr)} and
{e(z1), - ,e(zr),e([EOS])} in each. ey, be-
comes the key and value in the cross-attention layer.

Cross-attention mechanisms calculate and sum
semantic correlations with the key/value sequence
dimension. An embedding in cross-attention illus-
trates multiplication for the inner product between
the query vector and the scalar value of the embed-
ding vector, and then addition to the query vector.
In the embedding vector, not only the highly re-
lated elements to the current query vector but also
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Figure 2: Decoder structures for restoring the embedding vector to the original text "I needed you.". (a) Input
decoder utilizing the embedding vector as input. (b) Cross-attention-based decoder employing the embedding vector
as key/value of the cross-attention layer. (c) The proposed gating layer-based decoder. (d) The proposed gating layer

structure for (c).

all elements are reflected as much as the similar-
ity between the embedding vector and the current
query vector. The expected query vector q; up-
dated by cross-attention is described in Eq. 3. In
this equation, the query vector sequence input to
the cross-attention layer is qi.n, and the ¢-th query
vector is represented by q;. €., multiplied by a
scalar c is added to the query vector. d,,qe; and
drepr must be the same for the inner product be-
tween two vectors.

q; =q; + ¢ €repr
where ¢ = q; - €¢pr

3)

s.t. dmodel = drepr
qi 6 Rdmodel7erepr 6 Rdrepr

This paper concentrates on the case where
dmodel = drepr- However, the constraint may be
a disadvantage in constructing embeddings with
minimizing the loss of information if increasing
the size of d,p, to include more information in
€r¢pr 1s necessary. Therefore, this paper proposes
the addition of a gating layer that enables decoding
even if dy¢pr and d,.¢p, are different. The gating suc-
cessfully extracts the semantically related elements
to the current query vector from the embedding
vector.

3.2 Gating Layer for Restorable Embeddings

The proposed mechanisms are described in (c) and
(d) of Fig. 2. (c) shows the gating layer-based de-
coder instead of the cross-attention layer in (b),
and (d) shows the proposed gating layer structure.
The input of the gating layer is a query and e;.¢p.
When q; inputs to the gating layer, q; is projected
to d;¢pr through the projection matrix W, result-
ing in q;. q; is a normalized vector through causal
maskings and add operations. As depicted in Eq. 4,
q; is added to the j-th vectors smaller than ¢ and
divided by 1.

a=» a;/Vi “
j=1

In Eq. 5, each q; vector with R2%e»r dimension
is projected to d¢p, through Wy € R2drepr X drepr
and then activation function is applied. The acti-
vated q; is gated through the hadamard product
with e;.¢;,,, and finally projected to d;,qe; through
W, € RreprXdmoder

Qz :(ACt(quQ) © erepT)W?;
where ¢; = Concat(q;; €repr)

®)

As shown in (c) of Fig. 2, q; is added to q; and
then normalized by layer normalization. Therefore,
erepr gated by the hadamard product is added to



q;. (c) is called the gating decoder composed of
the gating layer in the decoder, and the dimension
and semantics of the input and target sequence of
the gating decoder are the same as those of the
cross-attention-based decoder.

The proposed learning objective follows the auto-
regressive object function, as explained in Eq. 6.

max log py(x) =

T R (6)
Z 10gp9(£t|x<t7 en0é(X)), ocCo
t=1

ency denotes an encoder function parameterized

by 0, and pp denotes the entire encoder-decoder
function parameterized by 6.

The gating layer described in (d) of Fig. 2 pro-
poses a new structure containing causal making in-
stead of the redundant multi-head attention shown
in (b). The proposed gating layer excludes the du-
plicated computation of multi-head attention and in-
cludes a causal mask which is autoregressive train-
ing. The structure employs the advantages of multi-
head attention and causal mask techniques. The
multi-head attention analyzes the relevance in vari-
ous perspectives, regardless of sequential and posi-
tional context. On the other hand, the causal mask
successfully analyzes the correlations. Addition-
ally, the gating layer attains higher computational
efficiency by eliminating the repeated multi-head
attention structure in (b).

4 [Experiments

If the proposed embeddings successfully restore
the semantics, the performances of the relevant
downstream tasks should be improved with the em-
beddings. For experimental evaluation, this paper
applied the proposed methods to the text restora-
tion and passage retrieval tasks with Natural ques-
tion (Kwiatkowski et al., 2019) datasets. Perplex-
ity(Sennrich, 2012), ROUGE (Recall-Oriented Un-
derstudy for Gisting Evaluation)(Lin and Hovy,
2003; Lin and Och, 2004) scores are measured for
the experiments.

4.1 Experiments for Text Restoration Task

C4 RealNewsLike (Raffel et al., 2020) was uti-
lized as a raw corpus for the text restoration
task and pre-processed in the same way Com-
monCrawl(Carlini et al., 2021) was pre-processed
in FakeNews (Zellers et al., 2019), such as bad
word and deduplication filtering. The pre-processed
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Figure 3: Token length distributions of 1, 3, and 5 sen-
tences in C4 RealNewsLike for the text restoration task.

dataset consists of 13 million and 13,863 samples
for training and validation respectively.

To examine the performances in downstream
tasks according to the text sequence length, the
dataset was divided at sentence level using the sen-
tence tokenizer in NLTK (Bird and Loper, 2004).
Figure 3 shows the token length distributions ac-
cording to the number of sentences in C4 Real-
NewsLike. The average token length according to
the number of sentences is about 33, 96, and 156
for 1, 3, and 5 sentences respectively.

4.1.1 Experiemtal Settings

The training was conducted for 1 epoch after ini-
tializing with the pre-trained weights of a small
configuration of TS (Raffel et al., 2020). For exam-
ining the performance difference in text restoration,
both freezing and updating the weights transferred
from T5 were evaluated. In the freezing layers,
since only the last projection matrix of the encoder
is learnable as a variable to make a restorable em-
bedding, the text restoration with three additional
transformer layers was considered and the parame-
ters were randomly initialized. As shown in Table 1,
the different configurations from (a) to (d) were
evaluated with the randomly initialized parameters
for each encoder and decoder variant.

Adam optimizer and linear learning rate schedul-
ing were employed, and d,,ode; and dy¢p Were set
to 512 in all experiments. Gated ReLU (Dauphin

Configuration

[ @
Freezing the pre-trained weights | N Y N Y
Number of additional layers 0 0

Table 1: Experimental configurations for the text
restoration task.



Decoder PPL R-1

With CLS token
R-2 R-L [ PPL R-1 R-2 R-L

With mean pooling

(a) 6 layers from pre-trained model + no additional layers

Without KE 6.178 9.87 0.79 8.09 | 1.16 9337 8293 89.72

Cross-attention KE 6.10 7.09 0.19 6.24 | 1.10 95.14 87.80 92.76

Gating layer KE (Ours) | 6.04 11.21 0.55 821 | 1.04 97.76 94.63 96.94
(b) 6 layers from pre-trained model (Freeze) + no additional layers

Without KE 1.79 1333 0.75 953 | 224 6599 3445 50.96

Cross-attention KE 6.22 1229 0.78 930 | 204 6797 37.85 54.00

Gating layer KE (Ours) | 6.16 11.13 029 847 | 1.93 70.54 40.83 56.81

(c) 6 layers from pre-trained model + 3 additional layers (Random initialization)

Without KE 6.18
Cross-attention KE 6.10 9.95
Gating layer KE (Ours) | 6.04  10.81

13.32  0.75

953 | 1.15 9263 83.34 89.63
021 831 | 1.12 9413 86.26 91.62
056 8.07 | 1.03 98.32 96.30 9791

(d) 6 layers from pre-trained model (Freeze) + 3 additional layers (Random initialization)

Without KE 630 11.86
Cross-attention KE 622 11.21
Gating layer KE (Ours) | 6.16 9.88

0.77 8.84 | 1.34 8477 69.68 81.12
055 821 | 1.29 87.18 73.07 83.79
0.58 7.57 | 1.09 9595 91.07 95.04

Table 2: Text restoration performance on a single sentence according to the experimental configurations in Tablel.
The proposed embeddings were utilized to construct knowledge embedding (KE) vectors and the decoder type. PPL,
R-1, R-2, and R-L denote perplexity, ROUGE-1, ROUGE-2, and ROUGE-L respectively.

et al., 2017) was used for the activation function in
the gating layer, and the detailed hyperparameters
for the model and optimizer in the experiments are
described in Table 6 in Appendix A.

4.1.2 Experimental Results

For the single-sentence restoration task, as illus-
trated in Table 2, the CLS token-based approach
underperforms the other methods in all configura-
tions, even with three randomly initialized layers.
From the perspective that Perplexity and ROUGE
scores are not correlated, the global attention mech-
anisms help to make effective token-level contex-
tualized embeddings, but there seems a limit to
generating appropriate sentence-level embeddings.

The mean pooling approach overperforms the
CLS-based method in all configurations. Because
all tokens are directly involved in generating em-
beddings, the loss of information is minimized,
and high restoration performances are achieved. By
comparing the single-sentence restoration perfor-
mance according to decoders in mean pooling, all
performance metrics are improved with the pro-
posed gating layer in all experimental configura-
tions. Therefore, we evaluate that the proposed gat-
ing layer-based knowledge embedding model guar-
antees high and robust restoration.

With mean pooling-based embeddings, the
model without freezing the weights from the pre-
trained model draws higher performances whether
additional layers are added or not. Those perfor-
mance differences may be due to the gap in the
number of adjustable model parameters. For exam-
ple, the model configuration (a) in Table 2 depicts

Configuration #S | PPL R-1 R-2 R-L
Cross-attention-based decoder

©+ 1 1.12 9413 86.26 91.62

extra layers 3 1.89 63.08 29.25 46.87
5 2.80 5235 15.09 31.28
1 1.29 87.18 73.07 83.79

S()tr; lf;‘;‘;f & 3 ] 248 5900 2439 4409
5 350 51.30 14.58 31.00

Gating layer-based decoder (Ours)

©+ 1 1.03 98.32 9630 9791

extra layers 3 1.37 7211 5045 o64.16
5 2.08 52.82 1891 36.77

(d) + freeze & 1 1.09 9595 91.07 95.04

extra layers 3 1.75 67.14 3997 5843
5 2776 5238 1792 36.83

Table 3: Text restoration performance according to the
experimental configurations in Tablel and the number
of original sentences denoted as # S. Mean pooling
was employed to generate embeddings. PPL, R-1, R-2,
and R-L denote perplexity, ROUGE-1, ROUGE-2, and
ROUGE-L in each.

significantly higher performance than the model
configuration (b). Whereas all weights of 6 layers
in (a) can be updated during the embedding pro-
cess, the last projection layer can be updated in (b).
The experimental results illustrate that the number
of adjustable parameters is an important factor for
sentence-based knowledge embedding models.

Table 3 shows the text restoration performances
with either the cross-attention-based or the pro-
posed gating layer-based decoders, according to
the original text length. The experimental results
indicate that the recovery performance decreases as
the number of sentences increases, meaning that the
amount of information accommodated in a vector
of a certain dimension is limited. More experimen-



# of sentences [ R@20  R@100
No additional layers
T5-small 49.58 67.12
1 64.33 78.34
(a) 3 63.09 78.34
5 63.09 77.88
1 63.61 78.39
(b) + freeze 3 62.56 77.71
5 62.18 77.67
Additional layers
T5-small + additional layers 55.73 72.37
1 64.07 78.05
(c) 3 63.13 77.82
5 63.61 78.30
1 70.30 83.32
(d) + freeze 3 68.70 82.29
5 68.46 82.13

Table 4: Passage retrieval performance in Natural ques-
tions with the proposed embeddings, according to ex-
perimental configurations in Table 1.

tal results on other text lengths, configurations, and
decoder types can be found in Appendix B.

4.2 Experiments for Passage Retrieval Task
4.2.1 Experiment Settings

For the passage retrieval task, the performances
were measured to examine the effect of the pro-
posed embedding mechanisms in downstream tasks.
Dense passage retrieval (DPR) uses a bi-encoder
including two encoders - a query encoder and a pas-
sage encoder. The evaluated models were trained
with in-batch training (Karpukhin et al., 2020) by
utilizing the positive passages of other samples in
the batch as negative samples. The detailed hyper-
parameters are illustrated in Table 7 in Appendix A.

The Natural Question data and Wikipedia pas-
sages employed in the DPR downstream task were
utilized for our experiments. For the evaluation, the
recall of whether passages containing the correct
answer for each question were retrieved in the top-
K passages among the 21,015,324 passages was
measured.

4.2.2 Experimental Results

For no additional layers, the performances with
the proposed mechanisms were much superior to
the direct transfer learning with T5-small. Even
when randomly initialized additional layers were
added, the passage retrieval with the proposed em-
bedding models showed higher performance than
the others. The performance gaps demonstrate that
the proposed model is trained to construct efficient
knowledge embeddings with minimizing the loss
of information for each passage.

4.3 Analysis on Experimental Results

For no additional layers, the sentence restoration
with freezing parameters recorded lower perfor-
mances than that without freezing. Freezing param-
eters with additional layers showed performance
improvements compared to freezing parameters
without extra layers. Whereas the performances of
the text restoration task represented superior with-
out freezing pre-trained weights, the performances
of the passage retrieval task showed better with
freezing them. The reason might be that some repre-
sentations for passage retrieval are damaged while
the unfrozen model parameters learn knowledge
restoration.

The proposed gating layer-based restorable em-
bedding framework which possesses the external
knowledge memory and employs the additional
knowledge embeddings demonstrates high perfor-
mances under all conditions - learning with a lan-
guage modeling objective and learning the restora-
tion while maintaining the pre-learned language
model weights. Especially in (d) of Table 4, the
proposed restorable embeddings performed an im-
portant role in the process of learning the semantic
restoration of natural language, despite updating
even fewer model parameters.

For the qualitative analysis, Table 5 exemplifies
the original texts and samples restored by the gat-
ing layer-based or cross-attention-based decoders.
With the proposed gating-layer-based docer, in the
case of single-sentence input, complete text restora-
tion was observed, meaning that the samples were
restored with almost no loss of information. For
three sentences, the first sentence was absolutely
restored, but the second and third sentences omit-
ted some words or generated different words from
the original text. In particular, the wrong sentence
restoration tends to appear more frequently in the
latter sentences than in the former sentences.

For five sentences, more latter sequences such as
the fourth and fifth sentences in Table 5 tend to be
generated plausibly but semantically differently be-
cause the information from the original sentences is
mixed in the restored sentences. The hallucination
problem appears probably due to the loss of infor-
mation during sentence encoding. As a result, un-
der the condition of the sentence vector dimension
and model size used in our experiments, converting
only one or two sentences into embedding looks
appropriate to prevent hallucination problems and
minimize the loss of information.



Gating layer-based decoder
Was it a surprise to you that you were given the arts and culture position?
No, there is no surprise when you are a cadre of the ANC because you are deployed anywhere.
You are given a five-year contract to do a portfolio and when you are finished, you wait for another one.
At no stage do you have a say.
What qualities do you bring to the position?
1 sentence
Was it a surprise to you that you were given the arts and culture position?
3 sentences
Was it a surprise to you that you were given the arts and culture position?
No, there is no surprise when you are a cadre of the ANC because you are deployed overseas.
You are given a five-year contract to do a portfolio and when you (are) finish, you are waiting for another.
5 sentences
Was it a surprise to you that you were given the arts and culture culture?
No, there is no surprise when you are a candidate of the ANC because you are deployed anywhere.
You are given a four-year contract to do a portfolio and when you (are) finish(ed), you are no longer looking
for one.
At one stage did you have a capabilities?
‘What does the message bring to you?

Original

| B W 19| —

Restored [ 1

Restored

W DN —

Restored

W B W | DI =

Cross-attention-based decoder
Two bedrooms home on a corner lot.
Two car detached garage.
Nice covered front porch.
Seller will not complete any repairs to the subject property, either lender or buyer requested.
The property is sold in AS IS condition.
5 sentences

Original

| B W N —

Two car garage on a corner lot.

Two covered covered porch.

Sony front porch.

Nice covered garage will not return any repairs to the seller, either buyer or seller.
The property is listed in ASOLD condition.

Restored

| B W 19| —

Table 5: Original texts and samples restored by the gating layer-based or cross-attention-based decoders, according
to the input text length. Blue texts represent parts different from the original text, and red texts indicates parts
omitted from the original text.

5 Conclusions sideration of effective mechanisms for storing and
referencing knowledge.

This paper introduces a gating layer-based

restorable embedding framework for constructing

restorable embeddings of knowledge in the natu-

ral language process and proposes the gating layer

structure to improve the restoration performance

with the knowledge embeddings. The extracted

knowledge embedding vectors from our mecha-

nisms make information processing in natural lan-

guage processing efficient. The experiments eval-

uate that the proposed gating layer-based embed-

dings successfully perform the downstream tasks

such as the text restoration and passage retrieval

tasks by showing superior performance qualita-

tively as well as quantitatively.

This paper focuses on how to restore the
sentence-level embeddings to the original texts.
The effective encoder structures and the way to
construct effective embeddings are not considered
in this work. Therefore, further research is to im-
prove the efficiency of semantic representations in
embeddings and to extend usability in a variety of
natural language processing tasks under the con-
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A Hyperparameter Settings in Experiments

Table 6 shows the hyperparameters of the model and optimizer when learning the text restoration task.

Encoder & Decoder Optimizer & Generation
Name Value [ Name Value
dmodel 512 Algorithm AdamW
Number of attention heads 8 Learning rate le-3
Number of attention layers 6 Adam epsilon le-8
dfeedforward 2048 Weight decay le-2
Drop out rate 0.1 Scheduling Linear
Activation for feed-forward Relu Warm up Y
Epsilon for layer normalization le-6 Warm up rate 0.1
Max positional embedding size 512 Number of beams 4
Initialize factor 1.0 Early stopping Y
Positional embedding type Relative bucket embeddings Top-k 50
Positional bucket size 32 Top-p 50

Table 6: Hyperparameters for training text restoration.

Table 7 illustrates the hyperparameters when learning the passage retrieval task.

Name | Value
Batch size 128
Epochs 40
Optimizer AdamW
Learning rate le-3
Adam epsilon le-8
Weight decay 0
Scheduling Linear
Warm up Y
‘Warm up rate 0.2
Max length for query 70
Max length for context 350
Number of positive context per sample 1
Number of negative context per sample 1

Table 7: Hyperparameters for training passage retrieval
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B More Experimental Results for Text Restoration Task

Table 8 shows all restoration performances according to the experimental configuration, the method used
to create the embedding vector and the decoder type.

Classification token Mean pooling
# Sentences | Decoder | PPL R-1 R-2 R-L [ PPL R-1 R-2 R-L
(a) 6 layers from pre-trained model + 0 additional layers
Input 6.178 9.87 0.79 8.09 | 1.16 9337 8293 89.72
Cross 6.10 7.09 0.19 624 | 1.10 95.14 87.80 92.76
Gating 6.04 11.21 0.55 8.21 1.04 97.76 94.63 96.94
(b) 6 layers from pre-trained model (freeze) + 0 additional layers
Input 1.79 1333 075 953 | 224 6599 3445 50.96
Cross 6.22 1229 078 930 | 2.04 6797 37.85 54.00
1 Gating 6.16 11.13 029 8.47 1.93 70.54 40.83 56.81
(c) 6 layers from pre-trained model + 3 additional layers (random initialization)
Input 6.18 1332 0.75 9.53 1.15 92.63 83.34 89.63
Cross 6.10 995 021 831 1.12 9413 86.26 91.62
Gating 6.04 10.81 0.56 8.07 1.03  98.32 96.30 97.91
(d) 6 layers from pre-trained model (freeze) + 3 additional layers (random initialization)
Input 6.30 11.86 0.77 8.84 1.34 84.77 69.68 81.12
Cross 6.22 11.21 055 8.21 1.29 87.18 73.07 83.79
Gating 6.16 9.88 058 7.57 1.09 9595 91.07 95.04
(a) 6 layers from pre-trained model + 0 additional layers
Input 8.13 1333 048 11.08 | 2.33 5898 23.10 40.36
Cross 8.04 13.14 026 9.55 1.83 64.86 30.42 47.79
Gating 790 1841 1.14 1272 | 1.49 70.79 43.06 58.97
(b) 6 layers from pre-trained model (freeze) + 0 additional layers
Input 833 1270 0.07 1045 | 4.88 43.60 12.08 24.60
Cross 8.21 14.17 034 1085 | 444 4537 12.87 25.07
3 Gating 8.08 1480 0.79 10.86 | 4.09 47.52 13.81 25.99
(c) 6 layers from pre-trained model + 3 additional layers (random initialization)
Input 8.14 1432 032 1136 | 2.31 5443 21.22 39.01
Cross 8.04 1448 0.79 10.88 | 1.89 63.08 29.25 46.87
Gating 7.91 1467 042 11.10 | 1.37 7211 5045 64.16
(d) 6 layers from pre-trained model (freeze) + 3 additional layers (random initialization)
Input 834 1120 0.13 9.70 | 296 51.82 18.70 38.18
Cross 822 1507 023 11.76 | 248 59.00 24.39 44.09
Gating 8.09 1681 1.11 1198 | 1.75 67.14 39.97 58.43
(a) 6 layers from pre-trained model + 0 additional layers
Input 880 1198 024 10.69 | 3.60 49.63 13.45 28.19
Cross 8.67 1514 0.87 1253 | 2.75 49.63 13.45 28.19
Gating 853 11.19 0.21 8.85 | 225 5536 1854 35.98
(b) 6 layers from pre-trained model (freeze) + 0 additional layers
Input 9.02 1398 0.09 1243 | 630 3824 8.87 20.48
Cross 8.87 1326 021 1146 | 580 4125 9.63 21.00
5 Gating 874 1146 0.12 10.12 | 5.39 43.66 10.60 21.79
(c) 6 layers from pre-trained model + 3 additional layers (random initialization)
Input 8.80 471 0.09 442 | 336 4657 1234 28.54
Cross 8.66 1696 0.80 1230 | 2.80 52.35 15.09 31.28
Gating 8.54 742 029 6.15 | 2.08 52.82 1891 36.77
(d) 6 layers from pre-trained model (freeze) + 3 additional layers (random initialization)
Input 9.02 802 030 738 | 419 4531 11.46 27.65
Cross 8.87 12.02 034 10.80 | 3.50 51.30 14.58 31.00
Gating 875 17.16 125 11.79 | 2.76 5238 17.92 36.83

Table 8: Restoration performance according to the experimental configuration, the method used to create the
embedding vector, and the decoder type.
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C Passage Retrieval Performance of Proposed Model

Table 9 shows the passage retrieval performance of the proposed model according to the configuration.

# Sentences  # Additional layers | R@1 R@5 R@20 R@100

Random initialize 0 1477  32.68  49.58 67.12

W/ freeze 1 0 21.50 4411 63.61 78.39

W/ freeze 3 0 2143 4396 62.56 77.71

W/ freeze 5 0 21.18 43.61 62.18 77.67

WO/ freeze 1 0 2434 4749 64.33 78.34
WO/ freeze 3 0 2229 45.05 63.09 78.34
WO/ freeze 5 0 22.18 45.08 63.09 77.88
Random initialize 3 16.88 3790 55.73 72.37

W/ freeze 1 3 2692 5254 7030 83.32

W/ freeze 3 3 2497 50.02 68.70 82.29

W/ freeze 5 3 25.05 49.56 68.46 82.13

WO/ freeze 1 3 21.53 4597 64.07 78.05
WO/ freeze 3 3 2097 4483 63.13 77.82
WO/ freeze 5 3 2241 4513 63.61 78.30

Table 9: Passage retrieval performance in Natural Questions according to experimental configuration and sentence
length.

D Performance on Various Sentence-Level NLP Tasks

Table 10 shows the performance on the various sentence-level downstream tasks with the sentence
embeddings of the proposed model.

GLUE
MNLI QNLI WNLI MRPC QQP
# Sentences  # Additional layers | Accuracy Accuracy Accuracy  Accuracy  Accuracy
Random initialize 0 74.91 80.82 58.33 75.00 88.81
W/ freeze 1 0 75.58 81.68 52.78 74.51 88.43
W/ freeze 3 0 75.48 81.66 37.50 77.21 88.47
W/ freeze 5 0 75.58 81.92 55.56 74.26 88.32
WO/ freeze 1 0 72.38 80.33 56.94 71.81 88.69
WO/ freeze 3 0 72.34 80.56 58.33 74.26 88.69
WO/ freeze 5 0 72.41 81.28 56.94 73.04 88.50
Random initialize 0 74.93 78.53 52.78 74.26 89.89
W/ freeze 1 3 75.74 81.97 50.00 71.57 89.96
W/ freeze 3 3 75.73 82.27 55.56 72.79 90.01
W/ freeze 5 3 75.69 82.65 45.83 73.53 89.96
WO/ freeze 1 3 72.47 79.83 56.94 72.79 89.04
WO/ freeze 3 3 72.26 80.38 52.78 75.25 89.12
WO/ freeze 5 3 72.10 80.22 56.94 74.26 89.11
GLUE SSTDataset TREC
SST2 SSTDataset Coarse Fine
# Sentences  # Additional layers | Accuracy Accuracy Accuracy  Accuracy
Random initialize 0 91.28 85.42 97.02 8591
W/ freeze 1 0 91.74 86.05 96.83 85.32
W/ freeze 3 0 91.17 85.96 96.03 85.71
W/ freeze 5 0 91.63 85.96 96.23 83.93
WO/ freeze 1 0 86.93 77.90 93.85 78.17
WO/ freeze 3 0 87.84 78.08 94.25 80.16
WO/ freeze 5 0 87.96 79.17 94.84 81.15
Random initialize 0 92.09 85.78 97.02 92.46
W/ freeze 1 3 92.55 85.69 96.83 89.48
W/ freeze 3 3 92.55 85.33 97.22 91.47
W/ freeze 5 3 91.97 86.50 96.43 91.67
WO/ freeze 1 3 87.16 76.54 92.66 83.13
WO/ freeze 3 3 88.19 77.45 94.84 84.13
WO/ freeze 5 3 88.76 78.17 94.84 84.72

Table 10: Performance on various sentence-level downstream tasks with the sentence embeddings of the proposed
model.
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E Restored Samples

This section shows samples restored by the models trained on sentence restoration (No cherry-picking).
For five sentences, in the sentences generated by the cross-attention-based decoder, parts of the sentence
such as subjects and objects are mixed. For the sentences generated by the gating layer-based decoder,
almost no parts are mixed. In five sentences of Table 13, the restored texts by the cross-attention-based
decoder are a jumble of information.

Was it a surprise to you that you were given the arts and culture position?

No, there is no surprise when you are a cadre of the ANC because you are deployed anywhere.

You are given a five-year contract to do a portfolio and when you are finished, you wait for another one.
At no stage do you have a say.

What qualities do you bring to the position?

Original

W B W D —

Gating layer-based decoder
1 sentence

Was it a surprise to you that you were given the arts and culture position?

3 sentences
Was it a surprise to you that you were given the arts and culture position?
No, there is no surprise when you are a cadre of the ANC because you are deployed overseas.
You are given a five-year contract to do a portfolio and when you (are) finish, you are waiting for another.

5 sentences
Was it a surprise to you that you were given the arts and culture culture?
No, there is no surprise when you are a candidate of the ANC because you are deployed anywhere.
You are given a four-year contract to do a portfolio and when you (are) finish(ed), you are no longer looking
for one.
At one stage did you have a capabilities?
What does the message bring to you?

Restored [ 1

Restored

W[ | —

Restored

D B W | =

Cross-attention-based decoder
1 sentence
Was it a surprise to you that you were given the arts and culture position?
3 sentences
Was it a surprise to you when you were given the arts and culture culture?
Restored No, there is no surprise that you are a part of the ANC because you are deployed there.
You are paid a five-year contract when you are ready to do a portfolio and finish another, for five years.
5 sentences
Was it a surprise to you that there was no talent or culture when you were awarded the ANC?
No, you are a part of the arts department.
You are given that you are ready to finish a five-year contract when you are awarded a position and do not
finish until a year.
At one stage, do you have another role?
What do you do for the ANC?

Restored | 1

0| =—

W)

Restored

D B W =

Table 11: Original texts and samples restored by the gating layer-based or cross-attention-based decoders, according
to the input text length. Blue texts represent parts different from the original text, and red texts indicates parts
omitted from the original text.
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1 | Occasional diarrhea is a common occurrence.
) Most people will experience an episode of diarrhea at least once or twice a year that will disappear in a
Original couple of days.
3 | Luckily, there are many foods to eat that may help a person reduce the symptoms of diarrhea.
4 There are also some foods to avoid when dealing with a bout of diarrhea, and some additional home care
tips to consider.
5 Anyone who is experiencing persistent diarrhea should see a doctor, as a person may become dehydrated
over time.
Gating layer-based decoder
1 sentence
Restored | 1 | Occasional diarrhea is a common occurrence.
3 sentences
1 | Occasional diarrhea is a common occurrence.
Restored ) Most people will experience an episode of diarrhea at least twice or twice a year that will disappear in a
couple of days.
Luckily, there are many foods to eat that may help a person reduce the symptoms of diarrhea.
5 sentences
1 | Occupy diarrhea is a common occurrence.
2 Most people will experience an episode of diarrhea at least once a month or two that will disappear in a
Restored week.
3 | Fortunately, there are plenty of ways to eat a food that may help eliminate the symptoms.
4 There are also some symptoms of diarrhea to avoid eating with a side dish, and some regular food tips that
you should consider.
5 Anyone experiencing chronic diarrhea will be referred to as a woman, but you have a medical problem
before.
Cross-attention-based decoder
1 sentence
Restored | 1 [ Occasional diarrhea is a common occurrence

3 sentences
1 | Otago occurrences is an uncommon problem.
Restored ) Most people will experience (an episode of) a diarrhea of at least one day or two during a month that will
disappear in less than a month.
Fortunately, there are many ways to eat foods that can help (a person reduce) the symptoms of a person.
5 sentences

1 | Occupied diarrhea is a frequent issue.
Many people will experience a severe diarrhea at least once a week 2014 and that may occur in some cases

Restored 2 of diarrhea.
3 | Here are a few things that will stop you to consume more of the food to avoid.
4 There are also a few cases of diarrhea, while people can experience a side effect to avoid experiencing
chronic diarrhea.
5 If an individual is experiencing chronic diarrhea or diarrhea, some people are able to do a handover after

that.

Table 12: Original texts and samples restored by the gating layer-based or cross-attention-based decoders, according
to the input text length. Blue texts represent parts different from the original text, and red texts indicates parts
omitted from the original text.
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Two bedrooms home on a corner lot.

Two car detached garage.

Original

Nice covered front porch.

Seller will not complete any repairs to the subject property, either lender or buyer requested.

W B W DN —

The property is sold in AS IS condition.

Gating layer-based decoder

1 sentence

Restored |

Two bedrooms home on a corner lot.

3 sentences

Two bedrooms home on a corner lot.

Restored

D —

Two car detached garage.

(O8]

Nice covered front porch.

5 sentences

Two bedroom home on a corner lot.

Two detached car garage.

Restored

Nice covered front porch.

Seller will not complete any repairs to the (subject) property, either insured buyer or seller.

W B W B —

The property is listed in ASOLD condition.

Cross-attention-based decoder

1 sentence

Restored |

Two bedrooms home on a corner lot.

3 sentences

Two bedroom homes on a corner lot.

Restored

D) —

Two car detached garage.

W)

Nice covered front porch.

5 sentences

Two car garage on a corner lot.

Two covered covered porch.

Restored

Sony front porch.

Nice covered garage will not return any repairs to the seller, either buyer or seller.

D B W | —

The property is listed in ASOLD condition.

Table 13: Original texts and samples restored by the gating layer-based or cross-attention-based decoders, according
to the input text length. Blue texts represent parts different from the original text, and red texts indicates parts
omitted from the original text.
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