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Abstract

While many hallucination detection techniques001
have been evaluated on English text, their ef-002
fectiveness in multilingual contexts remains un-003
known. This paper assesses how well various004
factual hallucination detection metrics (lexical005
metrics like ROUGE and Named Entity Over-006
lap, and Natural Language Inference (NLI)-007
based metrics) identify hallucinations in gener-008
ated biographical summaries across languages.009
We compare how well automatic metrics cor-010
relate to each other and whether they agree011
with human judgments of factuality. Our anal-012
ysis reveals that while the lexical metrics are013
ineffective, NLI-based metrics perform well,014
correlating with human annotations in many015
settings and often outperforming supervised016
models. However, NLI metrics are still lim-017
ited, as they do not detect single-fact hallucina-018
tions well and fail for lower-resource languages.019
Therefore, our findings highlight the gaps in ex-020
isiting hallucination detection methods for non-021
English languages and motivate future research022
to develop more robust multilingual detection023
methods for LLM hallucinations.1024

1 Introduction025

Large Language Models (LLMs) have made re-026

markable advances in text generation. However,027

they are still prone to hallucinating facts, or gen-028

erating text that conflicts with established world029

knowledge (Huang et al., 2023; Zhang et al., 2023).030

While there has been considerable research towards031

detecting hallucinations in English (Huang et al.,032

2023; Zhang et al., 2023; Ji et al., 2023), much033

less focus has been given to multilingual halluci-034

nations. Therefore, it is currently unclear whether035

the methods developed for detecting and address-036

ing hallucinations in English are effective or even037

applicable in multilingual settings.038

1The code and annotated dataset will be released upon
publication.

This paper evaluates the effectiveness of vari- 039

ous automatic metrics, initially proposed for En- 040

glish factual hallucination detection, within a mul- 041

tilingual context. We focus on automatic metrics 042

requiring minimal in-language resources to per- 043

form hallucination detection, as this makes them 044

most readily applicable to new languages; these 045

metrics include traditional lexical metrics, such as 046

ROUGE (Lin, 2004) and Named Entity Overlap, as 047

well as Natural Language Inference (NLI) metrics. 048

We also consider the differences between reference- 049

based metrics and pairwise metrics based on the 050

consistency among generated samples. To evaluate 051

these metrics, we present correlation studies com- 052

paring these automated metrics directly, against 053

supervised hallucination detection methods, and 054

with human judgments of generation factuality. 055

We empirically evaluate these hallucination de- 056

tection techniques in the multilingual context with 057

a new dataset of parallel biographical generations 058

(Section 2.1). Our experiments find that: (1) lexical 059

overlap metrics do not agree with NLI metrics or 060

human judgments when detecting hallucinations 061

in reference or pairwise settings; (2) while pair- 062

wise NLI metrics strongly correlate with reference- 063

based ones in high-resource languages, this signifi- 064

cantly diminishes in low-resource settings; (3) auto- 065

matic NLI metrics effectively detect sentence-level 066

hallucinations in high-resource languages when 067

compared to human evaluations, but not when as- 068

sessing atomic facts; and (4) NLI metrics outper- 069

form supervised approaches at detecting hallucina- 070

tions that can be verified or refuted by the reference 071

text, but not on unverifiable errors. 072

Overall, while lexical overlap methods and pair- 073

wise comparisons of generated texts are more acces- 074

sible for evaluating low-resource languages, they 075

are often inadequate at hallucination detection. Ad- 076

ditionally, while NLI-based metrics can detect fac- 077

tual hallucinations — and even outperform models 078

trained on hallucination detection in some cases — 079
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these metrics perform best on high-resource lan-080

guages. This highlights that multilingual halluci-081

nation detection performance is closely tied to the082

availability and quality of language resources, mir-083

roring the trend observed in English that detection084

depends on natural language understanding abili-085

ties (Manakul et al., 2023; Min et al., 2023). This086

points to a substantial gap in hallucination detec-087

tion in multilingual and low-resource contexts and088

the need for future work bridging this divide.089

2 Multilingual Hallucination Detection090

We measure the efficacy of different automatic met-091

rics on detecting multilingual hallucinations. We092

focus on biography generation, a domain that is093

particularly sensitive to factual accuracy and co-094

herence (Min et al., 2023; Dhuliawala et al., 2023).095

We test a suite of automatic metrics, each of which096

caters to a different aspect of factual generation:097

ROUGE (Lin, 2004), named entity overlap, and098

Natural Language Inference (NLI)-based methods.099

2.1 Multilingual Biography Generation100

Inspired by prior work measuring factuality in En-101

glish (Min et al., 2023), we generate parallel bi-102

ographies in different languages. The generated103

texts are then compared against a reference text104

(for reference-based metrics) and other generated105

samples (pairwise metrics) to detect hallucinations.106

This section characterizes the generation quality107

of these biographies (Table 1). We consider the108

average length of each biography (in tokens and109

sentences), along with estimates of how accurate110

the generation language is to the prompt language,111

as in some cases, multilingual LMs will generate112

continuations in an unexpected language (Kang113

et al., 2023; Bawden and Yvon, 2023).114

The length of the generated texts varies notably115

across languages. While high-resource languages116

like English and French generate longer outputs,117

mid-resource languages such as Thai tend to gener-118

ate much shorter biographies and incomplete sen-119

tences. Low-resource languages fare even worse120

(for instance, Ukrainian averages just 5.7 tokens121

and 0.40 sentences), demonstrating the significant122

gap in generation abilities across languages.123

We assess the accuracy of the generated lan-124

guages through three metrics: the percentage of125

valid generations that is detectable for the langde-126

tect package (Valid %), the most frequently gener-127

ated language for a given target language (Flang),128

Lang. #Token #Sent. Valid % FLang. Acc.

en 78.3 2.64 99.97 en 96.0
zh 115.8 4.30 100.00 zh 92.43
es 62.8 2.01 100.00 es 92.33
fr 71.3 2.24 100.00 fr 93.23
vi 45.6 1.66 98.92 vi 71.67
id 46.3 1.76 98.30

::
en 36.45

de 63.3 2.33 99.58
::
en 2.79

it 58.1 1.94 99.76
::
en 3.31

ja 50.3 1.97 90.73
::
zh 21.85

bg 17.4 1.15 86.74
::
en 13.69

ro 9.6 0.93 80.24
::
en 2.68

sv 7.6 0.51 40.73
::
en 1.79

th 14.8 0.81 77.08 th 94.96
ru 10.2 0.68 55.49 ru 50.44
uk 5.7 0.40 35.24 uk 41.87
fa 3.2 0.13 10.80 ur 29.90
fi 1.7 0.11 9.76 fi 34.52
ko 2.0 0.09 8.37 ko 47.30
hu 0.8 0.05 6.28 pt 14.36

Avg. 34.8 1.35 31.65 - 50.01

Table 1: Quality statistics for BLOOMZ-mt generations.
Languages that occur in the ROOTS pretraining corpus
are in bold (Laurençon et al., 2022), and underlined
languages are in the xP3mt fine-tuning dataset (Muen-
nighoff et al., 2023). "FLang." refers to the most fre-
quently generated language for each prompt language.

and the accuracy of generated language out of the 129

valid generations (Acc.). For high-resource lan- 130

guages like English, Chinese, Spanish, and French, 131

the models generally generate text in the correct 132

language; however, for the languages highlighted 133

with an
::::::::::
underwave the model generates in the 134

wrong language the majority of the time. Often, 135

this is due to the model generating in a closely re- 136

lated high-resource language. For languages such 137

as Italian and Bulgarian, many inaccurate genera- 138

tions are in English. Similarly, Japanese genera- 139

tions often switch to Chinese when mistakes occur. 140

Languages with more distinctive linguistic features 141

—such as Thai’s unique script—facilitate more ac- 142

curate model generations. 143

2.2 Automatic Metrics 144

After quality verification of generated samples and 145

filtering examples where the output is in an incor- 146

rect language, we compare the efficacy of different 147

hallucination detection metrics on the remaining 148

generations. We consider automatic metrics for 149

detecting hallucinations in long-form generations 150

that work by assessing the consistency between a 151

target generation and either a reference text or its 152

other generations. Specifically, we focus on metrics 153

that do not require supervised hallucination data: 154
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many languages do not have datasets available for155

this task, which makes these supervised methods156

infeasible for those settings.2157

ROUGE The ROUGE metric is employed to as-158

sess the token-level similarity between texts. We159

consider the generated text’s ROUGE 1 (R1) and L160

(RL) scores against the reference.161

Named Entity Overlap (NEO) We hypothesize162

that the sets of named entities in the gold and gen-163

erated text will differ if there is hallucination in164

the generation (Nan et al., 2021). We calculate165

the F1, precision, and recall scores of named enti-166

ties between the generated and reference text as an167

estimate for factual hallucinations.168

NLI-based Detection Following Manakul et al.169

(2023) and Elaraby et al. (2023), we adopt the170

NLI-based zero-shot sentence-level SUMMAC171

(SummaCzs) scoring system (Laban et al., 2021)172

to evaluate hallucinations. The SummaCzs173

method was originally developed to gauge the con-174

sistency between a summary S and a document175

D, by segmenting them into sentences S1, . . . , SN176

and D1, . . . , DM respectively. Aligning with the177

optimal configuration in Laban et al. (2021), we178

employ the max operator to compute the score for179

a sentence. Denote eDm
Sn

and cDm
Sn

as the entailment180

and contradiction score for the generated sentence181

Sn given the reference sentence Dm, respectively.182

We define three metrics to quantify verifiable
hallucination and one metric to quantify unver-
ifiable hallucination, respectively. At sentence-
level detection, for a generated sentence Si

and a reference D, to detect verifiable halluci-
nation, we define the following three metrics:
ENTSi

= maxm eDm
Si

, CONSi
= maxm cDm

Si
,

and DIFFSi
= maxm eDm

Si
−maxm cDm

Si
. To de-

tect unverifiable hallucination, we define the fol-
lowing metric:

UNVSi
= 1−max(max

m
eDm
Si

,max
m

cDm
Si

)

When evaluating each of the above hallucination183

metrics on a generated text t̂, we consider two set-184

tings as the reference text t:185

Reference-based This setting compares t̂ against186

the relevant biographical article in Wikipedia.187

Pairwise We generate k samples for each biog-188

raphy. In this setting, we compare t̂ against the189

2However, for completeness we include two recent super-
vised methods for multilingual hallucination detection in §5.

other generated samples for the same person and 190

calculate the average score across all generations. 191

Experimental details for calculating these metrics 192

are given in the Appendix. 193

3 Experiment Setup 194

Dataset Our curated dataset encompasses 19 lan- 195

guages: English, Spanish, Russian, Indonesian, 196

Vietnamese, Persian, Ukrainian, Swedish, Thai, 197

Japanese, German, Romanian, Hungarian, Bulgar- 198

ian, French, Finnish, Korean, Italian, and Chinese. 199

Using WikiData, we extract the names of 500 peo- 200

ple who are covered by all of these languages on 201

Wikipedia, based on diverse page view counts from 202

2022-01-01 to 2023-01-01. For our reference text, 203

we use the Wikipedia API to obtain the full-page 204

content. We detect instances where the LLMs gen- 205

erate text in an incorrect language with langdetect, 206

which covers all 19 languages in our experiment.3 207

Models and Prompting We generate text sam- 208

ples with the BLOOMZ-mt model, which is fine- 209

tuned with machine-translated prompts (Workshop, 210

2023); at the time of our experiments, BLOOMZ- 211

mt is the largest open-source, multilingual LM. We 212

use nucleus decoding (Holtzman et al., 2020) with 213

top_p = 0.9, which is a common and realistic 214

configuration used in other works in LLM hallu- 215

cination (Liu et al., 2023), and generate five re- 216

sponses per prompt to evaluate the pairwise, in- 217

trinsic metrics. For each evaluation language, we 218

generate a prompt template with Google Translate. 219

The template in English is "Tell me a biography 220

of <Name>."; the templates translated into other 221

languages are in Appendix (Figure 2). 222

4 Multilingual Hallucination Metrics 223

This section compares how different automatic met- 224

rics estimate hallucinations in our generated bio- 225

graphical corpus (Section 4.1). We then perform 226

a correlation study to test whether these metrics 227

agree when hallucination occurs (Section 4.2). 228

4.1 Automatic Metrics 229

We first consider how different referenced-based 230

automatic methods for detecting hallucination per- 231

form across languages on the generated biographi- 232

cal data from the BLOOMZ-mt model (Table 2).4 233

3APIs: https://query.wikidata.org/, https://
pypi.org/project/wikipedia/, and https://pypi.org/
project/langdetect/, respectively.

4We observe similar trends on pairwise metrics (Table 10).
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Language R1-F1 R1-P R1-R RL-F1 RL-P RL-R N-F1 N-P N-R DIFF UNV ENT

High-Resource Languages
English 1.83 87.58 0.94 1.40 72.41 0.72 4.27 53.41 2.26 -0.60 0.19 0.16
Chinese 6.43 57.34 3.76 5.59 51.73 3.26 4.69 35.27 2.79 -0.62 0.21 0.16
Spanish 2.77 85.86 1.47 2.19 72.39 1.16 3.28 48.48 1.76 -0.51 0.18 0.28
French 2.18 87.78 1.13 1.67 73.51 0.87 4.35 57.41 2.31 -0.54 0.16 0.25
Vietnamese 6.82 92.92 4.22 5.34 85.87 3.21 - - - -0.49 0.15 0.34
Indonesian 7.51 68.51 4.87 5.44 55.28 3.52 - - - -0.45 0.22 0.32

Middle-Resource Languages
German 0.38 71.34 0.19 0.31 67.60 0.16 0.83 36.06 0.42 -0.65 0.15 0.50
Italian 0.50 69.13 0.25 0.42 63.77 0.21 1.00 30.26 0.52 -0.58 0.17 0.42
Japanese 0.73 14.62 0.40 0.64 13.53 0.35 0.47 15.52 0.25 -0.72 0.21 0.26
Bulgarian 0.16 4.92 0.09 0.15 4.91 0.08 - - - -0.61 0.19 0.50
Romanian 1.02 69.75 0.53 1.00 69.08 0.52 0.39 17.47 0.20 -0.29 0.24 0.76
Swedish 0.66 86.37 0.33 0.64 85.87 0.33 1.28 45.24 0.66 -0.40 0.63 0.79

Low-Resource Languages
Thai 0.04 1.14 0.02 0.04 1.14 0.02 - - - -0.56 0.38 0.32
Russian 0.09 4.69 0.05 0.09 4.62 0.05 0.48 11.28 0.25 -0.58 0.47 0.40
Ukrainian 0.04 1.53 0.02 0.03 1.52 0.02 0.70 20.64 0.36 -0.53 0.66 0.51
Persian 0.00 0.00 0.00 0.00 0.00 0.00 - - - -0.50 0.92 0.38
Finnish 0.89 37.70 0.46 0.80 35.61 0.41 0.58 23.71 0.30 -0.59 0.91 0.33
Korean 0.18 6.58 0.09 0.18 6.57 0.09 0.24 8.48 0.12 -0.53 0.94 0.25
Hungarian 0.74 64.74 0.37 62.56 23.23 0.36 - - - -0.53 0.97 0.51

Table 2: Results of different reference-based metrics for the BLOOMZ-mt model. "-" indicates the language is not
covered by the Spacy NER tool. All of the ROUGE and Named Entity Overlap (N) results are in percentage (%).

We find that, unsurprisingly, these measures in-234

dicate increases in hallucination on middle- and235

low-resource languages (e.g., lower overlap with236

the reference, higher UNV scores). However, the237

NLI-based DIFF scores remain relatively stable238

regardless of language resourcefulness.239

Lexical Overlap Metrics We also note some spe-240

cific trends within this metric type. For example,241

high-resource languages (English, Chinese, Span-242

ish, French, Vietnamese, and Indonesian) exhibit243

particularly high recall scores, suggesting that the244

text generated in these languages has better cover-245

age of the corresponding Wikipedia reference con-246

tent. In contrast, lower-resource languages demon-247

strate significantly diminished recall.248

Interestingly, languages where BLOOMZ-mt fre-249

quently produces incorrect language outputs (e.g.,250

German and Italian) or empty or incomplete gener-251

ations (e.g., Swedish and Hungarian) maintain rel-252

atively high precision scores in the higher-quality253

outputs we evaluate. While these generations seem254

to contain few explicit hallucinations, they often255

exclude many facts from the reference, as indicated256

by their correspondingly low recall scores.257

NLI-based Metrics All languages we consider258

obtain negative DIFF scores, including higher-259

resource languages like English and Chinese. This260

indicates a tendency towards contradictions in the261

generated text with their respective reference texts 262

— as measured by the NLI classifier. 263

For the UNV scores, higher and middle-resource 264

languages (ranging from English to Romanian in 265

the table 2) fall within a similar range of 0.15 to 266

0.25. In contrast, low-resource languages that often 267

produce empty or incomplete generations, such as 268

Ukrainian, Persian, Finnish, and Korean, obtain 269

much higher UNV scores. This implies that the 270

UNV metric is sensitive to incomplete text genera- 271

tions and missing information and may indicate the 272

model’s generation errors beyond hallucination. 273

4.2 Correlation Study Across Metrics 274

In this section, we conduct a correlation analysis 275

to determine whether the considered metrics agree 276

in measuring hallucination in multilingual contexts. 277

This includes (1) the correlation between lexical 278

hallucination metrics and NLI-based metrics, (2) 279

the agreement of the four reference-based NLI met- 280

rics, and (3) the relationship between pairwise met- 281

rics and reference-based metrics. 282

Lexical hallucination metrics do not correlate 283

with NLI-based metrics. Figure 1 shows that 284

in high-resource languages (i.e., English, Chinese, 285

French, Spanish, Vietnamese, and Indonesian), 286

ROUGE-1 and ROUGE-L metrics demonstrate a 287

high degree of correlation, and Named Entity Over- 288
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Language ENT DIFF UNV

# examples in correct language > 1,000
English 0.55 0.38 0.19
French 0.52 0.40 0.15
Chinese 0.56 0.41 0.21
Spanish 0.46 0.41 0.17
Thai 0.36 0.39 0.32
Vietnamese 0.35 0.31 0.00
Indonesian 0.28 0.31 0.09

# examples in correct language < 1,000
Russian 0.16 0.21 0.11
Japanese 0.37 0.40 0.07
Ukrainian 0.23 0.19 0.17
Bulgarian 0.42 0.32 0.28
Korean 0.05 0.08 -0.01

# examples in correct language < 100
Finnish 0.09 0.12 0.01
Italian 0.12 0.13 0.14
Persian 0.13 0.15 0.02
German 0.50 0.45 0.11
Romanian 0.00 0.00 0.14
Hungarian 0.24 0.21 0.11
Swedish 0.30 0.27 -0.29

Table 3: The correlation between the reference-based
NLI result and the pairwise NLI result across different
languages. The languages with underline are covered in
the XNLI finetuing dataset. The numbers in gray have
the p-values larger than 0.05.

lap (NEO) correlates reasonably well with ROGUE289

precision metrics. However, we generally find no290

correlation between lexical- and NLI-based metrics,291

indicating that while both lexical- and NLI-based292

approaches are commonly proposed as automatic293

methods for hallucination detection, they do not294

measure the same deviations from a reference text.295

Reference-based NLI-based metrics. We also296

observe interesting trends regarding the relation-297

ship between different NLI-based metrics (bottom298

right-hand corner of Figure 1). We find that ENT299

scores are highly (inversely) correlated with the300

DIFF score, indicating that these metrics identify301

similar artifacts in the text. Moreover, we find302

a negative correlation between UNV and CON303

scores. This is because sentences that include veri-304

fiable hallucinations likely contradict the reference305

text. In contrast, sentences with information that is306

unsubstantiated by the reference (e.g., unverifiable)307

will be identified as neutral instead.308

Pairwise and reference metrics do not correlate309

in low-resource languages. For high-resource310

languages in the XNLI finetuning dataset (English,311
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Figure 1: Heat map of the Pearson Correlation between
reference-based metrics averaged over high-resource
languages. All the P-values are less than 0.05.

French, Chinese, Spanish, Bulgarian, and German), 312

we observe higher correlations ranging between 313

0.35 to 0.56 for pairwise and reference-based NLI 314

metrics when it comes to detecting verifiable hal- 315

lucinations by ENT score (Table 3). This suggests 316

pairwise metrics can identify generated content that 317

deviates from the reference and may be useful for 318

detecting hallucinations when gold reference texts 319

are not available. However, the Pearson Correlation 320

Coefficient shows lower correlation values (in the 321

range of 0.15 to 0.21) when comparing pairwise 322

and reference-based UNV, indicating a less effec- 323

tive capture of extrinsic hallucinations involving 324

plausible yet unverifiable information. For lower- 325

resource languages, such as Finnish, Italian, Per- 326

sian, correlation with the entailment score is often 327

not statistically significant. This implies that the 328

effectiveness of pairwise hallucination metrics is 329

limited to higher-resource languages, highlighting 330

the challenge of effective hallucination detection 331

in limited resource contexts. 332

5 Human Evaluation 333

We manually annotate the model generations an- 334

alyzed in the prior section; the annotations are 335

performed on paired subsets of the English and 336

Chinese generations by native speakers. Follow- 337

ing the Attributable to Identified Sources (AIS) 338

paradigm (Rashkin et al., 2023) for measuring hal- 339

lucination, annotators manually find all verifiable 340

and unverifiable hallucinations by checking if the 341

generated output is attributable to the Wikipedia ref- 342

erence at both the sentence- and atomic-fact-level. 343

Table 4 shows example annotations. 344
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Entity Generation

Example of Annotation
Alessandro Del Piero Gen: Alessandro Del Piero, born on September 28, 1976 in Brescia, Italy , is a

former Italian professional football player who served as a forward . Wiki: Alessandro Del
Piero, Italian male football player...The old Maldini, who was the head coach of the national team
at the time, appointed newcomers Del Piero and Vieri as the main forwards... Comment: There
are 4 facts in this sentence, with 1 contradictory hallucination and 1 unverifiable hallucination.
The birth date is wrong; Wikipedia doesn’t mention the birth place; for the last entity, the
evidence indirectly support it.

Table 4: Example of human hallucination annotations. Red represents verifiable hallucinations contradicting
evidence in the reference ( Wiki ), yellow denotes unverifiable hallucinations without relevant evidence, and
green is supported by the reference text.

5.1 Experimental Setup345

The authors (one per language) manually checked346

every sentence in the audited subset of generations,347

using the steps listed in Table 5. For atomic-fact-348

level annotation, a preprocessing step is taken to349

extract only sentences that contain a standalone350

proposition5 (Rashkin et al., 2023). Then, for351

both the sentence- and atomic-fact-level annota-352

tion, we annotate all relevant evidence sentences353

from the reference Wikipedia page and accumu-354

late the counts for different types of propositions355

(Table 5). Table 9 details data statistics from this356

annotation process.357

Metrics We compare our automatic metrics pre-358

sented in §2.2 with human annotations using corre-359

lation and classification; we specifically compare360

precision metrics because they are generally the361

strongest automatic measure in Section 4.1. For362

correlation, we investigate the relationship of the363

metrics with the support rate (SR; Nvs/Nt) for ver-364

ifiable hallucination detection and with the unver-365

ified rate (Nnv/Nt) for unverifiable hallucination366

detection using their Pearson correlations.367

5A standalone proposition is independently interpretable
from the information contained in the assertion.

To consider the classification agreement of these 368

metrics, we calculate the Precision-Recall area un- 369

der the curve (AUC-PR) between the discretized 370

human-annotated and automatic metrics. We con- 371

vert human annotations into classification labels by 372

labeling an example as factual only if all its facts 373

are supported by evidence for verifiable hallucina- 374

tions with the support rate (Table 6); for unverifi- 375

able hallucinations, we consider any sentence with 376

at least one fact not supported or refuted by the 377

reference to be unverified: Nnv ≥ 1 (Table 7). 378

We discretize the automatic NLI-based metrics 379

into classification labels by setting their respective 380

thresholds, with 0.5 for the entailment and con- 381

tradictory scores and 0 for the difference between 382

these two scores. The thresholds were selected 383

based on the different degrees of tolerance for the 384

proportions of unverifiable hallucinations in a sen- 385

tence. We then perform classification using the 386

discretized human judgments as gold labels. 387

5.2 Automatic Metric Results 388

NLI entailment outperforms lexical metrics on 389

sentence-level verification. We observe low cor- 390

relation between lexical metrics like ROUGE-1 391

(R1) and Named Entity Overlap (NEO) and the 392

Question Instructions

0. Atomic-Level Annotation Extract a sentence that contains only one simple fact.
1. Evidence Extraction Copy and paste all relevant evidence.
2. Total Facts Provide an approximate count of the total facts. Each date is counted as one fact, except

for birthdates and death dates, which are counted as two separate facts.
3. Verifiable Correct Facts Count the number of facts that can be verified as correct.
4. Verifiable Contradictory Facts Count the number of facts that contradict verified information.
5. Unverifiable Facts Count the number of facts that cannot be verified.
6. Conflict with Preceding Context Indicate whether there is any conflict with the preceding context (True or False).
7. Conflict with Instructions Determine whether there is any conflict with the instructions. Label it as False if the

example provides (a) a biography of (b) the correct person. Otherwise, label it as True.

Table 5: Instructions for manual hallucination annotations. Step 0 is only taken for atomic-level fact verification.
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Sentence Level Atomic-Fact Level
Metric Pearson AUCF AUCNF Pearson AUCF AUCNF

Random - 10.84 82.86 - 52.11 43.56
Pairwise
R1-P. 0.08† 19.78 81.48 0.10 51.23 44.23
RL-P. 0.11† 20.04 83.10 0.12† 52.18 42.83
NEO-P. 0.14† 17.49 80.84 0.09 53.09 45.32
DIFF 0.21 38.46 89.49 0.19 57.46 54.41
ENT 0.31 40.32 90.86 0.23 60.71 57.48
CON 0.11 16.47 80.41 -0.01 51.49 52.16

Reference
R1-P. 0.21 30.05 89.08 0.19 53.28 46.25
RL-P. 0.17 28.54 85.35 0.13† 50.31 49.93
NEO-P. 0.17† 16.15 83.75 0.12 57.54 47.51
DIFF 0.34 56.11 94.14 0.31 65.85 60.90
ENT 0.49 65.32 94.96 0.35 68.00 63.69
CON 0.08 31.56 87.49 -0.19 53.18 57.43
mFact 0.20 35.68 91.16 0.29 67.30 61.67
Seahorse -0.17† 13.25 75.40 -0.07† 53.30 46.67

Table 6: Comparison of sentence and atomic-fact verifiable hallucination metrics with the human support rate. F
denotes factual examples and NF denotes non-factual examples. †p-values of this correlation is larger than 0.05.

human-annotated support rate (SR; Table 6). More-393

over, AUC-PR for these metrics exhibits minor im-394

provements over the random classification baseline,395

particularly for non-factual examples (NF), under-396

scoring the limit of lexical metrics for accurately397

detecting factual hallucinations.398

In contrast, the NLI-based metrics highly corre-399

late with different measures of human verification400

for detecting verifiable hallucinations at the sen-401

tence level (Table 6). These results corroborate402

the NLI metric results in English in Manakul et al.403

(2023). Specifically, the ENT and DIFF scores404

perform well, while CON alone does not demon-405

strate the same agreement with human judgments.406

Pairwise metrics underperform reference-based407

metrics. When compared against human anno-408

tations, pairwise metrics always underperform the409

reference-based ones: their Pearson correlations,410

AUCF , AUCNF , and accuracies are all worse than411

the metrics using references, and this holds at412

both the sentence- and atomic-fact-levels (Table 6).413

However, we note that pairwise NLI-based metrics,414

particularly the entailment and difference scores,415

demonstrate significantly better performance than416

the lexical-based pairwise metrics, though they still417

underperform comparable reference metrics. This418

suggests pairwise NLI-based approaches remain419

the most useful approach in hallucination detection420

settings where references are unavailable.421

NLI metrics struggle to detect unverifiable hal-422

lucination and check atomic facts. Comparison423

against human judgments on unverifiable hallucina- 424

tion detection reveals that automatic metrics show 425

only marginal improvements over random classifi- 426

cation and low correlation with human annotations 427

(Table 7). Furthermore, NLI metrics also encounter 428

significant challenges in accurately verifying the 429

factuality of simple atomic facts (Table 6). Both 430

AUC-PR and accuracy demonstrate a marked de- 431

crease in the effectiveness of NLI-based metrics on 432

atomic facts. This aligns with Luo et al. (2022), 433

which also highlighted similar limitations in En- 434

glish NLI metrics for verification. This finding un- 435

derscores the need for alternative metrics to address 436

current NLI approaches’ limitations, especially in 437

the critical area of atomic factuality evaluation. 438

5.3 Supervised Metric Results 439

We also consider two supervised metrics: 440

mFACT (Qiu et al., 2023) and seahorse-Q4 (Clark 441

et al., 2023). mFACT (Qiu et al., 2023) automatically 442

apply English hallucination detection approaches 443

to new languages by first using faithfulness 444

metrics to rank and annotate English examples, 445

and then translating the most and least faithful 446

samples into a set of target languages. They 447

then train a classifier on each target language 448

(including English and Chinese). The seahorse-Q4 449

metric (Clark et al., 2023) similarly fine-tunes 450

a mT5-large model (Xue et al., 2021) on an 451

attribution task, using attribution subset (Q4) of 452

the SEAHORSE dataset. 453
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Metric Pearson AUCV AUCUNV

RandomSent - 36.54 60.63
UNVSent 0.28 31.77 71.84
mFACTSent -0.29 54.17 69.67
seahorseSent -0.10 42.08 69.49
RandomAtom - 68.21 24.90
UNVAtom 0.12 77.49 27.36
mFACTAtom -0.13 80.35 31.49
seahorseAtom -0.09 78.32 28.48

Table 7: Agreement with human judgments on unverifi-
able hallucination detection, averaged for Chinese and
English. UNV denotes unverifiable hallucination, and V
denotes verifiable. Gray values have p-values > 0.05.

Supervised metrics underperform NLI-based454

metrics in verifiable hallucination detection.455

mFACT scores exhibit similar but slightly lower456

performance than NLI-based metrics at both the457

sentence and atomic fact levels (Table 6). The458

seahorse-Q4 approach shows comparable perfor-459

mance to mFACT in English (Appendix Table 13).460

However, as seahorse-Q4 does not see Chinese data461

in training, it fails to detect verifiable hallucinations462

in this setting, leading to a lower overall score and463

highlighting the brittleness of supervised methods464

for hallucination detection.465

Supervised metrics detect unverifiable halluci-466

nations more effectively. At the sentence level,467

mFACT has the highest correlation with the human468

unverified rate (Table 7). Furthermore, both Sea-469

horse and mFACT exhibit better performance in470

AUCV than random prediction by 37% and 10% re-471

spectively – outperforming the NLI-based metrics.472

The improvements over NLI-based methods here473

(but not on verifiable hallucinations) are surprising,474

given that these methods rely on reference-based475

supervision rather than intrinsic evaluation.476

This trend also holds at the atomic-fact level,477

where the supervised metrics outperform other478

methods in across all measures. However, they still479

exhibit lower correlation with this unverified rate480

than at the sentence level, indicating that detect-481

ing hallucination on simpler atomic facts remains482

challenging in the unverified setting.483

6 Related Work484

Factuality Hallucination Detection Detecting485

hallucinations is crucial for ensuring the reliabil-486

ity of machine-generated content. One line of487

work leverages uncertainty by analyzing the prob-488

ability of the LLM’s output space (Mielke et al.,489

2022; Kadavath et al., 2022; Varshney et al., 2023); 490

other methods evaluate consistency between re- 491

peatly generated samples (including NLI-based ap- 492

proaches) (Elaraby et al., 2023; Manakul et al., 493

2023), similar to our pairwise evaluation setting. 494

Similarly, our reference-based evaluations follow 495

works that use external evidence as reference texts 496

and verify if the generation is supported by this 497

reference (Chern et al., 2023; Min et al., 2023). 498

However, factuality hallucination evaluations are 499

limited in multilingual settings, with existing works 500

using prompting methods (Ahuja et al., 2023) and 501

machine translation (Lai et al., 2023). 502

Task-specific Multilingual Hallucination The 503

main focus of multilingual hallucination evaluation 504

methods so far has been on specific downstream 505

tasks. mFACT evaluates faithfulness in summaries 506

by transferring English judgments into target lan- 507

guages via machine translation (Qiu et al., 2023). 508

Similarly, Aharoni et al. (2022) leverages factual 509

consistency models to improve faithfulness in mul- 510

tilingual summarization. In neural machine transla- 511

tion (NMT), Dale et al. (2022) detect and alleviate 512

hallucinations by measuring generation similarity 513

to the source text; Xu et al. (2023) similarly study 514

source effects on hallucination with input perturba- 515

tions. Other works (Lee et al., 2019; Raunak et al., 516

2021) analyze the susceptibility of current NMT 517

methods to generate hallucinations. 518

7 Conclusion 519

This study investigates the effectiveness of auto- 520

matic metrics for detecting factual hallucinations 521

in non-English generations by considering these 522

metrics directly (Section 4) and comparing their 523

predictions to human judgments and supervised de- 524

tection approaches (Section 5). We document that 525

while traditional lexical metrics struggle to detect 526

hallucinations in multilingual settings, NLI-based 527

metrics show promise in high-resource languages 528

at the sentence level. However, their effectiveness 529

diminishes when applied to atomic facts, and the 530

reliability of NLI-based metrics is tied to the per- 531

formance of NLI models, posing a significant hur- 532

dle in lower-resource languages. Therefore, our 533

analysis highlights that detecting hallucinations ef- 534

fectively in a language is directly linked to the 535

availability and quality of linguistic resources in 536

that language. As a result, automatically detecting 537

hallucinations in lower-resource languages remains 538

a significant challenge for current NLP methods. 539
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Limitations540

This study focuses on text generation and halluci-541

nation in a specific setting (namely, generating bio-542

graphical summaries with the BLOOM-mt model)543

to perform a controlled study on how different au-544

tomatic metrics detect factual hallucinations. It545

remains an open question whether these findings546

hold in other generation settings, particularly when547

there is less reliance on factual knowledge (such as548

story generation).549

Additionally, portions of our experimental setup550

rely on automatic methods. Specifically, we use551

machine translation to construct the prompt tem-552

plates, which may introduce noise. Furthermore,553

due to the unavailability of native speakers for other554

languages, our human evaluation and comparison555

against automated metrics is limited to Chinese556

and English. In the future, we would like to ex-557

pand on these findings with human evaluations in558

other, lower-resourced languages to confirm how559

well the automatic detection methods hold up in560

these settings.561
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A Qualitative Analysis of Challenging755

Cases in Annotation756

We identify four challenging categories of hallu-757

cination detection for annotators and NLI metrics758

(Table 8).759

• Inferred: Implicit fact connections between gen-760

eration and evidence.761

• Subjective: Generation contains subjective con-762

tent, which is challenging for both human anno-763

tators and fact-based NLI models.764

• Nuanced Difference: There are subtle distinc-765

tions between evidence and generated text, which766

is often missed by surface-level text classification767

in NLI models.768

• Temporal Information: Generation contains time-769

sensitive information, which requires models to770

have an understanding of temporal context.771

Type Example

Inferred Gen: Alessandro Del Piero is a former
Italian professional football player and
a forward. Wiki: Maldini, who was
the head coach of the national team, ap-
pointed Del Piero as the main forward.

Subjective Gen: Frida Kahlo is widely regarded as
the most influential painter of the 20th

century.

Nuanced
Difference

Gen: Louis Pasteur is known as
the "Father of Modern Microbiology".
Wiki: ... has been honored as the "fa-

ther of microbiology"...

Temporal
Informa-
tion

Gen: Michelle Bachelet is currently
the President of Chile. Wiki: She
served as President of Chile from 2006
to 2010 and from 2014 to 2018...

Table 8: Categories of special case in annotation.

Each category presents unique difficulties in de-772

termining the factuality of generated content with773

its evidence source.774

• Inferred connection between generated content775

and evidence is one of the biggest challenges for776

both annotators and NLI models, since they need777

to infer the relationship or the factual basis that778

links them. This requires a deep understanding779

of context and the ability to draw inferences from780

potentially sparse or indirect evidence.781

• Subjective content in generations poses a signif- 782

icant challenge because it introduces personal 783

opinions, emotions, or interpretations that are 784

inherently difficult to verify against factual ev- 785

idence. For human annotators, this can lead to 786

variability in judgments based on personal biases 787

or interpretations. For NLI models, which are pri- 788

marily designed for fact-based analysis, handling 789

subjective content requires advanced understand- 790

ing of sentiment, opinion, and cultural context, 791

areas where current models may fall short. 792

• Nuanced difference between evidence and gener- 793

ated text highlight the limitations of surface-level 794

text classification approaches in NLI models. De- 795

tecting nuanced differences demands a granular 796

analysis of semantics, requiring models to under- 797

stand context, synonyms, and slight variations in 798

meaning. This challenge underscores the need 799

for more sophisticated NLI models capable of 800

deep semantic analysis and the importance of 801

training annotators to pay attention to detail and 802

understand the significance of minor discrepan- 803

cies. 804

• Time-sensitive information introduces complex- 805

ity because it requires both annotators and mod- 806

els to have an understanding of temporal con- 807

text and the ability to evaluate statements within 808

the correct time frame. This can be particularly 809

challenging when information changes over time, 810

requiring up-to-date knowledge and the ability 811

to discern the relevance of temporal qualifiers in 812

text. For NLI models, this underscores the need 813

for dynamic knowledge bases and the ability to 814

reason about time, which are areas where current 815

models may lack proficiency. 816

Overall, these challenges highlight the complex- 817

ities involved in hallucination detection and the 818

need for advanced capabilities in human annotators 819

and NLI models. 820

B Metric Calculation Details 821

ROUGE scores are calculated with TorchMetrics6, 822

and we remove all stopwords before calculating 823

ROUGE-1. Entities are extracted with Spacy’s 824

named entity recognizer7; we note that this tag- 825

ger only covers 13 of the 19 languages considered 826

in our experiments. For the NLI-based metric, we 827

6https://github.com/Lightning-AI/torchmetrics
7https://spacy.io/api/entityrecognizer
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finetune the XLMR-large model (Conneau et al.,828

2020) on the subset of the XNLI dataset (Conneau829

et al., 2018) that intersects with the languages used830

in our experiments. The finetuned model has an831

average validation accuracy of 85.4% for the nine832

intersecting languages.833

C Additional Results834

We show the pairwise metric results in Table 10.835

We observe similar trends as the reference-based836

metrics. Also, the average statistics of annotation837

result are shown in Table 9.838

Metric Sent-Level Atomic-Level

# Examples 111 102
# Words 46.21 10.21
# Evidence 2.17 1.00
# Total Facts 4.76 1.00
Support Rate 0.35 0.29
Contradictory Rate 0.15 0.24
Unverified Rate 0.50 0.47
Instruction-conflict Rate 0.03 0.07
Context-conflict Rate 0.13 0.06

Table 9: Average statistics of Chinese and English an-
notation data.

D Generation Prompt Templates839

We present the full set of prompt templates for all840

languages from Section 3 in Figure 2.841

Figure 2: Prompt templates of all languages used in
generating biography. {} represents human names.
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Table 10: Results of different pairwise consistency metrics for the BLOOMZ-mt model. "-" indicates they have no
coverage for the NER tool we use. All of the ROUGE and Named Entity Overlap results are in percentage (%).

Language R1_F1 R1_P R1_R RL_F1 RL_P RL_R NEO_F1 NEO_P NEO_R DIFF UNV

English 12.03 14.21 14.71 5.91 7.10 7.37 4.27 53.41 2.26 -0.25 0.57
Chinese 7.57 8.56 8.55 4.00 4.55 4.55 4.69 35.28 2.79 -0.29 0.57
Spanish 12.49 14.45 15.05 6.21 7.31 7.68 3.28 48.48 1.76 -0.22 0.52
German 4.42 10.47 4.48 1.98 5.51 2.04 0.83 36.06 0.42 -0.33 0.56
Russian 0.15 0.19 0.13 0.00 0.00 0.00 0.48 11.28 0.25 -0.09 0.55
Indonesian 4.74 6.23 6.52 1.59 2.13 2.27 - - - -0.16 0.68
Vietnamese 11.60 14.36 15.91 6.26 7.91 8.91 - - - -0.32 0.56
Persian 0.00 0.00 0.00 0.00 0.00 0.00 - - - -0.31 0.52
Ukrainian 0.00 0.00 0.00 0.00 0.00 0.00 0.70 20.64 0.36 0.14 0.42
Swedish 10.04 14.69 10.82 8.53 13.23 9.74 1.28 45.24 0.66 -0.20 0.54
Thai 0.01 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 -0.19 0.68
Japanese 0.47 0.75 0.58 0.08 0.13 0.09 0.47 15.52 0.25 -0.07 0.56
Romanian 12.21 13.95 12.68 8.57 9.40 8.70 0.39 17.47 0.20 -0.30 0.44
Hungarian 0.18 0.25 0.46 0.00 0.00 0.00 - - - -0.18 0.58
Bulgarian 0.30 0.44 0.28 0.05 0.08 0.06 - - - -0.02 0.96
French 12.02 14.03 14.61 6.26 7.43 7.76 4.35 57.41 2.31 -0.05 0.92
Finnish 0.46 0.47 0.61 0.17 0.19 0.19 0.58 23.71 0.30 -0.04 0.94
Korean 0.19 0.26 0.17 0.00 0.00 0.00 0.24 8.48 0.12 0.25 0.63
Italian 4.79 7.85 5.08 2.71 4.15 2.77 1.00 30.26 0.52 -0.01 0.97

Metric Pearson AUCV AUCUNV

RandomSent - 38.74 60.05
UNVSent 0.27 32.70 70.31
mFACTSent -0.18 45.27 63.94
seahorseSent -0.03 41.74 62.73
RandomAtom - 68.31 12.05
UNVAtom 0.09 73.49 20.19
mFACTAtom -0.17 79.03 32.01
seahorseAtom -0.12 78.24 30.93

Table 11: Results of unverifiable hallucination detection
in human evaluation in English, with the best agreement
with humans indicated in bold. Sent denotes sentence-
level detection, and Atom denotes atomic-fact-level de-
tection. UNV denotes unverifiable hallucination, and
V denotes verifiable. The number in gray have the
p-values larger than 0.05.

Metric Pearson AUCV AUCUNV

RandomSent - 39.24 50.22
UNVSent 0.31 30.27 76.12
mFACTSent -0.32 56.54 60.42
seahorseSent -0.11 41.45 63.54
RandomAtom - 71.93 17.88
UNVAtom 0.12 79.26 27.36
mFACTAtom -0.19 86.77 34.38
seahorseAtom -0.14 80.76 30.92

Table 12: Results of unverifiable hallucination detection
in human evaluation in Chinese, with the best agreement
with humans indicated in bold. All the p-values of the
correlation is less than 0.05. Sent denotes sentence-level
detection, and Atom denotes atomic-fact-level detection.
UNV denotes unverifiable hallucination, and V denotes
verifiable. The number in gray have the p-values larger
than 0.05.
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Sentence-Level Atomic-Fact-Level
Metric Pearson AUCF AUCNF Pearson AUCF AUCNF

Reference
random - 18.34 82.56 - 54.28 48.31
DIFF 0.28 49.11 92.41 0.29 63.93 62.49
ENT 0.31 45.43 90.27 0.33 66.67 63.69
CON -0.14 31.56 92.20 -0.21 60.18 56.90
mFact 0.31 31.70 85.52 0.28 64.84 60.10
Seahorse 0.08† 29.28 85.80 0.09† 60.94 57.44

Table 13: Sentence- and atomic-fact-level verifiable hallucination detection in human evaluation in English compar-
ing automatic metrics and human support rate, with the best agreement with humans indicated in bold. F denotes
factual examples and NF denotes non-factual examples. †p-values of this correlation is larger than 0.05.
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