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Abstract

This paper introduces a novel decision-making001
framework that promotes consistency among002
decisions made by diverse models while utiliz-003
ing external knowledge. Leveraging the Integer004
Linear Programming (ILP) framework, we map005
predictions from various models into globally006
normalized and comparable values by incorpo-007
rating information about decisions’ prior proba-008
bility, confidence (uncertainty), and the models’009
expected accuracy. Our empirical study demon-010
strates the superiority of our approach over con-011
ventional baselines on multiple datasets.012

1 Introduction013

The rapid advance of AI has led to the widespread014

use of neural networks in tackling complex tasks015

that involve multiple output decisions, which may016

be derived from various models (Liu et al., 2022;017

Wang et al., 2022). However, these decisions are018

interrelated within the same problem and must con-019

form to specific constraints. For example, to com-020

prehend procedural text, multiple neural models021

collaborate to establish temporal relationships be-022

tween actions, reveal semantic relations, and dis-023

cern entity properties like location and tempera-024

ture (Faghihi et al., 2023a; Bosselut et al., 2018;025

Jiang et al., 2023). Each model exhibits distinct026

decision characteristics, output sizes, uncertainty027

levels, and varying excepted accuracy levels. Re-028

solving inconsistencies and aligning these diverse029

neural decisions is crucial for a comprehensive un-030

derstanding of the underlying process.031

In many instances, raw model outputs lack us-032

ability without enforcing consistency. In tasks like033

hierarchical image classification, with independent034

models for each hierarchy level, outputs should035

adhere to the known hierarchical relationships.036

For example, the combination “Plant, Chair, Arm-037

chair” lacks validity and requires post-processing038

for downstream applications. A similar require-039

ment extends to generative models in text summa-040

rization (Lu et al., 2021) and image captioning (An- 041

derson et al., 2017). Prior studies have proposed 042

techniques for handling inconsistencies in corre- 043

lated decisions during both inference (Freitag and 044

Al-Onaizan, 2017; Scholak et al., 2021; Dahlmeier 045

and Ng, 2012; Chang et al., 2012; Guo et al., 2021) 046

and training (Hu et al., 2016; Nandwani et al., 2019; 047

Xu et al., 2018) of neural models. This paper fo- 048

cuses on resolving these inconsistencies at infer- 049

ence, where the goal is to ensure that outputs align 050

with task constraints while preserving or enhancing 051

the original model performance without training. 052

In addressing decision inconsistencies, Integer 053

Linear Programming (ILP) (Roth and Yih, 2005) 054

stands out as a robust approach. ILP is a global 055

optimization framework that seeks to find the best 056

configuration of variables while meeting specified 057

constraints. It is known for its efficiency and capa- 058

bility to produce globally optimal solutions, distin- 059

guishing it from alternatives like beam search. The 060

ILP formulation is as follows: 061

Objective : Maximize P⊤y

subject to C (y) ≤ 0,
(1) 062

where constraints are denoted by C (·) ≤ 0, de- 063

cision variables are denoted by y ∈ Rn, and the 064

vector containing the local weights of variables are 065

denoted by P . In order to apply ILP to resolve 066

conflicts from decisions of neural models, prior 067

work (Rizzolo and Roth, 2016; Punyakanok et al., 068

2004; Ning et al., 2018; Guo et al., 2020) has de- 069

fined P to be the vector of raw probabilities of local 070

decisions, P = [p1, ..., pn], where pi corresponds 071

to the probability generated from a certain model 072

for the ith decision variable (yi). The global in- 073

ference is modeled such that the combination of 074

probabilities subject to constraints is maximized. 075

Previous use of ILP has proven effective in ensur- 076

ing decision consistency in certain cases (Faghihi 077

et al., 2023b) but did not address model hetero- 078

geneity. This problem becomes more dominant in 079
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scenarios where output probabilities come from in-080

dependent models, making them less directly com-081

parable. To address this limitation, we extend the082

ILP formulation beyond just considering the raw083

model probabilities. Instead, we map these raw084

scores into globally comparable values, facilitating085

a more balanced global optimization. We achieve086

this by incorporating additional information, such087

as decision confidence, expected model accuracy,088

and estimated prior probabilities. While previous089

studies have explored the integration of uncertainty090

in modeling the training objective (Xiao and Wang,091

2019; Gal and Ghahramani, 2016; Zhu and Laptev,092

2017), our work represents a novel effort in system-093

atically incorporating multiple factors of this nature094

into the inference process for interrelated decisions095

to leverage external knowledge effectively.096

2 Method097

Our objective is to devise an improved scoring sys-098

tem, generating new local variable weights (impor-099

tance) W in the ILP formulation. Thus, we modify100

the original objective function as follows:101

Maximize W⊤y, (2)102

where W = [w1, ..., wn]. To determine the new103

weights, we aim to find the scoring function G,104

which normalizes the local predictions of each105

model and maps them into globally comparable106

values. For each model m with multi-class de-107

cisions, we denote the output probabilities after108

applying a SoftMax layer as Pm ⊂ P . The scor-109

ing function G transforms these raw probabilities110

into new weights Wm ⊂ W to indicate the im-111

portance of the variables within the ILP objective,112

i.e., Wm = G(Pm,m). In this section, we explore113

different options for the function G and provide an114

intuitive understanding of their rationale.115

2.1 Prior Probability (Output Size)116

To facilitate fair comparison among decisions with117

varying output sizes, we consider a normalization118

factor based on prior probabilities. For an N -class119

output, the prior probability for each label is 1
N (as-120

suming uniform distribution). This implies an in-121

herent disadvantage for decisions made in larger122

output spaces. Thus, we normalize the raw prob-123

abilities by dividing them by the inverse of their124

respective priors and define G(Pm,m) = Pm×N .125

2.2 Entropy and Confidence126

The outputs generated from models often exhibit127

varying levels of confidence. While raw probabil-128

ities alone may adequately indicate the model’s 129

confidence in individual Boolean decisions, a more 130

sophisticated approach is required for assessing the 131

models’ confidence in multi-classification. We pro- 132

pose incorporating the entropy of the label distri- 133

bution as an additional factor to assess the model’s 134

decision-making confidence. As lower entropy cor- 135

responds to higher confidence, we use the reverse 136

of the entropy, normalized by the output size N , 137

as a factor in forming the decision weight function 138

G(Pm,m) = Pm ∗ ( N
Entropy(Pm)). 139

2.3 Expected Models’ Accuracy 140

Assigning higher weights to the probabilities gen- 141

erated by more accurate models aligns the optimal 142

solution with the overall underlying models’ per- 143

formance. This approach mitigates the influence 144

of poor-quality decisions, which can negatively 145

impact others in the global setting. We define 146

the decision weight function G as G(Pm,m) = 147

Pm ∗ Accm, where Accm represents the accuracy 148

of the corresponding model, measured in isolation. 149

To mimic the real-world settings where test labels 150

are not available during inference, we utilize the 151

models’ accuracies on a probe/dev set. 152

3 Empirical Study 153

We assess the impact of integrating proposed fac- 154

tors into the ILP formulation on a series of struc- 155

tured prediction tasks. Our approach is particu- 156

larly suited for hierarchical structures encompass- 157

ing multiple classes at different granularity levels, 158

such as classical hierarchical classification prob- 159

lems. Additionally, we are the first to investigate 160

the influence of enforcing global consistency on the 161

procedural reasoning task, a complex real-world 162

problem. To implement our method, we rely on 163

the DomiKnowS framework (Rajaby Faghihi et al., 164

2021), offering a versatile platform that enables im- 165

plementing and evaluating techniques to leverage 166

external logical knowledge with minimal effort on 167

structured output prediction tasks. 168

3.1 Metrics and Evaluation 169

We compare our method against two inference- 170

time approaches: sequential decoding and basic 171

ILP (ILP without our refinement). In contrast to 172

ILP, sequential decoding, which relies on expert- 173

designed rules or programs to enforce consistency, 174

is unique to each dataset. In addition to conven- 175

tional metrics (e.g., accuracy/F1), we include mea- 176
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surements that evaluate changes applied by the in-177

ference techniques: (1) total changes (C), (2) the178

percentage of incorrect-to-correct changes (+C),179

(3) the percentage of correct-to-incorrect changes (-180

C). We further evaluate all the baselines and infer-181

ence methods on (1) the percentage of decisions182

satisfying task constraints and (2) Set Correctness,183

the percentage of correct sets of interrelated deci-184

sions (i.e., predictions of all levels in the hierarchy185

must be correct for an image). More details are in186

Appendix B.187

3.2 Tasks188

3.2.1 Procedural Reasoning189

Task: Procedural reasoning task entails the190

tracking of entities within a narrative. Following191

Faghihi and Kordjamshidi (2021), we formulate192

this task as Question-Answering (QA). Two key193

questions are addressed for each entity e and step194

i: (1) Where is e located in step i? and (2) What195

action is performed on e at step i?. The decision196

output of this task exhibits heterogeneity, encom-197

passing a diverse range of possible actions (limited198

multi-class) and varied locations derived from con-199

textual information (spans). The task constraints200

establish relationships between action and location201

decisions as well as among action decisions at dif-202

ferent steps. For instance, the sequence of ‘Destroy,203

Move’ represents an invalid assignment for action204

predictions at steps i and i+ 1.205

Dataset: We utilize the Propara dataset (Dalvi206

et al., 2018), a small dataset focusing on natural207

events. This dataset provides annotations for in-208

volved entities and their corresponding location209

changes. The label set is further expanded to in-210

clude information on actions, which can be inferred211

from the sequence of locations.212

Baseline: We employ a modified version of the213

MeeT architecture (Singh et al., 2023) as our base-214

line for this task. The MeeT model is designed215

to ask the two aforementioned questions at each216

step and employs a generative model (T5-large) to217

answer those questions. The Sequential Decod-218

ing baseline resolves action inconsistencies in a219

sequential stepwise manner (first to last), followed220

by the selection of locations accordingly. Addi-221

tional information can be found in Appendix A222

3.2.2 Hierarchical Classification223

Task: This task involves classifying inputs into224

various categories at distinct levels of granularity,225

establishing parent-child relationships between the 226

classes where those follow a hierarchical structure. 227

Datasets: We employ three different datasets. (1) 228

A subset of the Flickr dataset (Young et al., 2014) 229

with two hierarchical levels for the classification of 230

images with types of Animal, Flower, and Food, (2) 231

20News dataset for text classification, where the 232

label set is divided into two levels, and (3) The OK- 233

VQA benchmark (Marino et al., 2019), a subset 234

of the COCO dataset (Lin et al., 2014). In OK- 235

VQA, the hierarchical relations between labels are 236

established into four levels based on ConceptNet 237

triplets and the dataset’s knowledge base. 238

Baselines: ResNet (He et al., 2016) and 239

BERT (Devlin et al., 2019) are used to obtain rep- 240

resentations for the image and text modalities, re- 241

spectively. Linear classification layers are applied 242

to convert obtained representations into decisions. 243

The Sequential Decoding is top-down, bottom-up, 244

and a two-stage (1) top-down on ‘None’ values and 245

(2) bottom-up on labels for Animal/Flower/Food, 246

20 News, and VQA tasks, respectively. More infor- 247

mation is available in Appendix A. 248

3.3 Results 249

Tables 1, 2, and 3 display results for Ani- 250

mal/Flower/Food, Ok-VQA, and Propara datasets. 251

Due to space constraints, results for the 20News 252

dataset are in Appendix A.2. For close results, we 253

use multiple seeds to validate reliability. Across ex- 254

periments, the basic ILP technique favors decisions 255

in smaller output spaces due to higher probability 256

magnitudes (e.g., more changes in Actions than Lo- 257

cations in Table 3). Our new proposed variations 258

can effectively mitigate this problem and perform 259

a more balanced optimization. 260

Animal/Flower/Food: The sequential decod- 261

ing establishes that the enforcement of the deci- 262

sions originating from a model with better accu- 263

racy and with a smaller output size (Level 1) on 264

other decisions may even have a negative impact 265

on them (Level 2). In such scenarios, the inclusion 266

of Expected Accuracy favors dominant decisions 267

and adversely affects performance. However, the 268

inclusion of Prior Probability proves effective in 269

achieving a balanced comparison among decisions. 270

In this task, despite the basic ILP formulation being 271

detrimental, some of the new variations can even 272

surpass the original baseline performance. 273

Ok-VQA: The baseline exhibits lower accuracy 274

in lower-level decisions with smaller output sizes. 275
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Model Level 1 (3) Level 2 (15) Average
Acc C + C - C Acc C + C - C Acc

Baseline 86.12 - - - 54.85 - - - 70.48
Sequential 86.12 - - - 54.39 32 15.625 37.5 70.25

ILP 86.07 16 43.75 43.75 54.43 16 12.5 37.5 70.25
+ Acc 86.14 3 33.33 33.33 54.41 29 13.79 37.93 70.27
+ Prior 86.30 24 50 41.67 54.78 8 12.5 25 70.54

+ Ent + Acc 86.09 12 33.33 50 54.41 20 10 40 70.25
+ Ent + Prior 86.42 25 52 40 54.82 7 14.29 28.57 70.62

+ All 86.17 16 43.75 43.75 54.50 16 12.5 37.5 70.33

Table 1: Results on Animal/Flower/Food dataset on four
random seeds. Reported values are the average scores of
runs with close variances for all techniques (Level1: ±1.6

and Level2: ±0.5). C values are derived from the best run. n
in Level (n) denotes the number of output space classes.
Prior: Prior Probability, and Ent: Entropy.

Model Level 1
(274)

Level 2
(158)

Level 3
(63)

Level 4
(8) Average

Baseline 56.73 54.45 43.43 17.68 54.64
Sequential 55.81 53.17 43.44 24.18 53.72

ILP 52.38 46.33 49.66 28.43 50.17
+ Acc 55.65 54.67 48.15 23.73 54.23
+ Prior 56.35 53.36 48.11 23.86 54.54

+ Ent + Acc 56.43 53.25 48.1 24.02 54.56
+ Ent + Prior 56.79 52.93 47.53 23.75 54.61

+ All 56.84 52.66 46.98 22.63 54.5

Table 2: The results on the Ok-VQA dataset. The values
represent the F1 measure. Levels 2, 3, and 4 contain
‘None’ labels. The low F1 measure of lower levels is
due to a huge number of False Positives.

When applying the basic ILP method under these276

circumstances, a significant decline in results is277

observed, even below that of sequential decoding.278

However, incorporating any of our proposed fac-279

tors leads to substantial improvements compared to280

the basic ILP formulation (over 4% improvement)281

and can surpass the performance of sequential de-282

coding. Particularly, combining Entropy and Prior283

Probability achieves the best performance. Notably,284

although the baseline model has higher overall per-285

formance, its inconsistent outputs are unreliable for286

determining the object label (see Table 4).287

Propara: This is an example of a real-world task288

that involves hundreds of constraints and thousands289

of variables when combining decisions across en-290

tities and steps. Once again, basic ILP and Ex-291

Model Actions (6) Locations (*) Average
Acc C + C - C Acc C + C - C Acc

Baseline 73.05 - - - 68.21 - - - 70.47
Sequential 71.56 75 13.33 46.66 67.63 255 27.8 32.2 69.47

ILP 73 63 36.5 38.1 66.38 217 19.8 35.9 69.47
+ Acc 73 63 36.5 38.1 66.43 217 19.8 35.9 69.50
+ Prior 72.88 119 31.93 34.45 67.54 138 23.2 32.6 70.03

+ Ent + Acc 72.93 63 34.92 38.1 66.38 219 19.6 35.6 69.44
+ Ent + Prior 71.62 209 25.83 37.32 68.16 53 26.4 28.3 69.78

+ All 71.74 198 25.75 36.86 68.27 72 29.2 27.8 69.89

Table 3: Results on Propara dataset. The dataset com-
prises 1910 location decisions and 1674 action deci-
sions. *The output size of location decisions depends
on the context of each procedure.

Dataset Model Satisfaction Set Correctness

Animal/Flower
Baseline 96.4 53.40

Sequential 100 54.50
Ent + Prior 100 54.50

VQA
Baseline 38.99 54.43

Sequential 100 57.11
Ent + Prior 100 58.92

Propara
Baseline 45.12 23.30

Sequential 100 28.81
Prior 100 30.93

Table 4: Results of our proposed technique, baselines,
and expert-written decoding strategies in terms of con-
straint satisfaction and set correctness. The Set Cor-
rectness metric reflects the practical usability of sets of
dependent decisions in downstream applications.

pected Accuracy factor prioritize decisions from 292

the smaller output size (Actions). However, the 293

Prior probability factor enables a more compara- 294

ble space for resolving inconsistencies. Notably, 295

the higher baseline performance is attributed to in- 296

consistencies and cannot be used when reasoning 297

about the process (See Table 4). 298

Constraints: Table 4 presents the results of satis- 299

faction and set correctness metrics across various 300

datasets. It is evident that our newly proposed 301

method significantly outperforms the baseline in 302

both of these metrics. Notably, the degree of im- 303

provement in set correctness is more pronounced 304

when the initial consistency of the baseline is lower. 305

This observation underscores the substantial signif- 306

icance of our proposed technique in ensuring the 307

practical utility of model decisions in downstream 308

applications by substantially increasing the propor- 309

tion of correct interrelated decision sets. Further- 310

more, in comparison to sequential decoding, our 311

proposed solutions demonstrate even greater per- 312

formance enhancements, particularly in scenarios 313

where the task complexity is higher, and global 314

inference can exert its maximum effectiveness. 315

4 Conclusion 316

This paper introduced an approach for taking into 317

account the uncertainty and confidence measures, 318

including the decisions’ prior probability, entropy, 319

and expected accuracy, alongside raw probabili- 320

ties when making globally consistent decisions 321

based on diverse models. Through experiments 322

on four datasets, we demonstrated the effectiveness 323

of incorporating our idea within the ILP formu- 324

lation. This contribution represents a significant 325

advancement in integrating large models in a uni- 326

fied decision-making framework for conducting 327

complex tasks requiring interrelated decisions. 328
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Limitations329

Our implementation of Integer Linear Program-330

ming (ILP) is based on the DomiKnowS frame-331

work, which relies on the Gurobi optimization en-332

gine (Gurobi Optimization, LLC, 2023). The avail-333

ability of the Gurobi optimization engine in its free334

version is limited, which may pose constraints on335

the replication of our ILP-based approach for pro-336

cedural reasoning experiments. However, the free337

academic license for Gurobi ensures the necessary338

access to execute all the tasks modeled in this paper.339

It is important to note that while our experiments340

and discussions demonstrate the effectiveness of341

our proposed approach in addressing challenges342

encountered with conventional ILP utilization, it is343

not guaranteed to consistently yield improved per-344

formance in scenarios where the decision space of345

variables is already comparable or consists solely346

of boolean decisions. These limitations highlight347

the need for careful consideration and evaluation348

of the specific problem domain and characteristics349

when applying our approach or considering alter-350

native methodologies.351
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A Datasets & Baselines546

A.1 Animal/Flower/Food547

The dataset1 employed in this study is sourced from548

the online platform ’Flickr’ and encompasses a to-549

tal of 5439 images classified into three primary550

categories, namely ’Flower,’ ’Animal,’ and ’Food.’551

In the absence of an officially designated test set,552

a random partitioning strategy is adopted to en-553

sure comparability in the distribution of training554

and testing instances. Consequently, the resulting555

splits are utilized within the experimental frame-556

work. The training subset encompasses 4531 im-557

ages, while the test set comprises 1088 images. The558

dataset further comprises various sub-categories,559

including ’cat,’ ’dog,’ ’monkey,’ ’squirrel,’ ’daisy,’560

’dandelion,’ ’rose,’ ’sunflower,’ ’tulip,’ ’donuts,’561

’lasagna,’ ’pancakes,’ ’pizza,’ ’risotto,’ and ’salad.’562

It should be noted that the data distribution across563

labels is not balanced, posing a more challenging564

classification task. This dataset is employed as a565

simplified scenario to illustrate the benefits of the566

proposed inference approach.567

As the baseline for this task, we use ResNet-568

50 to represent the images and add a single layer569

MLP on top for each level. The model is further570

trained by Cross-Entropy objective and AdamW as571

optimizer.572

The sequential decoding strategy for this dataset573

propagates labels in a top-down manner, where the574

highest probable children of the selected Level1575

decisions is chosen as the prediction at Level2.576

A.2 20News577

This dataset comprises a collection of diverse news578

articles classified into 23 distinct categories. In579

order to capture the hierarchical structure inher-580

ent in the dataset’s labels, we partition these cat-581

egories into two levels. It should be noted that582

certain higher-level concepts lack corresponding583

lower-level labels, necessitating the inclusion of a584

’None’ label at level 2. Furthermore, we perform585

a removal process on the initially annotated data586

containing the ’None’ labels, as this subset primar-587

ily consists of noisy documents that do not align588

with any categories present within the dataset. It is589

crucial to differentiate this removal process from590

the intentional addition of the ’None’ label at level591

2, which we manually introduced.592

1https://github.com/kaustubh77/Multi-Class-
Classification

Model Level 1 (16) Level 2 (8) Average
F1 C + C - C F1 C + C F1

Baseline 73.62 - - - 75.13 - - 74.01
Sequential 72.99 330 20.6 46.36 75.13 0 0.00 73.55

ILP 73.53 225 25.78 39.55 75.46 68 63.24 74.03
+ Acc 73.57 212 26.89 39.62 75.45 73 64.39 74.05
+ Prior 73.35 161 25.46 39.13 75.35 94 65.96 74.01

+ Ent + Acc 73.54 205 26.34 40 75.39 75 64 74.02
+ Ent + Prior 73.63 125 26.4 36 75.49 112 68.75 74.12

+ All 73.64 131 25.95 35.11 75.52 111 68.47 74.13

Table 5: Results on 20News dataset. Here, the -C of
level 2 is 0 in all cases.

As the baseline for this task, we initially em- 593

ployed the Bert-Base encoder to generate repre- 594

sentations for each news story. Due to the limited 595

context size of Bert, which is constrained to a max- 596

imum of 512 tokens, we truncate the news articles 597

accordingly and utilize the CLS token as the rep- 598

resentative embedding for the entire article. For 599

Level 1, a 2-layer Multilayer Perceptron (MLP) 600

architecture is employed, with LeakyReLU serv- 601

ing as the chosen activation function. Additionally, 602

Level 2 decisions are made using a single-layer 603

MLP. During the training process, the model is 604

optimized using the AdamW optimizer, with the 605

Cross-Entropy loss function being employed. 606

The sequential decoding strategy is this dataset 607

is a bottom-up strategy. Here, the model’s deci- 608

sion from Level2 is propagated into Level1 without 609

looking further into the initial probabilities gener- 610

ated by the model at that level. 611

A.2.1 Results 612

The baseline performance is similar across different 613

decisions. Thus, considering either the Expected 614

Accuracy or the Prior Probability in isolation does 615

not have a substantial impact on the global opti- 616

mization process. However, the inclusion of all 617

proposed factors (Entropy, Accuracy, and Prior 618

Probability) leads to a balanced and optimal so- 619

lution. Although the overall task performance in 620

this experiment does not show significant improve- 621

ments, this is mainly because the initial decision 622

inconsistencies are minimal. Nevertheless, evalu- 623

ating the positive and negative changes provides 624

valuable insights into the significance of incorpo- 625

rating the proposed factors. 626

A.3 OK-VQA (COCO) 627

The OK-VQA dataset is primarily introduced 628

as a means to propose an innovative task cen- 629

tered around question-answering utilizing external 630

knowledge. To construct this dataset, a subset of 631

the COCO dataset is employed, with augmented an- 632
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notations obtained through crowdsourcing. While633

the main objective of the dataset revolves around634

question answering, it is important to note that it635

encompasses two levels of annotation. These an-636

notations not only indicate the answer to the given637

question but also provide additional clarifications638

regarding the types of objects depicted in the corre-639

sponding images. In order to leverage knowledge640

pertaining to image type relationships, the label641

set is expanded to include supplementary high-642

level concepts. Additionally, a knowledge base is643

provided, delineating parent-child relationships be-644

tween these labels. The dataset comprises a total of645

500 object labels. To enhance the breadth of knowl-646

edge encompassed by the dataset, we incorporate647

additional information from ConceptNet to estab-648

lish comprehensive relationships among the labels.649

Notably, both the new information and the origi-650

nal knowledge base may contain noisy information.651

This, in conjunction with the original knowledge652

base, forms a four-level hierarchical dependency653

among the initial 500 labels. Consequently, cer-654

tain labels within each level may not possess corre-655

sponding children at lower levels, necessitating the656

introduction of ’None’ labels at levels 2, 3, and 4.657

In this study, we employ the Faster R-CNN658

framework (Ren et al., 2015) along with ResNet-659

110 as the chosen methodology to represent in-660

dividual objects within images. Subsequently, a661

one-layer Multilayer Perceptron (MLP) architec-662

ture is utilized to classify the images at each level663

of the hierarchical structure. It should be noted664

that the number of positive examples (i.e., labels665

that are not denoted as ’None’) decreases as we666

move toward lower levels of the hierarchy. To ad-667

dress this, we perform subsampling on the ’None’668

labels for the corresponding classifiers at those lev-669

els. The models are trained with the Cross-Entropy670

loss function and the AdamW optimizer.671

The sequential decoding strategy for this dataset672

is a two-stage top-down and then bottom-up pro-673

cess. Here, ‘None’ labels are first propagated from674

Level 1 to Level 4, and then the selected label (if675

not None) from Level 4 is propagated bottom-up676

to Level 1. Since each label at leveln only has one677

parent in Leveln − 1, this process does not need678

to look into the original model probabilities for679

propagation.680

A.4 Propara 681

The Propara dataset serves as a procedural reason- 682

ing benchmark, primarily devised to assess the abil- 683

ity of models to effectively track significant entities 684

across a series of events. The stories within this 685

dataset revolve around natural phenomena, such as 686

photosynthesis. The annotation process involves 687

capturing crucial entities and their corresponding 688

locations at each step of the process, which are 689

obtained through crowd-sourcing efforts. An illus- 690

trative example of this dataset is depicted in Figure 691

1. 692

The sequence of locations pertaining to each en- 693

tity can be further extended to infer the actions 694

or status of the entity at each step. Previous stud- 695

ies (Dalvi et al., 2019) have proposed six possible 696

actions for each entity at each step, namely ’Cre- 697

ate,’ ’Move,’ ’Exist,’ ’Destroy,’ ’Prior,’ and ’Post.’ 698

In this context, ’Prior’ signifies an entity that has 699

not yet been created, while ’Post’ denotes an entity 700

that has already been destroyed.

Process Participants

Sentences plant animal bone oil

Before the process begins ? ? - -

1. Plants and animals die in 
a watery environment

watery 
environment

watery 
environment

- -

2. Over time, sediments 
build over

sediment sediment - -

3. The body decomposes sediment - sediment -

4. Gradually buried material 
becomes oil

- - - sediment

Figure 1: An example from the Propara dataset taken
from (Faghihi et al., 2023a). ‘-’ refers to the entity
not existing; ‘?’ refers to the entity whose location is
unclear.

701
As for the baseline, we employ a modified ver- 702

sion of the MeeT (Singh et al., 2023) architecture. 703

The architecture utilizes T5-Large (Raffel et al., 704

2020) as the backbone and employs a Question- 705

Answering framework to extract the location and 706

action of each entity at each step. The format of the 707

input to the model is as follows for entity e and step 708

i: "Where is e located in sent i? Sent 1: ..., Sent 2: 709

..., ...". For extracting the action, the set of options 710

is also passed as input, resulting in the modification 711

of the question to "What is the status of entity e in 712

sent i? (a) Create (b) Move (c) Destroy (d) Exist 713

(e) Prior (f) Post". 714

Although the original model of MeeT incorpo- 715

rates a Conditional Random Field (CRF) (Lafferty 716

et al., 2001) layer during inference to ensure con- 717

sistency among action decisions, we exclude this 718
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layer from our baseline. This decision is motivated719

by two reasons. Firstly, the use of CRF in this con-720

text is not generalizable as it relies on training data721

statistics for defining transitional scores. Secondly,722

we intend to impose consistency using various in-723

ference mechanisms on our end and consider a joint724

framework to ensure both locations and actions ex-725

hibit consistency. Additionally, while the MeeT726

baseline employs two independent T5-Large mod-727

els for each question type (location and action), our728

baseline utilizes the same model for both question729

types. For the sequential decoding technique to730

enforce sequential consistency among the series of731

interrelated action and location decisions, we uti-732

lize the post-processing code presented in Faghihi733

et al. (2023a).734

B Metrics735

Here, we briefly describe the metrics used in this736

paper to evaluate the methods.737

B.1 Number of Changes738

This metric quantifies the post-inference changes739

in decisions, specifically assessing the extent to740

which original decisions are altered due to infer-741

ence constraints. It serves as a crucial indicator742

of whether the optimization method treats all de-743

cisions equally or exhibits a preference for certain744

decisions over others. A genuinely global opti-745

mization method will result in multiple decision746

changes, promoting a more balanced distribution of747

alterations across all decisions. In contrast, expert-748

written strategies tend to favor specific decisions.749

This metric is straightforward to calculate by com-750

paring the differences between decisions before751

and after applying the inference mechanism.752

B.2 Ratio of In-Correct to Correct753

Changes (+C)754

This metric reveals the proportion of post-inference755

changes that are deemed favorable. While this met-756

ric may not carry substantial standalone signifi-757

cance, it serves as a valuable means to compare dif-758

ferent inference techniques. A higher ratio signifies759

that the inference method has been more successful760

in deducing accurate labels based on the imposed761

constraints.762

B.3 Ratio of Correct to In-Correct763

Changes (-C)764

This number shows the extent of undesirable765

changes made after inference. A lower ratio means766

the inference method has done a better job of pre- 767

venting errors while ensuring the output adheres to 768

the constraints. 769

B.4 Satisfaction Rate 770

This metric shows how well predictions align with 771

constraints. We calculate it by generating con- 772

straint instances from related decisions and count- 773

ing the satisfying cases against all possible in- 774

stances. Inference techniques guarantee that mod- 775

ified decisions always adhere to the constraints, 776

resulting in a satisfaction rate of 100%. 777

B.5 Correctly Predicated Sets of Interrelated 778

Decisions 779

This metric is crucial for assessing the practical 780

usefulness of the output from inference techniques 781

or the original network decisions in downstream 782

applications. The primary objective of inference 783

mechanisms is to boost the percentage of these fully 784

satisfying cases compared to the model’s original 785

performance, all while ensuring that the decisions 786

align with the task’s constraints. For instance, in 787

a hierarchical classification task, we consider one 788

instance to be correct only when the decisions at 789

all levels are simultaneously accurate. 790

C Discussion 791

Here, we address some of the key questions about 792

this work. 793

Q1: Which metric is most important among the 794

ones evaluated in this paper? 795

All the metrics assessed in this paper provide in- 796

sights into the model’s performance. Among these, 797

the Set Correctness score offers a comprehensive 798

evaluation that combines constraint satisfaction and 799

correctness, indicating the proportion of output de- 800

cisions suitable for safe use in downstream tasks. 801

When comparing different ILP variations, the 802

primary focus should be on the original task per- 803

formance since they all share the same high satis- 804

faction score of 100%. Additionally, the Change 805

metric helps reveal whether an ILP variation con- 806

ducts truly global optimization or exhibits a bias 807

towards specific prediction classes. 808

In the context of comparing the baseline method 809

with inference techniques, it is essential to consider 810

both the satisfaction and set correctness scores. 811

This is because the raw model predictions, as ini- 812

tially generated, may not be directly acceptable. 813

For instance, if a model predicts a “Move” action 814
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for entity A at step 4, but the location prediction815

does not indicate a change in location, it becomes816

unclear whether entity A indeed changed locations817

or not.818

Why utilize the model’s overall accuracy in819

the score function instead of its accuracy for a820

specific decision variable?821

822

In our context, we assume that each decision823

type corresponds to a specific model. Therefore,824

assessing the model’s accuracy is the same as eval-825

uating the accuracy of a particular decision type.826

If a single model supplies multiple decision types,827

we can easily expand this concept to evaluate the828

accuracy of each decision type individually within829

the same framework.830

What is the main difference between the sequen-831

tial decoding strategy and the ILP formulation?832

The sequential decoding strategy is a domain-833

specific, expert-crafted technique employed for834

addressing decision inconsistencies in accordance835

with task constraints. In contrast, the ILP (Integer836

Linear Programming) formulation offers a more837

general, non-customized approach that isn’t tai-838

lored to individual tasks.839

Sequential decoding strategies typically involve840

rules or programs that often exhibit a preference for841

a specific decision while adjusting other decisions842

to align with it. This approach tends to prioritize843

decision alignment over considering the probabili-844

ties associated with these decisions. On the other845

hand, the ILP optimization process seeks the most846

optimized solution by taking into account the raw847

probabilities from the models and the imposed con-848

straints.849
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