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Abstract

We address the problem of efficiently and securely enabling certified predictions
on deep learning models. This addresses the scenario where a party P1 owns a
confidential model that has been certified by an authority to have a certain property
e.g. fairness. Subsequently, another party P2 wants to perform a prediction on the
model with an assurance that the certified model was used. We present a solution for
this problem based on MPC commitments. Our constructions operate in the publicly
verifiable covert (PVC) security model, which is a relaxation of the malicious
model of MPC, appropriate in settings where P1 faces a reputational harm if caught
cheating. We introduce the notion of a PVC commitment scheme1 and indexed
hash functions to build commitment schemes tailored to the PVC framework, and
propose constructions for both arithmetic and Boolean circuits that result in very
efficient circuits. From a practical standpoint, our constructions for Boolean circuits
are 60× faster to evaluate securely, and use 36× less communication than baseline
methods based on hashing. Moreover, we show that our constructions are tight
in terms of required non-linear operations, and present a technique to amplify the
security properties of our constructions that allows to efficiently recover malicious
guarantees with statistical security.

1 Introduction

Recently, ML models have started to be deployed into high-impact, real-world decision-making
settings such as medicine [13], self-driving cars [10], and college admissions [34]. However, this
has led to several problems: many of these settings have key constraints that ML models were not
originally designed to handle. Current models lack interpretability [27], safety [4], and fairness
[32]. On the other hand, secure multi-party computation (MPC) methods have undergone impressive
improvements in the last decade. Advances in the scalability of garbled circuit protocols [40, 41, 8],
commitment schemes [15], and oblivious transfer [30, 6] have transformed the range of applications
for MPC [26]. In particular, a significant amount of research efforts have been recently devoted to
finding efficient MPC protocols for training and evaluation of widely-deployed machine learning
(ML) models to effect private prediction [31, 16, 1, 29, 28, 38, 18, 36]. However for private prediction,
nothing prevents the model owner from modifying the model arbitrarily. This is a problem in settings
where the model has to satisfy certain non-functional constraints such as safety, fairness, or privacy.

1This work will appear at ACM CCS 2021. Full paper available here: https://arxiv.org/abs/2109.
07461

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

https://arxiv.org/abs/2109.07461
https://arxiv.org/abs/2109.07461


These constraints undermine accuracy (as often measured in ML) and thus the model owner may
have an incentive to switch the model. This exact problem and, more generally, model certification,
was tackled recently by Kilbertus et al. [24] and Segal et al. [37]. Both these works show that
commitments verified in MPC can help here. More formally, a user requires the following 2-party
functionality: the service provider (P1) commits to an input x by producing commitment c and sends
c to the user (P2). Later, P2 uses c to verify that x is being used by P1 inside an MPC protocol
between both parties. We call this MPC on committed data. So far current work on this uses standard
collision-resistant hash functions such as SHA-256 [24] and SHA-3 [37] to produce and then verify
commitments in MPC. However, we make use of the Interactivity in an MPC protocol and also the
Reputation of service provider, which can be harmed if they are proven to have cheated, using ideas
from Publicly-Verifiable Covert (PVC) security [5]. We make a simple observation: one can detect if
an input x to a Boolean MPC protocol has been changed with probability 1/2− ε (for arbitrarily small
ε > 0) using a simple additional Boolean circuit as part of the protocol (more details on such circuits
are in Figure 2 in Appendix B). Although we chose to motivate our contribution from the perspective
of certified predictions in this paper, our results are general, and essentially provide constructions of
commitment schemes tailored for PVC security, along with efficient implementations in MPC.

2 Technical Overview

The idea of certified predictions has appeared in previous works [37, 24] where x is a confidential
machine learning model owned by P1 that has been checked by a certifying authority to have certain
properties, e.g., fairness. MPC on committed data directly enables this functionality, with the model
owner and the users playing the roles of parties P1 and P2 in Figure 1, respectively. We describe and
motivate this application in Appendix J. In this application, g corresponds to model evaluation and
users receive predictions using the certified model x. This is modelled, analogously to commitment
schemes, by three algorithms: pvccommit, assert, and check. As shown in Figure 1, pvccommit
outputs a commitment to an input, later in the MPC, assert is run.

Figure 1: The diagram shows a multi-party compu-
tation with a committed input x, as enabled by our
constructions. Party 1 (the committer) holds an input x,
for which it generates a commitment c and sends it to
party 2 (the verifier). The commitment is randomized
using r to ensure privacy for x, i.e., that the commit-
ment is hiding. Later on, the parties engage in a secure
computation of a generic function g, where party 1 in-
puts x′, and party 2 inputs input y. For the purpose
of verifying that x = x′, party 2 derives a challenge i
from c, and the MPC returns a certificate a that can be
checked by P2. This guarantees to party 2 that g is eval-
uated on the value x to which party 1 had previously
committed.

Baseline protocol.To see how a hash function
h, e.g., SHA3 in practice, can be used to imple-
ment MPC on committed data, consider the fol-
lowing instantiation of pvccommit, assert, and
check. P1 can choose a random r and have
pvccommit(x, r) and assert(x, r) be h(x||r).
Then, check just checks that they are equal. Both
pvccommit and check are efficient in this instan-
tiation, so one would want h to have an efficient
MPC protocol.

MPC-friendly hashing. The works on fairness
certification of Segal et al. [37] and Kilbertus
et al. [24] propose the above baseline construc-
tion. Segal et. al concretely instantiate h with
the Keccak-F function, which is the basis of the
SHA3 standard. With that, assert would result in
an overhead of 48 AND gates/bit in this instanti-
ation. Alternatively, using SHA3-256 in sponge
mode results in an overhead of roughly 35 AND
gates/bit. On the other hand, using an MPC-
optimized hash (but new and susceptible [14])
LowMCHash-256 [3] in sponge mode roughly
take up 14 AND gates/bit. Note that AND gate
counts, and non-linear gate counts in general,
are a standard reference for computation time in
MPC, and secure computation in general.

Our starting observation is that executing a
collision-resistant hash function such as SHA3-256 in a PVC-secure protocol is an overkill: Note
that ensuring that commitments are binding, i.e., that P1 in Figure 1 can not generate x′, r′ such that
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SHA3-256 LowMCHash-256 Ours

No. of bits # of ANDs # of ANDs # of ANDs Improvement
over SHA3-256

Improvement over
LowMCHash-256

214 6.14× 105 2.32× 105 5.17× 104 12× 4×
218 9.29× 106 3.65× 106 1.90× 105 49× 19×
222 1.48× 108 5.84× 107 2.29× 106 65× 25×
226 2.37× 109 9.34× 108 3.42× 107 69× 27×
230 3.79× 1010 1.49× 1010 5.39× 108 70× 28×

Table 1: Analytical comparison of the number of AND gates (circuit
size |C|) for the assert functionality using LowMCHash-256 and SHA3-
256 with our scheme. These values are for a single call to assert i.e.
using a single index for our scheme. Here pc = 1/2

x 6= x′ and the verification passes, up to negligible probability, but then ensuring that the subsequent
MPC is secure only up to a constant probability p leaves some potential room for weakening the
binding guarantee of the commitment scheme to favor efficiency. To take advantage of the PVC
setting, we observe that assert must in some way receive randomness from P2, as it is against this
randomness that P1 will have probability p of being caught. We design assert function that leverage
this observation, and result in an overhead of the assert circuit as low as half an AND gate per bit of
the input x, even when p is close to 1, including 1− 2−σ for a statistical security parameter σ.

We introduce the notion of an indexed hash function. This, roughly speaking, is a function that
produces a hash of an input x, given a random value r and an index i from a domain I. The index
of the hash function plays the role of the randomness chosen by P2 mentioned above. We build
indexed hash functions from any collision-resistant hash function h and prove properties related to
collision resistance that allow us to construct PVC commitments from indexed hash functions, and use
them for achieving the functionality in Figure 1 with PVC security. Given an indexed hash function
H , our proposed PVC commitment schemes follow the following high-level structure: pvccommit
computes (H(j, r, x))j∈I , i.e. the hash evaluated at all indices, the verifier selects an index i ∈ I,
assert computes H(i, r, x), and check checks that this value is correct. This check fails (in the sense
of giving a false positive) with a probability upper bounded by 1− p (p is called the covert security
parameter). This fact is formalized by reducing an appropriate notion of collision resistance of H to
the collision resistance of h.

The efficiency of our scheme relies on the fact that our constructions for indexed hash functions
are very efficient to be evaluated in MPC, requiring a very small number of XOR and AND gates
with respect to the input size and thus inducing a very small overhead when evaluated in MPC.
For sake of brevity we present specific details in the Appendices — in Appendix A, we define and
describe preliminary concepts used. In Appendix B, we give a construction for Boolean circuits that
can achieve a covert security parameter arbitrarily close to 1/2, which asymptotically requires only
half an AND gate per bit. In Appendix C, we define PVC commitment schemes and their security
properties, propose a secure instantiation based on indexed hash functions, and show how to use them
for committed PVC MPC. In Appendix E, we show the optimality of our construction by proving
lower bounds for both our approach and the baseline hash based approach.

In the next section we fully implement our most practical construction, and compare it with the
baseline approach (both instantiated with SHA3 and an MPC-friendly hash function LowMCHash).
Our experiments show a 60× speed up and 36× less communication in the resulting assert compared
to SHA3. It takes ∼ 1 MB and < 15 minutes to commit million bit inputs. In Appendix F, we give
a way to achieve covert security parameter 1− 2−σ, and thus full statistical security, in both of the
Boolean and arithmetic cases.

3 Evaluation

Here we compare our method for committed MPC to the baseline using SHA3-256. We evaluate both
computation time and communication for the assert functionality as the size of the input n increases.
We also analytically compare our method against the hash function based on LowMCHash-256,
an MPC friendly hash [3]. Finally, we evaluate the practicality of our proposed scheme in terms
of the compute requirement for the committer performing the commitment using the pvccommit
functionality and the size of the commitment. We describe the experimental setting, implementation
details and the baselines in Appendix D.
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No. of bits Ours (s) SHA3-256 (s) Improvement

214 0.07 0.57 8×
218 0.22 8.16 36×
222 2.67 133.23 50×
226 39.14 2200* 56×
230 590.70 35500* 60×

Table 2: Comparison of running time for SHA3-256
baseline and our scheme executing the assert func-
tionality. Here pc = 1/2. * means estimated via
extrapolation

No. of bits # of Hashes Size of the
Commitment (MB) Time

214 5408 0.17 1.61s
218 17696 0.57 28.21s
222 34080 1.09 5.06m
226 34080 1.09 36.92m
230 34080 1.09 5.91h

Table 3: Computation time and size of the commit-
ment using our scheme for executing the pvccommit
functionality. Here p = 3/8, statistical security pa-
rameter σ = 40 and block size b = min(

√
n, 1024)

where n is the size of input.

Our scheme. For our scheme we implement the idea around PVC commitment from indexed hashes
as described previously. We use Construction 3 in Appendix B. In particular we implement the assert
functionality in MPC (and pvccommit, check in the clear). Our scheme costs ∼ 0.5 AND gate per
input bit. In order to effect signed public verifiability during the assert phase, we use SHA3-256 to
commit the hash corresponding to the input and the index. We summarise the parameters for our
scheme in Table 5 (Appendix D). Note that the table reports the covert security parameter of the
commitment scheme for the honest committer case. In the general case this parameter’s value would
be p/2 = 3/16. Similar to the baselines, our scheme is also implemented on top of the EMP-toolkit’s
PVC framework.

Analytical Performance. Table 1 compares the circuit size |C| (no. of AND gates) for the assert
functionality for the LowMCHash-256 and SHA3-256 baselines with our scheme. As we increase
the size of the input, the scheme starts to show its full potential. For a small input size, the initial
overhead of signing the commitments and the index tends to shadow the improvement. But as we
increase the size of the input, we can see a marked 70× improvement over SHA3-256 and 28×
improvement over LowMCHash-256. Next, we show that these improvements directly translate into
real world experiments, when compared against the actual implementation of SHA3-256.

Running time for assert. Table 2 shows the running time for executing the assert functionality to
verify the commitments using SHA3-256 and our scheme. As we increase the size of the input
to practical sizes, we observe that our scheme is 60× faster than the SHA3-256 baseline. This is
directly correlated with the 70× improvement in the circuit sizes above. We do not perform actual
experiments with LowMCHash-256, but it is similarly expected to be around 25× slower than our
scheme as indicated by the circuit sizes.

Computation load for pvccommit. In Table 3, we show the number of indices |I| for the commit-
ment that need to be computed alongside the size of the entire commitment, that a committer needs to
prepare in order to commit its input. Block size limit of 1024 bits, limits the size of the commitment to
just 1.09 MB. We use the formulation, upon ceiling to the next nearest integer, defined in Theorem B.6
to compute |I|. We plot this formulation in Figure 6 (Appendix I) and communication time for assert
in Appendix H). In Table 3 we also show the computation load of the committer for committing its
input. In particular, we show that the time needed to perform the pvccommit functionality is very
practical.

4 Conclusion

When performing a private prediction on an ML model, nothing prevents model owners from
modifying the model. This is a challenge in settings where the model has to satisfy certain constraints.
In this paper, we introduce a method for securely committing an input in 2PC publicly verifiable
covert (PVC) model for Boolean circuits. PVC security is valuable when the reputation of the
committing party is at stake. Our methods are based on our introduction of indexed hashes and
q−collision resistance and make use of the covert security guarantees and interactivity in MPC. Our
work improves upon ordinary hash functions both in speed and communication. Our work is the first
we are aware of to enable commitments in MPC for PVC security. We also extend our methods to the
maliciously secure model and arithmetic circuits.
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A Preliminaries

We give a brief background on key ideas we use in the paper.

Hash functions and pseudo-randomness. We consider a hash function to be a function h :
{0, 1}∗ → O for some finite output space O. Informally, h is collision resistant if no adversary is
capable of finding two distinct inputs with the same image except with negligible probability. The
formal definition requires talking about families of hash functions [22]. A pseudo-random number
generator, or PRNG, is a function prng : K×N→ {0, 1}∗ which maps (k, b) to a bit-string of length
b. Both hash functions and PRNGs can be modelled as random oracles i.e. as a uniformly random
mapping from their inputs to their outputs.

Publicly-verifiable covert (PVC) security. Covert security [7] weakens the malicious security
setting by guaranteeing that a cheating party (who may behave arbitrarily) will be caught by the
other party with a probability, p, referred to as the covert security parameter. The motivation for
covert security is that if certain parties have a reputation to preserve, then the risk associated with
being caught, outweighs the benefit of cheating. This allows faster protocols than malicious security
[7, 19, 12, 25]. PVC security was introduced by Asharov and Orlandi [5]. It, with probability p,
provides a publicly-verifiable proof of cheating, which allows greater reputational harm and possibly
legal repercussions for a cheater.

B Indexed Hash Functions

In this section we will introduce the primitive we will use to build our commitments: indexed hash
functions. We do so informally and then formally, and give some examples of indexed hash functions.
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The examples will show that secure indexed hash functions have much smaller circuits than ordinary
secure hash functions.

Like an ordinary secure hash function, an indexed hash function takes an input from some space X
and produces an output in a space O. When working with a specific x ∈ X we will denote by n the
bitlength of x. The whole idea is to take advantage of the fact that the verifier (P2) can have an input
to the indexed hash. We call this input the index of the hash function and denote it by i, drawn from
an index set I. If the wrong input from X is used during verification, then at least a fixed fraction of
indices i will result in an incorrect hash.

We need to ensure that the hash is hiding, otherwise if x1, x2 ∈ X were the possible inputs by the
committer, then by computing the hash of x1 and x2 the verifier could learn which was the true
input from the output. Thus the committer must provide an extra random input r from some set
R containing enough entropy to hide the true input. Hence we define indexed hash functions as
functions taking an index i, a random nonce r, and an input x.2

Definition B.0.1. An indexed hash function is a function H : I ×R× X → O.

B.1 Collision resistance

Next, we formally define two properties for indexed hash function that we require: (i) the hiding
property, i.e., not leaking information about x, and (ii) a notion of collision resistance which we call
q-collision boundedness. For (i) we can use the definition from classical commitment schemes: we
say H is hiding if an adversary learns a negligible amount about an input x from learning the value
of H(i, r, x) for all i ∈ I, and a uniformly random (and secret from the adversary) r ∈ R.

For (ii), we start by defining the concept of a q-collision, which denotes a pair of inputs on which H
collides for at least a fraction q of all possible indices |I|.
Definition B.0.2. Let q ∈ [0, 1]. We call a quadruple r, x, r′, x′ a q-collision of H if x 6= x′ and

|{i ∈ I|H(i, r, x) = H(i, r′, x′)}| ≥ q|I|

We can now define our notion of collision resistance. Informally, H is q-collision resistant, if
adversaries are unable to find a q-collision of H except with negligible probability. We formalize this
using families of indexed hash functions, in turn indexed by a key k ∈ K generated by a generator G
taking a computational security parameter λ. This is similar to the standard definition of a family of
collision-resistant hash functions. Moreover, we say that H is q-collision bounded if it is q′-collision
resistant for every q′ > q.

The security parameter λ. We use a single computational security parameter λ for all aspects of
our constructions. This includes their underlying collision resistant hash function, as well as the size
of the source of randomnessR and the set of indices I. In particular, |I| is polynomial in λ and |R|
is exponential in λ in all constructions. Thus our security is formalized in terms of polynomial time
adversaries w.r.t. λ, and whose advantage should be bounded by a negligible function in λ. Note that
this implies that an attacker is allowed to iterate over I, and in fact in practice we will ensure that I
is as small as possible for efficiency.

Definition B.0.3. Given a generatorG, security parameter λ, and key k = G(λ), a family {Hk}k∈K
is q-collision resistant if, for any probabilistic polynomial time algorithm A we have that

P[A(k) is a q-collision of Hk] < negl(λ)

Given this, we can define our main notion of collision as follows.

Definition B.0.4. A family {Hk}k∈K is q-collision bounded if it is q′-collision resistant for all
q′ > q.

Any family {Hk}k∈K that is q-collision resistant is also q-collision bounded. This is simply due to
the definition of q-collisions: any q-collision is also a q′-collision for all 1 ≥ q′ > q.

2We call these hash functions because they have output smaller than their input and, even with the insertion
of randomness that is not technically part of the function, a single evaluation of this function would not create a
commitment.
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Construction C0

(baseline) C1 C2
C3

(main)

# ANDs CNn n+ CN
n
b

n
2

+ CN
n
b

n
2

+ CN
n
b

# XORs CLn n+ CL
n
b

3n
2

+ CL
n
b

3n
2

+ CL
n
b

|I| 1 2b 2b b+λ+1
2ε2

q 1 1
2

1
2

1
2

+ ε

Table 4: Let H be an indexed hash function resulting from a construction, using h as the underlying collision
resistant hash function. This table shows (i) the size of a Boolean circuit for H in terms of number of bits n of
the input (omitting lower order o(n) additive terms), where CN and CL denote the number of AND and XOR
gates of h, respectively; (ii) the size of I, and (iii) the value of q for which q-collision resistance holds. The
parameter b can be chosen to be any even positive integer and ε can be taken to be any positive value.

This property will be useful later because by choosing an index uniformly at random we can
distinguish between any two inputs x, x′ ∈ X , s.t. with probability at least 1− q by looking at a hash.
We can now make the hiding property precise. That H is hiding will be proved under the assumption
that h is a random oracle.

Definition B.0.5. A family of indexed hash functions {Hk}k∈K is hiding if for any polynomial time
algorithm A and any x, x′ ∈ X , for a uniformly random choice of r ∈ R we have

P(A(k, (Hk(i, r, x))i∈I) = 1) =

P(A(k, (Hk(i, r, x′))i∈I) = 1) + negl(λ)

As mentioned above, we will construct our indexed hash functions by building them from an ordinary
secure hash function h. We do so because it will allow us to prove q-collision resistance of H via a
(ptime) reduction to collision resistance of h. To argue about collision boundedness we formalize the
notion of a construction.

Definition B.0.6. A construction of an indexed hash function is a function C which given a hash h
and the security parameter λ, returns an indexed hash H .

We say that C, preserves q-collision boundedness if there is an (efficient) algorithm which, given a
q-collision of C, returns a collision of h. Thus if a powerful adversary is unable to find a collision in
some fixed hash function h, then it is reasonable to assume they cannot find a q′|I|-sized collision in
H for any q′ > q.

Definition B.0.7. We say that C preserves q-collision boundedness if {hk}K being collision resistant
implies that {Hk = C(hk)}K is q-collision bounded.

B.2 Constructions

We will now give four constructions of indexed hash functions denoted C0 through C3. Our construc-
tion 3 is the most practical and the one we would recommend to use (we will use this construction
in our experiments in Section 3), but we include all four to build up ideas incrementally. Our goal
is to derive indexed hash functions that 1. Are efficient to implement in MPC: this aspect of the
constructions in this section is captured in terms of the number of AND and XOR gates of their
corresponding Boolean circuit implementations (in Appendix G we give a construction for arithmetic
circuits); 2. Have a small index domain I: this directly corresponds to the commitment size of the
PVC commitment schemes that we will build on top of them. For these constructions the value of q
(i.e., for which constructions are q-collision bounded) is one minus the security parameter of the PVC
commitment scheme derived later. We summarize computation, size, and allowed q values in Table 4.
In this section we have q = 1/2 and q = 1/2 + ε (for arbitrarily small ε > 0), but in Appendix F we
show how to achieve arbitrarily small q.

Blueprint for our constructions. Consider an indexed hash function H taking an index i, random-
ness r, and input x. All our constructions are parametrized by a block size b ∈ [|x|] and a block digest
function d. The latter takes (i) a binary encoding of i and (ii) a bitstring of size b, and outputs a single
bit, i.e. d : I × {0, 1}b 7→ {0, 1}. The indexed hash function is defined to be the result of
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1. splitting x into n/b consecutive blocks of b bits (if |x| is not a multiple of b, it can be padded
with zeros),

2. applying d(i, ·) to each block xj , and
3. outputting the length n/b bitstring resulting from concatenating all digested bits d(i, xj).

We denote the result of processing an input i, x as in steps 1-3 by processb,d(i, x). Digest function
d determines the size of the index set I.

Then, each construction C is defined by a block size b, digest function d, an ordinary collision resistant
hash function h, and a set of random masksR (which we always take to be {0, 1}λ) as:

C(h, λ)(i, r, x) = h(r||i||processb,d(i, x)) (1)

When presenting the three constructions in this section we will denote the digest function associated
with Cj by dj . The motivation behind this presentation is simplicity, as it is now enough to define
d1, d2, d3, and the arguments in our proofs only need to refer to dj .

The hiding property. We can prove the hiding property (Def. B.0.5) without knowing anything
about d and thus the size of I, so we do this in generality for all the constructions.
Theorem B.1. Suppose C is given by Equation 1. If {hk}k∈K is a family of random oracles then
{C(hk, λ)}k∈K is hiding.

See Appendix K for the proof of this theorem.

Collision boundedness. For each Cj we propose, we will show q-collision boundedness of H =
Cj(h, λ). This will be done by showing that for at most q|I| indices i we have processb,d(i, x) =

processb,d(i, x
′). That this is a sufficient condition for q-collision boundedness is shown in the

following theorem.
Theorem B.2. Let q ∈ [0, 1]. Suppose that for any x 6= x′ and for any sufficiently large λ,

|{i ∈ I|processb,d(i, x) = processb,d(i, x
′)}| ≤ q|I|

then the construction in Equation 1 preserves q-collision boundedness.

Proof. Let {hk}k∈K be a collision resistant family of hash functions, and Hk = C(hk, λ). Suppose
that the hypothesis of the statement holds but there exists a polynomial time algorithm A which finds
a q-collision in Hk with non-negligible probability. We show next that {hk}k∈K is not collision
resistant: a contradiction.

Let k = G(λ). For sufficiently large λ, a probabilistic ptime (in λ) algorithm B for finding a
collision in h with non-negligible probability is given by the following. Given k, B computes
(r, x, r′, x′) = A(k). If (r, x, r′, x′) is a q′-collision for some q′ > q (this happens with non-
negligible probability) then B computes an index i such that processb,d(i, x) 6= processb,d(i, x

′)

but Hk(i, r, x) = Hk(i, r′, x′). Note that such an i must exist with probability 1 and can be found
by exhaustion in time O(I) (and thus O(λ). By Equation 1 we now have that r||i||processb,d(i, x)

and r′||i||processb,d(i, x′) form a collision in hk. The algorithm B outputs this collision. The fact
that B succeeds with non-negligible probability contradicts the collision resistance of the family
{hk}k∈K .

We now proceed to present each construction Cj by specifying the length of I and the digest function
dj to sub into Equation 1. Recall that all constructions are summarized in Table 4.

Construction 0. Firstly let us consider a trivial construction. Let I be the set containing only the
empty string ε and let d0(i, x) = x and the block size be b0 = |x|. Let

h(r||ε||processb0,d0(i, x)) = h(r||x).

Theorem B.3. C0 preserves 0-collision boundedness.

Proof. By Theorem B.2 this is immediate as the identity function has no collisions, and thus the
condition of that theorem holds for q = 0.
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This construction is very simple and d0 is trivial to compute. However, we can improve over this by
making the digest function d compress the input so that h only has to be computed on an input much
smaller than x, resulting in a more efficient circuit.

Construction 1: n AND gates. The digest function for construction 1 is shown in Figure 2 (left). As
above, this construction is parameterised by a block size b. Let I = {0, 1}b and let xj be the block
containing bits jb through jb+ b− 1, inclusive, of x (padding x with zeros to length a multiple of b).
We use & to denote bitwise AND, and let parity map bit strings to the XOR of all their bits. Then we
define d1(i, xj) = parity(xj&i).

input block
xj

index
i

&

&

&

&

&

&

&

&

Construction 1

&

&

&

&

&

input block
xj

index
i

Construction 2

&

&

&

&

&

input block
xj

random
prng(i, b)

Construction 3

Figure 2: A depiction of digest functions d1 (left), d2 (center), and d3 (right).

Theorem B.4. C1 preserves 1/2-collision boundedness.

Proof. If x and x′ differ, they differ in some block j. Let processb,d(i, x)j be the jth bit of
processb,d1(i, x). Note that processb,d1(i, x)j = processb,d1(i, x)j if and only if d1(i, xj) =

d1(i, xj), which happens if and only if parity((xj ⊕ x′j)&i) = 0 (as conjunction distributes over
exclusive or). As xj⊕x′j 6= 0, we have that processb,d1(i, x) = processb,d1(i, x) holds for exactly
half of the possible values of i. The result is then immediate from Theorem B.2.

Note that d1 (and thus processb,d1(i, x)) has only one AND gate per bit of input and the output
of processb,d1(i, x) has size dn/be (see Figure 2). Thus for large n and b this construction can
asymptotically be computed with a number of AND gates arbitrarily close to n (and n XOR gates).
However, as we will see in the lower bounds section (Appendix E) only n/2 AND gates are needed for
any collision resistant indexed hash function. This motivates looking for the following construction
which closes this gap.

Construction 2: n
2 AND gates. We wish to avoid using an AND gate for each bit of the input but

still need some nonlinearity in d. So the idea is to combine two bits of the input together using a
single AND gate. If the raw input bits went directly into the AND gate then the adversary would
sometimes be able to change them in a way that definitely would not change the output of the gate.
Instead we will first XOR each bit with a bit from i. Now the adversary cannot tell whether changing
a certain bit will change the output.

Let ⊕ denote bitwise XOR. Let y be a bitstring of length 2m and let yj be the jth bit of y, we define
andreduce(y), as the concatenation of y2j&y2j+1 for all j ∈ (0, ...,m−1). Then we define d2(i, xj)
to be parity(andreduce(xj ⊕ i)), see Figure 2 (center).

A bent function has the property that for a fixed linear change to its input, the output of the function
would change for exactly half of all starting inputs [35]. The following theorem boils down to
showing that parity ◦ andreduce is a bent function.

Theorem B.5. C2 preserves 1/2-collision boundedness.

Proof. By Theorem B.2 it suffices to show that if xj 6= x′j , i.e. x and x′ differ in the jth block, then
ej := d2(xj) ⊕ d2(x′j) = parity(andreduce(xj ⊕ i)) ⊕ parity(andreduce(x′j ⊕ i)) is a uniformly
random bit for a randomly chosen i ∈ I.

Given that xj 6= x′j we assume WLOG that they differ in at least one of the first two bits. The first
bit of andreduce(xj ⊕ i) is 1 if and only if the first two bits of i are the bitwise not of the first two
bits of xj , therefore it is 1 with probability 1/4. Similarly the first bit of andreduce(x′j ⊕ i) is 1
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with probability 1/4 and they can not both be 1 at once. Therefore they differ with probability 1/2.
Further they are independent of all but the first two bits of i and thus of the rest of andreduce(xj ⊕ i)
and andreduce(x′j ⊕ i). It follows that ej is uniformly random.

This construction can approach arbitrarily close to half an AND gate per bit of input by choosing
b appropriately (see Table 4). However, suppose h is SHA3-256, which requires ≈35 AND gates
per bit of input (and thus CN ≈35 in Table 4). Then for H to have less than one AND gate per bit
we would have to take b≥70. This would give |I|≥270. Recall that |I| directly corresponds to the
size of our commitments, and thus |I|=2b is impractical in computation and communication/storage.
Construction 3 sacrifices a small amount of collision resistance in order to reduce the size of I.

Construction 3: main result. The digest function d3 is shown in Figure 2 (right), and is analogous
to d2, but instead of using i ∈ I = {0, 1}b directly, we use a pseudo-random number generator prng
to expand i into length b strings to xor with the blocks of x. This corresponds to re-interpreting the
set of indices I as the set of seeds of prng. This replaces the need for |I| = 2b from construction 2
by a much smaller I of size linear in b and λ.

Concretely, let prng : Q → {0, 1}b be a pseudo-random number generator, with an arbitrarily large
keyspace Q. Let an evaluation of prng on key i as prng(i, b) denote that the prng stretches the input
to length b. For practical purposes we can think ofQ = {0, 1}128 if, for example, we instantiate prng
with AES (in counter mode) with 128-bit keys. Let I be a subset of Q. For construction 3 we define
d3(i, x) to be parity(andreduce(xi ⊕ prng(i, b))).

Because we do not use a uniformly distributed mask on each block we do not get 1/2-collision
boundedness. However, we can get arbitrarily close to that by increasing the size of I. In particular
|I| need only grow linearly in b, as shown in the following theorem.

Theorem B.6. If prng is a random oracle, then given any q > 1/2, there exists a choice of |I| such
that with probability 1 − 2σ (over the randomness of prng), construction 3 preserves q-collision
boundedness. Specifically, it suffices to take

|I| ≥ 1

2(q − 1/2)2
(σ + b+ 1).

Proof. Unlike in the proof of Theorem B.5 we will make use here of the fact that the hypothesis in
Theorem B.2 is only required to hold for sufficiently large λ.

Letm = prng(i, b). Here we must show that with all but negligible probability, for sufficiently large λ,
xj 6= x′j implies ej := d2(xj)⊕d2(x′j) = parity(andreduce(xj⊕m))⊕parity(andreduce(x′j⊕m))
is equal to one with probability at least 1− q.

We will show that with the choice of |I| given in the statement, the above will hold with probability
2−σ .

Given xj 6= x′j , let y = xj and y′ = x′j to avoid extra subscripts. Let yl and ml be the lth bit, with
one indexing, of y and m respectively. Leaving AND implict (like multiplication) and using

∑
to

denote XOR, we can rearrange the definition of ej as follows.

ej =

b/2∑
l=1

(
m2l−1

(
y2l ⊕ y′2l

)
⊕

m2l

(
y2l−1 ⊕ y′2l−1

)
⊕ y2ly′2l−1 ⊕ y2l−1y

′
2l

)
Let v(y, y′) be the vector with entries yl ⊕ y′l for all l ∈ (1, ..., b) plus one entry containing∑b/2
l=1 y2ly2l−1 ⊕ y2l−1y2l. Note that there are only 2b+1 possible values for v.

Now ej is a function of v and m, we write it as e(m, v). For a fixed value of v let q(v) be the fraction
of the key space for which e(m, v) = 1. Note that this value has distribution Bin(|I|, 1/2) with
respect to the randomness of prng. Therefore by a Chernoff bound we have that P(q(v) < p) ≤
e−2(q−1/2)

2|R|. As there are 2b+1 possible values of v, a union bound over v yields P(∃v s.t. q(v) <

p) ≤ 2b+1e−2(q−1/2)
2|R|. Rearranging, it follows that it suffices to take |I| ≥ 1

2(q−1/2)2 (σ + b +

1).
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One should think of the σ as a statistical security parameter, thus 40 would be a standard choice.

The prng can be thought of as a fixed function on the set I . We need this function to have the property
that any lie v will be caught with probability at least p. This might not need to be a random oracle, but
we can not prove any fixed function works, thus we instead show that a randomly selected function
works with high probability.

However, it is important here that the randomness for the prng and the parameter b are not chosen
adversarially. If they are then the result could still be recovered by increasing σ by however many
bits of information about b and the output of prng the adversary was able to control. We will use
σ = 40 when presenting our results.

It would be convenient if given a specific b and prng we could check whether the resulting construction
preserves q-collision boundedness. Unfortunately, the problem of determining whether this is the
case is as hard as the learning parity with noise problem [33], which is conjectured to be hard.

This does not rule out the idea of replacing the prng with a process that generates an output that is
specially structured to guarantee preservation of q-collision boundedness. Indeed this is done in the
analogous construction 4 of Appendix G over large fields. However we were unable to find such a
construction in the binary case.

The expansion of prng requires O(b) gates, the evaluation of h requires O(n/b) gates, and f requires
n/2 AND gates and 3n/2 XOR gates as in construction 2. Thus by taking b ≈

√
n the total cost is

n/2 +O(
√
n) AND gates and 3n/2 +O(

√
n) XOR gates.

However, in practice, as O(n/b) is small compared to n/2 once b is moderately large we advise
taking b ≈ min(

√
n, 1024) so that for large n the size of |I| = O(σ+b) does not become prohibitive.

The choice of q is somewhat arbitrary but it is a trade-off between wanting something close to 1/2
whilst not wanting |I| to be too large. Taking q = 5/8 is the compromise we work with.

With σ = 40, q = 5/8 and b = 1024 we have |I| = 34080 indices. We will explore these values
more in Section 3.

C PVC Committed MPC From Indexed Hashes

In this section we introduce PVC commitments and the required properties for them to be secure,
instantiate them using indexed hash functions, and propose a protocol for committed MPC with PVC
security that directly leverages PVC commitments. We will start by defining what a PVC commitment
scheme is, then we will explain how to construct one using a collision bounded indexed hash function.
We will express the guarantees provided in a theorem and assess how the computational cost of the
scheme depends on the indexed hash function. Throughout sk, pk is a public key pair belonging to
the committing party that can be thought of as the identity of the input, it should only be used by one
input. It is important this public key is associated to the committer (possibly by being signed with
another key) by anyone to whom the verifier wishes to prove cheating, e.g. a regulatory authority.
The values i ∈ I and r ∈ R will be randomly chosen as inputs to provide security. For simplicity,
we omit the security parameter λ in some of our statements, and when we say that an adversary can
not succeed at a task, we mean that they stand a negligible chance of doing so.

C.1 Definitions

We now define PVC commitments in terms of the three functionalities mentioned above.

Definition C.0.1. A PVC commitment scheme with covert security parameter p ∈ [0, 1] consists of
three functions pvccommit, assert, check, the last of which is deterministic, satisfying four security
properties defined below (correctness, general binding property with parameter p, hiding property,
and defamation freeness).

Let us first describe the form of the three functions pvccommit, assert, and check. A commitment
function which commits to a value x,

c = pvccommit(x, sk, r).
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An assertion function which is applied to the x we later wish to check was committed to,

a = assert(x, sk, r; i, pk).

And a checking function, which interprets the output from the other two functions,

output = check(c, a, pk).

With output satisfying output ∈ {valid, cheated, inconclusive}.
Intuitively, output = valid means that the commitment opened to the expected value, output =
cheated means that the check did not pass because the committed and asserted values do not match,
and output = inconclusive denotes situations where the result of the verification is inconclusive
because of a malformed message, or more generally an abort by the committer. This latter situation
can not be avoided in general when evaluating PVC commitments in MPC, as a corrupted committer
could send invalid messages or stop responding, similar to the role of aborts in MPC security with
aborts. The first of the properties is correctness.
Definition C.0.2 (Property 1: Correctness). For any i, r, x and valid key pair sk, pk, if c =
pvccommit(x, sk, r) and a = assert(x, sk, r; i, pk) then check(c, a, pk) = valid.

The second is binding, a guarantee that a cheating committer will be caught with reasonable proba-
bility. P1 can avoid being caught cheating by refusing to sign anything, this is fine so long as they
can not possibly get a valid result either. Thus we require that they be caught with probability p only
conditioned on the result not being inconclusive. A simple version of this is the following.
Definition C.0.3 (Honest Binding). No polynomial time adversary can find x, sk, r, x′, sk′, r′, pk
such that (i) x 6= x′ and (ii) if i ← I, c = pvccommit(x, sk, r), a = assert(x′, sk′, r′; i, pk) and
output = check(c, a, pk) then P(output = inconclusive) < 1 and

P(output = cheated|output 6= inconclusive) < p

The above allows us to prove PVC security with parameter p only if the commitment is made honestly.
If the commitment might be arbitrarily generated then we need the following strictly stronger version
of binding. As this version is stronger it is the only one we include in the definition of a PVC
commitment scheme, the previous definition will be referenced later in proofs though.
Definition C.0.4 (Property 2: General Binding). No polynomial time adversary can find
x, sk, r, x′, sk′, r′, pk and c such that (i) x 6= x′ and (ii) if i ← I, a = assert(x, sk, r; i, pk),
a′ = assert(x′, sk′, r′; i, pk), output = check(c, a, pk), and output′ = check(c, a′, pk) then
P(output = inconclusive) < 1, P(output′ = inconclusive) < 1 and

P(output = cheated|output 6= inconclusive)

+P(output′ = cheated|output′ 6= inconclusive) < p (2)

To see this is stronger, note that if a scheme is not honestly binding the same counterexample but
with c = pvccommit(x, sk, r) will show it is not generally binding.

The final two properties prevent the verifier from cheating, so consider sk, pk to be fixed. It is useful
to define an oracle Osk(x) which when called samples r ← R and returns

pvccommit(x, sk, r)

and

(assert(x, sk, r; i, pk))i∈I .

The third property is the hiding property which guarantees the verifier can not learn anything about x
from the outputs of pvccommit or assert.
Definition C.0.5 (Property 3: Hiding). For any x, x′ and polynomial time adversary A

P(A(Osk(x)) = 1) = P(A(Osk(x
′)) = 1) + negl(λ).

The final property is defamation freeness which guarantees the verifier can not frame an honest
committer.
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Definition C.0.6 (Property 4: Defamation Freeness). No polynomial time adversary can choose an
x and then when given Osk(x) find c and a such that

check(c, a, pk) = cheated

Note it is important that each secret key is only used for one choice of x, r. This could be achieved
by deriving the secret key from (x, r) by a one way function (possibly with extra randomness).

C.2 PVC commitment from indexed hashes

Let H be an indexed hash function with index space I and randomness spaceR. Let msgn(sk) denote
m together with a signature of m by secret key sk. Consider the following three functions.

pvccommit(x, sk, r) = ((H(i, r, x))i∈I)sgn(sk)

assert(x, sk, r; i, pk) =

{
(i,H(i, r, x))sgn(sk) if (sk, pk) is a valid keypair
⊥ otherwise

For check let G be the event that the signatures are valid.

check(c, a, pk) =


valid if G and c[a[0]] = a[1]

cheated if G and c[a[0]] 6= a[1]

inconclusive Otherwise

We require one slightly unusual property of the signature scheme. This is a technicality, as (a) lots
of schemes have this property and (b) in the next subsection we will introduce a computational
optimization which has the side effect of guaranteeing this property from any scheme.
Definition C.0.7. Call a signature scheme discrimination resistant if no polynomial time adversary
can find m,m′, sk and pk, ((sk, pk) not necessarily a valid key pair), such that msgn(sk) and m′sgn(sk)
are valid with non-negligibly different probabilities.

We also require that the signature scheme has a deterministic verification function. This could be
lifted at the expense of complicating the definitions with extra negligible terms. However, whilst not
implied by the definition of a signature scheme, all the most popular schemes satisfy this assumption
so we will make it for simplicity.
Theorem C.1. If H is hiding and q-collision bounded and the signature scheme has deterministic
verification and is discrimination resistant, then the above functions form a PVC commitment scheme
with covert security parameter p = 1− q (Definition C.0.1).

The proof of this theorem is given in Appendix L.1.

C.3 PVC Committed MPC from a PVC commitment scheme

In this section we define formally PVC committed MPC, for the two party case, and propose protocols
to efficiently realize this functionality, which corresponds to the intuitive idea from Figure 1.

We follow the definitions by Asharov and Orlandi [5] to prove PVC security of our protocols. This
involves proving (i) simulatability (in the ideal vs. real worlds framework) for the covert security
part, along with (ii) accountability and (iii) defamation freeness for the public verifiability. For (ii)
and (iii) we use the definitions by Asharov and Orlandi and for (i) our ideal world is presented in
detail in Appendix L.2 as an extension of theirs, to handle the commitment phase. Without loss of
generality, we describe our ideal world for only two parties P1 and P2. Moreover, as in our protocols,
the first party gets malicious security, while the second party gets PVC security. This matches the
guarantee in the generic PVC protocol by Hong et al [23] that we use in the experimental evaluation.

Our ideal world is parameterized by two values pexec, pcommit ∈ [0, 1] denoting lower bounds on
the probabilities with which P1 can get caught when (i) cheating in the protocol execution and (ii)
breaking the commitment, respectively. Note that Asharov and Orlandi only formalize (i), and they
denote pexec as ε. Moreover, our ideal world is parametrized by an arbitrary distribution E with we
refer to as the environment (this is similar to the notion used in the UC framework). A sample from
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the environment is included in the parties’ view as an auxiliary input that is received only after the
commitment phase has finished. This limits the ability of the ideal world adversary (the simulator) to
rewind the adversary beyond the commitment phase (similar to the role of the environment in UC),
and models information that the adversary might get after committing.

We summarize the ideal world execution next. First, P1 receives its prescribed input and commits to
it (if honest) or an arbitrary value (if corrupted) by sending it to the trusted party. This constitutes
the commitment phase, and captures the situation where P1 commits to using an input, e.g., an ML
model, to be used at an undetermined time in the future in a secure computation with a second party
P2. Then, party P1 receives an input from the environment, in the form of a sample from E , which is
also given to P1 in the real world, as explained above. This determines the beginning of the secure
computation phase, which starts with P2 receiving its prescribed input and with P1 notifying the
trusted party of their desire to cheat in the execution. This attempt will succeed with probability
1− pexec, in which case P1 gets to completely break the protocol, i.e. learn P2’s input and choose
their output. If P1 fails, P2 receives output corrupted. If a corrupted P1 decided to not cheat in
this way, they still get a chance to cheat in switching the input of the secure computation from the
committed value w to a different one. If this attempt fails (which happens with probability at least
pcommit), P2 gets notified. For simplicity in the presentation we allow P1 to abort after receiving their
output, and before P2 gets to observe theirs, but this assumption can be lifted by ensuring that in the
underlying PVC protocol P2 gets the output first.

Public Parameters: A PVC commitment scheme (Definition C.0.1) and a public key pk.
Inputs: input x and secret key sk matching pk.
Outputs: Commitment c.

Algorithm:
1. Sample r ←R.

2. Compute c = pvccommit(x, sk, r).

3. Store r as a secret and return c.

Figure 3: PVC Committed 2PC (commitment algorithm).

Parties: P1, P2.
Public Parameters: A PVC commitment scheme (Definition C.0.1), a commitment c, and a public key pk.

The protocol uses a PVC secure protocol Π offering PVC security to P2 and malicious security to P1.
Inputs: P1: x, r; P2: y.
Outputs: P1 : g1(x, y); P2 : g2(x, y), or a proof of cheating a.

Protocol:
1. P2 samples i← I.

2. P1, P2 run Π to compute (o1; o2, a) = (g1(x, y); g2(x, y), assert(x, sk, r; i, pk)).

3. P2 computes output = check(c, a, pk) and
If output = valid −→ accepts o2 as g2(x, y).
If output = cheated −→ accepts a as proof of cheating.
Otherwise −→ aborts and sets result to inconclusive.

Figure 4: PVC Committed 2PC for functionality g(x, y) = (g1(x, y), g2(x, y)) (integrity check).

Let (pvccommit, assert, check) be a PVC commitment scheme with parameter p. Let Blamecommit
be the function which when given a view of P2 (honestly) running the protocol in Fig. 4, in which
output = cheated returns the commitment c and the resulting a and otherwise returns ⊥. Let
Judgementcommit be the function check with the public key of P1 hard coded. Let Commit be the
commitment algorithm in Fig. 3 and P be the protocol in Fig. 4, with Π instantiated with the
protocol of Hong et al [23]. Finally, let Blameexec and Judgementexec be the blame and judgement
functions from Π, and define Blame(x) to be cheated if either Blameexec(x) or Blamecommits(x)
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Parties, inputs, outputs, and public parameters are as in Figure 4, and the PVC commitment scheme is
instantiated by an indexed hash function H (as in Theorem C.1).

Protocol:
1. P2 samples i← I and r̃ ← R.

2. P1, P2 run Π to compute (g1(x, y), h(m|r̃); g2(x, y),m), where m = (i,H(i, r, x)).

3. P1 computes s = sign(h(m|r̃), sk) and sends it to P2.

4. P2 aborts if s is not the valid signature of h(m|r̃).

5. P2 computes output = check(c, a, pk) and
If output = valid −→ accepts o2 as g2(x, y).
If output = cheated −→ accepts a as proof of cheating.
Otherwise −→ aborts and sets result to inconclusive.

Figure 5: PVC Committed 2PC for functionality g(x, y) = (g1(x, y), g2(x, y)) (Optimized integrity check).

equals cheated, and analogously for a function Judgement. We are now ready to state our main
result.

Theorem C.2. The quadruple (Commit,P, Blame, Judgement) securely computes g with committed
first input in the presence of a malicious P1 or a covert P2 with p/2-deterrent and public verifiability.

If pvccommit and check are used as given in the previous section then we can replace the P with the
protocol in Fig. 5 and still have the same security guarantee.

Furthermore, if in either case it can be guaranteed that P1 is honest in running the commitment
algorithm in Fig. 3, then the deterrent factor improves from p/2 to p.

Non-committed output at no risk. P1 can in the above ideal world, and thus in the protocol, get
g1(x′, y) for a non-committed x′ at no risk by aborting afterwards. This could be avoided by opening
up the PVC blackbox and holding back this output until P2 has checked the result of assert (or
optimized equivalent).

Computational costs. The cost of the commit operation in the clear is computing H , |I| times.
The cost of the assert is dominated asymptotically by the cost of computing H once i.e. requires
n/2 + o(n) AND gates. The check are O(1) and relatively very cheap.

D Experimental Details

Experimental Settings. The experiments were executed on two Azure D32s v3 machines running
Ubuntu 16.04, equipped with Intel Xeon E5-2673 v4 2.3GHz processors and 128 GB RAM. The
machines were hosted in the same region with a bandwidth of 1.7 GB/s and an avg. latency of 0.9ms,
representative of a LAN setting.

Implementation. We use the EMP-toolkit [39] to implement our secure protocols as well as the
baselines. In particular, we use the PVC framework of Hong et al. [21], which makes use of garbled
circuits. We set the covert security parameter pc of this underlying implementation to 1/2. Note
this is different from the covert security parameter p used in our scheme. Since p ≤ 1/2, pc could
be set to 1/2. As one could infer, the effective covert security parameter for our scheme with this
implementation would be min(p, pc).

Baselines. We use two baselines for comparison: SHA3-256 and LowMCHash-256. For SHA3-256,
we use the sponge framework [9] with an input block size of 1600. Using the standard security
parameters we get the rate as 1088 and the capacity as 512. This results in a computation cost of
∼ 35 AND gates per input bit. For LowMCHash-256, we use LowMC permutations together with
the sponge framework using an input block size of 512. We reserve 256 bits for the rate and another
256 bits for the capacity (128 bit security). This results in ∼ 14 AND gates per input bit. LowMC is
relatively new and has been shown to be susceptible to attacks [14]. However, we include it in this
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Description Symbol Value

Our Indexed Hash Function

Length of the input (|x|) n no. of bits (variable)
Pseudorandom number generator prng AES (counter mode)

Underlying collision resistant hash h SHA3-256
Statistical security parameter σ 40

Collision boundedness parameter q 5/8
Block size b min(

√
n, 1024)

Our PVC Commitment

Covert security parameter p 1− q = 3/8

Underlying PVC 2PC Protocol (EMP-PVC) For assert

Covert security parameter pc 1/2

Table 5: Parameters used in our experiments

comparison, it being one of the most MPC optimized hashing schemes for Boolean circuits. Both
these baselines are implemented on the top of the EMP-toolkit’s PVC framework.

Parameters used in the experiments. We summarise the parameters for our scheme in Table 5

E Lower Bounds

In this section we provide lower bounds on how many AND gates are required for a collision resistant
indexed hash function and an ordinary hash function. Recall that our construction 3 from Appendix B
requires half an AND gate per bit of input. In this section we show that

1. Construction 3 is optimal amongst hash functions whose output’s size is sublinear w.r.t. their
input’s size (Corollary E.1).

2. For ordinary hash functions we show that every collision resistant hash function requires at
least one AND gate per input bit (Proposition E.2).

3. Assuming that we want our hash functions to be hiding, we show, both for indexed and
ordinary hash functions, that allowing their output to be large does not help much to reduce
the number of required nonlinear gates (Proposition E.3).

Moreover, although we state the above results in terms of Boolean circuits, it is not hard to see that the
arguments extend to any field. The following lemma and corollary correspond to item 1 above. The
proof, given in Appendix M, constructs an algorithm to find a 1-collision on any H with small set of
nonlinear gates by casting that problem as that of solving a linear system S on F2, and showing that
S always has a solution. Recall that indexed hash functions have three inputs i, r, x, in the statement
by main input we mean x.
Proposition E.1. Given any non-trivially collision bounded family of indexed hash functions
{Hk}k∈K with Hk given by the (polynomial size) circuit Ck with n-bit main input, and m-bit
output. With all but negligible probability over the generation of k = G(λ), the circuit Ck must have
at least d(n−m)/2e nonlinear gates.

Note that in practice the lower bound on the nonlinear gate count will apply (with all but negligible
probability) for any λ large enough to be considered secure. In particular we have the following
corollary which says that, in order to beat our constructions asymptotically, an indexed hash function
must have large output.
Corollary E.1. Any family of covertly collision resistant hash function circuits, indexed by n, with
main input in {0, 1}n must either have at least n/2 + o(n) nonlinear gates or must have output size
that is not o(n).

A stronger result can be achieved in the case of an ordinary secure hash function, by relying on the
fact that they do not take auxiliary inputs. The idea of the proof is similar to that of Proposition E.1,
and is given in Appendix M.
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Proposition E.2. Let {hk}k∈K be a collision resistant family of hash functions with hk given by the
circuit Ck with n-bit input and m-bit output. With all but negligible probability with respect to the
generation of k = G(λ), the circuit Ck must have at least n−m nonlinear gates.

These results show that our constructions have asymptotically half the verification cost of the baseline
with any ordinary secure hash function. However, recall that we designed our construction 3 for the
output of H to be small, i.e. o(n), for efficiency and not security reasons. One may thus wonder
whether dropping this requirement allows to significantly overcome the above lower bounds. Next,
we show that the answer is negative by leveraging the fact that we do require a hiding property for
security, which we show implies a linear lower bound on the required number of AND gates.

The proof of the following result can be found in Appendix M. It relies on the fact that if you have a
small number of AND gates then only a small amount of the entropy in the randomness can affect
their inputs. The rest of the randomness can not be used for hiding the output without giving too
much leeway for finding collisions. Thus only a small amount of randomness and a small number of
output wires from AND gates can hide the output. Thus the output must be effectively small and the
above propositions can be applied.

Proposition E.3. Suppose that {Hk}k∈K is a non-trivially collision bounded and hiding family of
hash functions. Let Hk be given by Ck with an n-bit main input and d nonlinear gates, then with all
but negligible probability, d ≥ n/5. Further if |I| = 1, then d ≥ n/3.

F From Covert to Malicious Security

A natural idea is to amplify the statistical guarantee of an indexed hash function H by computing it at
several indices. This would in turn lead to a PVC commitment scheme with improved parameters
where H is run on several indices. More concretely, given a collision resistant indexed hash function
H we can compute an indexed hash function Hκ with stronger security by computing H κ times
with different indices. Formally, with ij ∈ I for j ∈ {1, ..., κ}

Hκ((ij)
κ
j=1, r, x) = (H(ij , r, x))κi=1 .

This new function requires no more hashes to be prepared by the committer and, if {Hk}k∈K is
q-collision bounded then {Hκ

k }k∈K is qκ-collision bounded. However, it also requires κ times as
many AND gates (and XOR gates) to compute it. In this section, we present a construction that
asymptotically requires no more AND gates than H (and fewer XOR gates than Hκ) to achieve this
higher security.

Let E : {0, 1}w → {0, 1}l be the encoding function of a (κ− 1) error detecting code. All we require
from E is that if two messages m,m′ ∈ {0, 1}w then their codes, i.e. E(m), E(m′) ∈ {0, 1}l
differ in at least κ positions. Split x into w words, x1, ..., xw each of length dn/we, zero-padding
x as required. Let x1, ..., xdn/we be the columns of the matrix whose rows are given by the xj . Let
x̃1, ..., x̃l be the rows of the matrix whose columns are given by E(x1), ..., E(xdn/we). Finally let

HE
(

(ij)
l
j=1, r, x

)
= (H(ij , r, x̃j))

l
j=1 .

The following theorem follows from the structure of HE and the property of the error detecting code
(proof in Appendix N).

Theorem F.1. If {Hk}k∈K is q-collision bounded then {HE
k }k∈K is qκ-collision bounded.

Furthermore, the number of AND and XOR gates required to compute HE is ldn/we times the
number of gates required per bit by H plus dn/we times the number of gates required by E.

To make use of the above result we need an error detecting code E that works on fairly large
codewords and is easy to compute. We want it to be linear to keep the number of AND gates low,
but we also do not want to introduce too many XOR gates. The following lemma provides such an
encoding.

Lemma F.1. Given ρ, d ∈ Z+, there exists a linear 2d − 1 error detecting encoding E : {0, 1}ρd →
{0, 1}(ρ+1)d requiring (ρ− 1)((ρ+ 1)d − ρd) XOR gates to compute.
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Proof. Given a message m ∈ {0, 1}ρd , arrange the bits of m in a d-dimensional cube. We index into
m with the notation m[i1, ..., id]. We extend m by one in each dimension in turn by the following
method. To extend m by one in the dimension j, let m[i1, ..., ij−1, ρ, ij+1, id] be the XOR of
m[i1, ..., ij−1, 0, ij+1, id] through m[i1, ..., ij−1, ρ−1, ij+1, id]. The output of E is just the contents
of the resulting cube.

Let m′ be a different message, then for some choices of ij we have that m[i1, ..., id] 6= m′[i1, ..., id].
We can then deduce by induction that after j dimensions have been extended there are at least 2j

points in the cuboids with final co-ordinates ij+1, ..., id on which m and m′ differ. Thus once all
directions have been extended the arrays m and m′ differ in at least 2d places and we have a 2d − 1
error detecting code.

The jth extension requires (ρ−1)(ρ+1)j−1ρd−j XOR gates. Summing over all j gives the result.

Putting the above together we get a corollary which says there exists an asymptotically efficient
protocol for maliciously secure commitment. Note that log 1/q is a statistical security parameter so
can be thought of as a small constant, independent of n and λ, in practice log2 log2 1/q = 6 should
suffice.
Corollary F.1. Assume the existence of a collision resistant family of hash functions {hk}k∈K with
run time linear in input size and a random oracle prng. Then there exists a q-collision bounded
indexed hash function family with the following two properties. For a fixed security parameter, it can
be computed with n/2+o(n log log 1/q) AND gates and (5/2+dlog2 log2 1/qe)n+o(n log log 1/q)
XOR gates. It requires o(n log2 log2 1/q) information to be stored in order to be able to check any
result.

Furthermore, if {hk}k∈K is replaced by a family of random oracles then the resulting indexed hash
function family is hiding.

Proof. Let E be the encoding function given in Lemma F.1 with d = 1 + dlog2 log2 1/qe and
ρ = dn1/3de. Let H = C3(hk) with |I| chosen to give collision resistance with parameter 1−

√
1/2.

Then {HE
k }k∈K has all the required properties.

We have not done any experiments with this idea, however from preliminary estimates of AND gate
counts (with q = 2−2

6

) we are confident that it offers no improvement for inputs of 106 bits. If the
choices of parameters were optimized we believe it would beat the baselines for n = 109, though the
cross over point depends on the baseline and choice of h (and prng).

This effectively recovers malicious security in the setting where the commitment is honestly generated,
by the results of Appendix C. In fact, however, this method can recover malicious security in the
presence of arbitrarily generated commitments too. As on all but at most one input (decided at
commitment time) H will catch cheating with probability p/2, it can be guaranteed that HE will
catch cheating with all but probability (1− p/2)κ. Thus for the not honestly committed case we need
to only increase the choice of d by one in the proof of Corollary F.1.

G Arithmetic Circuits

We have mainly focused on binary circuits because they are more flexible and there are more
reasonably fast hash functions for them. However our main idea will also work to construct indexed
hash functions to be computed in arithmetic circuits. As before our constructions are in terms of a
secure hash function h which could be implemented using MiMC [2] or any other arithmetic circuit
hash function. We will assume this arithmetic is in a field F.

Analogues of constructions 2 and 3 would work in this setting with XOR and AND gates replaced by
ADD and MUL gates. Indeed, these would also work, with worse parameters, over arbitrary rings.
These can be analysed analogously and relevant theorems deduced. However we will not detail these
changes here and will instead provide a further development that was not possible in the binary case.

The idea of construction 4 presented in this section is much like the analogue of construction 3,
however instead of using a prng to generate the random masks to be added to index, we will generate
them in a more structured fashion. Hence, construction 4 still follows the blueprint given in Equation 1.
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No. of bits Ours (MB) SHA3-256 (MB) Improvement

214 2.51 19.93 8×
218 10.90 300.34 28×
222 141.25 4805.39 34×
226 2169.02 76900* 35×
230 34022.77 1230200* 36×

Table 6: Comparison of communication for SHA3-256 baseline and our scheme for executing the assert
functionality. Here pc = 1/2. * means estimated via extrapolation

The index space I will be a subset of F, this requires the field to be moderately large and rules out
this construction in the binary case.

As in Appendix B, we have an even block size parameter b, and define the indexed hash by means
of a digest function d4 that takes an index i and b field elements as input and returns a single field
element. Given y a fixed block of b elements denoted by y1, ..., yb,

d4(i, y) =

b/2∑
j=1

(i2j−1 + y2j−1)(i2j + y2j)

The value of the hash is given by C4(h, λ)(i, r, x) = h(r||i||processb,d4)(i, x)) given functions
process and h, as described in Equation 1 and Appendix B.

The following Theorem states the guarantee of construction 4. While its full proof is given in
Appendix O, the basic idea is that there will be a collision so long as some vector determined from x
and x′ is not perpendicular to (1, i, i2, ..., ib). The powers of i come from the definition of d4 and
have been chosen (to replace the prng) so that these vectors form Vandermonde matrices, thus any
b+ 1 of them span and so at most b are perpendicular to any given vector.

Theorem G.1. Construction 4 is b/|I|-collision bounded.

Note that this construction only works for fields larger than the block size b, but this is the case for
a lot of standard hashes based in field arithmetic. If the field is very large then the covert security
parameter can be made≈ 1 by taking |I| to be big. However this would be very impractical to prepare
the hashes, and thus in that case it would be more practical to combine construction 4 presented in
this section with the amplification ideas from Appendix F.

H Communication for assert.

Table 6 shows the amount of communication needed for executing the assert functionality using
SHA3-256 and our scheme. We observe that our scheme requires 36× less communication for the
committer and the verifier than the SHA3-256 based baseline.

I Number of Indices |I|

We use the formulation, upon ceiling to the next nearest integer, defined in Theorem B.6 to compute
|I|. In Figure 6, we plot this formulation for σ = 40, b = 1024 and different values of q (and the
covert security parameter p i.e 1− q) to show how the number times |I| that the committer needs to
compute H varies with the security parameters.

J Certified Predictions

In this section we describe how PVC committed MPC enables a key application, certified predictions:
obtaining secure predictions by a private model that is certified to have certain properties (more on
such properties below). We show by means of a real-world example how heuristic approaches that
are sublinear in the input size fail. We do this by training a fair machine learning model and showing
how, by modifying a single parameter of the model, it can be made unfair and more accurate. We
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Figure 6: Number of indices (hashes) |I| needed to be computed by the committer as a function of q (and the
covert security parameter p i.e. 1− q). Here block size b = 1024 and statistical security parameter σ = 40.

Accuracy Average Odds Difference
Dataset Unfair Fair Changed Unfair Fair Changed
Credit 69.3% 62.7% 64.3% −0.341 0.359 0.122
COMPAS 67.6% 55.9% 65.0% −0.181 0.369 0.073
Adult 80.4% 75.8% 78.8% −0.270 0.261 0.111

Table 7: Accuracies of a fair prediction method [42] (Fair), the same model changed by a single weight to
maximize accuracy (Changed), compared to the model trained without any constraints (Unfair).

describe previous work on the problem of obtaining predictions by a certified private model, and
discuss an efficient solution enabled by our results.

ML models that satisfy constraints such as interpretability, safety and fairness often have reduced
accuracy as the constraints restrict the model’s predictions in accuracy-agnostic ways. As model
accuracy is often directly tied to beneficial outcomes (e.g., monetary investment, company profit,
likelihood of publication), real-world constraints can incentivise service providers to cheat. To prevent
this a natural question arises: What is the minimal computation required to ensure cheating does not
occur? One may be tempted to try to construct a procedure that is sublinear in the size of the model.
Recent work has proposed to generate a small series of tests to identify small changes to a model
[20]. However, we show with a simple example that any protocol must ensure that nothing about the
model is changed, requiring a linear time procedure.

Any change may sacrifice fairness. We investigate a popular real-world constraint placed on
ML models: fairness constraints. In general, the most popular formulation of fairness constraints
minimizes the difference between (functions of) predictions made on different demographic groups.
Because these techniques constrain predictions across groups, their accuracy is less than unconstrained
models. We investigate a popular fair prediction model [42] applied to three fair prediction problems:
judging credit risk (Credit3); predicting parole violators (COMPAS4); inferring income (Adult5). We
consider the following average odds difference fairness criterion(

E[Ŷ | A=0, Y =y]− E[Ŷ | A=1, Y =y]
)
≥ τ, ∀y ∈ {0, 1},

where Y is the true outcome (e.g., Y =1 signifies good credit in Credit, while Y =0 signifies bad
credit) and Ŷ is the prediction. Here A indicates demographic group (e.g., race, gender, sexual
orientation, among others). Specifically A= 0indicates a disadvantaged group and A= 1indicates
a privileged group. Thus the above constraint says that the average outcome for the disadvantaged
group has to be at least τ -larger than the average outcome for the advantaged group. This is to combat
predictors Ŷ that benefit the privileged group (such predictors will arise from unconstrained training).
These expectations are computed over a training dataset. Table 7 shows the accuracy and average
odds difference of the model in Zhang et al. [42] using the fairness constraint (Fair), compared to the
model without the fairness constraint (Unfair).

3https://tinyurl.com/cm-credit
4https://tinyurl.com/cm-compas
5https://tinyurl.com/cm-census
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Now we imagine that a cheating service provider wants to take the fair model and only change a single
element of the model to maximize accuracy. We imagine they test every single element, optimizing
for accuracy alone, while fixing the remaining parameters. They then take the model which has the
maximum improvement in accuracy across all single-parameter-changed models (Changed). We
report the accuracy and fairness of this model in Table 7.

These results show that changing just a single element can significantly improve the accuracy over the
fair model (by as much as 9.1% on COMPAS). Further, the changed model has significantly lower
average odds difference than the fair model, unfairly benefiting the privileged group at the expense of
the disadvantaged group. Thus, to ensure a service provider cannot surreptitiously improve accuracy
at the expense of real-world constraints, a protocol must ensure that the entire model remains the
same.

Related work. To prevent this a number of works have proposed techniques to verify ML models
[17, 20, 24, 37]. SafetyNets [17] propose an interactive proof protocol for verifying deep neural
network predictions. This protocol only has a verification guarantee and leaves a security guarantee to
future work. Further it is limited to models expressible as arithmetic circuits. VerIDeep [20] describe
a method to generate inputs for which small changes to the ML model would yield very different
outputs. However, this model does not guarantee that the entire model remains the same and thus
would be vulnerable to attacks similar to that described above.

Recent work with security guarantees [24, 37] propose to use hash functions (SHA-256, SHA-3 in
sponge mode) to verify a model has not been altered. Specifically these works generate and verify
a hash within MPC. In MPC the protocol cost is dominated by AND gate computations and the
most efficient method requires asymptotically 35 AND gates per input bit [37]. While there exist an
MPC-optimized hash called LowMCHash-256 [3] it is new and susceptible [14]. Our constructions
above enable secure predictions with verified inputs that asymptotically require 0.5 AND gates per
input bit and derives security from the well-known random oracle assumption.

Our approach. To enable certified predictions we propose the following procedure. First the service
provider (committer, P1) makes a commitment c = pvccommit(x, sk, r) to a model x. P1 then
engages in an MPC protocol with a regulatory agency (P2’) where P2’ verifies the model x satisfies
the required guarantee (e.g., fairness), and that c is a commitment to that model. If these checks pass
then P2’ signs the commitment c with their private key and sends it to P1. When a user (verifier, P2)
wishes to obtain a certified prediction from P1, they engage in a PVC commitment. Here P1 sends c
to P2. If (a) P2 can verify that c is signed by the regulatory agency P2’ (e.g., this could be done if
regulator’s public key is publicly available) and (b) the PVC commitment is verified (via assert and
check as described in Figure 1), then the output is a certified prediction.

K Proofs from Appendix B

Theorem B.1. Suppose C is given by Equation 1. If {hk}k∈K is a family of random oracles then
{C(hk, λ)}k∈K is hiding.

Proof. Let r ← R. Suppose that a polynomial time algorithm A is given input k, (Hk(i, r, x))i∈I .
For fixed k, the Hk(i, r, x) are independent uniform random variables irrespective of the value of x
or r, so without querying the oracle the adversary can learn nothing about x or r.

When the adversary requests the value of the random oracle on an input beginning with r′ ∈ S
suppose it is also told whether or not r′ = r.

When the adversary queries with r′ 6= r it learns nothing about r except that r 6= r′. Thus the
probability of using the right salt on the jth query is at most 1/(|R| − j + 1) and so the probability
of querying the correct r with a guesses is at most a/|R|. As the adversary has time for only
polynomially many queries and |R| grows exponentially in λ it will query with r as the randomness
with negligible probability.

Conditioned on A never querying the correct randomness, its view is independent of x and thus so is
the probability of it outputting 1.
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L Proofs and Definitions of Appendix C (Integrity Checking)

L.1 Proof that we have constructed a PVC
commitment scheme

Theorem C.1. If H is hiding and q-collision bounded and the signature scheme has deterministic
verification and is discrimination resistant, then the above functions form a PVC commitment scheme
with covert security parameter p = 1− q (Definition C.0.1).

Proof. To show that the functions pvccommit, assert and check for a PVC commitment scheme with
parameter p, we must check that check is deterministic and that the four properties hold.

As the function check is given by a decision tree depending on checking whether (deterministic) parts
of the input are equal and whether signatures are valid (which is deterministic by the assumption on
the verification function) it is deterministic.

Correctness Given i, r, x and a valid key pair sk, pk, let c = pvccommit(x, sk, r) and a =
assert(x, sk, r; i, pk). Consider the definition of check(c, a, pk). As the key pair is valid both
of the signatures will check out thus the result is not inconclusive. Furthermore, both c[a[0]] and a[1]
are equal to H(i, r, x), thus the check will return valid.

General Binding Suppose, these functions do not satisfy general binding. Then there exists a
polynomial time adversary, A, contradicting Definition C.0.4. Let x, sk, r, x′, sk′, r′, pk and c be
the output of this adversary. Further, let i, a, a′, output and output′ be as in the definition. As the
signature scheme is discrimination resistant the distribution of i conditioned onG (and thus on output
or output′ being inconclusive) is still uniform. It follows that in order for Inequality 2 to hold we
must have

P(H(i, r, x) 6= c[i]) + P(H(i, r′, x′) 6= c[i]) < p.

Thus for greater than a 1−p fraction of the choices of iwe must haveH(i, r, x) = c[i] = H(i, r′, x′).
This would mean that r, x, r′, x′ is a q′-collision for some q′ > q. The above process then gives a
polynomial time algorithm contradicting the q-collision boundedness of H . So the general binding
property must hold.

Hiding Suppose A is a polynomial time adversary contradicting Definition C.0.5. Consider
the polynomial time algorithm that takes as input (H(i, r, x))i∈I , computes A(Osk(x)) (using
a hard-coded sk) and outputs the result. This adversary contradicts the hiding property of H
(Definition B.0.5).

Defamation Freeness Let A be a polynomial time adversary. In order to have check(c, a, pk) =
cheated both c and a must be correctly signed. As the signature scheme is chosen-plaintext secure A
can only achieve this with non-negligible probability by using the contents of Osk(x) as c and a (they
ca not even be switched as they have different formats). But with that choice of c and a, c[a[0]] = a[1],
and thus the check would return valid. Therefore the functions are defamation free.

L.2 Execution in the ideal world

Next, we present in detail the ideal world execution of a function g(x, y). The ideal world is
parameterized by the party corrupted by adversary A, which we denote by C ∈ {P1, P2,⊥} (⊥ is just
a value different from P1 and P2 to represent that all parties are honest) and, as mentioned above,
two probabilities pexec, pcommit. Let us remark that A has an auxiliary input, and that all parties are
initialized with the same value on their security parameter tape (including the trusted party), but we
leave both of these aspects implicit for clarity.

An unusual aspect of this ideal world is the presence of an “observation of the environment” which
happens after the commitment has been made but before the computation. The idea being that a party
has committed to an input if they are unable to make it depend on something they learnt between
commitment and computation. We assume that this observation is drawn from some distribution E
and that the distribution can be sampled from by a polynomial time algorithm. This latter assumption
is to stop the environment from encoding, say, collisions of zero for a secure hash function.
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1. P1 receives input. Party P1 receives its prescribed input x.

2. Commitment of P1’s input. At this stage P1 sends to the trusted party the input that it intends
to use in a subsequent computation, which we denote by w. If C 6= P1, then w = x, and otherwise A
sets w to be an arbitrary valid input value in a way that might depend on x.

3. The environment is revealed The value e is sampled from the distribution E Party P1 is given
the value of e

4. P2 receives input and parties send inputs. Party P2 receives its prescribed input y. Next, P1
and P2 send to the trusted party their inputs to be used in the computation, denoted a, b, respectively.

• If C = P1, then A sets
a ∈ {w, abort, corrupted, cheat_exec, cheat_commit} for P1, and otherwise P1 sets
a = w.

• If C = P2 then A sets b for P2, otherwise P2 sets b = y.

5. Early abort & blatant cheating. A is given the opportunity to have C abort or announce that it
is corrupted. This results in updating either a (if C = P1) or b (if C = P2) to abort or corrupted. If
that is the case, a (resp. b) is forwarded to P2 (resp. P1) and the trusted party halts.

6. Attempted cheat option. If a = cheat_exec, then the trusted party tosses a coin X =
Ber(pexec), where pexec is the probability of P1 getting caught cheating at this stage, and

• If X = 1 then the trusted party sends corrupted to both P1 and P2.

• If X = 0 then the trusted party sends undetected to P1, along with y (P2’s input).
Following this, A gets to choose P2’s output of the protocol, and sends it to the trusted party.

The ideal execution ends at this point if a = cheat_exec.

7. Attempted break commitment option. If a = cheat_commit then the trusted party requests
from P1 (a) a probability q and (b) a new value w′ for w. The trusted party then sets p = q, if w = w′,
and p = max(q, pcommit) otherwise, where pcommit is the probability of P1 getting caught cheating at
this stage. (Note that this simply allows the adversary to choose an arbitrary probability of getting
caught when cheating to rewrite w with the same value again). Then, the trusted party (i) tosses a
coin Y = Ber(p), (ii) rewrites w to take value w′, (iii) runs g1(w, b) with the updated w, and (iv)
gives A the opportunity to abort P1. Next,

• if Y = 1 then the trusted party sends corrupted to both P1 and P2 and halts, and

• if Y = 0 then the trusted party sends undetected to P1.

Let us remark that givingA the opportunity to abort upon observing the output in in step 7. is allowed
just to simplify the presentation of out protocol, and that an extension where A does not receive an
output when caught cheating is easy to achieve by just adding a round of interaction to our protocol.
In that extra round P2 enables P1 to ungarble their output after verifying the commitment resulting
from the secure computation.

8. Trusted party gives out outputs. The trusted party evaluates g(w, b), and gives A the chance
to abort the execution. Otherwise it gives their designated output to P2, at which point A is allowed
to either abort the execution, or let the honest party receive their output.

Outputs. The honest party outputs what they received in the final step, and A outputs an arbitrary
(probabilistic) polynomial-time computable function of C’s input, any auxiliary input, and its view
during the execution.
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L.3 Definitions

The following simulation security definition deviates from most such definitions in that we allow the
adversary in the ideal model to be logically omniscient, whereas it is standard to restrict the simulator
to polynomial time computations. The polynomial time assumption is important in the context of
zero-knowledge proofs and for certain systems of composability. However standard bit commitment
is impossible in the universal composability model [11], thus we must settle for weaker composition
guarantees here. We hope it is clear that the ideal setting here is information theoretically secure.
Thus even a logically omniscient adversary can not possibly learn things that it should not in the ideal
model. The simulator could be made computable at the expense of slightly complicating the proof,
but as this is unnecessary and also not standard we prefer to keep the proof simple.

Denote by IDEALpexec,pcommit,Eg,S(z),i (x, y, λ) the environment variable and the outputs of the honest parties

and adversary in an execution in the ideal world above, and let REALpexec,pcommit,Eg,A(z),i (x, y, λ) denote the
environment variable and the outputs of the honest parties and the adversary in a real execution of a
protocol π.

Definition L.0.1. Let g and p be as above. A protocol π securely computes g with committed first
input in the presence of a malicious P1 or a covert P2 with p-deterrent if for every non-uniform
probabilistic polynomial time adversary A for the real model, there exists a definable adversary S
for the ideal model such that for each i ∈ {1, 2}:

{
IDEALpexec,pcommit,Eg,S(z),i (x, y, λ)

}
x,y,z∈{0,1}∗,λ∈N

≡c{
REALpexec,pcommit,Eg,A(z),i (x, y, λ)

}
x,y∈{0,1}∗,λ∈N

In PVC security it is important that a fail-stop adversary is not labelled a cheat (at least in most
contexts including ours) for that we say that:

Definition L.0.2. A protocol π is non-halting detection accurate if for every fail-stop adversary A
controlling party P1, the probability of an honest P2 outputting corrupted is negligible.

In order to have PVC security in place of the covert security we require that their be some algorithm
Blame. When applied to the view of an honest party that has outputted corrupted, it must return a
proof of that corruption. The proof is verified by another algorithm Judgement, which will output
cheated if and only if it is a genuine proof. These ideas are formalized as follows.

Given an algorithm Commit and a protocol P let the commitment protocol formed by them consist of
P1 running Commit and sending the result to P2, P1 then receiving e← E and then both P1 and P2
engaging in P and taking the output from that protocol as the output.

Definition L.0.3. A quadruple (Commit,P, Blame, Judgement) securely computes g with commit-
ted first input in the presence of a malicious P1 or a covert P2 with p-deterrent and public verifiability
if the following hold:

1. (Simulatability with p-deterrent:) The commitment protocol formed from Commit and P
securely computes g with committed first input in the presence of a malicious P1 or a covert
P2 with p-deterrent and is non-halting detection accurate.

2. (Accountability:) For every PPT adversary A controlling P1 and interacting with an honest
P2,

P(P2 outputs corrupted ∧ Judgement(Blame(View(P2)))) 6= cheated)

is negligible.

3. (Defamation-Free:) For every PPT adversary A controlling P2 and interacting with an
honest P1,

P(A outputs ∧ Judgement(Cert) = cheated)

is negligible.
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L.4 PVC committed MPC Proof

Theorem C.2. The quadruple (Commit,P, Blame, Judgement) securely computes g with committed
first input in the presence of a malicious P1 or a covert P2 with p/2-deterrent and public verifiability.

If pvccommit and check are used as given in the previous section then we can replace the P with the
protocol in Fig. 5 and still have the same security guarantee.

Furthermore, if in either case it can be guaranteed that P1 is honest in running the commitment
algorithm in Fig. 3, then the deterrent factor improves from p/2 to p.

Proof. Simulating P1 First we consider simulatability in the case where P1 is corrupted. Given a
non-uniform probabilistic polynomial time adversary A, we construct S as follows.

First note that S can uniformly randomly choose a randomness tape which will be used for all of its
black box runs of A, this reduces the task to the case where A is a deterministic adversary.

By running A the simulator is given the commitment c that A chooses to use (which may or may not
be generated by applying Commit to some w). Now S can look at how A would respond to every
possible environment variable e (this is fine because it is a mathematical function which need not
be computable). If, in response to e, A does any of early abort, blatant cheat or cheat during the
execution the outcome is independent of what commitment was made so it would not matter what S
commits to in the ideal world. The other possibility is that A does none of those things and submits
some x′ as their input alongside supposed randomness r′.

The underlying protocol Π allows input extraction in polynomial time (as is used in the proofs of
security for that protocol in Hong et. al. [23]) thus in all of these other cases S can extract which x′
will be used in response to each e. For each one S can then compute a = assert(x′, sk, r′; i, pk) for
every i ∈ I and check for what fraction of the i we have check(c, a, pk) = cheated.

For those e that result in being caught with probability at least p/2 it would not matter what S
committed to as it will be able to attempt to cheat the commitment to change the input to x′ and get
caught with the correct probability. After which it will receive g1(x′, y), add it to the simulated view,
and proceed according to what A would do next. Aborting if and only if A chooses to abort. P2 will
then receive corrupted with the correct probability.

Those e that result in less than p/2 probability of being caught, it will matter that S commited to
the value of x′ that A wants to use. Thus for the commitment phase S will commit with the trusted
party to the value x̃ that is most likely to be used as x′ (with respect to the randomness of e). If the
adversary uses x′ = x̃ then S will now be able to tell the trusted party it wants to use that value and it
wants to get caught with the correct probability.

The remaining possibility, that e results in A using an input x′ 6= x̃ and r′ which has a probability
less than p/2 of resulting in P1 being caught, would be a serious problem for S. We claim however
that this can happen with only negligible probability.

Suppose to the contrary that some non-negligible fraction of the weight of E resulted in these bad
x′, r′. Then as each must individually have weight at most that assigned to x̃ we can construct a
polynomial time algorithm as follows.

Sample e← E and extract the input ofA for this e, compute a = assert(x′, sk, r′; i, pk) for all i ∈ I ,
check to see if less than a p/2 fraction of the is would result in check(c, a, pk) = cheated. Repeat
this process until two distinct such values of (x′, r′) have been found with this property. As the
fraction of e that result in finding such an x′ other than the most common one is non-negligible, this
algorithm runs in expected polynomial time.

However, this can (by putting a polynomial time upper bound on the run time and failing if it reaches
it) be converted into a PPT algorithm which contradicts the general binding property of the PVC
commitment scheme. Thus proving the claim.

This addresses simulating the correct distribution between e, the output of P2 and messages explicitly
sent in our protocol to P1. The messages sent to P1 in the secure computation black box are dealt
with by the simulator for Π as given in Hong et. al. [23].
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Extending this to the optimized integrity check case is straight forward, everything is the same except
S must produce a fake hash-commitment for A to sign. This can be done by hashing randomness due
to the hiding property of the commitment scheme this would not break indistinguishability. Further
whilst the signed version should be given to P2 in the real world it does not form part of P2’s output
so we need not worry about coordinating with that.

If the commitment had been produced honestly, then A must have some x, r that it committed to that
it knows of. This together with any value of x′, r′ that collides with the resulting commitment c less
than some fraction p of the time will break general binding. Thus the same simulator as above with
this extra observation gives the stronger security.

Simulating P2 Simulating the other side is much easier. P2 receives a commitment c to some x,
however due to the hiding property of the commitment S can get away with providing A with a
commitment to some arbitrary value, say 0. The simulator can now have A interact with a copy of P1
(multiple times) in order to extract their input y and index i. It can then give this input to the trusted
party to find the correct value of g2(x, y). It can then add the result of g2(x, y) to the simulation of
the adversaries view using the simulator for Π.

With the optimization the only change is that rather than giving the value of assert for the given i, a
pair (i, c[i]) is signed and added to the simulated view.

Correctness If both parties are honest then Π will correctly output (g1, (x, y), g2(x, y)) and the
result of assert. As assert is computed correctly on the honest inputs the check with the commitment
from the first step will return valid. And thus P2 will accept the output and the parties will have
successfully computed g.

Accountability For accountability, we need to show that a cheating P1 gets caught publicly, in the
sense that if P2 claims that P1 cheated then there’s a proof accompanying that claim except with
negligible probability. Note that if P1 cheats inside the secure computation with Π, this follows
from the PVC properties of Π, and the definition of Blame and Judgemenet in terms of Blameexec
and Judgementexec. If P1 cheats in that the input to Π differs from the committed value then
Judgementcommit(Blamecommit(·)) will output cheated after verifying that Blamecommit(·) constitutes
a valid signature of the fact that the commitment c and evaluation of H at i do not match. This
happen with all but negligible probability due to the properties of the cryptographic signature, and
the correctness of the PVC commitment scheme, i.e. different values for indexed hashes necessarily
come from different inputs.

Defamation Freeness Defamation freeness states that proofs of cheating can not be forged. This
holds for proofs outputted by Π by the fact that it satisfies PVC security, and it holds for proofs
generated by Blameexec due to the properties of the cryptographic signature scheme.

M Proofs of Appendix E (Lower Bounds)

Proposition E.1. Given any non-trivially collision bounded family of indexed hash functions
{Hk}k∈K with Hk given by the (polynomial size) circuit Ck with n-bit main input, and m-bit
output. With all but negligible probability over the generation of k = G(λ), the circuit Ck must have
at least d(n−m)/2e nonlinear gates.

Proof. We give a polynomial time algorithm which, given a circuit, C, that implements a function
from {0, 1}a × {0, 1}n to {0, 1}m and contains fewer than d(n−m)/2e nonlinear gates, returns a
non-zero input x ∈ {0, 1}n such that C(s, x) = C(s, 0) for all s ∈ {0, 1}a. As this algorithm finds a
1-collision with certainty if the circuit is small enough, for Hk to be secure that must happen with
negligible probability in λ. And the result is immediate.

Consider the wires of C that are either outputs of the circuit or inputs to nonlinear gates. The
hypotheses imply that there are < n of such wires. Wire j must contain the XOR of a linear (i.e.
parity) function fj of the input with an affine function of the key and nonlinear gate outputs (either of
which could be trivial).
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The conditions fj(x) = fj(0) form a collection of < n linear constraints in n variables. Since x = 0
is obviously a solution of this under-determined system, then it must have also a nontrivial solution,
which can be found efficiently.

Proposition E.2. Let {hk}k∈K be a collision resistant family of hash functions with hk given by the
circuit Ck with n-bit input and m-bit output. With all but negligible probability with respect to the
generation of k = G(λ), the circuit Ck must have at least n−m nonlinear gates.

Proof. The idea of the proof is similar to that of Proposition E.1. We give a polynomial time algorithm
which given a circuit C from {0, 1}n to {0, 1}m with fewer than n −m nonlinear gates returns a
collision in that circuit. Thus to have collision resistance the circuit can be that small only with
negligible probability.

Let d be the number of nonlinear gates in C, we will assume WLOG that they are AND gates. We
will derive d + m affine conditions on x which determine C(x) = C(0). As affine systems are
efficiently solved, collision resistance requires that there be at most one solution (x = 0) to this
system. For this to happen d+m ≥ n must hold, which proves the statement.

Thus it remains to derive the aforementioned d+m affine conditions. We need to fix the output of
each AND gate using only one affine condition on x. This can be achieved as follows. Consider each
AND gate in (a totalisation of the partial) order from input to output, i.e. a topological ordering of
the circuit. For each AND in that sequence, if the first input can be set to 0 with an affine condition
then add that condition to the set and move on to the next gate. Otherwise, the first input is already
determined so we need only add an affine condition that fixes the second input. Either way that is
only one condition per gate. In summary, by adding one condition for each of the output wires we
can determine their values, so we are done.

Proposition E.3. Suppose that {Hk}k∈K is a non-trivially collision bounded and hiding family of
hash functions. Let Hk be given by Ck with an n-bit main input and d nonlinear gates, then with all
but negligible probability, d ≥ n/5. Further if |I| = 1, then d ≥ n/3.

Proof. For a indexed hash function circuit C with n-bit main input and d nonlinear gates we explain
how to do each of the following in time polynomial in the size of C:

• Transform C into another circuit C̃ with d non-linear gates.

• Simulate the output of C̃(i, r, x), given the output of C(i, r, x) and i.

• Derive a collision in C̃ from a collision in C

Finally we will show that C̃k has output length at most 3dk with all but negligible probability. It
follows that {C̃k}k∈K is non-trivially collision bounded and the result follows from Propositions E.1
and E.2.

Throughout this proof L with a subscript will denote a linear function.

Let C be a circuit with input (i, r, x) where x is the n-bit input, r ∈ R is the randomness and i is an
index. All the following computations can be done in polynomial time we will avoid repeating this
fact for each one.

Note that C(i, r, x) can be rewritten as L1(i, r, x, g(L2(i, r, x))) for some nonlinear function g where
L2 has a 2d bit output and g has a d bit output and is implemented with d non-linear gates.

Considering L2 as a linear function of R we can find its kernel T which has codimension at most
2d. Compute representations of πT⊥(r) and πT (r), represented in a basis of T⊥ and a basis of T ,
call them r1 and r2 respectively. Thus r1 has length at most 2d, and L2(i, r, x) is equal to some
L3(i, r1, x). We can thus write C(i, r, x) as

L4(i) + L5(r2) + L6(r1, x, g(L3(i, r1, x)))

We now define C̃(i, r1, x) to be a representation of

π(ImL5)⊥(C(i, r, x)− L4(i)) = L7(x, r1, g(L3(i, r1, x)))

in a basis of ImL7.
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As C̃(i, r, x) is a linear function of C(i, r, x) and i we can write it with d nonlinear gates.

As C̃(i, r1, x) is a known linear function of i and C(i, r, x) so simulating it is trivial.

We abuse notation and use r for the function that recovers r from a derived r1 and r2. Suppose that
C̃(i, r1, x) = C̃(i, r′1, x

′) and x 6= x′. Then we can compute C(i, r(r1, 0), x) − C(i, r(r′1, 0), x′)

which by the definition of C̃ will be in ImL5, we can then choose r2 such that

C(i, r(r1, 0), x)− C(i, r(r′1, 0), x′) = L5(r2)

which combined with Equation M yields

C(i, r(r1, 0), x) = C(i, r(r′1, r2), x′)

Finally, recall that C̃(i, r1, x) is a representation of L7(x, r1, g(L3(i, r1, x))) and that C̃ has full
rank. Thus we can write each C̃k as

Lk8(x) + Lk9(r1, g(L3(i, r1, x)))

As (r1, g(L3(i, r1, x))) is at most 3d bits long the rank ofLk9 must be at most 3d. If ImLk8 is contained
in ImLk9 then the length of the output of C̃k is at most 3d. Otherwise, π(ImLk

9 )
⊥C̃k(i, r, x) is a non-

trivial linear function of x, however this latter possibility must occur with negligible probability
otherwise {C̃k}k∈K , and thus {Ck}k∈K , is not hiding.

N Proofs of Appendix F (from Covert to Malicious)

Theorem F.1. If {Hk}k∈K is q-collision bounded then {HE
k }k∈K is qκ-collision bounded.

Furthermore, the number of AND and XOR gates required to compute HE is ldn/we times the
number of gates required per bit by H plus dn/we times the number of gates required by E.

Proof. Suppose x and x′ are two distinct inputs. Then for some j, xj 6= x′j . Then by the error
detecting property E(xj) and E(x′j) must differ in at least κ places, j1, ..., jκ. Thus x̃jm 6= x̃′jm for
all m ∈ {1, ..., κ}.
Suppose that r, x, r′, x′ is a q′κ-collision of HE

k for some q′ > q. Then at least one of r, x̃jm , r
′, x̃′jm

is a q′-collision of Hk. Thus, by testing each m in turn, a q′-collision of Hk can be found in
polynomial time from a q′κ-collision of HE

k . The first part of the result follows. The number of
required gates follows from counting through the algorithm for HE .

O Proofs of Appendix G (Arithmetic Circuits)

Theorem G.1. Construction 4 is b/|I|-collision bounded.

Proof. By Theorem B.2 it suffices to show that for two distinct inputs x, x′ at most b values of i will
result in d4(i, x) = d4(i, x′). Consider two distinct inputs x, x′, and assume WLOG that they differ
in the first b field elements. Let y and y′ be the first b field elements from x and x′ respectively.

It suffices to show that only b values of i will result in d4(i, y) = d4(i, y′). Start by expanding out
the difference.

d4(i, y)− d4(i, y′) =

b/2∑
j=1

(
i2j−1(y2j − y′2j) +

i2j(y2j−1 − y′2j−1) +

y2j−1y2j − y′2j−1y
′
2j

)
Let s be the function on the natural numbers that swaps 2j and 2j − 1 for all j. The difference is

given by the inner product of (1, i, i2, ..., ib) with a vector v(y, y′) in Fb+1 with zeroth entry being
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b/2∑
j=1

y2j−1y2j − y′2j−1y
′
2j

and jth entry for j > 0 being ys(j) − y′s(j).

We have d4(i, y) = d4(i, y′) only if (1, i, ..., ib) is perpendicular to v(y, y′). But as any b+ 1 vectors
of the form (1, i, ..., ib) form a Vandermonde matrix and thus are linearly independent at most b of
them could be perpendicular to any fixed v(y, y′).
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