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Abstract

Compared to classical machine learning (ML) models, generative models offer a
new usage paradigm where (i) a single model can be used for many different tasks
out-of-the-box; (ii) users interact with this model over a series of natural language
prompts; and (iii) the model is ideally evaluated on binary user satisfaction with
respect to model outputs. Given these characteristics, we explore the problem of
how developers of new generative AI software can release and price their technol-
ogy. We first develop a comparison of two different models for a specific task with
respect to user cost-effectiveness. We then model the pricing problem of generative
AI software as a game between two different companies who sequentially release
their models before users choose their preferred model for each task. Here, the
price optimization problem becomes piecewise continuous where the companies
must choose a subset of the tasks on which to be cost-effective and forgo revenue
for the remaining tasks. In particular, we reveal the value of market information by
showing that a company who deploys later after knowing their competitor’s price
can always secure cost-effectiveness on at least one task, whereas the company
who is the first-to-market must price their model in a way that incentivizes higher
prices from the latecomer in order to gain revenue. Most importantly, we find that
if the different tasks are sufficiently similar, the first-to-market model may become
cost-ineffective on all tasks regardless of how this technology is priced.

1 Introduction

The recent explosion of generative artificial intelligence (AI) has introduced new machine learning
(ML) frameworks for applications from chatbots to robotics [Wu et al., 2023, Nasiriany et al., 2024].
Whereas in classical ML, a user interacted with a single model designed for a specific predictive task
(e.g., classification) via input data and output predictions, a single generative AI model can solve
a variety of tasks for a user out-of-the-box [Brown et al., 2020]. Moreover, users interact with the
generative model over a universal interface of natural language prompting [Arora et al., 2022].

The prompt-based paradigm has fostered two recent human-AI interaction trends. First, prompting
facilitates such a wide distribution of tasks (i.e., user inputs and model outputs) that conventional
metrics for evaluating models have become insufficient, leaving the most effective evaluation metric
to be a binary score of whether the user is satisfied with the model output [Li et al., 2024, Chiang et al.,
2024]. For example, Ziegler et al. [2024] empirically analyzed the GitHub Copilot software to reveal
that the frequency of generated code approved by a user ‘is a better predictor of perceived [user]
productivity than alternative measures.’ Second, if a user does not receive a satisfactory output, they
can try again in another prompting round by inputting to the model additional information [Castro
et al., 2023]. For instance, the Anthropic HH and the Chatbot Arena datasets report on average 2.3
and 1.3 prompting rounds per conversation, respectively [Bai et al., 2022, Chiang et al., 2024].

In this work, we study the impact of these interaction characteristics on the pricing of generative AI
technology. While classical ML products can be priced by analyzing the user demand for a model that
can achieve a given performance metric on a specific task [Gurkan and de Véricourt, 2022, Mahmood
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Figure 1: Overview of the competitive pricing problem for generative AI models.

et al., 2022], a generative AI model is priced per user prompt 1. This set price determines the user
cost for multiple different tasks and variable number of prompting rounds, e.g., the cost of using
GPT-4 for math reasoning or code generation depends only on the per-token price, and the length
and number of prompts. Thus, developers of a generative AI product must factor the demand for all
potential use-case tasks of the technology when setting a price. This pricing problem becomes further
challenging when considering the rapidly growing marketplace of competing generative AI models,
since companies must also ensure that their products do not become unattractive to users as soon as a
competitor develops a newer and better model.

We first characterize when, for a given task, a user will prefer one generative AI model versus
another. We argue that users minimize their total cost, measured by the cost-per-prompt times the
number of prompting rounds needed for the model to produce a satisfactory output; this leads to a
comparison of price-performance competitiveness between AI models. We then study a game with
two firms developing competing models used for a set of tasks. Both firms know each other’s model’s
performance on the tasks. The first firm deploys their product and sets a price, followed by the second
firm with their product and price. Finally, a user decides which models to use for each task. Both
firms seek to maximize revenue, but the first firm acts without knowledge of their competitor’s price.
Figure 1 summarizes the problem setting and insights. Our key observations include:

1. The pricing problem reduces to a piecewise optimization problem, where firms price
their model to be competitive on a subset of the tasks while forgoing revenue from the
others. This subset can be determined by ranking the tasks on the competitive ratio between
the two models for each task and selecting the most competitive tasks.

2. A firm who deploys late always obtains revenue from at least one task by leveraging
the available market information. In contrast, the first-to-market must strategically set
their prices to encourage the latecomer to set higher prices and focus on fewer tasks.

3. Under certain conditions on model performance and user demand, the first-to-market
may acquire zero revenue regardless of their price. In these settings, the latecomer
naturally maximizes their revenue by being competitive for all tasks. Thus, developers that
are first should have a minimum model performance before deploying their product.

2 Related literature

Evaluating ML models. ML models are typically evaluated on generalization error for a task via
out-of-sample test dataset benchmarks and competitions [Deng et al., 2009]. Generative AI and
large language models (LLMs) are evaluated on a suite of benchmark tasks such as for coding [Chen
et al., 2021], math [Cobbe et al., 2021], and problem solving [Hendrycks et al., 2021]. However,
standardized benchmarks become uninformative over time as new models are trained to overfit to
these metrics [Roelofs et al., 2019, Koch et al., 2021]. Recently, Chiang et al. [2024] introduced
the Chatbot Arena for comparing LLMs head-to-head on human preference. Here, a user poses
a real-world prompt which is input to two models. The user reviews both model outputs and can
even continue multiple conversation rounds, before ranking which model generated a satisfactory
answer first. Although difficult to measure, user satisfaction rate is increasingly viewed as the most
informative metric as seen from generated code approvals on GitHub Copilot [Ziegler et al., 2024],
or perceived aesthetic quality of text-to-image generation such as MidJourney and Playground [Li
et al., 2024]. Our work combines user satisfaction with a user cost to construct a price-performance
ratio for comparing different models.

1In practice, generative AI models are typically priced-per-token. In Appendix B, we show that all our results
extend to the price-per-token setting with a minor change of variables. For a list of prices for current generative
AI prices, see: https://docsbot.ai/tools/gpt-openai-api-pricing-calculator.
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Human-generative AI interaction. Prompt-based interaction has increased the diversity of tasks
where these models can be applied [Eloundou et al., 2023]. Castro et al. [2023] analyze how and
when human users will use a generative AI model for a task versus performing it manually, as well
as the characteristics of interacting over multiple prompt rounds. The quality of prompts is crucial
to generating higher-quality answers [Liu et al., 2023, Binz and Schulz, 2023]. This has motivated
studies on prompt techniques, such as chain-of-thought [Wei et al., 2022] and self-consistency [Wang
et al., 2022]. In our work, we treat prompt quality as a random variable and to simplify the structural
analysis, assume that users will interact with a generative AI model for as many prompting rounds as
needed to get a satisfactory answer.

Pricing and competition. Duopolies of competitive products use game theoretic models such as the
Bertrand (i.e., simultaneous pricing) and Stackelberg (i.e., sequential pricing) models of interaction
[Gibbons, 1992]. Both deterministic and probabilistic demand can be used to study oligopolistic
pricing of a single or multiple products Chintagunta and Rao [1996], Gallego and Hu [2014]. Specific
structured demand frameworks allow for identifying market equilibria and failure settings where
revenue is unobtainable [Federgruen and Hu, 2015, 2019]. Our work is most closely related to the
Stackelberg literature by modeling a sequential game and exploring the conditions under exponential
demand that make certain generative AI models unattractive [Hamilton and Slutsky, 1990].

Pricing AI products. AI technology can be priced at various levels, ranging from training data to
model queries [Liu et al., 2021, Chen et al., 2019, Cong et al., 2022]. A core aspect of the pricing
problem involves valuating the ML model based on performance [Xu et al., 2024]. ML products are
further susceptible to an AI flywheel effect where the release and price of an AI product will affect the
subsequent collection of new training data from users, leading to a dynamic pricing problem [Gurkan
and de Véricourt, 2022, Chen and Xue, 2023]. More generally, novel technology products such as
a new generative AI model with emergent use-cases may feature social-learning and dynamically
growing market sizes [Feldman et al., 2019, Zhang et al., 2022]. The closest to our work is Gurkan
and de Véricourt [2022] who explore pricing and contracting the development of a classical ML model
under the AI flywheel. In contrast, our work explores competition between ML model developers
when faced with a diverse set of potential downstream tasks for which the model can be used.

3 Main model

We first define the characteristics of the pricing problem. We then propose a model of user choice
between two competing models from a price-performance perspective.

3.1 Problem setup

Tasks. We define a task as a set of independent problem instances where for each instance, a user
queries a machine learning model with an input prompt and receives an output generated the model.
For example, a programming task may have instances where a user inputs a commented function
definition and the model must complete the code to perform the function Chen et al. [2021], Ziegler
et al. [2024]. Task instances are evaluated by a user via a binary correctness score. For tasks where
correctness is unambiguous (e.g., whether the program runs), the score is equivalent to accuracy,
whereas for open-ended tasks (e.g., whether the output meets the stylistic preferences of the user), we
treat correctness simply as whether the user is satisfied with the output 2

Generative AI model. Given a set of T different tasks, a generative model is an ML model that can
be used to solve instances of any of the different tasks via prompts. We define this model as a tuple
(p, V1, V2, . . . , VT ) where p denotes the price for using the model, as measured in dollars-per-prompt
(see Appendix B for the extension to pricing per-token), and for each t ∈ [T ], Vt ∈ (0, 1) denotes
the average score of the model over instances of each task. We assume that Vt → 1 implies that the
model can always generate a correct output for any task instance and Vt → 0 implies that the model
will always generate an incorrect output. Therefore, for any random instance of task t, Vt can also be
interpreted as a Bernoulli probability of the generative model producing a satisfactory output in a
single attempt.

2For example in code completion, users prefer generated code that provides a good starting point for the
users to improve on rather than code that is technically correct but confusing [Ziegler et al., 2024].
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Users will not use the generative model if it’s price is too high with respect to the user’s valuation of
the specific task. For any given task t, let Dt(p) ∈ R+ be the demand function, i.e., the number of
users who will use a generative AI model for task t as a function of the price p. Following standard
assumptions, we assume that Dt(p) is differentiable and non-increasing in the model price, as well as
being known to the developer of the AI model [Gallego and Van Ryzin, 1994].

Multi-round use. Most ML benchmarks typically evaluate models on whether the models can
generate the correct output under a single prompt round [Chen et al., 2021, Cobbe et al., 2021,
Hendrycks et al., 2021]. However, in-the-wild users of generative models typically have interactive
multi-round conversations where if the model generates an unsatisfactory solution after the first
prompt, the user can provide feedback via their preferences or corrections in a second prompt round
[Castro et al., 2023, Liao et al., 2024]. For example in code completion, if the model fails to account
for an edge-case input to the function, the user can identify the edge-case and ask the model to
account for it. To characterize this multi-round use, we extend the single prompt to a sequence
of Bernoulli trials that continue until the user is satisfied with the model output. For simplicity of
modeling, we make the following assumptions on user behavior.
Assumption 1. The total number of prompting rounds nt(Vt) that a user will engage with the model:
(i) has a finite mean; and (ii) is independent of the model price p conditioned on the user knowing Vt.

Assumption 1 implies that the price of a model only determines demand via whether the model
is used at all, rather than how many times (i.e., prompting rounds) the model is used. Under this
assumption, there are many choices for modeling the distribution of nt(Vt). We give three examples:

• Geometric: Because non-expert users tend to design uninformative prompts [Zamfirescu-
Pereira et al., 2023], we may suppose the probability of success on any round does not
depend on user input, and each round is an i.i.d. Bernoulli trial with probability Vt. Then,
the total number of rounds is nt ∼ Geom(Vt), following a Geometric distribution.

• Truncated Geometric: Users may quit the model after a maximum Tt rounds if it fails to
generate a satisfactory response [Castro et al., 2023]. For instance, conversations in the
Chatbot Arena dataset terminate after an average 1.3 rounds [Chiang et al., 2024]. Here,
Pr{nt = n} := (1− Vt)

n−1Vt for 1 ≤ n < Tt and Pr{nt = Tt} := (1− Vt)
Tt−1.

• Prompt-dependent: Suppose the success probability is prompt-dependent Vt(xi) where
xi ∼ Pr{x} is the prompt on the i-th round. If users prompt until the model generates a
satisfactory answer, we have Pr{nt = n} := Ex1,··· ,xn

[Vt(xn)
∏n−1

i=1 (1− Vt(xi))].

Ultimately, the choice of characterizing nt depends on the information available to the generative
AI model provider. With limited information, the Geometric assumption may be most practical,
but given knowledge of user prompts, we may consider more sophisticated models. Our results all
hold independent of the distribution as long as Assumption 1 is satisfied. For ease of notation and
interpretability, we assume nt ∼ Geom(Vt) in the remainder of this work.

3.2 Modeling user preference between AI models

Given the above task and user behavior framework, we analyze the problem of a user who must
choose between two competing generative models to solve instances of their tasks. Since a user may
prefer different models for different tasks, we consider a single task and omit subscript t.

Consider two generative models: model A (q,W ) and model B (p, V ). Under Assumption 1, given a
sufficient number of prompt rounds, both models can eventually solve every task instance. Thus, a
rational user will seek to minimize the expected cost of completing a task instance, measured by the
average price-per-prompt times the expected number of rounds required to complete the task instance.
In this comparison, model B will incur a lower cost for the user if

pE[n(V )] ≤ qE[n(W )] =⇒ p

V
≤ q

W
. (1)

Otherwise, model A incurs lower user costs. We assume that model B is preferred in ties. Note that
the implication follows from our Geometric assumption of n(V ).

Condition (1) states that for any task, a specific generative AI model is preferred if the price-
performance ratio for this task (i.e., the cost of using this model over the model’s performance) is
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lower than any other competing generative model. For example, if model B is twice as likely to
generate a user-satisfactory output as model A for a given input prompt, i.e., V = 2W , then the
user will prefer model B as long the cost of prompting this model is not twice as high, i.e., p ≤ 2q.
Otherwise, the user will incur lower costs and still obtain their desired outputs by simply prompting
the weaker model for twice as many rounds.

We note that (1) can also compare the use of a generative AI model versus manually performing the
task [Castro et al., 2023]. For instance, if we treat model B as a human and a prompt round as a timed
attempt at completing a task (e.g., coding the function within one hour), then V is the probability of a
human being able to perform the task in the single attempt and p is the time-value of this labor.

Finally, this framework can also compare free-to-use generative AI models such as LLaMA [Touvron
et al., 2023]. Although there may not be a given price-per-token for using these models, there is
a fixed cost to set up the infrastructure and environment. Given an expected total number of task
instances, this fixed cost can be approximated to an equivalent p.

4 Pricing generative AI models

We now develop a general framework under which a provider of a generative AI model can price
their product. We first define the pricing problem as a game between two firms developing competing
generative AI models. We then create tractable reformulations for these problems for both firms,
representing pricing with and without considering competition.

Pricing problem. Consider a set of T tasks. Let (q,W1,W2, . . . ,WT ) and (p, V1, V2, . . . , VT ) be
the generative models released by two competing firms, A and B, respectively. Firm A deploys their
generative AI model (i.e., model A) first and sets the price q for this product. Then, firm B deploys
their competing model (i.e., model B) and sets their price p. After both firms deploy their models, a
user with demand functions Dt(·) for each t will decide which models to use as determined by (1).
We evaluate the total revenue obtained by each firm, given by RA(q|p) and RB(p|q) respectively:

RA(q|p) := q

T∑
t=1

Dt(q)1

{
q

Wt
<

p

Vt

}
RB(p|q) := p

T∑
t=1

Dt(p)1

{
p

Vt
≤ q

Wt

}
. (2)

Note that in practice, the user demand may depend on p and q simultaneously; for simplicity, we
assume the demand for a specific model to be determined only after the user preference condition
(1) is resolved. The results in this section easily generalize to more complex demand functions. The
revenue functions are composed of the demand for each task times the price set by the firm [Van Ryzin
and Talluri, 2005], summed over all tasks for which the firm’s model is competitive according to the
price-performance ratios. Each firm’s objective is to maximize their revenue. However, because firm
A is the first-to-market and they do not know the action that firm B will take; instead, firm A must
optimize for the worst-case scenario as determined by firm B. On the other hand, firm B first observes
the price set by firm A. Thus, the two firms set prices as follows:

q∗ := argmax
q≥0

{RA(q|p̂) | p̂ ∈ argmaxRB(p|q)} p∗ := argmax
p≥0

{RB(p|q∗)} . (3)

We assume both firms know Vt and Wt for all t ∈ [T ]. This is motivated by the availability of
research papers and reported benchmark scores, and the predictability of model performance via
power laws [Kaplan et al., 2020]. In practice, a firm may not know their competitor’s performance,
but they can forecast the state-of-the-art score in the short term.

4.1 Pricing in isolation

We first consider firm B’s problem, who set their price after firm A has already released a competing
model with price q∗. Firm B’s problem depends on the competitive ratio κt := E[n(Wt)]/E[n(Vt)]
for task t ∈ [T ], i.e., the relative ratio of number of prompting rounds between the two firms, which
under a Geometric distribution assumption, simplifies to κt := Vt/Wt. To maximize their revenue,
firm B can rank the tasks in order of κt, select a subset of tasks in this order, and solve the optimization
problem for each subset. This results in an overall piecewise optimization problem.
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Figure 2: (Left) Three tasks with three different exponential demand functions D1(p) = 100e−0.5p,
D2(p) = 200e−0.5p, D3(p) = 400e−0.5p. (Right) The corresponding revenue from each task along
with the total revenue function for a firm RB(p). The vertical lines correspond to κ1q, κ2q, and κ3q,
where κ1 > κ2 > κ3. For p < κ3q, revenue is obtained from all three tasks, for p ∈ (κ3q, κ2q],
revenue is obtained from only the first two tasks, and for p ∈ (κ2q, κ1q], revenue is only obtained
from the first task. No revenue can be obtained if p > κ1q.

Theorem 1. Consider the following ordering σ : [T + 1] → [T + 1] for which

κσ(1) > κσ(2) > · · · > κσ(T ) > κσ(T+1) := 0. (4)

Then, firm B’s pricing problem is equivalent to the piecewise optimization problem:

max
t∈[T ]

max
p

{
p

t∑
s=1

Dσ(s)(p)

∣∣∣∣∣ κσ(t) ≥
p

q
> κσ(t+1)

}
. (5)

Theorem 1 shows that a generative AI model should be priced by prioritizing a subset of the tasks
and making the model price-performance competitive for those tasks only. Consequently, the firm
ignores the remaining tasks for which the model has low competitive ratios κt, since they would need
extremely low prices in order to satisfy (1) for these tasks. This strategy is due to the observation
that for any task σ(t), if a model satisfies (1), then the model will also satisfy the condition for all
σ(t′) for t′ ≤ t. Furthermore, Theorem holds without loss of generality with respect to the strict
inequalities on (4), since tasks with the same competitive ratios can be grouped together by summing
the constituent demand functions. Finally, Theorem 1 holds for arbitrary demand functions. In
practice, the demand functions are known and typically have a parametric structure. Figure 2 gives
an example using three tasks with demand that decays exponentially with price.

Theorem 1 reveals two key implications on how a firm can price a generative mode when given
competitor information. First, pricing reduces to solving T optimization problems, where each of
these problems are of a single variable with a differentiable objective and boundary constraints.
Thus, the inner problems can be solved via gradient descent. Second, as long as firm B sets a price
p ≤ κσ(1), they will obtain some non-zero revenue, i.e., problem (5) always has a feasible solution.
This advantage is due to the fact that firm B sets their price given a fixed q.

4.2 Pricing when accounting for competition

We next consider firm A’s problem of setting a problem while assuming that firm B will act optimally
next. This pricing problem is a bi-level optimization problem, but it can be solved by ranking the
tasks according to the competitive ratios for firm A and prioritizing a subset of these tasks.
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Theorem 2. Firm A’s pricing problem is equivalent to the piecewise bi-level optimization problem:

max
t∈[T−1]

max
q≥0

q

T∑
s=t+1

Dσ(s)(q)

s. t. max
p

{
p

t∑
s=1

Dσ(s)(p)

∣∣∣∣∣ κσ(t) ≥
p

q
> κσ(t+1)

}

> max
p′

p

t′∑
s=1

Dσ(s)(p
′)

∣∣∣∣∣ κσ(t′) ≥
p′

q
> κσ(t′+1)

 ∀t′ ̸= t

(6)

Theorem 2 relies on the observation that the reverse order of σ(·) in (4) cn rank the most to least
competitive tasks for firm A. For any t, if q < pκ−1

σ(t), then model A is price-performance competitive
for all tasks σ(t), · · · , σ(T ) and firm A will acquire revenue from all these tasks.

Firm A may not always be able to obtain revenue. Problem (6) is infeasible if for every t ∈ [T − 1],
there is no q ≥ 0 that satisfies the bi-level constraint. This infeasibility implies for any q ≥ 0, firm B
always maximizes their revenue by setting a low price p ≤ κσ(T )q. Thus, the key motivation of firm
A is that the firm benefits only when their competitor is incentivized to set high prices.

5 Structural analysis under exponential demand

Demand is typically modeled via structured parametric functions [Van Ryzin and Talluri, 2005]. In
this section, we specialize the pricing problem to the standard choice of exponentially decaying
parametric demand to extend the previous general results. See Figure 2 (Left) for an example.
Assumption 2. For each task t, the demand function decays exponentially in price Dt(p) :=
at exp(−bp), where at > 0 is the zero-price base demand and b > 0 is the price-sensitivity of users.
Furthermore, all tasks have the same price-sensitivty.

Under the exponential demand model, the demand for each task t is equal to at when p = 0, and
decays at a rate −b. We assume that the decay rate is the same for each task; this is motivated by the
practical consideration that the different tasks should have relatively similar ‘user value’ to have the
same price. If one task is uniquely price-sensitive to users, the firm may instead develop a finetuned
model for that task or propose incentives such as task-specific discounts to better optimize revenue.

Below, we revisit both firm B’s and firm A’s problems under this demand model to derive globally
optimal solutions and structural insights on the market dynamics.

5.1 Pricing in isolation under exponential demand

Under Assumption 2, firm B’s problem (5) now simplifies to the maximum of up to T possible values
that are the globally optimal solution to each of the individual inner optimization problems.

Theorem 3. Suppose Assumption 2 holds. For any t, let āσ(t) :=
∑t

s=1 aσ(t). Without loss of
generality, let t∗ ∈ [T ] be the task index that satisfies κσ(t∗)q ≥ 1/b > κσ(t∗+1)q. Then, firm B’s
pricing problem is equivalent to the following maximum value:

max

(
max
t>t∗

{
κσ(t)qāσ(t)e

−bκσ(t)q
}

,
1

b
āσ(t∗)e

−1

)
(7)

Theorem 3 states that problem (5) can be solved by by solving each of the inner problems starting
from the lowest price range up until we arrive at the zero-gradient solution of the revenue function,
i.e., 1/b. Furthermore, for each of the price ranges before this point, the optimal solution is the
upper price boundary. Note that if 1/b > κσ(1)q, i.e., there does not exist any t∗ satisfying the
condition, then we take the maximum of all T problems. Figure 2 (Right) visualizes the revenue
function RB(p|q) for T = 3 tasks with exponential demand. Finally, this structure also reveals that
the optimal price is bounded from both above and below via these optima.
Corollary 1. The optimal price for firm B is bounded 1/b ≥ p∗ ≥ κσ(1)q.
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Figure 3: The relationship between κ2/κ1 and a1/(a1 + a2) for firm A. In the blue region, firm B
will always set a price that is competitive on both tasks and firm A will acquire zero revenue. In the
orange region, the maximum price that firm A can set is upper bounded (see problem (11)). In the
green region, the maximum price that firm A can set has a higher upper bound (see problem (10)).

5.2 Pricing when accounting for competition under exponential demand

We now revisit firm A’s pricing problem, which is a bi-level problem with multiple inner optimization
constraints. To obtain structural insights on the challenges of pricing under competition, we explore a
special case with T = 2 tasks. Without loss of generality, we assume κ1 > κ2, i.e., σ(t) = t.

When there are only two tasks, firm B will either set their price to be competitive for the first task
only (i.e., the task with the higher competitive ratio) or for both tasks. In the latter case, model A
would be unattractive for both tasks and firm A would obtain zero revenue. Therefore, firm A should
set their price in such a way that they maximize revenue on the second task, while ensuring that firm
B is motivated to be competitive only for the first task. Thus, problem (6) simplifies to

max
q

qD2(q)

s. t. max
p

{
pD1(p)

∣∣ κ1q ≥ p > κ2q
}
> max

p

{
p (D1(p) +D2(p))

∣∣ κ2q ≥ p > 0
} (8)

If firm A sets a price q that is infeasible for this problem, they will get zero revenue. Furthermore,
this problem reduces to two single-level optimization problems with only bounding constraints.
Theorem 4. Suppose that T = 2, that Assumption 2 holds, and without loss of generality, assume
σ(t) = t. For z ∈ R, let W(z) be the Lambert W function defined only over z > −e−1. If

κ2

κ1
≤ −W

(
− a1e

−1

a1 + a2

)
(9)

then, the firm A’s pricing problem is equivalent to

max

{
qa2e

−bq

∣∣∣∣ − 1

bκ2
W

(
− a1e

−1

a1 + a2

)
≥ q > 0

}
. (10)

Otherwise, firm A’s problem is equivalent to

max

{
qa2e

−bq

∣∣∣∣ 1

b(κ1 − κ2)

(
log

κ1

κ2
+ log

a1
a1 + a2

)
≥ q > 0

}
. (11)

Recall from Theorem 3, the second-level problems in (8) can be solved analytically by checking the
boundary points and zero-gradient solution. Theorem 4 uses this property to map problem (8) to two
sub-problems based on whether condition (9) holds.

Determining which problem to solve to obtain the optimal price depends on a relationship between
two constants κ2/κ1 and a1/(a1 + a2). Here, κ2/κ1 is the relative competitive ratio with respect to
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the two tasks for firm B, where κ1 > κ2 > 0. Thus, κ2/κ1 → 1 suggests that the relative performance
differences between model A and model B are similar for both tasks, whereas κ2/κ1 → 0 suggests
that relative to model A, model B’s performance is much worse on the second task than for the first
task. The second parameter a1/(a1 + a2) is the fraction of the total demand that is occupied by the
first task. If this is close to 1, then the first task has significantly higher demand than the second, but
if it is close to 0, then the first task has significantly lower demand than the second.

We now discuss the structural insights obtained from Theorem 4 (see Figure 3 for a visualization).
First, note that when condition (9) is satisfied, firm A is able to set higher prices than it could if
the condition were not satisfied. In the latter case, the optimal price that firm A can set must be
upper bounded by the constraint in problem (11), which in this scenario, is less than the upper bound
in problem (10). Intuitively, this condition partitions firm A’s pricing problem into two regimes: a
high-price and low-price regime. Furthermore, the high-price regime is only attainable if the relative
performance difference between the two tasks is greater than the Lambert W function of the fraction
of total demand occupied by the first task.

Second, if firm B’s relative performance difference between the two tasks is larger than the fraction
of demand occupied by the first task, then firm A’s pricing problem is infeasible. That is, no matter
what price that firm A sets, firm B is always incentivized to set a price that ensures users will prefer
model B and consequently, leave no revenue for firm A.

Proposition 1. If κ2/κ1 > a1/(a1 + a2), then for any price that firm A sets, firm B will always set a
price that allows them to be price-performance competitive for both tasks.

Intuitively, if the relative performance difference is high, then model B’s performance relative to
model A is approximately the same for both tasks. Consequently, the range (κ2q, κ1q] is small,
meaning that a small perturbation from this price would not significantly decrease firm B’s revenue
from the first task, while permitting the firm to obtain revenue from the second task as well. Note
that model B does not necessarily have to be ‘better’ than model A, only that the performance on
the tasks must be similar. Finally, this ratio κ2/κ1 only needs to be larger than the fraction of total
demand that is occupied by the first task. Consequently, even if the ratio is small, firm B can still
be incentivized to set a competitive price for both tasks if the potential revenue that can be obtained
from the second task is high.

Theorem 4 and Proposition 1 sets a guideline for when a firm should deploy their generative AI model.
Consider a company that has developed a model for a new application area with no competitors. This
company knows that upon releasing their model to the public, competitors will release their own
models. If the first-to-market company believes that the use-cases for this model are sufficiently
similar to each other with respect to model performance, but are differentiated with respect to user
demand, then they must ensure that the model performs exceedingly well on at least one specific
use-case that their competitors cannot match. That is, the company must differentiate their product
[Schmalensee, 1982], or competitors can outprice the initial company with similar products.

Although firm A must price accounting for firm B’s actions, if model A is sufficiently differentiated
from model B, then firm A can acquire their maximum possible revenue. Recall that the zero-gradient
optimal price for problem (8) is q∗ = 1/b. Furthermore recall that if condition (9) is met, then firm
A can set higher prices for their model. We show below that if condition (9) is satisfied and if κ2 is
sufficiently low with respect to the demand ratio, then the optimal price is feasible.

Proposition 2. If κ2 ≤ −W(a1e
−1/(a1 + a2))min(κ1, 1), then firm A maximizes their revenue by

setting q∗ = 1/b.

6 Conclusion

We study how a company developing a generative AI model can set the price for this technology.
Generative AI models are a fundamentally different technology product compared to classical AI
models due to two factors. First, a single generative AI model is performant on multiple distinct
use-cases that each invite individual respective user demands. Second, generative AI models offer
interactivity via prompting, thereby encouraging ‘geometric’ user interaction where users can repeat-
edly prompt the model until it generates a satisfactory answer, compared to classical non-interactive
AI models that invite one-shot ‘Bernoulli’ interaction. These features combined with a singular unit
price per-prompt for model use warrant new revenue maximization frameworks for this technology.
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We find that for generative AI models, the pricing problem reduces to ranking the different tasks
in order of the relative performance of the model versus a competing alternative. In isolation, a
company can then always obtain non-zero revenue by setting a price to be competitive for at least one
downstream task. However, when considering the competition from alternative models that may be
released after the price is set, the company faces strict upper bounds on the prices they can set based
on the performance of the company’s model relative to the latecomers. In particular, if the relative
difference in performances on the tasks is sufficiently small, then a competitor will always be able
to outprice the company on all tasks. This result reveals that an outsized performance improvement
on at least one of the downstream applications of a generative AI model is essential to maximizing
revenue.

Limitations. We explore a theoretical market problem where firms know user demand and the
performance of competing AI models. In practice, these would be estimated with some noise.
Furthermore, we study a static marketplace where each firm sets their price once. In contrast, AI
technologies feature a flywheel where a low price and an early release of a product can allow for a
firm to collect more training data and improve their model downstream [Gurkan and de Véricourt,
2022]. In particular, the opportunity to acquire high-quality data can significantly improve model
performance, thereby motivating the first mover position. Finally, we do not include the cost of
developing the generative AI models themselves, but assumes that the fims have already decided to
build these models. The market dynamics can change when considering how large of a model to
build, how much resources (e.g., compute hours) to spend, or even whether to build a generative AI
model. We see these scenarios as important future extensions.

Societal impact. Pricing of generative AI can significantly affect the democratization of generative
AI technology. This paper explores the conditions that incentivize firms to develop or deploy this
technology, e.g., when firms can obtain revenue. Setting appropriate prices for these models can
allow for this technology to be more easily accessible to a wider set of users.
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A Proofs

Proof of Theorem 1. Consider the ordering σ defined by (4) and note that for any t, if we constrain p
to satisfy

κσ(t) ≥
p

q
> κσ(t+1),

then all of the tasks σ(1), σ(2), . . . , σ(t) become competitive for firm B’s generative model compared
to firm A’s model, i.e., by satisfying (1), whereas tasks σ(t+ 1), . . . , σ(T ) are competitive for firm
A’s model instead. As a result, for prices constrained in this range, the resulting problem becomes
maxp p

∑t
s=1 Dσ(s)(p). Therefore, to solve the overall pricing problem, we only need to solve this

resulting constrained problem for each value of t.

Proof of Theorem 2. From Theorem 1, for any value of q, there exists a t ∈ [T ] such that firm B will
prioritize revenue from tasks σ(1), σ(2), · · · , σ(t). This value of t will satisfy

max
p

{
p

t∑
s=1

Dσ(s)(p)

∣∣∣∣ κσ(t)q ≥ p > κσ(t+1)q

}
> max

p′

p′
t′∑

s=1

Dσ(s)(p
′)

∣∣∣∣∣ κσ(t′)q ≥ p′ > κσ(t′+1)q


for all t′ ̸= t. Furthermore, given this t, firm A will only obtain revenue from tasks σ(t+ 1), σ(t+
2), · · · , σ(T ), thereby revealing the objective function. Finally, note that if t = T , then firm A will
not acquire any revenue since firm B will be price-performance competitive on all tasks. Therefore,
firm A’s optimization problem is to simultaneously solve for q and for t ∈ [T − 1].

Proof of Theorem 3. First, note that under an exponential demand function the revenue function for
each piece t of problem (5) is pāσ(t) exp(−bp), and therefore has a zero-gradient point at p∗ = 1/b.
Thus, when solving problem (5), we can solve the inner problem by breaking into 3 cases based on
which t to consider.

For t∗ satisfying the condition. Here, the zero-gradient price p∗ is a feasible solution to the inner
pricing problem, meaning that this must be the optimal price. Substituting this into the revenue
function yields āσ(t∗) exp(−1)/b.

For t > t∗. Note that for any t > t∗, the price is constrained to be less than κσ(t∗+1) < 1/b. In this
regime, the revenue function pāσ(t) exp(−bp) is monotonically increasing, meaning that the optimal
price will be the maximum possible value, i.e., p = qκσ(t). Substituting this into the revenue function
yields κσ(t)qāσ(t) exp

(
−bκσ(t)q

)
.

For t < t∗. Here, the set of feasible prices is strictly greater than κσ(t∗) > 1/b. In this regime, the
revenue function is monotonically decreasing, meaning that the optimal price will be the minimum
value, i.e., p → qκσ(t+1), approaching from above. However, for any such setting, decreasing p to
equal the infinum would make firm B price-performance competitive for the t+ 1-th task as well and
thereby yield a higher return. Therefore, the optimal solution for any t < t∗ can always be upper
bounded by the optimal solution for t+ 1, leading up to t∗.

Proof of Corollary 1. The upper bound follows from the proof of Theorem 3, as we show that the
optimal revenue cannot be achieved without satisfying task σ(t∗). The lower bound follows from
observing the optimal solution for t = T .

Proof of Theorem 4. Let p1 := argmax{pD1(p) | κ1q ≥ p > κ2q}. Furthermore, let p2 :=
argmax{p(D1(p) + D2(p)) | κ2q ≥ p > 0}. Although p1 and p2 depend on q, we omit this
dependency to simplify the notation. We prove our theorem by exploring three regimes for q:
(0, 1/(bκ1)], (1/(bκ1), 1/(bκ2)], and (1/(bκ2),∞). We then show that whether condition (9), the
problems for each regime simplify further into problems (10) and (11).

For q ∈ (1/(bκ2),∞). For any q > 1/(bκ2), we have κ2q ≥ 1/b > 0. From Theorem 3, p2 = 1/b
is the optimal price. Furthermore, since κ1q ≥ p1 > κ2q, we have p1 > 1/b. From Corollary 1, p1 is
priced too high and cannot achieve a higher revenue than p2. Therefore in this regime, firm B will
set a price low enough that their model is competitive for both tasks, and consequently firm A will
achieve zero revenue.
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For q ∈ (1/(bκ1), 1/(bκ2)]. From Theorem 3, p1 = 1/b and p2 = κ2q are the optimal prices that
firm B can set for their two sub-problems. For firm A to achieve any revenue, the constraint in
problem (8) becomes

1

b
a1 exp(−1) > κ2q(a1 + a2) exp(−bκ2q) ⇒ − bκ2q exp(−bκ2q) > −

(
a1 exp(−1)

a1 + a2

)
⇒ − bκ2q > W

(
−a1 exp(−1)

a1 + a2

)
⇒ q < − 1

bκ2
W

(
−a1 exp(−1)

a1 + a2

)
≤ 1

bκ2

Above, the first line follows from rearranging the terms and the second line follows from applying
the definition of the Lambert W function, i.e., W(z) = y ⇔ y exp(y) = z. The third line follows
again from rearranging the terms. Finally, note that the Lambert W function is bounded in [−1, 0],
meaning that this constraint dominates the original upper bound. Therefore, for q in this regime, we
can solve the problem

max

{
qa2 exp(−bq)

∣∣∣∣ − 1

bκ2
W

(
−a1 exp(−1)

a1 + a2

)
≥ q ≥ 1

bκ1

}
(12)

For q ∈ (0, 1/(bκ1)]. From Theorem 3, p1 = κ1q and p2 = κ2q are the optimal prices that firm B
can set when q ≤ 1/(bκ1). Here, the constraint that ensures firm B will only prioritize the first task
reduces to

qκ1a1 exp(−bκ1q) > qκ2(a1 + a2) exp(−bκ2q) ⇒ κ1

κ2

(
a1

a1 + a2

)
> exp(bq(κ1 − κ2)q)

⇒ b(κ1 − κ2)q < log
κ1

κ2
+ log

a1
a1 + a2

⇒ q <
log κ1

κ2
+ log a1

a1+a2

b(κ1 − κ2)
.

Above, the first line follows from rearranging the terms and the second line follows from taking the
log on both sides. The third line follows from rearranging the terms. Therefore, for q in this regime,
we can solve the problem

max

{
qa2 exp(−bq)

∣∣∣∣ min

(
1

bκ1
,

1

b(κ1 − κ2)

(
log

κ1

κ2
+ log

a1
a1 + a2

))
≥ q > 0

}
. (13)

We now show that when condition (9) is satisfied, problems (12) and (13) join to have one continuous
feasible set, whereas when the condition is not satisfied, problem (12) is infeasible and the minimum
disappears.

First, to see that when the condition is satisfied, the two problems have one feasible set, we must
prove

1

b(κ1 − κ2)

(
log

κ1

κ2
+ log

a1
a1 + a2

)
≥ 1

bκ1
. (14)

Specifically,

−κ2

κ1
≥ W

(
−a1 exp(−1)

a1 + a2

)
⇒ κ2

κ1
exp

(
−κ2

κ1

)
≤ a1 exp(−1)

a1 + a2

⇒ exp

(
1− κ2

κ1

)
≤ κ1

κ2

(
a1

a1 + a2

)
⇒ 1− κ2

κ1
≤ log

κ1

κ2
+ log

a1
a1 + a2

⇒ κ1 − κ2

κ1
≤ log

κ1

κ2
+ log

a1
a1 + a2

⇒ 1

bκ1
≤ 1

b(κ1 − κ2)

(
log

κ1

κ2
+ log

a1
a1 + a2

)
.
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Above, the first line follows from applying the Lambert W function. The second line follows from
rearranging the terms and the third line follows from taking the log on both sides. The fourth and
fifth lines follow from rearranging the terms and multiplying both sides by 1/b. Note that when this
condition is satisfied, the lower bound for problem (12) and the upper bound for problem (13) are
equivalent, meaning that we can merge the two disjunctive regions. This results in obtaining problem
(10).

Next, we first note that when the condition is not satisfied, the inequality in (14) is reversed and the
minimum on the left-hand-side of the constraint in (13) can be removed. We then show that problem
(12) becomes infeasible. Specifically,

κ2

κ1
> −W

(
−a1 exp(−1)

a1 + a2

)
⇒ 1

κ1
> − 1

κ2
W

(
−a1 exp(−1)

a1 + a2

)
⇒ 1

bκ1
> − 1

bκ2
W

(
−a1 exp(−1)

a1 + a2

)
The second line follows from multiplying both sides by 1/b. This condition means that problem
(12) does not have a feasible region, meaning that the optimal price can only be obtained by solving
problem (11).

Proof of Proposition 1. The proof of the follows from observing that when this condition is satisfied,
the intermediate problems from the proof of Theorem 4, i.e., problems (12) and (13) both become
infeasible. If those problems become infeasible, the nominal problems (10) and (11) also must be
infeasible. First,

κ1

κ2
<

a1 + a2
a1

⇒ log
κ1

κ2
< log

a1 + a2
a1

⇒ log
κ1

κ2
+ log

a1
a1 + a2

< 0

The first line follows from taking the log and the second line follows from rearranging the terms and
simplifying. When this condition is satisfied, problem (13) becomes infeasible.

Next, observe that for any z ∈ [0, 1], we have z ≥ −W(z exp(−1)). Because a1/(a1 + a2) ∈ [0, 1],
for any value of a1 and a2, we have

a1
a1 + a2

≥ −W
(
a1 exp(−1)

a1 + a2

)
⇒ κ2

κ1
> −W

(
a1 exp(−1)

a1 + a2

)
⇒ 1

bκ1
> − 1

bκ2
W

(
a1 exp(−1)

a1 + a2

)
Thus, problem (12) is also infeasible.

Proof of Proposition 2. We show that if this condition holds, then problem (10) is the active problem-
to-solve and that the zero-gradient solution 1/b is a feasible solution. First, note that the condition
implies that condition (9) holds, meaning that problem (10) is the problem-to-solve. We then note
that condition implies

1 ≤ − 1

κ2
W

(
−a1 exp(−1)

a1 + a2

)
min

(
V1

W1
, 1

)
≤ − 1

κ2
W

(
−a1 exp(−1)

a1 + a2

)
Multiplying both sides by 1/b completes the proof.

B Extensions from per-prompt to per-token pricing

In this paper, we assume that the generative AI models can be used at a fixed price per-prompt. In
practice, generative AI models are priced either per-token or priced via a subscription mechanism
where users pay a fixed cost for (potentially unlimited) use. Furthermore, different tasks may feature
statistically different numbers of tokens either via longer (or shorter) prompts, or longer (or shorter)
model outputs. Consequently under per-token pricing, different tasks will have different costs on
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average. The price-per-prompt framework of this paper naturally extends to pricing per-token with a
small change of variables that preserves all fundamental results.

Suppose there are two firms, A and B, developing generative AI models with fixed price per-tokens
q0 and p0, respectively. We assume that the price is the same for both input and output tokens. For
each task t and model, there is now a distribution of the number of tokens ϕt and θt, that the user
sends and receives through the respective model in a given prompt. Note that the corresponding
price-per-prompt pt and qt are now random variables pt = p0θt and qt = q0ϕt, that depend on the
specific task. For any given task t, a user will prefer model B if

p0E[θtn(Vt)] ≤ q0E[ϕtn(Wt)]

where the expectation is taken over the randomness in the number of prompting rounds times the
number of tokens per prompting round. The corresponding revenue functions for the two firms are

RA(q0|p0) := q0

T∑
t=1

Dt(q0)1 {q0E[ϕtn(Wt)] ≤ p0E[θtn(Vt)]}

RB(p0|q0) := p0

T∑
t=1

Dt(p0)1 {p0E[θtn(Vt)] ≤ q0E[ϕtn(Wt)]} .

To solve this problem, note that the inherent structure is equivalent to equation (3). Let κt :=
E[ϕtn(Wt)]/E[θtn(Vt)] be the corresponding competitive ratio of the two models and note that the
set of tasks can be ranked according to this re-defined competitive ratio. Then, Theorem 1 follows
using the same steps and the re-defined κt. Moreover, all subsequent results carry over from this
result.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract summarizes the key insights obtained from our model as well as
the problem setting and model assumptions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have a Limitations subsection in the Conclusion.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All proofs are in the Appendix. All assumptions are in the main paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: This is primarily a theory-driven paper. The only numerical analysis is a
computational example which we detail in the main paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: We do not perform any experiments involving datasets.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: We do not train any neural networks.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: We do not have any experiments with statistical noise.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: There is no compute required.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Broader societal impacts are discussed in the conclusion.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

20

https://neurips.cc/public/EthicsGuidelines


generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No data or models are released in this paper.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: No assets are introduced in this paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: No assets are introduced in this paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human studies were performed.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human studies were performed.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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