
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SCALABLE BAYESIAN ACTIVE LEARNING WITH
BATCH ACQUISITION UNDER DISTRIBUTION SHIFT

Anonymous authors
Paper under double-blind review

ABSTRACT

The performance of machine learning models may suffer from significant decline
when evaluated on the data exhibiting distribution shift. Although extensive re-
search on algorithm design have been proposed, the acquisition of new data points
to enlarge training datasets has also been verified as a promising solution path.
Starting from this idea, we built our research upon bayesian active learning and
propose a method that can efficiently acquire samples from a candidate pool of di-
verse data sources for improving performance on the shifted target population.
Specifically, our method designs a novel acquisition function characterizing a
Lower Bound of Batch Information Gain (LB-BatchIG) for target distribution and
formulates batch acquisition as a submodular optimization problem. By resolv-
ing it with a greedy algorithm, we can determine the data batch from the candi-
date pool for annotation and training. Empirical studies on synthetic datasets and
real-world datasets, including tabular data and image data, demonstrate that our
batch acquisition algorithm can contribute to greater performance improvement
than other algorithms.

1 INTRODUCTION

With the remarkable advancement, machine learning has been widely applied in many scenarios and
achieved promising performance. Owing to the prominent capability, the models can minimize the
predictive loss and achieve impressive performance on the data population of the same distribution
to training data. Unfortunately, when applied in the wild applications, machine learning models
can encounter the test data from a shifted distribution, which violates independent and identically
distributed (i.i.d) assumption and induces notably performance deterioration.

To improve the generalization ability towards out-of-distribution (OOD) data, a bunch of researches
have been proposed and offer promising solutions by more provable and carefully designed learning
models, such as invariant learning (Arjovsky et al., 2019) and distributionally robust optimization
(DRO) (Mohajerin Esfahani & Kuhn, 2018; Duchi & Namkoong, 2021), while maintaining the
original training data. In contrast, from a data-centered perspective, recent researches (Liu et al.,
2024; Fu et al., 2021) uncovered the great significance of collecting more samples for generalization.
Motivated by this, we explore methods to augment the training data with additional samples, thereby
improving generalization to the shifted target distribution. Given the labor costs and ethical concerns
associated with data annotation, it is important to investigate how to achieve optimal generalization
performance under a limited acquisition budget.

To this end, active learning offers a promising approach by querying samples that are beneficial
to model performance from a candidate pool. More specifically, the candidate pool is expected to
comprise diverse samples whose contribution to model performance varies. Within the acquisition
budget, conventional active learning algorithms attempt to select the most informative samples based
on acquisition criteria from distinct categories, such as uncertainty (Ducoffe & Precioso, 2018; Joshi
et al., 2009; Ržička et al., 2020), model influence (Fukumizu, 2000; Zhang & Oles, 2000; Ash et al.,
2020; Gal et al., 2017), and representativeness (Liu et al., 2016; Sener & Savarese, 2017b; Qin
et al., 2021; Chattopadhyay et al., 2013; Yu et al., 2006; Yang et al., 2017). However, they are
primarily designed without accounting for the distributional shift from training to target data. To
bridge this gap, recent efforts in Active Domain Adaptation (ADA) (Rangwani et al., 2021; Prabhu
et al., 2021) acquire samples directly from the target domain. This approach, nevertheless, imposes
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another restrictive requirements on the candidate pool, serving as a condition that may not hold in
many practical scenarios.

To overcome the above issues, we aim to propose a scalable and provable criteria towards selecting
a batch of samples for generalization to shifted target distribution. Fortunately, we observe that the
development of Bayesian active learning (Sun et al., 2015; Haut et al., 2018; Kirsch et al., 2019; Gal
et al., 2017; Houlsby et al., 2011) offers new opportunities to guide our expected sample acquisition.
As a representative, a acquisition criteria, termed EPIG (Smith et al., 2023), is proposed to measure
the predictive information gain on target data distribution brought by a single, unlabeled sample.
However, such criteria suffers from the severe dilemma on the scalability issue, as it only supports
selecting sample with the highest criteria. Specifically, directly extending it by selecting the top
K ones with the highest EPIG (notated EPIG) or stochastically selecting samples with EPIG-based
probability (notated PowerEPIG) will tend to select similar samples and suffer from redundant in-
formation problem. As shown in Figure 1, these straightforward extensions can induce prohibitively
high mutual predictive information gain among the samples in selected batch, especially directly
selecting top K ones.
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Figure 1: The results are obtained on the syn-
thetic experiments (see details in section 4) with
α = 1200 and acquisition size c = 50. Mutual
predictive IG refers to the predictive information
gain provided to other samples within the batch,
while target predictive IG denotes the individual
information gain contributed to the target data dis-
tribution.

Therefore, in this paper, we propose to facilitate
a more scalable Bayesian active learning crite-
ria at batch-level. Specifically, our approach
theoretically characterizes a Lower Bound of
Batch Information Gain(LB-BatchIG) for tar-
get population, thus avoiding the trivial sum
of individual criteria on samples (Smith et al.,
2023). As the number of potential batches
is combinatorial relative to the pool size and
batch size, identifying the optimal batch for our
LB-BatchIG exhibits high time complexity if
one enumerates the whole the candidate batches
directly. To further improve the algorithm ef-
ficiency, we theoretically prove the submodu-
lar property of this combinational optimization
problem. Consequently, an efficient greedy so-
lution can be derived with the time complexity
polynomial to the size of data pool and batch.
Finally, the acquired batch by our LB-BatchIG
can be guaranteed at least (1− 1

e )-optimal (e is the natural constant) to the optimal (oracle) batch.

We conduct extensive experiments on synthetic datasets and real-world datasets, including tabular
data and image data. In each experiment, the test dataset adheres to the target distribution distinct
from both the training dataset and candidate pool. We compare our algorithm with baselines by
iteratively acquiring new samples of given budget for annotation, adding them to the training data,
and retraining the model. The experimental results show that with the same acquisition budget, the
model trained on the samples selected by our algorithm achieves superior performance than other
methods. The main contributions of this paper can be summarized as following:

• To the best of our knowledge, we are the first to investigate tractable acquisition function
at batch-level for enhancing the model performance under distribution shift.

• We propose a novel acquisition function denoted as LB-BatchIG which supports acquiring
data batch efficiently. We prove this function satisfies the submodular property and propose
a greedy algorithm to maximize it.

• We conduct extensive experiments on synthetic datasets and real-world datasets to verify
the effectiveness of our proposed algorithm.

2 PRELIMINARIES

In this section, we introduce our problem formulation and bayesian active learning which is the
cornerstone of our method.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.1 PROBLEM FORMULATION

We denote X ∈ Rd as covariates and y ∈ Y as label. This paper focuses on classification problem,
thereby Y = [K]. The initial training dataset is given asDtr = {(xtr

i , ytri )}1≤i≤ntr
. To enhance the

model performance on the shifted target distribution pt(X,y), we aim to select samples from a large
unlabeled poolDpo = {xpo

i }1≤i≤npo
, annotate them and supplement them into training dataset. The

acquisition process consists of t rounds, and in each round c samples are acquired. Therefore, the
total acquisition budget is g = t · c. The closed-form probability density of test distribution pt(X) is
usually difficult to obtain. Hence, we denote the target distribution as the collection of test samples
Dte = {xte

i }1≤i≤nte .

2.2 BAYESIAN ACTIVE LEARNING

Bayesian active learning borrows the idea of bayesian experimental design (Lindley, 1956; Chaloner
& Verdinelli, 1995) which quantifies the information gain of interest variables from experiments.

To adapt bayesian experimental design to active learning, the designed experiment is defined as
covariate X and the outcome of experiment is defined as the label y. Assuming the predictive model
fθ(y|X) with parameter θ characterizes the dependency between X and y, BALD (Houlsby et al.,
2011; Gal et al., 2017; Kirsch et al., 2019) takes the model parameter θ as the interest variables and
search the sample x that can reduce the entropy of θ to the maximal extent. Formally, it can be
formulated as:

argmax
x

H[θ|D]− Ep(y|x;D)[H[θ|D,x, y]], (1)

where H(·) is the shannon entropy, D is the dataset has been annotated and p(y|x;D) =
Ep(θ|D)[p(y|x, θ)] is the posterior predictive distribution marginalized over model parameter θ.
However, (Smith et al., 2023) pointed out that predictive uncertainty is mismatched with param-
eter uncertainty, and therefore propose an acquisition function of prediction-oriented manner. The
acquisition function expected predictive information gain (EPIG) is designed for single data point.

EPIG(x) = Ept(x∗),p(y,y∗|x,x∗;D)

[
log

p(y,y∗|x,x∗;D)
p(y|x;D)p(y∗|x∗;D)

]
, (2)

where pt(x∗) represents the covariate distribution of target population.

Repeatedly acquiring only one sample with highest EPIG score would result in excessively many
acquisition rounds. Though we can directly adapt this method to select samples of top-K EPIG
value and consequently reduce the acquisition rounds, it would suffer from redundant information
problem and lead to sub-optimal performance.

Summarily, it is essential to propose a new acquisition function for batch samples that considers
simultaneously the reduction of predictive uncertainty on target population as well as the diversity
of batch.

3 PROPOSED METHOD

In this section, we firstly propose our acquisition function LB-BatchIG. Then we conduct theoretical
analysis to reveal that it satisfies the sub-modular property. Based on this theoretical finding, we can
apply greedy algorithm to resolve the problem of searching batch with maximum LB-BatchIG.

3.1 ACQUISITION FUNCTION: LB-BATCHIG

By extending the idea of bayesian active learning, we characterize the information gain brought by
batch samples {xb

i}1≤i≤c to the prediction on the target population pt(x∗) as follows:
Ept(x∗)

[
BIG({xb

i},x∗)
]
, (3)

where the function BIG(·) is defined as:

BIG({xb
i},x∗) = Ep(yb

1,...,y
b
K ,y∗|xb

1,...,x
b
K ,x∗;D)

[
log

p(yb
1,...,yb

K,y∗|xb
1,...,xb

K,x∗;D)

p(yb
1,...,yb

K
|xb

1,...,xb
K

;D)p(y∗|x∗;D)

]
. (4)
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However, the numeric value of Equation 3 is difficult to exactly calculate since it involves the joint
probability density estimation of multiple variables. Therefore, we propose an alternative measure-
ment as the substitute, which bypasses the calculation of multi-dimensional probability and can be
significantly easier to compute. Specifically, the formula of the substitute measurement is

LB-BatchIG({xb
i}) = Ept(x∗)

[
max
1≤i≤c

IG(xb
i ,x

∗)

]
, (5)

where the function IG(·) is

IG(x,x∗) = Ep(y,y∗|x,x∗;D)

[
log

p(y,y∗|x,x∗;D)
p(y|x;D)p(y∗|x∗;D)

]
. (6)

It can be proved that the measurement LB-BatchIG({xb
i}) is a lower bound of Equation 3. Hence, we

can achieve the high predictive information gain brought by batch samples {xb
i} through maximizing

the objective of LB-BatchIG. Formally, it can be theoretically revealed with the following theorem.
Theorem 3.1. According to the information theory, we have

LB-BatchIG({xb
i}) ≤ Ept(x∗)

[
BIG({xb

i},x∗)
]
. (7)

The detailed proof can be found in the section of appendix B.

3.2 SUB-MODULAR PROPERTY OF LB-BATCHIG

The optimization of LB-BatchIG is a combinatorial search problem with the number of potential so-
lutions Ccnpo

. The brute force method that directly enumerates the candidate batches and selects the
one of the highest score is of exponential time complexity and computationally expensive. There-
fore, it is in urgent need to design an efficient algorithm which produces a near-optimal solution
with less computational cost.

The submodular property of the acquisition function brings the opportunity to solve the batch opti-
mization problem with polynomial complexity. The definition of submodular function is as follows:
Definition 3.1. Given a set V = {v1, v2, ..., vm}, a function f : 2V → R taking subset of V as
input is a submodular function if the inequality holds:

f(A) + f(B) ≥ f(A ∩B) + f(A ∪B), ∀A,B ⊂ V (8)
The literature (Nemhauser et al., 1978) unveils that the optimization of normalized monotone non-
decreasing submodular function with cardinality constraint, formally maxS⊂V,|S|=c f(S), can be
resolved by greedy algorithm. The resulting solution approximates the optimal one with a factor at
least 1− 1/e ≈ 0.632. In this way, the time cost is significantly reduced.

Fortunately, through theoretical analysis, we can prove the proposed acquisition function LB-
BatchIG satisfies the submodularity property.
Proposition 3.1. Regarding the unlabeled pool as the element set V in Definition 3.1 and the sample
batch as the subset, the acquisition function LB-BatchIG is a normalized monotone non-decreasing
submodular function.

The detailed proof can be found in the appendix B. Based on this promising property of our criterion,
we design an efficient greedy algorithm to pursue a near-optimal sample batch.

3.3 IMPLEMENTATION

We successively introduce the details of our algorithms, including the acquisition function estima-
tion and the batch construction process.

LB-BatchIG Estimation We firstly repeatedly draw a series of model parameters {θl}1≤l≤m from
posterior distribution and calculate two matrices O ∈ RK×K and Q ∈ RK×K :

oi,j =
1

m

m∑
l=1

p(y = i|x, θl) · p(y = j|x∗, θl),

qi,j =
1

m

m∑
l=1

p(y = i|x, θl) ·
1

m

m∑
l=1

p(y = j|x∗, θl),

4
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where θl ∼ p(θ|D), 1 ≤ l ≤ m. The values of oi,j and qi,j are the empirical approximations of
p(y = i,y∗ = j|x,x∗;D) and p(y = i|x;D) · p(y∗ = j|x∗;D) respectively.

Based on the calculated matrices O and Q, we can empirically estimate the function IG(x,x∗) as
follows:

ÎG(x,x∗) =

K∑
i=1

K∑
j=1

oi,j · log
oi,j
qi,j

. (9)

By sampling x∗ from the target distribution pt(x∗), we can estimate the acquisition function for
{xb

i}1≤i≤c through the equation:

LB-BatchIG({xb
i}) ≈

1

s

s∑
j=1

max
1≤i≤c

ÎG(xb
i ,x

∗
j ) (10)

Batch Construction Owing to the promising property of normalized monotone non-decreasing sub-
modular function, we propose a greedy algorithm to construct the acquisition sample batch. The
algorithm consists of three steps.

• Firstly, the acquisition batch is initialized as an empty set. Formally, B0 = ∅.
• We iteratively add c samples into the acquisition batch. In the ith iteration, we search for

the sample xpo
bi

with the largest improvement of LB-BatchIG. Formally, this means

bi = arg max
1≤l≤npo

LB-BatchIG(Bi−1 ∪ xpo
l ). (11)

Then the selected sample is incorporated in to the acquisition batch Bi = Bi−1 ∪ xpo
bi

.

• Finally, the resulting batch Bc = {xb
i}1≤i≤c is the obtained batch for annotation.

The pseudo-code of the greedy algorithm can be found in the appendix D. After the batch Bc is
obtained, the samples are removed from the unlabeled pool. The new pool is updated as Dpo ←
Dpo \Bc. After annotating the oracle label {ybi }1≤i≤c for Bc, the samples are added into the training
dataset, which means Dtr ← Dtr ∪ {xb

i , y
b
i }1≤i≤c.

3.4 TIME COMPLEXITY

The time complexity of calculating function IG(x,x∗) isO(mK2). Computing the acquisition func-
tion for the batch of size c requires O(cs) times of calculating IG function. Running our proposed
algorithm consumes O(cnpo) times of calculating LB-BatchIG. In contrast, the direct enumeration
method needs to sweep all the Ccnpo

potential candidates. Since c ≪ npo, the times of LB-BatchIG
calculation for enumeration method approximately equals O(nc

po).

4 EXPERIMENT

We evaluate our proposed batch acquisition algorithm on diverse datasets, including synthetic data,
tabular data and image data.

4.1 EXPERIMENTAL SETUP

Baselines To demonstrate the effectiveness of our proposed method, we implement the following
baselines for comparision:

• Uniform: This method randomly selects c samples from the candidate pool in each round
without preference.

• EPIG (Smith et al., 2023): The original version of the method repeatedly select the sample
with the highest expected predictive information gain (EPIG) score. To accommodate the
batch acquisition setting, we simply adapt this method to rank the samples by EPIG score
and choose the top-K samples in one round.

5
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(a) α = 600
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(b) α = 1200
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Figure 2: The results on the synthetic datasets under the settings with varied sample size α from
the same subpopulation as the target population. The curves present the mean value of regret in
10 repeated experiments. The shaded region presents the interval [mean− std,mean + std] of the
regret.

• PowerEPIG (Kirsch, 2021): It stochastically selects the samples with the normalized prob-
abilities proportional to the EPIG score to the γth power. Specifically, we set γ = 5 as the
previous literature (Kirsch, 2021) suggested.

• BADGE (Ash et al., 2020): It computes the gradient-based embedding for each sample and
runs k-means++ algorithm (Arthur & Vassilvitskii, 2007) to construct a batch of samples
with diverse and representative embeddings.

Evaluation metric The data acquisition process consists of t rounds. After each round, we retrain
the predictive model on the enlarged training dataset including the original training samples and the
samples selected by algorithms from the candidate pool. The accuracy of the retrained model on the
target population for each round is recorded.

We repeat the above process several times and calculate the mean value and standard deviation of
the accuracy across the repeated experiments.

Model Setup To enable uncertainty estimation, we adopt the MC Dropout (Gal & Ghahramani,
2016) technology for the predictive models. Specifically, the dropout layers are kept activated during
the inference. Therefore, the random activation of dropout unit can be viewed as sampling from the
posterior parameter distribution, and the prediction result can be varied across multiple inferences.
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(d) LB-BatchIG

Figure 3: The results on the synthetic datasets with varied batch size of acquisition. The experiments
are conducted under the setting where α = 600.

4.2 SYNTHETIC DATA

Experimental setup We generate the synthetic data of binary classification task. The samples come
from three distinct data subpopulations. Specifically, the covariates X ∈ Rd consists of two parts,
the first d1 = d− 3 elements of X are independently drawn from standard gaussian distribution:

x,1, x,2, ..., x,d1

iid∼ N (0, 1).
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Figure 4: The average sample proportion from
the subpopulations in an acquired batch. The
results are calculated under the setting where
α = 600, c = 50.
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Figure 5: The value distribution of batch
diversity measurements across the acquisi-
tion process of EPIG, PowerEPIG and LB-
BatchIG.

Each sample belongs to a subpopulation si ∈ {0, 1, 2}. Based on the covariates and sub-
population index, the ground truth labels yi ∈ {0, 1} are generated by the functions: yi =

I
(∑d1

j=1 xi,jβsi,j > 0
)
, where I(·) is the indicator function, and βk ∈ Rd1 , 0 ≤ k ≤ 2 are co-

efficient vectors specific to each subpopulation.

The element of βk is also drawn from standard gaussian distribution. The last three elements of
covariates indicate the subpopulation index and represented as one-hot encoding. Specifically, we
set xi,d1+si = 1, xi,d1+j = 0,∀j ̸= si.

We can induce distribution shift by adjusting the proportion of the subpopulations. Therefore, we
construct the initial training datasets, candidate pools and target population with different composi-
tions. The training datasets and target population are dominated by different subpopulations, while
the candidate pool contains a large number of samples from different subpopulations. The detailed
compositions are listed in the Appendix C.

For the model architecture, we adopt the neural networks consists of three fully connect layers with
the hidden size equal to 32. We place dropout layer at the first hidden layer and set the dropout rate
as 0.1.

Results We conduct repeated experiments for 10 times with varied sample size α of subpopulation
s = 2. The sample acquisition process consists of t = 12 rounds, and in each round c = 50 samples
are selected. The results can be found in Figure 2.

From the results, we find that uniform acquisition method achieves worst performance across the
methods. This is because it neglects the distinction of samples in improving models and fails to
identify the beneficial samples for training.

The EPIG and BADGE method can achieve better performance than Uniform since they consider the
contribution difference to model among samples and try to select more beneficial samples. However,
the improvement brought by them is limited because of the redundant information and distribution
shift problem respectively. When the sample size α increases, the proportion of samples belonging
to the same subpopulation as target in the candidate pool also increases. The distribution shift
problem is less severe. Therefore, the performances of BADGE and Uniform both are improved. The
PowerEPIG method introduces diversity property into EPIG, and mitigate the redundant information
problem. However, it does not explicitly optimize the predictive information gain of a batch, and
thereby achieve sub-optimal performance.

We display the average sample proportion from the subpopulations in an acquired batch in Figure
4. From the results, we can observe that EPIG, PowerEPIG and LB-BatchIG focus on the predictive
information gain on the target population and successfully identify the samples belonging to the
same subpopulation (i.e. subpopulation s = 1).

However, when the sample size α increases, the performance of EPIG degrades. This is mainly
because that the larger α leads to larger sample density in the same covariate region, which facilitate

7
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Figure 6: The results on the tabular datasets under the different settings with different prediction
tasks and state composition for training datasets, candidate pool and target population.

more severe redundant information problem. We aggregate the variance of the covariate elements
{x,1, x,2, ..., x,d1

} of the acquired sample batch which measures the diversity of the selected sam-
ples. From the results in Figure 5, we observe that the diversity measurement of EPIG decreases
with larger α which confirms our conjecture. In contrast, our proposed method achieves more di-
verse acquisition regardless of the composition of candidate pool, and thereby performs better than
other methods.

Batch Size Analysis We change the batch size of single acquisition (as well as the acquisition
rounds) to examine the effect of it on the performance curve. The results can be found in the Figure
3. EPIG and PowerEPIG underperforms with larger c due to more severe redundant information
problem, while our proposed method is robust to the batch size variation and achieves superior
performance.

4.3 TABULAR DATA

Ding et al. (2021) construct a series of datasets from available US Census sources spanning over
multiple years, states of the United States and various prediction tasks for the research on algorithmic
fairness and distribution shift.

Experimental setup The data sources involve several prediction tasks. We choose the income
and employment prediction as the benchmark to validate the effectiveness of methods. To create
distribution shift, in this paper we leverage the available meta-information of states to constitute the
different subpopulation composition. For each prediction task, we set up two experiment settings
about different distribution shift respectively. The detailed information about the composition of the
training dataset, candidate pool and target population can be found in the Appendix C.

We follow the same setup as the synthetic experiments and adopt the neural networks consists of
three fully connect layers with the hidden size equal to 32. We place dropout layer at the first hidden
layer and set the dropout rate as 0.1.

Results We repeat the experiments 10 times for each experimental setups about the prediction task
and state compositions. The experimental results can be found in Figure 6. The overall trend is
consistent with that of the synthetic dataset. On the whole, the Uniform performs worse than the
other methods since it reflects no preference over the beneficial samples for performance improve-
ment. Generally, the EPIG method achieves the second best performance especially in the income
prediction task. However, in the employment prediction task, its advantage over other methods
suffers from significant deterioration. It may be because in the employment prediction task, the
samples with large predictive information gain tend to cluster and result in severe redundant in-
formation problem. In contrast, our method consistently accomplishes promising performance and
outperforms the baselines.

4.4 IMAGE DATA

Domain generalization (Wang et al., 2022; Zhou et al., 2022) is an important branch of research
developing the better performing models when encountering distribution shift. We leverage the
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Figure 7: The results on the image datasets, including VLCS, PACS and NICO++ benchmarks.

typical benchmarks of domain generalization in computer vision field to examine the effectiveness
of our method.

Experimental setup We leverage three representative benchmarks respectively to construct datasets
for experiments, that are VLCS (Fang et al., 2013), PACS (Li et al., 2017) and NICO++ (Zhang
et al., 2023). The VLCS benchmark is composed by different data sources including PASCAL
VOC (Everingham et al., 2010), Caltech101 (Griffin et al., 2007), LabelMe (Russell et al., 2008)
and SUN09 (Choi et al., 2010) datasets. The PACS and NICO++ benchmarks consist of images
from different domains. We control the proportion of different data sources or domains to manifest
distribution shift among training dataset, candidate pool and target population. The detailed infor-
mation about the composition of the training dataset, candidate pool and target population can be
found in the Appendix C.

For the model architecutre, we adopt the Resnet18 (He et al., 2016) as the backbone and place
dropout layer the last hidden layer with the dropout rate as 0.5.

Result We follow the same experiment settings as the previous experiments. Specifically, the batch
size of single acquisition is set as c = 50, and we conduct the repeated experiments for 10 times.

The results are shown in Figure 7. The results further reinforce the conclusion we obtain in the
previous experiments. Generally, the Uniform method underperforms the other methods since it
ignores the distinction among the samples in improving model prediction and does not prefer the
samples contributing more to the model performance. The BADGE and EPIG methods improve
upon Uniform, but achieve suboptimal performance because of the distribution shift and redundant
information problem respectively. PowerEPIG incorporate the diversity into acquisition process in
a straightforward way. Our proposed acquisition function LB-BatchIG characterize the acquisition
criteria at batch-level, which simultaneously considers the predictive information gain on the shifted
target population and the diversity of acquired sample batch, and consistently achieves the best
performance.

5 CONCLUSION AND LIMITATION

In this paper, we investigate how to acquire new samples from the candidate data pool for improv-
ing the model performance on a shifted target population. We propose a novel acquisition function
LB-BatchIG that is built upon predictive information gain on the target population to address the
distribution shift, while considering the diversity of acquired batch to alleviate the redundant in-
formation problem. We also utilize the submodular property of the acquisition function to solve
the optimization problem with greedy algorithm. Extensive experiments on the different datasets
demonstrate the effectiveness of our method.

The greedy algorithm is an approximation solution to the batch acquisition. Therefore, proposing a
more effective optimization algorithm is worthy to research for future work. Besides, the method is
limited to classification task. The extension to more complex tasks, such as object detection, is also
a valuable research problem in the future.
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APPENDIX

A LARGE LANGUAGE MODEL USAGE

In this paper, we claim that large language models (LLMs) are used solely to support and refinethe
writing process. Specifically, we use LLMs to provide word-level and sentence-level suggestions to
enhancethe overall fluency of the text.

B PROOF

Theorem B.1. (Restated) According to the information theory, we have
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Therefore, the Equation 13 is satisfied. By analog, we can prove IG(xb
i ,x

∗) ≤ BIG({xb
i},x∗), ∀1 ≤

i ≤ c.

We can derive that
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IG(xb
i ,x

∗) ≤ BIG({xb
i},x∗)

⇒ LB-BatchIG({xb
i}) = Ept(x∗)

[
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1≤i≤c
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i ,x
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]
≤ Ept(x∗)

[
BIG({xb

i},x∗)
]

Proposition B.1. (Restated) Regarding the unlabeled pool as the element set V in Definition 3.1
and the sample batch as the subset, the acquisition function LB-BatchIG is a normalized monotone
non-decreasing submodular function.

Proof. We respectively proof the property of normalization, monotone non-decreasing, and sub-
modular.

Normalization: According to Equation 5, we can easily obtain that LB-BatchIG(∅) = 0. Hence
the normalization property is satisfied.

Monotone non-decreasing: For a batch {xb
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i}1≤i≤d, we have
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Submodular: For two arbitrary sample batches A and B and sample x∗, we denote
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If a < b, then b = max{a, b} ∩ a ≥ c⇒ a+ b ≥ max{a, b}+ c.

Therefore, we have

Ept(x∗)[max
x∈A

IG(x,x∗) + max
x∈B

IG(x,x∗)] (18)

≥ Ept(x∗)[ max
x∈A∩B

IG(x,x∗) + max
x∈A∪B

IG(x,x∗)].

Based on this, we conclude

LB-BatchIG(A) + LB-BatchIG(B)

≥ LB-BatchIG(A ∩B) + LB-BatchIG(A ∪B)
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C DATA COMPOSITION OF EXPERIMENTS

The data composition in the experiments of synthetic data, tabular data and image data are as follows:

Synthetic Data

• Training dataset: Subpop-0 1200 + Subpop-1 20 + Subpop-2 180

• Candidate pool: Subpop-0 6000 + Subpop-1 α + Subpop-2 3400

• Target population: Subpop-1 3000

Tabular Data

Income Prediction

• Training dataset: CA 1000 + AL 100

• Candidate pool: CA 10000 + AL 10000 + PR 5000

• Target population: PR 2000

Employment Prediction

• Training dataset: CA 400 + AL 200

• Candidate pool: CA 10000 + AL 10000 + PR 5000

• Target population: PR 3000

Image Data

VLCS benchmark

• Training dataset: LABELME 400+CALTECH 400+ SUN 400

• Candidate pool: LABELME 1000 + CALTECH 400+ PASCAL 1000+SUN 1000

• Target population: PASCAL 1000

PACS benchmark

• Training dataset: photo 400+ art 400+sketch 400

• Candidate pool: photo 1000+ art 1000 cartoon 1000+ sketch 1000

• Target population: cartoon 1000

Nico++ benchmark

• Training dataset: autumn 400 +rock 400+dim 400 +grass 400

• Candidate pool: autumn 1000 + rock 1000 + dim 1000 + grass 1000 + outdoor 1000 +
water 1000

• Target population: outdoor 1000 + water 1000

D PSEUDO-CODE OF OUR ALGORITHM

The pseudo-code of our algorithm is presented as Algorithm 1.

E RELATED WORK

In this section, we briefly review the related research of the unsupervised domain adaptation, active
learning and active DA.
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Algorithm 1 Greedy algorithm for optimizing LB-BatchIG

1: Input: Training dataset Dtr = {(xtr
i , ytri )}1≤i≤ntr

, unlabeled pool Dpo = {xpo
i }1≤i≤npo

,
the test samples representing the test distribution Dte = {xte

i }1≤i≤nte and the model fθ with
parameter θ.

2: Output: the sample batch B = {xb
i}1≤i≤c

3: Learning the model fθ on the training dataset Dtr and sample a collection of parameters
{θl}1≤l≤m from posterior distribution p(θ|Dtr).

4: Initialize the sample batch B0 = ∅.
5: for i = 1 to c do
6: Sample a batch of test samples {x∗

j}1≤j≤s

7: bi ← 1
8: r ← 0
9: for w = 2 to npo do

10: if LB-BatchIG(Bi−1 ∪ xpo
w ) > r then

11: bi ← w
12: r ← LB-BatchIG(Bi−1 ∪ xpo

w )
13: end if
14: Bi = Bi−1 ∪ {xpo

bi
}

15: end for
16: end for
17: return the acquisition batch Bc

E.1 UNSUPERVISED DOMAIN ADAPTATION

When the target domain for generalization is known, a bunch of domain adaptation (DA) (Ben-David
et al., 2010) works can be proposed. To match the feature distribution of source domains and tar-
get domains, some approaches re-weight or select the training samples (Jiang & Zhai, 2007; Huang
et al., 2006). Besides, learning a feature transformation (Ganin & Lempitsky, 2015; Bousmalis
et al., 2016; Tzeng et al., 2014) is an alternative method to align the feature distributions. Specifi-
cally, (Tzeng et al., 2014) leverage Maximum Mean Discrepancy (MMD) which characterizes the
difference of distribution mean in reproducing kernel Hilbert space. (Ganin & Lempitsky, 2015)
and (Ganin et al., 2016) train a domain classifier and applied the separability between domains as
the discrepancy measurement. And some literature (Li et al., 2020; Courty et al., 2016) use transport
distance to learn the domain-aligned transformation. Although noteworthy advancements have been
made from the perspective of algorithms to enhance model performance on target domains, they
still fall behind the supervised learning counterpart (Chen et al., 2018; Tsai et al., 2018). Therefore,
it can play a significant role to enlarge the training dataset with beneficial samples for training the
models.

E.2 ACTIVE LEARNING

Active learning investigates how to acquire data for annotation to optimize the model. The proposed
data acquisition criterions cover many aspects (Liu et al., 2022), including uncertainty, model in-
fluence, representativeness. For criterions based on uncertainty, (Joshi et al., 2009) calculate the
prediction uncertainty by the entropy of classification probability and the difference of the highest
two probability, (Ržička et al., 2020) take the gap between the highest probability and 1.0 as the
uncertainty. For criterion based on representativeness, the samples central to the data distribution
are acquired. (Settles & Craven, 2008) calculate the similarity to other samples as the representa-
tiveness metric. Core-set methods (Qin et al., 2021; Sener & Savarese, 2017a) try to choose center
samples so that the largest distance between samples and the nearest center is minimized. As for cri-
terions based on model influence, the methods select the samples having great impact on the model
parameters if incorporated into training dataset. Some active learning algorithms (Sourati et al.,
2017; 2019) apply Fisher information (Fisher, 1922) as the measurement of the impact on model
parameters. Although Fisher information is theoretically grounded, it is computationally intensive
in practice. BADGE (Ash et al., 2020) use the magnitude of gradient constituting the metric of im-
pact on model parameters. Inspired by the bayesian inference (Bernardo & Smith, 2009), bayesian
active learning (Gal et al., 2017; Kirsch et al., 2019; Smith et al., 2023) make assumptions on the
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prior distribution of model parameters, and calculate the entropy reduction after adding samples as
the model influence metric.

E.3 ACTIVE DOMAIN ADAPTATION

Active DA focuses on acquiring samples from the target domain to accomplish domain adapta-
tion. To be concrete, AADA (Su et al., 2020) selects samples based on uncertainty and domainness
measured by a domain discriminator. (Fu et al., 2021) propose a unified criterion incorporating
transferable committee, transferable uncertainty, and transferable domainness. CLUE (Prabhu et al.,
2021) design a clustering algorithm weighted by uncertainty to select samples from target domain.
DiaNA (Huang et al., 2023) propose a Divide-And-Adapt protocol which partitions the target sam-
ples into four types and selects the uncertain and inconsistent ones. These methods hypothesize a
candidate pool with the same distribution to target domains can be acquired for annotation. However,
the commercial restriction, privacy concerns and other issues can make this hypothesis unrealistic.

F EXPERIMENTAL COMPUTE RESOURCE

All experiments are conducted with the following settings:

• Operating Systems: Ubuntu 14.04.1 LTS
• CPU: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz
• GPU: Nvidia RTX 3090 × 1
• Memory: 256GB
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