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Abstract

Despite the rapid progress of large language001
models (LLMs), their task performance002
remains sensitive to prompt design. Recent003
studies have explored leveraging the LLM itself004
as an optimizer to identify optimal prompts005
that maximize task accuracy. However, when006
evaluating prompts, such approaches heavily007
rely on elusive manually annotated gold labels008
to calculate task accuracy for each candidate009
prompt, which hinders its generality. To over-010
come the limitation, this work proposes GLaPE,011
a gold label-agnostic prompt evaluation method012
to alleviate dependence on gold labels. GLaPE013
is composed of two critical aspects: self-014
consistency evaluation of a single prompt and015
mutual-consistency refinement across multiple016
prompts. Experimental results on 8 widely-017
recognized reasoning tasks demonstrate that018
GLaPE can produce more effective prompts,019
achieving performance comparable to those020
derived from manually annotated gold labels.021
Analysis shows that GLaPE provides reliable022
evaluations aligned with accuracy, even in023
the absence of gold labels. Code is publicly024
available at Anonymous.025

1 Introduction026

As the integration of large language models (LLMs)027

into natural language processing tasks has become028

imperative in recent years (Achiam et al., 2023;029

Scao et al., 2023; Chowdhery et al., 2022; Touvron030

et al., 2023), the sensitivity of the performance031

of LLMs to prompts has garnered significant032

attention (Pezeshkpour and Hruschka, 2023; Loya033

et al., 2023). While traditional soft prompt034

tuning methods (Li and Liang, 2021; Liu et al.,035

2022; Lester et al., 2021; Qin and Eisner, 2021)036

demonstrate effectiveness in guiding the LLM to037

perform desired tasks, they encounter limitations038

when applied to private LLMs, such as GPT-4039

(OpenAI, 2023). This situation necessitates the040

exploration of effective strategies for optimizing 041

prompts without requiring gradient updates. 042

Recent studies (Yang et al., 2023; Zhou 043

et al., 2022) have unveiled a noteworthy strategy, 044

where the LLM itself acts as the optimizer to 045

seek the prompt that maximizes task accuracy. 046

Specifically, OPRO (Yang et al., 2023) provides an 047

intriguing avenue for prompt optimization based 048

on a gold label evaluation recipe (Figure 1a). 049

The optimization commences with an initial 050

prompt, then iteratively evaluates existing prompts 051

and generates novel prompts based on prior 052

assessments. However, a significant caveat 053

emerges as these studies heavily rely on manually 054

annotated gold labels. Concretely, the gold label, 055

representing the ideal output, serves as a crucial 056

ingredient for evaluating and refining prompts. 057

Nevertheless, the acquisition of such gold labels 058

poses a formidable obstacle (Huang et al., 2023; 059

Stechly et al., 2023), introducing complexity 060

and hindering the widespread implementation 061

and generality of these optimization techniques. 062

Therefore, exploring alternative methodologies 063

becomes mandatory to address these challenges 064

and improve the efficiency of prompt evaluation 065

and optimization for LLMs. 066

To address the limitations, this work proposes 067

a gold label-agnostic prompt evaluation (GLaPE) 068

method to identify prompts that facilitate consistent 069

and accurate answers. Instead of relying on gold 070

labels, GLaPE evaluates prompts based on two 071

critical aspects: self-consistency evaluation and 072

mutual-consistency refinement. Inspired by Wang 073

et al. (2022), we first consider a naive solution by 074

utilizing self-consistency (SC) as the evaluation 075

metric instead of accuracy, as correct answers 076

generally exhibit higher SC than incorrect ones. 077

However, we will show that SC alone may not 078

always yield accurate evaluations, since SC does 079

not always align well with accuracy and can 080

overestimate prompts that produce incorrect but 081
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(a) Accuracy Evaluation
Question: Oscar has 24 lollipops and eats 2 on his way to school. He passes 14 out
to his friends. He buys twice as many lollipops on his way home as he gave to his
friends. He eats 3 more that night and 2 more in the morning. How many lollipops
does Oscar have?
Gold Label (Answer): 31
Prompt1: By carefully analyzing all aspects of the situation, the optimal solution
becomes crystal clear.
Responses: 31, 31, 31, 31, 31, 31, 31, 31, 31, 31 ✔
Score: 100.0
Prompt2: After thorough examination and careful consideration, the optimal
solution becomes clear.
Responses: 19, 31, 31, 31, 31, 31, 31, 31, 36, 36 ✔
Score: 100.0
Prompt3: Let’s think about this logically.
Responses: 31, 33, 33, 36, 36, 36, 36, 36, 36, 36 ✘
Score: 0.0
Prompt4: Let’s approach this problem systematically.
Responses: 19, 31, 31, 31, 33, 33, 36, 36, 36, 36 ✘
Score: 0.0
Prompt5: By carefully analyzing all the available data, the optimal solution
becomes unequivocally evident.
Responses: 8, 8, 11, 19, 19, 31, 31, 36, 36, 36 ✘
Score: 0.0

(b) Our GLaPE Method
Question: Oscar has 24 lollipops and eats 2 on his way to school. He passes 14 out
to his friends. He buys twice as many lollipops on his way home as he gave to his
friends. He eats 3 more that night and 2 more in the morning. How many lollipops
does Oscar have?
Gold Label (Answer): 31
Prompt1: By carefully analyzing all aspects of the situation, the optimal solution
becomes crystal clear.
Responses: 31, 31, 31, 31, 31, 31, 31, 31, 31, 31
Score: 87.9
Prompt2: After thorough examination and careful consideration, the optimal
solution becomes clear.
Responses: 19, 31, 31, 31, 31, 31, 31, 31, 36, 36
Score: 81.8
Prompt3: Let’s think about this logically.
Responses: 31, 33, 33, 36, 36, 36, 36, 36, 36, 36
Score: 50.0
Prompt4: Let’s approach this problem systematically.
Responses: 19, 31, 31, 31, 33, 33, 36, 36, 36, 36
Score: 45.7
Prompt5: By carefully analyzing all the available data, the optimal solution
becomes unequivocally evident.
Responses: 8, 8, 11, 19, 19, 31, 31, 36, 36, 36
Score: 44.2

Meta-prompt for Prompt Optimization
Meta-prompt 1 like “I have some texts along with their corresponding scores.”

Prompt: ... Score: ... ; Prompt: ... Score: ... ; [more prompts and scores]

Meta-prompt 2 like “Write your new text that is different from the old ones and has a score as high as possible.”

Prompt: ... Score: ... ; Prompt: ... Score: ... ; [more prompts and scores]

Prompt Evaluation Prompt Evaluation

New Prompts New Prompts

Figure 1: Sketch of prompt optimization utilizing the LLM as an optimizer (Yang et al., 2023), featuring distinct
prompt evaluation metrics based on: (a) accuracy or (b) our proposed GLaPE. The texts are favorably read in colors.
Blue: gold label, Yellow: most frequent answer, Green: high score, Red: low score, Purple: prompt evaluation.

consistent answers. To mitigate this, we then082

propose a complementary approach named mutual-083

consistency refinement across multiple prompts.084

This approach penalizes inconsistent scores based085

on SC across prompts that produce the same086

answers. By doing so, the refinement process087

effectively identifies prompts that demonstrate high088

SC but result in incorrect answers, leading to more089

reliable evaluation scores. Figure 2 illustrates our090

GLaPE method.091

Building on our GLaPE evaluation strategy,092

we then develop a gold label-agnostic prompt093

optimization method. Specifically, we substitute094

the accuracy evaluation method in OPRO with095

our GLaPE method (Figure 1b). Experimental096

results on 8 widely-recognized reasoning tasks097

demonstrate that GLaPE can produce more effec-098

tive prompts, achieving performance comparable to099

those derived from manually annotated gold labels.100

Our key contributions are as follows:101

(i) This work studies a gold label-agnostic102

prompt evaluation method to alleviate dependence103

on gold labels, which allows prompt evaluation in104

more realistic scenarios when human-annotated105

dataset is unavailable. To the best of our106

knowledge, this work is the first to study gold label-107

agnostic prompt evaluation for LLMs. 108

(ii) We propose a novel prompt evaluation 109

approach named GLaPE, which consists of self- 110

consistency evaluation of a single prompt and 111

mutual-consistency refinement across multiple 112

prompts. GLaPE helps LLMs optimize effective 113

prompts that are comparable with those derived 114

from manually annotated gold labels. 115

(iii) We elicit the analysis of why the widely- 116

used SC approach fails at our evaluation task 117

and figure out an effective mutual-consistency 118

refinement approach to mitigate the challenge. 119

2 Related Work 120

Prompt Optimization In the domain of LLMs 121

(Achiam et al., 2023; Scao et al., 2023; Chowdhery 122

et al., 2022; Touvron et al., 2023), prompt 123

engineering plays a crucial role in guiding models 124

to generate desired outputs across diverse tasks 125

(Pezeshkpour and Hruschka, 2023; Loya et al., 126

2023). Consequently, optimizing prompts becomes 127

paramount for enhancing the performance and 128

efficiency of LLMs. Various soft prompt tuning 129

methods (Li and Liang, 2021; Liu et al., 2022; 130

Lester et al., 2021; Qin and Eisner, 2021) have 131

been explored in previous research to optimize 132
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prompts for open-source LLMs. However, these133

methods encounter challenges when applied to134

private LLMs, where accessing gradients is135

infeasible. Consequently, diverse gradient-free136

prompt optimization techniques (Zhou et al., 2022;137

Pan et al., 2023; Ye et al., 2023) have been explored.138

Recent works (Yang et al., 2023) have embraced139

an iterative process for gradient-free prompt140

optimization, commencing from an initial prompt141

and iteratively assessing existing prompts while142

generating new ones based on prior evaluations.143

Nevertheless, these iterative prompt optimization144

methods heavily depend on gold labels for prompt145

evaluation. In our work, we propose a novel146

gold label-agnostic prompt evaluation method147

and subsequently present a unique approach to148

optimize prompts for LLMs without the constraints149

associated with conventional gold label reliance.150

Prompt Selection Prompt selection tasks aim151

to identify the optimal prompt among candidates152

for a given task, representing an alternative153

approach to prompt optimization. Recent studies154

have delved into probability-based evaluation155

methods, utilizing diverse metrics such as mutual156

information (Sorensen et al., 2022), entropy (Lu157

et al., 2021), and perplexity (Gonen et al., 2022).158

In contrast to these probability-centric assessments,159

our proposed evaluation approach exclusively relies160

on the output, making it applicable to private LLMs161

where only the output is accessible.162

3 Background163

3.1 Task Formulation164

Existing studies on prompt design (Yang et al.,165

2023; Zhou et al., 2022) generally adhere to a166

two-stage paradigm in an iterative manner: (i)167

evaluate the prompt, analogous to calculating the168

loss function and gradient in soft prompt tuning;169

(ii) optimize the prompt, analogous to the gradient170

descent process in soft prompt tuning.171

We formulate the two stages on top of the widely-172

used question-answering (QA) task defined by173

QA pairs (Q,A), where each pair comprises an174

input Q and its corresponding expected output A.175

We introduce the prompted model as M and an176

evaluation function f . Our objective is to determine177

the optimal natural language instruction prompt.178

To begin with, we define the meta-prompt as179

the input to for prompt optimization. As the upper180

block shown in Figure 1, a meta-prompt contains181

three parts. The first part is a problem description.182

The second part is an optimization trajectory, 183

includes past solutions and their evaluation scores. 184

The third part is the optimization instruction for 185

generating new candidate prompts. 186

Then, we describe the process of obtaining the 187

optimization trajectory. In each iteration, the LLM 188

generates a candidate prompt ρ to the QA task. We 189

concatenate each question Q with the candidate 190

prompt ρ to form the prompted input [Q; ρ]. Then, 191

the prompted input is feed to the model to obtain 192

the response M ([Q; ρ]). We evaluate the goodness 193

of candidate prompt ρ based on the evaluation 194

function f , e.g., calculating the accuracy between 195

each pair of M ([Q; ρ]) and the labeled answer A 196

in previous studies. Then the candidate prompt 197

along with the evaluation score is added to the 198

trajectory for the next iteration. 199

The optimization process terminates when the 200

LLM is unable to propose new prompts with 201

better evaluation scores, or a maximum number 202

of optimization steps has reached. 203

3.2 Self-consistency 204

Here, we adopt the definition of self-consistency 205

proposed by Wang et al. (2022). We sample n 206

responses (r1, · · · , rn) from the LLM using the 207

same prompt. The final answer is determined 208

by a voting mechanism, where the most frequent 209

response a is selected as the answer. Self- 210

consistency is the frequency of a in all n responses, 211

which can be formulated as: 212

SC =

∑n
i=1 1a=ri

n
. (1) 213

4 Investigating Gold Label-agnostic 214

Prompt Evaluation 215

According to Section 3.1, the evaluation function 216

f in existing studies measures the goodness of 217

the prompt candidate ρ by maximizing the task 218

accuracy. However, in real-world tasks, obtaining 219

gold labels poses a considerable challenge, limiting 220

the generalization of existing prompt optimization 221

methods. Furthermore, we ultimately expect LLMs 222

to solve problems for which answers are not already 223

known. Therefore, when optimizing prompts to 224

enhance performance, gold labels are not readily 225

available. Thus, it is imperative to find a gold label- 226

agnostic prompt evaluation method. 227

In this section, we will investigate the challenge 228

of gold label-agnostic prompt evaluation and study 229
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AddSub AQuA Big-Bench Date GSM8K MultiArith SVAMP StrategyQA MATH

Correct Answers (%) 96.0 79.0 83.4 82.1 97.5 90.1 95.4 70.2
Incorrect Answers (%) 73.4 67.1 67.8 49.3 54.2 57.5 90.6 35.9
Overall Answers (%) 92.8 71.8 79.2 73.8 96.6 84.9 91.9 44.6

Table 1: The average self-consistency of correct, incorrect, and overall answers generated by the LLM that prompted
with “Let’s think step by step.” on multiple datasets.

Testing
Question Prompt 3 33, 33

31

36, · · · , 36

SC:
70.0

Prompt 2

36, 36

31, · · · , 31

19

SC:
70.0

Prompt 1 31, · · · , 31 SC:
100.0

Prompt 4

19

31, 31, 31

33, 33

36, · · · , 36

SC:
40.0

Prompt 5

8, 8

11

19, 19

31, 31

36, 36, 36

SC:
30.0

Refinement of
Answer “31”

Refinement of
Answer “36”

Score: 87.9

Score: 81.8

Score: 50.0

Score: 45.7

Score: 44.2

SC
Evaluation (%) + MC

Refinement = GLaPE
Metric

-20.0

Figure 2: The schematic representation of our GLaPE method integrating self-consistency (SC) evaluation and
mutual-consistency (MC) refinement. This sketch illustrates how our method assesses the prompts in Figure 1;
computation details are provided in Appendix A.2. Notably, we observed that prompt3, as indicated by the red
marker, produces an incorrect answer with high self-consistency (70%). Through the mutual-consistency refinement,
our GLaPE score experiences a decrease of 20.0, rendering it more discernible when compared to prompt1 and
prompt2. The texts are favorably read in colors of background. Blue: self-consistency, Purple: mutual-consistency
refinement, Green: answer “31” (gold label), Orange: answer “36”, Yellow: GLaPE metric.

how to design an effective approach to overcome230

the challenge.231

4.1 SC Fails Due to Overestimating Prompts232

For a gold label-agnostic prompt evaluation233

method, it is essential to rely exclusively234

on the responses and identify patterns within235

them. Building on the findings of Wang et al.236

(2022), which demonstrate that selecting the most237

frequently generated response enhances accuracy,238

we aim to investigate whether SC correlates with239

accuracy.240

To this end, we experiment by utilizing the241

prompt “Let’s think step by step.” proposed by242

Kojima et al. (2022). We calculated the average243

self-consistency of correct, incorrect, and overall244

answers and presented the results in Table 1. We245

observe a significant superiority in the average246

self-consistency of correct answers compared to 247

incorrect ones. A more specific example is shown 248

in Figure 2. We see that the average SC of correct 249

answers (answer “31”) significantly surpasses that 250

of incorrect ones. This observation indicates 251

that the self-consistency of responses may reflect 252

accuracy. Thus, it is possible to evaluate prompts 253

based on the SC of the responses and incorporate 254

this method in prompt optimization. 255

However, we also find that there exists disparity 256

between SC and accuracy when using SC as the 257

sole evaluation metric. This disparity happens to 258

Prompt 3 as shown in Figure 2. Concretely, Prompt 259

3 yields an incorrect answer (answer “36”) but has 260

a high SC of 70.0. By taking the GSM8K dataset as 261

the testbed, we computed both the self-consistency 262

and accuracy for a group of prompts. Consequently, 263

we draw each prompt as a point in Figure 3. 264
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Evaluation Metric AddSub AQuA Big-Bench Date GSM8K MultiArith SVAMP StrategyQA MATH

GLaPE 0.44 0.04 0.88 0.49 0.88 0.69 0.18 0.67
SC evaluation 0.36 -0.13 0.75 0.40 0.29 0.31 0.14 0.33

Table 2: Spearman correlation coefficients (↑) between accuracy and SC / GLaPE across diverse datasets.

68 70 72 74
SC

66

68

70

72

74

Ac
cu

ra
cy

SC-Accuracy Graph

Figure 3: SC-Accuracy Graph for Prompts. Each
prompt is represented as a point on the graph, where
the x-coordinate signifies self-consistency and the y-
coordinate signifies accuracy.

Given the observed fluctuations in the line, it265

is apparent that self-consistency does not align266

rigorously with accuracy. Additionally, we find267

that the Spearman correlation coefficient between268

SC and accuracy is relatively low, as shown in the269

first line of Table 2. Therefore, relying on self-270

consistency alone proves insufficient in offering271

a comprehensive representation of accuracy in272

prompt evaluation and optimization.273

So far, we show that SC alone may not274

always yield accurate evaluations, since SC does275

not always align well with accuracy and can276

overestimate prompts that produce incorrect but277

consistent answers. Therefore, it deserves a more278

in-depth investigation to mitigate the side effects279

of the overestimated prompts by SC. Beyond280

examining individual prompt responses, we can281

analyze relationships between different prompts.282

4.2 Mitigating the Challenge with283

Mutual-consistency (MC) Refinement284

Although the performance of a single prompt is285

only related to its responses, we leverage other286

prompts for better evaluation in the absence of a287

gold label.288

Specifically, we infer the gold label from other289

prompts and then refine the SC evaluation of the290

single prompt. Table 1 shows that correct answers291

exhibit higher self-consistency (SC), allowing us292

to predict answer correctness by analyzing the293

average SC of all prompts producing it. In Figure 2,294

we can predict that the answer "31" is more likely295

to be correct, while the answer "36" is not, as 296

the average SC of "31" is 87.5, whereas that 297

of "36" is 46.7. This prediction further aids in 298

refining evaluation of each prompt. For an incorrect 299

answer, we should lower the evaluation score of 300

prompts with elevated SC, towards the average. In 301

Figure 2, since the average SC of answer “36” is 302

46.7 while prompt 3 has an elevated SC of 70.0, the 303

evaluation score of prompt 3 should be lowered. 304

This refinement mitigate the SC evaluation of 305

overestimated prompts. 306

In summary, we predict the correctness of an 307

answer by its average SC and refine each SC 308

towards this average. This aligns the evaluation 309

of prompts producing the same answer. 310

Based on our pivot study above, we find that 311

combining SC and MC is effective for achieving 312

gold label-agnostic prompt evaluation. 313

5 GLaPE 314

In light of the discussions in Section 4, we 315

propose GLaPE, a gold label-agnostic prompt 316

evaluation approach. GLaPE is composed of two 317

critical aspects: self-consistency evaluation of a 318

single prompt and mutual-consistency refinement 319

across multiple prompts. The overall procedure is 320

illustrated in Figure as depicted in Figure 2. 321

For formal description purposes, we assume 322

there are N different prompts and denote the 323

evaluation score for each prompt ρi as fi. Among 324

multiple samplings of M prompted with ([Q; ρi]), 325

the answer is ai and the self-consistency is ci, as 326

defined in Section 3.2. 327

Self-consistency Evaluation: We evaluate 328

prompts based on the self-consistency of their 329

answers by minimizing the loss function: 330

Lself =

N∑
i=1

(fi − ci)
2. (2) 331

Mutual-consistency Refinement: Additionally, 332

we propose Lrefine as a corrective measure for SC 333

evaluation. It measures and penalizes the mutual 334

inconsistency of evaluation scores (fi) for prompts 335

sharing the same answer: 336

Lrefine =
∑

1≤i<j≤N

1ai=aj (fi − fj)
2. (3) 337
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The overall loss function Ltotal is determined by338

balancing the loss functions of these two aspects:339

Ltotal = α · Lself + (1− α) · Lrefine, (4)340

where α weights the contribution of self-341

consistency evaluation and mutual-consistency342

refinement in the evaluation process. Based on pre-343

liminary experiments (detailed in Appendix A.1),344

we set α = 0.5.345

We obtain the ultimate evaluations f1, · · · , fN346

by minimizing the loss function Ltotal. We347

initialize fi with ci for simplicity and utilize the348

default gradient descent method to find the optimal349

solution with a learning rate of 0.05.350

6 Experiment351

6.1 Experiment Setup352

Datasets. Our experiments were conducted on 8353

benchmark datasets to evaluate the performance354

of our gold label-agnostic prompt evaluation and355

optimization method. We selected five datasets356

specifically focused on arithmetic reasoning:357

AddSub (Hosseini et al., 2014), AQuA (Ling358

et al., 2017), GSM8K (Cobbe et al., 2021), Multi-359

Arith (Roy and Roth, 2015), and SVAMP (Patel360

et al., 2021). Additionally, we included the361

MATH dataset (Hendrycks et al., 2021), which362

is extremely challenging and comprehensive, to363

test our method’s efficacy on particularly difficult364

benchmarks. Furthermore, we expanded our365

evaluation to commonsense reasoning benchmarks,366

such as Big-Bench Date (bench authors, 2023)367

and StrategyQA (Geva et al., 2021), to assess the368

performance of GLaPE in varied contexts.369

Prompt Optimization. We implemented the370

OPRO method proposed by Yang et al. (2023).371

This technique utilizes an LLM to evaluate existing372

prompts, generating improved prompts based on373

the obtained evaluation scores. We chose this374

approach due to its adaptability; alternative metrics375

can easily replace evaluation scores in the meta-376

prompt of optimization. This flexibility facilitates377

the seamless execution of our gold label-agnostic378

prompt optimization experiments.379

LLM Backbone. In both the evaluation and380

optimization phases, we employed gpt-3.5-turbo.381

For prompt evaluation, we empirically set the382

temperature to 0.7 and generated 10 outputs using383

chain-of-thought prompting (Wei et al., 2023). For384

prompt optimization, default hyperparameters and385

meta-prompt from Yang et al. (2023) were applied.386

6.2 Main Results 387

Table 3 shows the main results on the 8 benchmark 388

datasets. GLaPE is able to produce effective 389

prompts, achieving performance comparable to 390

those derived from manually annotated gold labels 391

such as OPRO. The results suggests that our 392

GLaPE can function as a robust metric, akin 393

to accuracy. We also compared our method 394

with other recent prompt optimization methods 395

for private LLMs; these results are detailed in 396

Appendix A.3, providing additional evidence to 397

verify the generality of GLaPE. 398

6.3 Ablation Study 399

In this section, we conduct ablation studies to 400

enhance our understanding of the GLaPE method, 401

with a specific focus on the impact of the mutual- 402

consistency refinement approach. 403

Initially, on the GSM8K dataset, we compared 404

prompt optimization outcomes using two distinct 405

evaluation methods: self-consistency assessment 406

and GLaPE. As shown in Table 4, GLaPE-based 407

prompt optimization results in a superior prompt 408

compared to that obtained through confidence 409

assessment. This observation suggests that 410

incorporating mutual-consistency refinement to 411

rectify confidence evaluation enhances the efficacy 412

of prompt optimization. 413

Furthermore, we incorporated the Spearman 414

correlation coefficient1 into our study, wherein a 415

higher coefficient signifies a stronger correlation 416

between variables. This quantitative assessment 417

was employed to juxtapose GLaPE with the solely 418

SC-based evaluation regarding the correlation 419

with accuracy. Our analysis concentrated on 420

prompts within the optimization trajectory in the 421

experiment in Section 6.2, to mitigate unnecessary 422

computational costs. As delineated in Table 2, the 423

Spearman coefficient between GLaPE and accuracy 424

exceeds that of self-consistency across all datasets. 425

Additionally, we utilized the visualization 426

method introduced in Section 4.1 to depict the 427

prompts of the optimization trajectory in a graph 428

(Figure 4). In Figure 4a, we observe a fluctuating 429

line, whereas in Figure 4b, a consistently increasing 430

line is evident. Both of the scrutiny indicate 431

that our mutual-consistency refinement method 432

significantly mitigates the disparity between self- 433

consistency and accuracy. 434

1https://en.wikipedia.org/wiki/
Spearman’s_rank_correlation_coefficient
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Dataset Method Prompt Accuracy (%)

Addsub

Baseline (Wang et al., 2022) Let’s think step by step. 85.8
OPRO (Yang et al., 2023) Let’s meticulously scrutinize every detail. 89.4

GLaPE-based (Ours) Let’s carefully consider each step. 87.6

AQuA

Baseline (Wang et al., 2022) Let’s think step by step. 39.4

OPRO (Yang et al., 2023) After careful consideration and analysis, the
optimal solution is revealed. 41.7

GLaPE-based (Ours)

Through a meticulous analysis of all available
data and a strategic approach to problem-
solving, a definitive and optimal solution will
undoubtedly arise.

43.7

Big-Bench Date

Baseline (Wang et al., 2022) Let’s think step by step. 72.4

OPRO (Yang et al., 2023)
Using a systematic approach and thorough
examination, the unequivocal and optimal
solution becomes unmistakably evident.

72.1

GLaPE-based (Ours) Let’s analyze this situation thoroughly and
explore all possible solutions. 71.9

GSM8K

Baseline (Wang et al., 2022) Let’s think step by step. 74.8

OPRO (Yang et al., 2023) After careful analysis, the optimal solution
becomes clear.

76.6

GLaPE-based (Ours) After careful analysis, the conclusion is evident. 77.7

MultiArith

Baseline (Wang et al., 2022) Let’s think step by step. 98.0

OPRO (Yang et al., 2023)
Let’s approach this problem systematically and
strategically, step by step, with logical thinking
and methodical planning.

99.6

GLaPE-based (Ours)
Let’s approach this problem strategically, me-
thodically, and innovatively, exploring ground-
breaking solutions.

99.3

SVAMP

Baseline (Wang et al., 2022) Let’s think step by step. 83.9

OPRO (Yang et al., 2023)

Let’s approach this problem with an innovative
and revolutionary mindset, breaking the barriers
of conventional thinking and achieving unprece-
dented results.

88.9

GLaPE-based (Ours) Let’s approach this problem with an innovative,
revolutionary, and groundbreaking solution. 88.7

StrategyQA

Baseline (Wang et al., 2022) Let’s think step by step. 66.1

OPRO (Yang et al., 2023) Let’s tackle this problem with groundbreaking
approaches and unparalleled creativity. 69.4

GLaPE-based (Ours) Let’s explore all the possibilities. 70.2

MATH

Baseline (Wang et al., 2022) Let’s think step by step. 21.4

OPRO (Yang et al., 2023) Analyzing the data thoroughly can lead to
valuable insights. 26.4

GLaPE-based (Ours) Let’s approach this problem with an innovative,
revolutionary, and groundbreaking solution. 25.9

Table 3: Optimization results (optimal prompt and corresponding accuracy) of our GLaPE-based prompt optimization
method and OPRO (Yang et al., 2023) across various datasets. Notably, Our optimal prompt is determined by
selecting the prompt with the highest GLaPE score.

7 Rethink on Gold Label-agnostic435

Prompt Optimization436

Our amalgamation of self-consistency evaluation437

and mutual-consistency refinement facilitates the438

identification of prompts leading to correct answers.439

However, we also observe a diminished Spearman440

correlation coefficient between our GLaPE and441

accuracy on the AQuA dataset and StrategyQA442

dataset, as depicted in Table 2. Given the 443

suboptimal performance, we shift to reflect on the 444

intrinsic restriction posed by the LLM. As stated in 445

Section 4.1, in scenarios where all prompts result 446

in consistent but inaccurate answers, our evaluation 447

may fail to identify the error. Without access to 448

external resources, discerning the consistent errors 449

becomes challenging. We illustrate some example 450

questions in the Strategy dataset in Figure 5, where 451
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Evaluation Metric Optimal prompt Accuracy (%)

GLaPE After careful analysis, the conclusion is evident. 77.7
SC evaluation Let’s break it down step by step. 75.1

Table 4: Comparison of prompt optimization based on self-consistency and our GLaPE.
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Figure 4: SC-Accuracy Graph v.s. GLaPE-Accuracy Graph for Prompts on Multiarith.

almost all prompts lead to a incorrect answer with452

extremely high self-consistency during our prompt453

optimization. By excluding these problematic454

questions, we observe a significant improvement455

in the Spearman correlation coefficient, as detailed456

in Appendix A.4.457

Notably, Our GLaPE evaluation method has458

been shown effective in challenging datasets, too.459

Our GLaPE evaluation method aligns well with460

accuracy on the rigorous MATH dataset, as shown461

in Table 2. This alignment can be attributed462

to the significant disparity in self-consistency463

between correct and incorrect answers, as depicted464

in Table 1. Conversely, on the StrategyQA465

dataset, the self-consistency levels of correct and466

incorrect answers are remarkably similar. This467

similarity arises from the inherent errors within the468

LLM itself, which precludes effective distinction469

between these answers without access to the gold470

standard labels.471

8 Conclusion472

This work presents an innovative gold label-473

agnostic prompt evaluation methodology that oper-474

ates in the absence of gold labels. By integrating475

self-consistency evaluation and mutual-consistency476

refinement, our evaluation demonstrates a strong477

correlation with accuracy. Subsequently, we478

incorporate our metric into prompt optimization,479

yielding prompts comparable to those optimized480

based on accuracy metrics across various tasks.481

Example 1: Was Iggy Pop named after his father?
Label: Yes.
LLM Answer & Explanation: No. Iggy Pop, whose real
name is James Newell Osterberg Jr., was not named after his
father. His father’s name was James Newell Osterberg Sr., so
they shared the same first name but not the same nickname.
Iggy Pop got his stage name from his first band, The Iguanas,
and later shortened it to Iggy.
Example 2: Is Great Pyramid of Giza the last wonder of its
kind?
Label: Yes.
LLM Answer & Explanation: No. The Great Pyramid of
Giza is one of the Seven Wonders of the Ancient World. It is
the only wonder from that list that still exists today. However,
there have been other lists of wonders created throughout
history. For example, the New7Wonders Foundation
conducted a global poll in 2007 to determine the New Seven
Wonders of the World.

Figure 5: Some examples in StrategyQA dataset where
the LLM consistently provides inaccurate responses.

9 Limitations 482

First, in Section 7, we outlined the challenges faced 483

by our GLaPE method in accurately assessing the 484

inherent error of LLM itself. In future research, 485

innovative approaches could be explored to identify 486

the consistent mistakes. Another limitation in 487

our current evaluation methodology is that we 488

utilize a singular digital score as the assessment, 489

which fails to furnish comprehensive information 490

regarding the prompts. Consequently, future 491

research could augment the granularity of prompt 492

evaluations, incorporating other assessments, like 493

natural language feedback, to address this shortfall. 494
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A Appendix 667

A.1 Preliminary Experiments 668

In this section, we discuss two crucial hyperparam- 669

eters used in our experiments. 670

The first is the balance weight α, which balances 671

SC evaluation and MC refinement as described in 672

Equation 4. We tested α values of 0.25, 0.5, 0.75, 673

and 1.0, with results detailed in Table 5. An optimal 674

balance was achieved at α = 0.5, emphasizing the 675

significance of both SC and MC in our evaluation 676

framework. Consequently, we set α = 0.5 for all 677

experiments. 678

Weight α Prompt Accuracy (%)

0.25 Let’s think about this logi-
cally. 77.2

0.5 After careful analysis, the
conclusion is evident.

77.7

0.75

Let’s approach this prob-
lem with utmost creativity,
innovation, and strategic
thinking.

76.4

1.0 Let’s break it down step by
step. 75.1

Table 5: Optimization results on the GSM8K dataset
using different values of balance weight α as specified
in Equation 4.

The second parameter is the training dataset 679

size. We evaluated various sizes: 10, 20, 50, 100, 680

and 200, as shown in Table 6. Based on these 681

results, we selected a dataset size of 100 to balance 682

accuracy and computational efficiency. 683

Dataset Size Prompt Accuracy (%)

10 Let’s break it down step by
step. 75.1

20

Let’s carefully analyze each
aspect of the problem thor-
oughly and devise the most
optimal plan.

75.5

50

Let’s approach this
problem with utmost
creativity, innovation,
and strategic thinking.

76.4

100 After careful analysis, the
conclusion is evident.

77.7

200 Let’s break it down step by
step. 77.9

Table 6: Optimization results on the GSM8K dataset
using different training dataset sizes.
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Dataset Method Prompt Accuracy (%)

GSM8K

Baseline (Wang et al., 2022) Let’s think step by step. 74.8

APE (Zhou et al., 2022) Let’s work this out in a step by step way to be
sure we have the right answer. 76.3

APO (Pryzant et al., 2023)

Given the scenario, perform necessary calcula-
tions and provide a step-by-step explanation to
arrive at the correct numerical answer. Consider
all information provided.

76.5

PE2 (Ye et al., 2023) Let’s solve the problem step-by-step and
calculate the required total value correctly. 77.7

GLaPE-based (Ours) After careful analysis, the conclusion is evident. 77.7

MultiArith

Baseline (Wang et al., 2022) Let’s think step by step. 98.0

APE (Zhou et al., 2022) Let’s work this out in a step by step way to be
sure we have the right answer. 97.8

APO (Pryzant et al., 2023)

Given the scenario, perform the necessary
calculations step by step to find the final result.
Consider all parts of the input and the sequence
of events.

99.0

PE2 (Ye et al., 2023)

Let’s solve this problem by considering all
the details. Pay attention to each piece of
information, remember to add or subtract as
needed, and perform the calculations step by
step

99.6

GLaPE-based (Ours)
Let’s approach this problem strategically, me-
thodically, and innovatively, exploring ground-
breaking solutions.

99.3

Table 7: Optimization results (optimal prompt and corresponding accuracy) of our GLaPE-based prompt optimization
method and other popular methods.

A.2 Computation Detail of Figure 2684

First, we calculate the self-consistency ci for each685

prompt according to the definition in Section 3.2,686

which are:687

c1 = 100.0, c2 = 70.0, c3 = 70.0,688

c4 = 40.0, c5 = 30.0.689

Thus, the loss function Lself is:690

Lself =
5∑

i=1

(fi − ci)
2 = (f1 − 100)2 + (f2 − 70)2691

+ (f3 − 70)2 + (f4 − 40)2 + (f5 − 30)2.692

Next, we calculate the loss function of mutual-693

consistency refinement Lrefine, which is:694

Lrefine =
∑

1≤i<j≤5

1ai=aj (fi − fj)
2,695

since prompts 1 and 2 share the same answer 31,696

while prompts 3, 4, and 5 share the same answer697

36.698

Clearly, f1 and f2 are unrelated to f3, f4, and f5699

since their answers are different.700

The evaluation scores are then computed as701

follows (ignoring the coefficient 0.5 for both Lself702

and Lrefine): 703

f1, f2 = arg min
f1,f2

[
(f1 − 100)2 + (f2 − 70)2 704

+ (f2 − 70)2 + (f1 − f2)
2
]

705

and 706

f3, f4, f5 = arg min
f3,f4,f5

[
(f3 − 70)2 + (f4 − 40)2 707

+ (f5 − 30)2 + (f3 − f4)
2 + (f3 − f5)

2 708

+ (f4 − f5)
2
]
. 709

Ultimately, the solution is: 710

f1 = 87.9, f2 = 81.8, f3 = 50.0, 711

f4 = 45.7, f5 = 44.2. 712

A.3 Further Comparison of Prompt 713

Optimization Methods 714

To emphasize the efficacy of our method, we 715

conducted additional comparisons between our 716

GLaPE method and other recent prompt opti- 717

mization approaches for private LLMs, including 718

APE (Zhou et al., 2022), APO (Pryzant et al., 2023), 719

and PE2 (Ye et al., 2023). The results are presented 720

in Table 7. These comparisons demonstrate that 721

GLaPE is not only competitive but also exceeds the 722

performance of other existing supervised methods 723

in various cases. 724
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AddSub AQuA Big-Bench Date GSM8K MultiArith SVAMP StrategyQA MATH

Cleaned Dataset 0.61(+0.17) 0.40(+0.36) 0.94(+0.06) 0.69(+0.20) 0.93(+0.05) 0.81(+0.12) 0.41(+0.13) 0.61(+0.14)
Control Group 0.42(-0.07) -0.01(-0.05) 0.86(-0.02) 0.40(-0.09) 0.84(-0.04) 0.61(-0.08) 0.16(-0.02) 0.46(-0.01)
Original Dataset 0.44 0.04 0.88 0.49 0.88 0.69 0.18 0.47

Table 8: Comparison of Spearman correlation coefficients (↑) before and after excluding challenging questions that
surpass the intrinsic capabilities of LLM. Evaluation of the control group is conducted by randomly selecting 10
subsets of the original dataset, and the average Spearman correlation coefficient is computed.

A.4 Spearman Correlation Coefficients on725

Cleaned Datasets726

It is imperative to recognize that our methodology727

evaluates prompts on individual questions, and728

the evaluation score of a prompt across the729

entire dataset is derived from the sum of its730

evaluation scores on each question. Consequently,731

inaccuracies in evaluations for questions stated732

in Section 7 can significantly compromise the733

effectiveness of the overall dataset evaluation,734

particularly on challenging datasets. To gauge the735

impact of challenging questions on our GLaPE,736

we exclude questions for which no prompt results737

in a correct answer with a self-consistency level738

greater than 50% from the dataset. The cleaned739

dataset was then compared to a control group,740

consisting of an equally large subset of the original741

dataset, to mitigate the influence of dataset size742

bias. On the initial dataset, the control group, and743

the cleaned dataset, we calculate the Spearman744

correlation coefficient.745

In Table 8, the Spearman correlation coefficient746

on the cleaned dataset demonstrates a considerable747

improvement compared to that on the original748

dataset or control group. This improvement749

underscores the pronounced adverse influence of750

intricate questions on our evaluation process.751
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