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Figure 1: Overview of the LLAMADRS Framework. The left panel illustrates a traditional structured clinical
interview between a patient and a clinician. The right panel demonstrates the automated depression assessment
process using a large language model (Qwen 2.5 - 72b), including scoring of MADRS items with explanations for
each score.

Abstract

This study introduces LLAMADRS, a novel001
framework leveraging open-source Large Lan-002
guage Models (LLMs) to automate depression003
severity assessment using the Montgomery-004
Åsberg Depression Rating Scale (MADRS).005
We employ a zero-shot prompting strategy with006
carefully designed cues to guide the model007
in interpreting and scoring transcribed clin-008
ical interviews. Our approach, tested on009
236 real-world interviews from the Context-010
Adaptive Multimodal Informatics (CAMI)011
dataset, demonstrates strong correlations with012
clinician assessments. The Qwen 2.5–72b013
model achieves near-human level agreement014
across most MADRS items, with Intraclass Cor-015
relation Coefficients (ICC) closely approaching016
those between human raters. We provide a017
comprehensive analysis of model performance018
across different MADRS items, highlighting019
strengths and current limitations. Our findings020
suggest that LLMs, with appropriate prompting,021
can serve as efficient tools for mental health as-022
sessment, potentially increasing accessibility in023
resource-limited settings. However, challenges024
remain, particularly in assessing symptoms that025
rely on non-verbal cues, underscoring the need026
for multimodal approaches in future work.027

1 Introduction 028

Depression, a leading cause of disability world- 029

wide, affects approximately 280 million people 030

(Institute for Health Metrics and Evaluation, 2023). 031

Accurate and timely assessment is crucial for ef- 032

fective treatment. However, traditional diagnostic 033

methods face significant challenges. These meth- 034

ods, such as structured interviews paired with clini- 035

cal rating scales like the Montgomery-Åsberg De- 036

pression Rating Scale (MADRS), require exten- 037

sive clinician training and are prone to subjective 038

interpretation (Montgomery and Asberg, 1979). 039

Large Language Models (LLMs) offer a promis- 040

ing alternative to traditional methods. They have 041

the potential to enable more frequent assessments 042

and provide valuable insights into symptom fluctua- 043

tions and treatment responses (Torous et al., 2021). 044

The application of LLM to the assessment of de- 045

pression encompasses two critical aspects: the abil- 046

ity to conduct patient interviews and the ability to 047

evaluate the severity of depression based on the 048

content of the interview. Our work concentrates on 049

the latter, harnessing LLMs to automate the assess- 050

ment process. Specifically, we explore the potential 051

of LLMs to accurately analyze and score patient in- 052

terviews conducted by human clinicians—a crucial 053
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Figure 2: Montgomery-Åsberg Depression Rating Scale (MADRS) Items. The scale includes ten items assessing
different aspects of depression, providing a comprehensive evaluation of the patient’s mental state.

step towards more efficient and objective psychi-054

atric evaluations.055

The evaluation of LLMs in clinical settings has056

historically presented various challenges, partic-057

ularly in managing lengthy and complex clinical058

interview transcripts. However, recent advances in059

open-source models such as LLAMA 3.1 (Dubey060

et al., 2024) and Qwen 2.5 (Team, 2024) have en-061

abled zero-shot inference on long-context data of062

up to 128k tokens. These developments open new063

possibilities for analyzing extensive clinical infor-064

mation, potentially enhancing the depth and accu-065

racy of psychiatric evaluations.066

Our study leverages the Context-Adaptive Mul-067

timodal Informatics (CAMI) dataset, comprising068

authentic clinical interviews annotated by mental069

health professionals. Unlike previous work that of-070

ten relied on synthetic or non-clinical data, our use071

of real-world interviews substantially enhances the072

study’s ecological validity. This approach enables073

a more rigorous evaluation of LLM applicability074

in psychiatric settings, grounding our findings in075

the nuances of actual clinical practice—a crucial076

advancement over prior research in this field.077

In this study, we introduce LLAMADRS, a078

framework that demonstrates the viability of open-079

source LLMs for depression assessment through080

careful prompt engineering. Our zero-shot ap-081

proach achieves strong correlations with clinician082

assessments for several MADRS items, particu-083

larly those involving concrete symptoms like re-084

duced appetite. However, challenges persist in085

items requiring visual observation.086

Our contributions are as follows:087

• C1: A structured prompting strategy incor-088

porating descriptive and demonstrative cues089

that achieves near-human reliability in spe- 090

cific MADRS domains without requiring ad- 091

ditional training data. 092

• C2: An empirical demonstration that targeted 093

analysis of symptom-specific interview seg- 094

ments generally outperforms full-transcript 095

processing, with mean absolute error reduced 096

from 4.90 to 3.69 across most assessment do- 097

mains. 098

• C3: A comprehensive analysis reveal- 099

ing systematic variations in LLM perfor- 100

mance across different MADRS items, with 101

strongest performance in concrete symptoms 102

and challenges in observational items. 103

• C4: A statistical analysis identifying signif- 104

icant factors in prediction errors, including 105

rater effects and patient characteristics, pro- 106

viding insights for future clinical implementa- 107

tion. 108

2 Related Work 109

The intersection of Natural Language Processing 110

(NLP) and mental health has emerged as a signifi- 111

cant research domain, propelled by advancements 112

in Large Language Models (LLMs). This sec- 113

tion surveys relevant literature, highlighting key 114

progress and identifying crucial gaps our research 115

aims to address. 116

2.1 NLP in Mental Health Assessment 117

Over the past decade, researchers have extensively 118

explored NLP techniques to identify and predict 119

mental health risks through analysis of textual con- 120

tent and social interaction patterns. Early studies 121
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focused on detecting indicators of mental health122

issues such as anxiety (Shen and Rudzicz, 2017;123

Saifullah et al., 2021; Ahmed et al., 2022), depres-124

sion (De Choudhury et al., 2013; Eichstaedt et al.,125

2018; Tsugawa et al., 2015; Park et al., 2021), and126

suicidal ideation (Tadesse et al., 2019; De Choud-127

hury et al., 2016; Coppersmith et al., 2018) by ana-128

lyzing social media posts and online activity. These129

studies used various techniques, including content130

analysis and sentiment analysis, to identify linguis-131

tic markers of psychopathology (Chancellor and132

De Choudhury, 2020; Guntuku et al., 2017).133

Although these approaches have shown promise,134

they often lack the nuance required for clinical135

applications. For instance, De Choudhury et al.136

(2013) and Eichstaedt et al. (2018) demonstrated137

high accuracy in detecting depression from social138

media posts, but their methods may not general-139

ize well to diverse populations or account for cul-140

tural differences in expressing mental health con-141

cerns (Guntuku et al., 2017). In addition, a signif-142

icant limitation of many online studies is the lack143

of gold standard or clinically verified assessments.144

Instead, they often rely on rough proxies such as145

participation in depression forums (Sadeque et al.,146

2016) or brief symptom self-reportsDe Choudhury147

et al. (2013), which may not accurately reflect clin-148

ical diagnoses.149

2.2 Large Language Models in Mental Health150

Applications151

The emergence of instruction-finetuned Large Lan-152

guage Models (LLMs) such as GPT-4 (Bubeck153

et al., 2023), PaLM (Chowdhery et al., 2022), and154

FLAN-T5 (Chung et al., 2024) has opened new155

frontiers in mental health applications. However,156

initial evaluations of these models revealed signif-157

icant challenges. Studies by Yang et al. (2023),158

Lamichhane (2023), and Amin et al. (2023) as-159

sessed ChatGPT (GPT-3.5) on various mental160

health classification tasks. Their findings high-161

lighted limitations in the model’s ability to provide162

consistent, clinically relevant insights, emphasizing163

the need for cautious interpretation of LLM outputs164

in mental health contexts.165

A comprehensive evaluation by Xu et al. (2024)166

examined several LLMs—including Alpaca (Taori167

et al., 2023), FLAN-T5 (Chung et al., 2024),168

LLaMA2 (Touvron et al., 2023), GPT-3.5, and169

GPT-4—on mental health prediction tasks using170

online text. This study provided a nuanced view171

of both the strengths and limitations of these mod-172

els in mental health applications. Efforts to tailor 173

LLMs specifically for mental health have shown 174

promise. Ji et al. (2022) introduced MentalBERT 175

and MentalRoBERTa, models pre-trained on men- 176

tal health-related data. These specialized models 177

outperformed existing clinical models in detecting 178

depression and suicidal ideation from social me- 179

dia content. Similarly, Galatzer-Levy et al. (2023) 180

explored the Med-PaLM 2 model’s capability to 181

predict mental health diagnoses. 182

Recent studies have expanded LLM applications 183

in mental health, focusing on interpretability and 184

specialized tasks (Yang et al., 2024; Xu et al., 185

2024; Xiao et al., 2024). Questionnaire-based ap- 186

proaches (Rinaldi et al., 2020; Yadav et al., 2020) 187

have shown promise, with studies employing pa- 188

tient self-report measures like the PHQ-9 (Rosen- 189

man et al., 2024) and the Beck Depression Inven- 190

tory (Losada et al., 2019) for depression prediction. 191

While valuable, these self-report measures may 192

lack the nuanced assessment provided by trained 193

clinicians. More recent research has used prompt 194

engineering and LLMs to automate depression 195

severity assessment using clinician-administered 196

instruments like the MADRS (Raganato and Nav- 197

igli, 2024), which are generally considered higher 198

quality due to the clinician’s training and ability to 199

differentiate between similar symptoms. 200

Our work, LLAMADRS, advances this trajec- 201

tory by applying open-source LLMs to the CAMI 202

dataset of authentic clinical interviews based on 203

the MADRS. By leveraging this gold-standard, 204

clinician-administered assessment and real-world 205

data, we aim to bridge the gap between theoretical 206

advancements and clinical practice, pushing the 207

field towards automated mental health assessments 208

that maintain the rigor of expert evaluation. 209

3 Methodology 210

3.1 Dataset 211

We use a subset of the Context-Adaptive Multi- 212

modal Informatics (CAMI) dataset, which contains 213

audio-visual recordings of clinical interviews from 214

patients diagnosed with serious mental illness. The 215

subset consists of 236 semi-structured interviews 216

conducted with 140 patients (57.75% male, 40.14% 217

female, 2.11% other; age range 19-74, mean age 218

41.5 years). Three trained research assistants ad- 219

ministered these 30 minutes interviews. While the 220

interviews incorporated multiple psychiatric assess- 221

ment scales including the Positive and Negative 222
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Syndrome Scale-6 (PANSS-6) (Kay et al., 1987)223

and Young Mania Rating Scale (YMRS) (Young224

et al., 1978), this study focuses exclusively on225

the Montgomery-Åsberg Depression Rating Scale226

(MADRS) (Montgomery and Asberg, 1979).227

3.2 Data Preprocessing228

The audio recordings are transcribed and diarized229

to separate patient and clinician speech. The pre-230

processing pipeline begins with WHISPERX (Bakh-231

turina et al., 2023) for audio transcription, followed232

by Qwen 2.5 - 72B Instruct for speaker diariza-233

tion to categorize utterances as patient or clinician234

speech. The same model is used to refine and cor-235

rect transcription inaccuracies.236

3.3 Interview Segmentation237

For each interview transcript, Qwen 2.5 - 72B In-238

struct performs systematic classification of clin-239

ician questions according to the ten MADRS as-240

sessment domains. The model maps each ques-241

tion to the relevant assessment item (apparent242

sadness, reported sadness, inner tension, etc.).243

Question-response pairs are subsequently extracted244

and grouped by their MADRS categories, ensuring245

that each MADRS item assessment is conducted on246

precisely relevant interview segments.247

3.4 MADRS Item Assessment248

For each mapped interview segment, Qwen 2.5249

- 72B Instruct generates zero-shot structured as-250

sessments comprising four elements: item score251

(0-6), justification, supporting utterances, and the252

most relevant clinical question. The assessment253

framework employs two complementary prompting254

components, implemented through a standardized255

prompt architecture (Figure 4 in Appendix).256

Descriptive Cues: Provide MADRS-specific con-257

text, including item definitions, evaluation crite-258

ria, and standardized examples of assessment ques-259

tions.260

Demonstrative Cues: Present exemplar assess-261

ments for each possible score (0-6), featuring anno-262

tated clinician-patient exchanges that demonstrate263

score assignment rationales.264

4 Experimental Setup265

We run the model inference on each interview tran-266

script individually, ensuring that there is no data267

leakage between examples. The model outputs the268

MADRS item scores, explanations, key utterances,269

and the most relevant questions. Each model was270

ran 5 times over the full data. Figure 5 in the Ap- 271

pendix provides a detailed illustration of the assess- 272

ment process, comparing successful and problem- 273

atic cases. 274

4.1 Baselines 275

For comprehensive evaluation, we implement com- 276

parative analyses across several dimensions: 277

Context Scope: We evaluate the efficacy of 278

domain-specific context by comparing two ap- 279

proaches: (1) using mapped interview segments 280

corresponding to individual MADRS items, and (2) 281

processing complete interview transcripts. This 282

comparison assesses whether targeted symptom- 283

specific context enhances assessment precision rel- 284

ative to full-transcript analysis and the model’s abil- 285

ity to identify relevant contextual segments. 286

Model Architecture: We conduct comparative 287

analyses using state-of-the-art language models 288

including LLAMA 3.1 - INSTRUCT (70B) and 289

QWEN 2 - INSTRUCT (72B), benchmarking their 290

performance against our primary QWEN 2.5 - IN- 291

STRUCT (72B) implementation. 292

Parameter Scaling: We analyze the impact of 293

model scale using QWEN 2.5 - INSTRUCT variants 294

(3b, 7b, 14b, 32b, 72b), examining how parameter 295

count influences assessment accuracy and explana- 296

tion coherence across MADRS domains. 297

Prompt Engineering: We conduct ablation 298

studies on our assessment framework, indepen- 299

dently evaluating the contribution of descriptive 300

and demonstrative cues to assessment quality. 301

4.2 Statistical Analysis 302

We employed linear mixed-effects models to ana- 303

lyze our MADRS prediction errors. This approach 304

accounted for the nesting of instances within pa- 305

tients and allowed us to statistically control for 306

patient education and gender, as well as rater dif- 307

ferences. We also decomposed the visit number 308

and token count predictors into within-patient and 309

between-patient components, which allowed us to 310

avoid “Simpson’s paradox” (Hamaker and Muthén, 311

2020). The model formulas are specified as: 312

Yij = β0i + β1VW
ij + β2TW

ij + β3R2ij
+ β4R3ij + εij

β0i = γ00 + γ01VB
i + γ02TB

i + γ03Edui
+ γ04Malei + γ05OtherGenderi + ui

εij ∼ N (0, σ2
ε), ui ∼ N (0, σ2

u)

(1) 313
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Table 1: Comprehensive Performance Metrics for MADRS Items and Scoring Methods. Classification metrics (F1
Score, Accuracy) are for a threshold of ≥ 3 for individual items and ≥ 20 for total scores. MAE = Mean Absolute
Error. ICC(3,k) represents Two-way mixed, average measures, consistency. All items are scored 0–6. Total scores
range from 0–60. Bold indicates best performance, italic indicates worst performance.

MADRS Item MAE R² ICC(3,k) F1 Score Accuracy Class Dist.

Apparent Sadness 0.89 ± 0.01 0.45 ± 0.01 0.83 ± 0.00 0.82 ± 0.00 0.83 ± 0.00 (121, 109)
Reported Sadness 0.72 ± 0.02 0.65 ± 0.01 0.89 ± 0.01 0.87 ± 0.00 0.84 ± 0.00 (90, 140)
Inner Tension 0.55 ± 0.01 0.65 ± 0.01 0.90 ± 0.00 0.89 ± 0.00 0.86 ± 0.00 (76, 155)
Reduced Sleep 0.84 ± 0.01 0.47 ± 0.01 0.83 ± 0.01 0.80 ± 0.01 0.84 ± 0.01 (143, 88)
Reduced Appetite 0.38 ± 0.02 0.77 ± 0.01 0.94 ± 0.00 0.78 ± 0.01 0.91 ± 0.00 (183, 48)
Concent. Diffs. 0.84 ± 0.01 0.53 ± 0.01 0.86 ± 0.00 0.79 ± 0.00 0.80 ± 0.00 (118, 113)
Lassitude 0.65 ± 0.01 0.47 ± 0.02 0.86 ± 0.00 0.76 ± 0.01 0.84 ± 0.01 (160, 70)
Inability to Feel 0.70 ± 0.02 0.63 ± 0.01 0.89 ± 0.00 0.81 ± 0.01 0.87 ± 0.01 (153, 78)
Pess. Thoughts 0.64 ± 0.02 0.64 ± 0.01 0.90 ± 0.00 0.79 ± 0.01 0.83 ± 0.01 (141, 90)
Suic. Thoughts 0.57 ± 0.01 0.71 ± 0.01 0.91 ± 0.00 0.84 ± 0.01 0.90 ± 0.01 (156, 75)

Item-wise Scoring 3.69 ± 0.05 0.84 ± 0.00 0.96 ± 0.00 0.90 ± 0.00 0.88 ± 0.00 (109, 120)

where:314

• Yij : Absolute prediction error for the LLM315

model on instance j of patient i.316

• VW , TW : Within-patient components for visit317

number and token count (e.g., Vij − V i).318

• VB , TB: Between-patient components for319

visit number and token count (e.g., V i).320

• R2, R3: Dummy codes for which rater scored321

each instance: rater 2 or rater 3 (vs. rater 1).322

• Edu: Ordinal variable for patient education.323

• Male, OtherGender: Dummy codes for pa-324

tient gender: male or other (vs. female).325

• β1–β4: Slopes for within-patient effects.326

• γ00: Fixed (or population-level) intercept.327

• γ01–γ05: Slopes for between-patient effects.328

• εij : Level 1 residual error term.329

• ui: Random intercept deviation for patient i.330

5 Results331

Table 1 presents the comprehensive performance332

metrics for each MADRS item and the total score.333

The Qwen 2.5 - 72b Instruct model, guided by334

our prompting strategy, demonstrates strong corre-335

lations with clinician assessments across multiple336

metrics.337

5.1 Impact of Context Scope 338

Figure 3 presents a systematic comparison of er- 339

ror rates between full transcript and item-specific 340

analysis approaches. The results demonstrate con- 341

sistently lower Mean Absolute Error (MAE) rates 342

for item-specific segmented analysis across most 343

MADRS domains, with a notable exception in the 344

assessment of Reported Sadness which seems to 345

benefit from the added context of the full transcript. 346

Table 2: Impact of Different Prompt Cues on MADRS
Score Prediction

Prompt Var.
MAE

Full Section

All Cues 4.90 ± 0.11 3.69 ± 0.05

No Descr. Cues 5.00 ± 0.12 3.62 ± 0.04

No Cues 5.40 ± 0.13 4.37 ± 0.06

No Dem. Cues 5.60 ± 0.14 3.80 ± 0.07

5.2 Model Performance 347

The model performs exceptionally well on certain 348

items, particularly Reduced Appetite (MAE = 0.38 349

± 0.02, R² = 0.77 ± 0.01) and Inner Tension (MAE 350

= 0.55 ± 0.01, R² = 0.65 ± 0.01). Conversely, items 351

like Apparent Sadness (MAE = 0.89 ± 0.01, R² = 352
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Figure 3: Mean absolute error (MAE) comparison between full transcript and item-specific context analysis across
MADRS items, with standard error bars (n=150). Item-specific processing demonstrates reduced error rates relative
to full-transcript analysis (p < 0.01).

Table 3: Performance Comparison of Large Language Models for MADRS Total Score Prediction

Cont. Len.
MAE R2

Full Segmented Full Segmented

Qwen 2.5 Inst. (72B) 128K 4.90 ± 0.11 3.69 ± 0.05 0.69 ± 0.03 0.84 ± 0.00
Llama 3.1 Inst. (70B) 128K 6.12 ± 0.17 4.86 ± 0.18 0.54 ± 0.05 0.74 ± 0.03
Qwen 2 Inst. (72B) 128K 7.10 ± 0.82 4.40 ± 0.20 0.40 ± 0.16 0.78 ± 0.03
Qwen 2.5 Inst. (32B) 128K 15.55 ± 0.20 3.52 ± 0.17 −3.74 ± 0.08 0.85 ± 0.02
Qwen 2.5 Inst. (14B) 128K 15.61 ± 0.19 3.62 ± 0.17 −3.80 ± 0.05 0.84 ± 0.03
Qwen 2.5 Inst. (7B) 128K 17.36 ± 0.22 4.47 ± 0.19 −4.05 ± 0.04 0.77 ± 0.03
Qwen 2.5 Inst. (3B) 32K 19.40 ± 0.24 7.03 ± 0.21 −4.45 ± 0.06 0.50 ± 0.04
Llama 3.1 Inst. (8B) 128K 19.42 ± 0.17 9.96 ± 0.22 −2.27 ± 0.08 0.06 ± 0.04

Note: MADRS = Montgomery-Åsberg Depression Rating Scale; MAE = Mean Absolute Error. Model parameters (B) are shown
in billions. Best performing metrics are highlighted in bold. Negative R2 values indicate poor model fit relative to baseline.

0.45 ± 0.01) and Reduced Sleep (MAE = 0.84 ±353

0.01, R² = 0.47 ± 0.01) show higher error rates and354

lower correlation with clinician ratings. For the355

MADRS total score, the Item-wise method achieves356

an MAE of 3.69 ± 0.05 and an R² of 0.84 ± 0.00, as357

shown in Table 1. This performance demonstrates358

strong correlation with clinician assessments and359

robust predictive capability. In the next subsections,360

we use the item-wise MADRS prediction as our361

primary metric for cross-model comparisons and362

ablation studies.363

5.3 Impact of Different Prompt Cues364

Table 2 presents comprehensive ablation studies365

examining each cue type’s contribution across both366

segmented and full transcript analyses. When an- 367

alyzing full transcripts, removing Demonstrative 368

Cues causes the largest performance degradation 369

(MAE = 5.60 ± 0.14), while the absence of descrip- 370

tive cues shows a more modest impact (MAE = 371

5.00 ± 0.12). For segmented analysis, the pattern 372

persists but with lower overall error rates: remov- 373

ing demonstrative cues yields MAE = 3.80 ± 0.07, 374

while removing descriptive cues results in MAE = 375

3.62 ± 0.04. The optimal performance is achieved 376

with all cues present, yielding MAE = 4.90 ± 0.11 377

for full transcripts and MAE = 3.69 ± 0.05 for seg- 378

mented analysis. 379
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Table 4: Comparison of ICC values for MADRS items
between our study and Iannuzzo et al. (2006)

MADRS Item Our ICC Human ICC

MADRS total 0.96 0.98

Appar. sadness 0.83 0.92

Repor. sadness 0.89 0.94

Inner tension 0.90 0.92

Red. sleep 0.83 0.86

Red. appetite 0.94 0.94

Concentration 0.86 0.90

Lassitude 0.86 0.90

Inabil. to feel 0.89 0.94

Pessim. thoughts 0.90 0.93

Suicid. thoughts 0.91 0.97

5.4 Comparison with Other Models380

As detailed in Table 3, Qwen 2.5 - Instruct (72B)381

demonstrates superior performance across both382

analysis approaches. For full transcript analysis,383

it achieves MAE = 4.90 ± 0.11 and R² = 0.69 ±384

0.03, while segmented analysis yields improved385

results with MAE = 3.69 ± 0.05 and R² = 0.84 ±386

0.00. Llama 3.1 - Instruct (70B) achieves full387

transcript performance of MAE = 6.12 ± 0.17 and388

R² = 0.54 ± 0.05, and segmented analysis results389

of MAE = 4.86 ± 0.18 and R² = 0.74 ± 0.03. Both390

models leverage a 128K token context length, with391

segmented analysis consistently outperforming full392

transcript analysis across both models.393

5.5 Model Size and Performance394

As evidenced in Table 3, model performance scales395

with parameter count. Within the Qwen 2.5 fam-396

ily, models below 32 billion parameters exhibit397

markedly degraded performance in full transcript398

analysis (R² = -4.45 ± 0.06 for 3B variant). The399

smallest architectures demonstrate the poorest met-400

rics, with Qwen 2.5 - Instruct (3B) and Llama401

3.1 - Instruct (8B) yielding MAE values of 19.40402

± 0.24 and 19.42 ± 0.17 respectively.403

While segmented analysis partially mitigates404

these deficits (72B: MAE = 3.69 ± 0.05; 3B: MAE405

= 7.03 ± 0.21), the performance gap between full406

transcript and segmented analysis narrows with in-407

creased model size, suggesting enhanced capacity 408

for managing extended clinical narratives in larger 409

models. Parameter scaling also correlates with pre- 410

diction stability, evidenced by decreasing standard 411

deviations in performance metrics. 412

5.6 Near-Human Level Agreement on 413

MADRS Ratings 414

Table 4 demonstrates the model’s Intraclass Cor- 415

relation Coefficient (ICC) across MADRS items, 416

revealing a noteworthy pattern when compared to 417

inter-rater reliability benchmarks from Iannuzzo 418

et al. (2006). The model achieves exemplary agree- 419

ment on Reduced Appetite (ICC 0.94 vs. 0.94) and 420

strong performance on Reported Sadness (ICC 0.89 421

vs. 0.94). Notably, as the ICC between our model 422

and research assistants varies across different items, 423

similar variations are observed in the human inter- 424

rater reliability scores from Iannuzzo et al. (2006), 425

with the exception of Inner Tension assessment. 426

These findings underscore a fundamental chal- 427

lenge in psychiatric assessment: the absence of an 428

absolute ground truth against which to measure per- 429

formance. Disagreements between the model and 430

research assistants may reflect not only algorithmic 431

limitations but also the inherent subjectivity in clin- 432

ical assessment—a challenge that similarly affects 433

human rater concordance. Despite these measure- 434

ment challenges, the model achieves both high ab- 435

solute performance metrics and strong correlation 436

with patterns of human inter-rater reliability, sug- 437

gesting robust and clinically relevant assessment 438

capabilities. 439

5.7 Error Analysis 440

Linear mixed-effects models identified significant 441

predictors of MADRS assessment errors (Table 5). 442

Rater identity emerged as a primary predictor of 443

error magnitude, with Rater R2’s assessments as- 444

sociated with increased prediction errors for In- 445

ner Tension (0.81), Pessimistic Thoughts (0.85), 446

and Concentration Difficulties (0.73), while show- 447

ing decreased errors for Reported Sadness (-0.62). 448

Similarly, Rater R1’s assessments corresponded 449

to higher prediction errors across Inner Tension 450

(0.57), Concentration Difficulties (0.71), Reduced 451

Appetite (0.56), and Lassitude (0.40). The analysis 452

revealed that higher between-patient visit num- 453

bers corresponded to reduced errors in Inability 454

to Feel assessment (-0.20). Patient characteristics 455

also influenced error patterns: higher education 456

levels corresponded to increased errors in Concen- 457
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Table 5: Feature Importance Analysis for MADRS Items

MADRS Item VB Edu Age

Reported Sadness – – 0.12
Inner Tension – – –
Reduced Appetite – – –
Concentration Difficulties – 0.26 –
Lassitude – – –
Inability to Feel -0.20 – –

MADRS Item R1 R2

Reported Sadness – -0.62
Inner Tension 0.57 0.81
Reduced Appetite 0.56 –
Concentration Difficulties 0.71 0.73
Lassitude 0.40 –
Pessimistic Thoughts – 0.85

Note: VB: Visit Number (Between-Patient), Edu: Education Level, R1: Rater 1, R2: Rater 2. Values indicate feature importance
coefficients. ’–’ indicates non-significant coefficients.

tration Difficulties (0.26), while increased age was458

associated with higher errors in Reported Sadness459

assessment (0.12).460

6 Discussion461

Our comprehensive analysis of LLAMADRS re-462

veals crucial insights into the potential and limita-463

tions of LLM-based depression assessment. We464

structure our discussion around key empirical find-465

ings and their implications for clinical applications.466

6.1 Performance Analysis467

The superior performance of Qwen 2.5 - 72B in468

segmented analysis (MAE = 3.69 ± 0.05, R² = 0.84469

± 0.00) demonstrates the viability of LLM-based470

depression assessment. This performance level,471

approaching human rater reliability (ICC = 0.94472

for Reduced Appetite), suggests potential clinical473

utility. However, the degraded performance in full474

transcript analysis (MAE = 4.90 ± 0.11) highlights475

the importance of structured input processing.476

6.2 Architectural and Methodological Insights477

Our ablation studies reveal two critical findings.478

First, the significant impact of demonstrative cues479

(MAE increase to 5.60 ± 0.14 without them) under-480

scores the importance of example-based guidance481

in clinical assessment tasks. Second, the clear scal-482

ing relationship with model size, particularly in483

full transcript analysis, suggests that increased pa-484

rameter count enhances both raw performance and485

context management capabilities.486

6.3 Clinical Assessment Patterns487

Performance variation across MADRS items re-488

veals systematic patterns. Strong performance on489

concrete symptoms (e.g., Reduced Appetite, MAE490

= 0.38 ± 0.02) contrasts with challenges in assess-491

ing subjective states (e.g., Apparent Sadness, MAE492

= 0.89 ± 0.01). This pattern aligns with clinical 493

intuition: concrete symptoms typically have clearer 494

linguistic markers and more consistent reporting 495

patterns. 496

6.4 Implementation Considerations 497

The substantial performance gap between seg- 498

mented and full transcript analysis suggests practi- 499

cal implementation strategies. While larger mod- 500

els demonstrate enhanced capability for process- 501

ing complete interviews, the superior performance 502

of segmented analysis indicates that structured in- 503

put processing remains beneficial across all model 504

scales. This finding has direct implications for clin- 505

ical deployment, suggesting a hybrid approach that 506

combines automated segmentation with focused 507

assessment. 508

7 Conclusion 509

This study establishes LLAMADRS as a viable 510

framework for automated depression severity as- 511

sessment using open-source Large Language 512

Models. Through systematic evaluation on 236 513

real-world clinical interviews, we demonstrate that 514

carefully engineered prompting strategies enable 515

Qwen 2.5–72b to achieve near-human reliability 516

in specific MADRS domains. The superior perfor- 517

mance in concrete symptom assessment validates 518

the potential of LLM-based approaches for clini- 519

cal applications. Our comprehensive analysis re- 520

veals that segmented processing consistently out- 521

performs full-transcript analysis, highlighting the 522

importance of structured input handling in clinical 523

assessments. The clear relationship between model 524

scale and performance, particularly in managing ex- 525

tended clinical narratives, provides crucial insights 526

for future work on this topic. 527
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8 Limitations528

Our study faces several key limitations in its current529

form. The reliance on transcribed text data omits530

important non-verbal cues crucial for assessing531

symptoms like Apparent Sadness, where visual and532

auditory signals play vital roles. Our dataset’s fo-533

cus on inpatient settings may limit generalizability534

to other contexts. Additionally, the computational535

requirements of our best-performing models may536

restrict implementation in resource-constrained set-537

tings. Finally, the model may miss subtle clinical538

nuances that experienced human raters might catch,539

particularly in complex cases.540

9 Ethical Considerations541

The deployment of AI systems for mental health542

assessment requires careful ethical consideration.543

Our system is designed to support, not replace, clin-544

ical decision-making, with final decisions remain-545

ing with qualified healthcare professionals. Patient546

privacy and informed consent are paramount, re-547

quiring robust data protection measures and clear548

communication about the system’s role and limita-549

tions. While this technology could increase access550

to mental health assessment in resource-limited551

settings, care must be taken to ensure it doesn’t552

exacerbate healthcare disparities. Extensive valida-553

tion across diverse populations remains necessary554

before clinical deployment.555
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A Methodological Details774

B Computational Details775

All experiments were conducted using NVIDIA776

A100 GPUs with 80GB memory.777

C Model Details778

C.1 Architecture and Parameters779

The Qwen 2.5 architecture implements a decoder-780

only transformer with approximately 72 billion781

parameters (72B). We utilized the Qwen-72B-782

Instruct variant, which has undergone instruction-783

tuning to enhance its performance on natural lan-784

guage instructions and multi-turn conversations.785

C.2 Implementation and Inference786

The model was accessed and deployed through the787

Hugging Face Transformers library (version 4.36.2)788

and the VLLM inference framework, which enables789

efficient serving through automatic quantization790

and optimization techniques. We maintained con- 791

sistency across our experimental framework by uti- 792

lizing the same library stack for all baseline models 793

in our comparative analysis. 794

C.3 Generation Parameters 795

For all inference tasks, we employed a standardized 796

configuration with the following hyperparameters: 797

• Temperature (τ ) = 0.6, controlling the random- 798

ness in the output distribution 799

• Top-p (nucleus sampling) = 0.9, limiting the 800

cumulative probability mass for token selec- 801

tion 802

• Maximum sequence length = 500 tokens 803

• 4-bit quantization 804

This configuration was selected to balance out- 805

put quality and diversity while maintaining repro- 806

ducibility across experimental conditions. The rela- 807

tively conservative temperature setting of 0.6 helps 808

maintain coherent outputs while allowing for suffi- 809

cient variability in generated responses. 810
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MADRS Assessment Prompt Structure

Task Description:

Analyze a diarized transcript of a psychiatric session where the Montgomery-Åsberg Depression Rating Scale
(MADRS) questionnaire is being administered. Predict the rating (0-6) that the practitioner would likely give for the
specified MADRS item based on the patient’s responses and the conversation.

MADRS Item Components:
• Item Name: Reported Sadness
• Description: Represents reports of depressed mood, regardless of whether it is reflected in appearance or not. Includes

low spirits, despondency or the feeling of being beyond help and without hope.
• Key Questions:

– In the past week, have you been feeling sad or unhappy?
– Does the feeling lift at all if something good happens?
– How much of each day? How many days this week?

Rating Scale (0-6):

• 0: Occasional sadness in keeping with circumstances
• 2: Sad or low but brightens up without difficulty
• 4: Pervasive feelings of sadness or gloominess
• 6: Continuous or unvarying sadness, misery
– (Odd numbers represent intermediate states)

Required Output Format:

Rating: [0-6]
Explanation: [2-3 sentences]
Key Utterances: [relevant lines]
Most Relevant Question: [from transcript]

Figure 4: Structured Prompt for MADRS Assessment. The prompt provides comprehensive guidance for
analyzing psychiatric interview transcripts and assigning depression severity ratings. It includes the core components:
task description, item definition, standardized questions, rating scale definitions, and required output format. This
structure ensures consistent assessment across different raters and maintains compatibility with clinical standards.
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Example A: Reported Sadness
(Accurate Assessment)

Transcript Excerpt:

RA: Have you been feeling sad or unhappy?
Pt: Just a little bit with this stuff going on...
RA: How much of the time felt sad?
Pt: Probably like 30%, 25%.
RA: Does your mood lift with good events?
Pt: Yeah.

Model Assessment:

• Model Rating:

0 1 2 3 4 5 6

2

• Ground Truth:

0 1 2 3 4 5 6

2

• Rationale: The patient reports feeling sad about
25-30% of the time due to the situation with the
substance abuse program and the ultimatum from
the psychiatrist. However, the sadness is not perva-
sive, and the mood does lift when something good
happens. This suggests a mild level of sadness that
is still influenced by external circumstances.

Example B: Apparent Sadness
(Inaccurate Assessment)

Transcript Excerpt:

RA: Have you appeared sad to others lately?
Pt: Maybe a little, yeah.
RA: Have people commented on it?
Pt: Staff asked if I’m okay a couple times...
RA: Often looking sad, or occasionally?
Pt: Occasionally. Past two days, felt good.

Model Assessment:

• Model Rating:

0 1 2 3 4 5 6

4

• Ground Truth:

0 1 2 3 4 5 6

0

• Rationale: The patient reports that they have looked
sad or depressed to others, particularly to staff and
family, and that this appearance was consistent dur-
ing the period of depression, which lasted for about
two weeks. They also indicate that they have been
able to laugh or smile, but this has not been a con-
sistent state throughout the week.

Figure 5: Representative Examples of LLAMADRS Assessment Performance. Comparison of two cases
demonstrating the model’s varying capability in MADRS item scoring. Example A shows accurate interpretation of
reported sadness, matching the ground truth score of 2/6. Example B reveals a significant deviation from ground
truth (4/6 vs 0/6), highlighting challenges in interpreting qualitative responses and temporal context for apparent
sadness assessment.
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