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Abstract

Anomaly detection in multivariate time series is essential across domains such as healthcare,
cybersecurity, and industrial monitoring, yet remains fundamentally challenging due to
high-dimensional dependencies, the presence of cross-correlations between time-dependent
variables, and the scarcity of labeled anomalies. We introduce mTSBench, the largest
benchmark to date for multivariate time series anomaly detection and model selection,
consisting of 344 labeled time series across 19 datasets from a wide range of application
domains. We comprehensively evaluate 24 anomaly detectors, including the only two publicly
available large language model-based methods for multivariate time series. Consistent with
prior findings, we observe that no single detector dominates across datasets, motivating the
need for effective model selection. We benchmark three recent model selection methods
and find that even the strongest of them remains far from optimal. Our results highlight
the outstanding need for robust, generalizable selection strategies. We open-source the
benchmark at https://plan-lab.github.io/mtsbench to encourage future research.

1 Introduction

Multivariate Time Series Anomaly Detection (MTS-AD) is critical for identifying unexpected patterns in
multi-signal temporal data across domains such as healthcare, cybersecurity, industrial monitoring, and
finance (Blázquez-García et al., 2021; Garg et al., 2021). The rapid digital transformation of these sectors
has led to a surge in high-dimensional time series data, where timely and accurate anomaly detection is
essential to prevent system failures, mitigate security threats, and optimize operational efficiency (Basu &
Meckesheimer, 2007; Sgueglia et al., 2022; Yang et al., 2023). However, identifying anomalies in multivariate
time series remains challenging due to their inherent complexity and heterogeneity, compounded by factors
such as non-linear temporal relationships, inter-variable correlations, and the sparsity of anomalous events.

A diverse set of approaches to anomaly detection has been developed, including the use of foundation
models (Bian et al., 2024; Zhou et al., 2023), deep learning (Xu et al., 2022; Sakurada & Yairi, 2014; Munir
et al., 2018; Xu et al., 2018), classic machine learning (Hariri et al., 2019; Goldstein & Dengel, 2012; Yairi
et al., 2001), and statistical models (Rousseeuw & Van Driessen, 1999; Hochenbaum et al., 2017). However,
the performance of anomaly detection methods varies widely across datasets, with recent works (Braei &
Wagner, 2020; Ho et al., 2025; Zamanzadeh Darban et al., 2024; Schmidl et al., 2022; Paparrizos et al., 2022b)
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Figure 1: Average AUC-ROC (↑) Performance of 24 Anomaly Detection Methods (x-axis)
Evaluated Across 19 mTSBench Datasets (y-axis). The substantial performance variability across
datasets highlights the need for robust model selection strategies. mTSBench benchmarks the capability
of model selection techniques to systematically identify the optimal anomaly detection method among 24
state-of-the-art detectors evaluated on a comprehensive collection of 344 multivariate time series.

emphasizing repeatedly that existing algorithms do not consistently excel in all anomaly detection scenarios.
This inconsistency is further compounded by the unsupervised nature of anomaly detection tasks (Mejri
et al., 2024; Belay et al., 2023), where ground truth labels are often unavailable, making model selection an
open challenge. These challenges in MTS-AD highlight the need for adaptive model selection strategies that
can identify the optimal detector for a given multivariate time series dataset.

Existing model selection methods can be grouped into meta-learning, unsupervised, internal evaluation-based,
and classifier-based, with many of them leveraging historical performance metrics, meta-features, or internal
performance measures to identify the best models for new datasets (Zhao et al., 2021; 2022; Navarro et al., 2023;
Zhang et al., 2022b; Goswami et al., 2021). However, their evaluation is often conducted on disparate datasets
and tasks, leading to inconsistent and incomparable results across studies. This lack of standardization not
only hampers progress in developing effective model selection techniques but also obscures the real-world
applicability of proposed methods. Consequently, there is a need for a unified benchmark that systematically
evaluates model selection approaches under consistent settings and can facilitate the development of robust
selection methods, specifically tailored for the challenging task of MTS-AD.

To address these challenges, we introduce mTSBench, the largest and most diverse benchmark for MTS-AD
and model selection to date. mTSBench consists of 344 multivariate time series from 19 publicly available
datasets, covering 12 application domains. These datasets include both point-based and range-based anomalies,
reflecting real-world temporal dependencies and cross-signal interactions. Moreover, the mTSBench evaluation
suite spans 24 anomaly detection methods based on various approaches, including reconstruction, prediction,
statistics, and large language model (LLM). Our empirical analysis highlights substantial variability in
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Table 1: Comparison Between mTSBench and Existing Anomaly Detection Benchmarks that
Contain Multivariate Time Series. Algorithm categories comprise foundation models (FM), deep learning
(DL), classic machine learning (ML) and Other (e.g., statistical, data mining, etc.).

MTS Data Model Selection Anomaly Detection
# Datasets # TS # Selectors # Metrics # FM # DL # ML # Other # Metrics

TODS (Lai et al., 2021) 5 25 ✗ ✗ 0 2 5 2 3
Timesead (Wagner et al., 2023) 2 21 ✗ ✗ 0 26 2 0 3
EEAD (Zhang et al., 2023) 8 8 ✗ ✗ 0 6 0 4 4
TimeEval (Schmidl et al., 2022) 14 238 ✗ ✗ 0 15 7 11 3
TSB-AD (Liu & Paparrizos, 2024) 17 200 ✗ ✗ 1 10 7 5 10
mTSBench (Ours) 19 344 3 3 2 10 7 5 13

anomaly detection performance across datasets. For example, Figure 1 showcases the mean AUC-ROC
scores of the 24 detectors across the 19 datasets, illustrating how certain detectors achieve near-perfect
accuracy on particular datasets while modest results on others. This inconsistency in detection performance
emphasizes the critical importance of model selection strategies that account for dataset characteristics and
temporal dependencies. To address this gap, unlike existing benchmarks summarized in Table 1, mTSBench
uniquely integrates model selection methods and corresponding evaluation metrics, offering insights into their
robustness and adaptability — a crucial aspect of MTS-AD that remains underexplored.

The contributions of our work can be summarized as follows:
(1) We introduce mTSBench, the largest and most comprehensive MTS-AD and model selection benchmark

to date, featuring 344 labeled multivariate time series from 19 datasets across 12 application domains.
mTSBench systematically evaluates 24 anomaly detection methods, including the only LLM-based
methods for MTS-AD, reflecting their performance in multivariate settings with real-world temporal
dependencies and cross-signal interactions.

(2) Our empirical analysis reveals that, among the evaluated methods, no single anomaly detection method
performs consistently well across datasets in mTSBench, underscoring the need for adaptive selection
strategies. To this end, mTSBench is the first to integrate unsupervised model selection methods and
benchmark their effectiveness across diverse time series contexts and under consistent settings.

(3) To drive reproducible comparisons, mTSBench introduces a unified evaluation suite with point-based
and ranking-based metrics for anomaly detection and model selection. Using this standardized setup, we
observe substantial gaps between the evaluated unsupervised model selection methods and both optimal
and trivial baselines. These results highlight limitations of current unsupervised selection strategies and
underscore the need for more adaptive model selection mechanisms.

2 Related Work

Time Series Anomaly Detection.

Time series data, represented as ordered sequences of real-valued observations, can be categorized into univari-
ate (e.g., single sensor readings) and multivariate (e.g., multiple sensors capturing joint phenomena). Time
series anomaly detection is inherently challenging due to the diverse manifestations of anomalies, typically
categorized into point anomalies, representing isolated deviations; contextual anomalies, which are abnormal
only within a specific temporal context; and collective anomalies, emerging from atypical patterns spanning
multiple time steps (Boniol et al., 2024; Blázquez-García et al., 2021; Shaukat et al., 2021; Chandola et al.,
2009). Existing surveys have extensively evaluated anomaly detection algorithms across a range of paradigms,
including unsupervised (Mejri et al., 2024), explainable (Li et al., 2023), model-based (Correia et al., 2024), and
transformer-based approaches (Wen et al., 2023). Dedicated reviews have also covered univariate (Braei & Wag-
ner, 2020; Paparrizos et al., 2022b; Freeman et al., 2021), graph-based (Jin et al., 2024a; Ho et al., 2025), and
deep learning-based methods (Zamanzadeh Darban et al., 2024; Yan et al., 2024; Chalapathy & Chawla, 2019),
with recent efforts turning to foundation models (Ye et al., 2024; Su et al., 2024; Jin et al., 2024b). Recent work
(Schmidl et al., 2022) performed the most comprehensive evaluation to date, analyzing 71 anomaly detection
methods across both univariate and multivariate time series. All these studies consistently affirm that no single
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anomaly detection method excels universally across domains or anomaly types, motivating the need for dynamic
model selection strategies that can adaptively identify the best-performing anomaly detector for a given time
series instance. However, while these works provide valuable insights, they largely focus on univariate settings,
leaving critical gaps in understanding how detection methods generalize to complex multivariate dependencies.

Model Selection for Time Series. Recent advances have led to the development of diverse model selection
frameworks that leverage intrinsic dataset properties, meta-learning signals, or evaluation heuristics to find the
most suitable anomaly detector for a given time series (Sylligardos et al., 2023; Valenzuela et al., 2024; Trirat
et al., 2024; Eldele et al., 2021). Model selection strategies can be broadly categorized into four main approaches:
(1) Classifier-based methods, which train classifiers to rank detectors based on extracted meta-features (Ying
et al., 2020; Chatterjee et al., 2022); (2) Meta-learning approaches, which predict model performance on unseen
datasets by generalizing from historical observations (Singh & Vanschoren, 2022; Yu et al., 2022; Zhao et al.,
2021; Navarro et al., 2023; Zhang et al., 2022b); (3) Reinforcement learning-based methods, which optimize
detector choice by iteratively adjusting based on feedback signals (Wang et al., 2022; Zhang et al., 2022a); and
(4) Human-in-the-loop mechanisms, which involve expert-driven refinement to narrow down potential detectors
based on observed time series characteristics (Freeman & Beaver, 2019). Ensemble learning strategies that
aggregate detector outputs using model variance as a selection signal (Jung et al., 2021) and methods that base
selection on internal measures (Ma et al., 2021; Zhao et al., 2022) further extend these capabilities. Despite
these advances, current evaluations are fragmented and often restricted to limited datasets. Among existing
unsupervised selection methods, many have not been evaluated with time series anomaly detectors (Zhang
et al., 2022b; Singh & Vanschoren, 2022; Zhao et al., 2021; Yu et al., 2022; Zhao et al., 2022; Ma et al.,
2021), while others are tested on a limited set of detectors with few time series datasets (Navarro et al., 2023;
Jung et al., 2021; Chatterjee et al., 2022; Goswami et al., 2021; Ying et al., 2020), leaving significant gaps
in understanding model selection performance on multivariate time series data. A recent study offers useful
insights into re-purposing time series classifiers for model selection in univariate anomaly detection (Sylligardos
et al., 2023). However, benchmarking established model selection methods for multivariate time-series anomaly
detection has remained largely underexplored. Our work aims to fill this gap by providing the first systematic
benchmark that enables consistent comparison of selectors and analysis of their failure modes.

Anomaly Detection Benchmarks. Existing benchmarks for MTS-AD often fall short in terms of scale,
diversity, and real-world representativeness. While several benchmarks have been proposed (Braei & Wagner,
2020; Dau et al., 2018; Paparrizos et al., 2022b; Laptev et al., 2015; Lavin & Ahmad, 2015; Lai et al., 2021;
Schmidl et al., 2022; Wagner et al., 2023; Zhang et al., 2023; Liu & Paparrizos, 2024), only a handful include
multivariate time series (Lai et al., 2021; Schmidl et al., 2022; Wagner et al., 2023; Zhang et al., 2023; Liu &
Paparrizos, 2024), and even those predominantly focus on univariate time series or have very limited multivari-
ate representation. Notably, none of these benchmarks support model selection evaluation, which is critical for
deploying robust anomaly detectors in practice (Table 1). To address these limitations, mTSBench introduces
the largest and most diverse multivariate time series collection from 19 publicly available sources, spanning
12 application domains. Most importantly, mTSBench is the first benchmark to comprehensively evaluate
model selection strategies for MTS-AD, an important aspect that is underexplored in existing benchmarks.

3 mTSBench Benchmark

Problem Definition. A multivariate time series is a sequence of observations recorded over time, represented
as T ={(x1, t1), (x2, t2), . . . , (xn, tn)}, where xi ∈ Rd is a d-dimensional feature vector observed at timestamp
ti, and n is the length of the time series (in practice, timestamps are often omitted). In supervised settings,
each observation xi in the time series can be associated with a binary anomaly label yi ∈ {0, 1}, where
yi = 1 indicates an anomalous observation, and yi =0 indicates normal behavior. However, in practice, labels
y={y1, y2, . . . , yn} are often unavailable, necessitating the development of unsupervised methods for anomaly
detection. Anomaly detection models mj : Rd → R assign an anomaly score si to each observation xi, i.e.,
si =mj(xi), where a greater si indicates a higher likelihood of xi being anomalous. These scores are typically
converted into binary predictions ŷi ∈ {0, 1} using a threshold τj , i.e., ŷi =I(si > τj).

There exists a large number of various anomaly detection algorithms for time series, yet no single one
consistently outperforms others across all data distributions. This variability has driven the need for
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Figure 2: mTSBench Overview. mTSBench is the largest and most diverse benchmark for multivariate
time series anomaly detection and model selection, spanning 19 multivariate time series datasets across various
application domains and establishing a platform for robust anomaly detection and adaptive model selection
in real-world multivariate contexts. mTSBench’s comprehensive evaluation suite and diverse collection of
state-of-the-art anomaly detectors, including statistical, deep learning, and LLM-based approaches, facilitates
standardized comparison of model selection strategies.

unsupervised model selection methods to identify the most suitable anomaly detector for a specific
dataset. Formally, let M = {m1, m2, . . . , mk} denote a set of k anomaly detection models. The objective
of unsupervised model selection for anomaly detection is to identify the best model m∗ ∈ M for a given
unlabeled test time series Ttest. In the absence of labels, unsupervised model selection relies on estimating
the relative performance of models through a proxy performance function P̂ (mj , Ttest), which approximates
the performance of each model based on intrinsic characteristics of Ttest and properties of the models in
M. The best model m∗ is selected as m∗ =arg maxmj∈M P̂ (mj , Ttest).

Model selection for MTS-AD has many applications across diverse industry sectors, including healthcare,
cybersecurity, industrial monitoring, and finance, but remains underexplored due to the scarcity of compre-
hensive benchmarks that enable robust evaluation across multiple domains and realistic scenarios. mTSBench
aims to fill this gap with a comprehensive suite of datasets, methods, and evaluation metrics.

3.1 mTSBench Overview

We introduce mTSBench, the largest and most diverse benchmark for MTS-AD and model selection to date.
mTSBench consists of 344 multivariate time series drawn from 19 publicly available sources and spans 12
application domains. Unlike existing benchmarks that primarily focus on univariate time series, mTSBench
provides a rich representation of real-world scenarios by including both point-based and range-based anomalies,
capturing complex temporal dependencies and cross-signal interactions. To enable robust evaluation, mTS-
Bench integrates 24 anomaly detectors spanning approaches based on reconstruction, prediction, statistics,
and LLM, as well as 3 model selection methods that leverage surrogate metrics, factorization machine, and
meta-learning to identify the best anomaly detection method for a given time series. Finally, the evaluation
suite in mTSBench includes 13 anomaly detection metrics and 3 model selection metrics, offering
a comprehensive framework to benchmark efficacy and robustness of anomaly detection and model selection.

Anomaly Detection Methods. mTSBench has a diverse pool of open-source anomaly detectors, com-
prising 10 unsupervised and 14 semi-supervised methods, including currently existing LLMs designed for
MTS-AD. The selected anomaly detection methods are summarized in Appendix A.

Unsupervised anomaly detection methods operate without the need for labeled training data and can be
directly applied at test time to identify anomalies. In contrast, semi-supervised methods require training on
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anomaly-free time series. mTSBench encompasses a wide variety of unsupervised methods: CBLOF (He et al.,
2003), COPOD (Li et al., 2020), EIF (Hariri et al., 2019), HBOS (Goldstein & Dengel, 2012), IForest (Liu
et al., 2008), KMeansAD (Yairi et al., 2001), KNN (Ramaswamy et al., 2000), LOF (Breunig et al., 2000),
PCA (Aggarwal, 2017), and RobustPCA (Paffenroth et al., 2018), and semi-supervised methods: LSTM-
AD (Malhotra et al., 2015), AutoEncoder (Sakurada & Yairi, 2014), CNN (Munir et al., 2018), Donut (Xu
et al., 2018), FITS (Xu et al., 2023), MCD (Rousseeuw & Van Driessen, 1999), OCSVM (Schölkopf et al.,
1999), TimesNet (Wu et al., 2023), TranAD (Tuli et al., 2022), AnomalyTransformer (Xu et al., 2022),
OmniAnomaly (Su et al., 2019), and USAD (Audibert et al., 2020). mTSBench also includes recent
foundation models designed for MTS-AD: ALLM4TS (Bian et al., 2024), and OFA (Zhou et al., 2023),
which leverage large-scale pretraining to enable cross-domain generalization.

Unsupervised Model Selection Methods. To enable robust model selection across diverse multivari-
ate time series, mTSBench includes three methods applicable to multivariate data. These include
MetaOD (Navarro et al., 2023), a meta-learning method that employs Principal Component Analysis
(PCA) to extract latent representations of a dataset and trains a random forest to map these representations
to a precomputed performance matrix; Orthus (Zhao et al., 2021), a method that extracts univariate
time-series meta-features and employs regression or random forests, depending on whether the test cases
are unseen or similar to the training set; and FMMS (Zhang et al., 2022b), a factorization machine-based
method that employs a regression model to directly relate meta-features to model performance.

In addition, we benchmark these model selection methods against three trivial baselines that establish
performance bounds: Oracle, a baseline that consistently selects the best anomaly detection method for each
time series (based on ground truth labels), serving as an upper bound; Near-optimal, a baseline that chooses
the second-best anomaly detector for each time series, providing a practical reference that is more attainable
than the theoretical maximum of the Oracle baseline; and Random, a baseline that selects an anomaly
detector for each time series at random, offering a lower-bound estimate of model selection performance
by disregarding dataset-specific characteristics. Additionally, we include PCA, a well-established classic
machine learning method (Aggarwal, 2017), as a fixed-choice baseline; and an Ensemble baseline, where
we compute the mean anomaly score across all 24 detectors at each time step to produce a single combined
prediction (Sylligardos et al., 2023).

Datasets. Multivariate time series data in mTSBench span a wide range of application domains, including in-
dustrial process (GECCO (Rehbach et al., 2018), GHL (Filonov et al., 2016), Genesis (von Birgelen & Nigge-
mann, 2018)), healthcare (Daphnet (Bachlin et al., 2009), MITDB (Goldberger et al., 2000), SVDB (Green-
wald et al., 1990)), cybersecurity (CIC-IDS-2017 (Canadian Institute for Cybersecurity, 2017)), finance
(CreditCard (Dal Pozzolo et al., 2018)), IT infrastructure (Exathlon (Jacob et al., 2021), PSM (Abdulaal
et al., 2021), SMD (Su et al., 2019)), smart building (CalIt2 (Hutchins, 2006), Occupancy (Candanedo
& Feldheim, 2016)), spacecraft telemetry (MSL, SMAP (Hundman et al., 2018)), etc. These time series vary
significantly in scale, with lengths ranging from thousands to over half a million points, and dimensionalities
ranging from d = 3 to d = 73, presenting a challenging and realistic testbed for evaluating MTS-AD and model
selection strategies. The datasets also differ in their anomaly structures: some contain sparse point anomalies
(e.g., CreditCard and Occupancy), while others include complex or long-range anomalous sequences (e.g.,
MITDB and CIC-IDS-2017). Each time series in mTSBench includes a clean training/test partition. To
ensure consistency across datasets, we apply a unified data-splitting protocol: (1) if a dataset provides official
train/test splits, we use them directly; (2) if anomaly labels are available but no official split is provided, we
extract a long contiguous segment without labeled anomalies as the training set and use the remaining portion
of the time series as the test set. Appendix B provides additional details on the dataset characteristics.

Evaluation Metrics. To provide a comprehensive evaluation, mTSBench reports 13 MTS-AD evaluation
metrics that span both point-wise and range-based performance. Point-wise metrics include Precision,
Recall, and F1, which evaluate the ability of the selected model to accurately identify individual anomaly
points while balancing false positives and false negatives. To capture broader detection quality, Area
under the Receiver Operating Characteristics Curve (AUC-ROC), Area Under the Precision-Recall Curve
(AUC-PR), and Area Under the range-based Precision, range-based Recall Curve (AUC-PTRT)are
employed, assessing performance across varying thresholds (Tatbul et al., 2018). AUC-PR, in particular,
is critical for detecting anomalies in imbalanced datasets where positive samples are sparse. Furthermore,
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Table 2: Model Selection Performance Comparison. Entries are mean±std over 344 time series in
mTSBench for the top-1 detector chosen by each method. Bold and denote best and second-best methods
per metric. ∆(%) is the relative difference between mean values for the best method and Near-optimal.

Trivial Model Selection Baselines Unsupervised Model Selection Methods

Metric Oracle Near-optimal Random PCA MetaOD FMMS Orthus Ensemble ∆(%)
F1 0.546 ± 0.263 0.514 ± 0.256 0.299 ± 0.252 0.252 ± 0.195 0.135 ± 0.135 0.222 ± 0.185 0.222 ± 0.200 0.189 ± 0.187 –56.80
Precision 0.414 ± 0.328 0.393 ± 0.319 0.194 ± 0.236 0.293 ± 0.305 0.189 ± 0.236 0.280 ± 0.299 0.297 ± 0.311 0.237 ± 0.262 –24.43
Recall 0.483 ± 0.298 0.458 ± 0.287 0.275 ± 0.313 0.319 ± 0.310 0.205 ± 0.210 0.307 ± 0.276 0.283 ± 0.271 0.300 ± 0.301 –32.97
Affiliation-F1 0.879 ± 0.107 0.868 ± 0.101 0.785 ± 0.124 0.818 ± 0.108 0.777 ± 0.100 0.834 ± 0.112 0.814 ± 0.111 0.792 ± 0.107 –3.92
Event-based-F1 0.699 ± 0.287 0.667 ± 0.283 0.427 ± 0.338 0.506 ± 0.329 0.377 ± 0.305 0.548 ± 0.333 0.500 ± 0.340 0.433 ± 0.330 –17.84
Max-F1 0.546 ± 0.263 0.514 ± 0.256 0.299 ± 0.252 0.408 ± 0.268 0.292 ± 0.246 0.381 ± 0.263 0.386 ± 0.270 0.379 ± 0.270 –24.90
PA-F1 0.825 ± 0.235 0.803 ± 0.226 0.705 ± 0.316 0.627 ± 0.320 0.658 ± 0.324 0.738 ± 0.285 0.647 ± 0.332 0.584 ± 0.332 –8.09
R-based-F1 0.450 ± 0.237 0.430 ± 0.224 0.252 ± 0.190 0.410 ± 0.237 0.242 ± 0.194 0.366 ± 0.224 0.370 ± 0.236 0.328 ± 0.246 –13.95
AUC-PTRT 0.417 ± 0.276 0.400 ± 0.260 0.234 ± 0.228 0.322 ± 0.278 0.217 ± 0.218 0.318 ± 0.273 0.309 ± 0.272 0.278 ± 0.260 –20.50
AUC-PR 0.492 ± 0.296 0.455 ± 0.284 0.212 ± 0.222 0.327 ± 0.280 0.210 ± 0.231 0.304 ± 0.266 0.315 ± 0.279 0.287 ± 0.271 –30.77
AUC-ROC 0.811 ± 0.150 0.796 ± 0.148 0.613 ± 0.178 0.697 ± 0.219 0.605 ± 0.189 0.659 ± 0.207 0.672 ± 0.219 0.683 ± 0.214 –15.58
VUS-PR 0.524 ± 0.296 0.485 ± 0.290 0.236 ± 0.236 0.348 ± 0.290 0.229 ± 0.231 0.326 ± 0.277 0.333 ± 0.288 0.312 ± 0.279 –31.34
VUS-ROC 0.847 ± 0.134 0.832 ± 0.134 0.640 ± 0.188 0.721 ± 0.211 0.655 ± 0.179 0.698 ± 0.204 0.707 ± 0.212 0.714 ± 0.203 –15.02

range-based metrics Volume Under the Receiver Operating Characteristics Surface (VUS-ROC) and Volume
Under the Precision-Recall Surface (VUS-PR) (Paparrizos et al., 2022a) generalize AUC by applying a
tolerance buffer and continuous scoring over anomaly boundaries. Additional metrics include PA-F1 (Xu
et al., 2018) that applies heuristic point adjustment, Event-based-F1 (Garg et al., 2021) that treats
each anomaly segment as a single event, Max-F1 that reports the maximum F1 score achievable across all
decision thresholds, R-based-F1 (Tatbul et al., 2018) that captures structural properties such as existence,
overlap, and cardinality, and Affiliation-F1 (Huet et al., 2022) that measures proximity between predicted
and ground-truth intervals. Collectively, these metrics ensure mTSBench holistically evaluates anomaly
detection methods across isolated, sequential, and sparse anomaly manifestations.

For model selection evaluation, mTSBench includes ranking metrics Precision@k, Recall@k, and Normalized
Discounted Cumulative Gain (NDCG). Precision@k evaluates the model selection method’s ability to
prioritize high-performing detectors within its top-k recommendations, and refers to the proportion of selected
detectors that are among the highest-performing ones for a given dataset. In contrast, Recall@k quantifies the
proportion of all high-performing detectors that are successfully retrieved within the top-k recommendations.
Finally, NDCG (or NDCG@k for top-k recommendations) evaluates how well model selection preserves the
correct ranking order, taking into account the relevance and relative order of the selected anomaly detectors.

4 Experimental Results

4.1 Anomaly Detection Performance Across Evaluation Metrics

The results, visualized in Figure 3, reveal distinct performance clusters among detectors. PCA, despite its
simplicity, demonstrates strong and stable performance, particularly in VUS-PR and AUC-ROC, highlighting
its generalizability across diverse time series. OmniAnomaly, a deep generative model, performs comparably
well across all metrics, including those sensitive to temporal structure such as AUC-PTRT, indicating its
ability to model temporal dependencies. The higher median scores across VUS-PR and VUS-ROC suggest that
these models excel not only in isolating anomalous regions but also in maintaining high relative rankings over
various sensitivity levels, critical for long-tail anomaly distributions in multivariate time series. In contrast,
methods such as KNN, Transformer, LOF, and HBOS occupy the lower end of the performance spectrum
across all five metrics, with particularly poor AUC-PR and AUC-PTRT scores. The low AUC-PR scores
indicate struggling to detect anomalies in highly imbalanced datasets where true anomalies are sparse, while
the poor AUC-PTRT performance suggests an inability to effectively manage the precision-recall trade-off
across thresholds. In contrast, methods like COPOD and RobustPCA, while similarly underperforming,
display narrower distributions, suggesting stable but limited detection capacity.
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Figure 3: Comparison of Anomaly Detection Methods Across Five Evaluation Metrics. The
boxplots illustrate the distribution of performance scores for each method evaluated over all mTSBench
datasets, measured using VUS-PR, VUS-ROC, AUC-PR, AUC-ROC, and AUC-PTRT. Detectors are ordered
by their average VUS-PR score. Boxes represent interquartile ranges, with solid lines indicating the median
and dashed lines indicating the mean. In-depth analysis in §4.1.

In terms of LLM-based detectors, OFA consistently achieves higher median scores across VUS-PR, VUS-ROC,
AUC-PR, AUC-ROC, and AUC-PTRT, with relatively compact interquartile ranges for AUC-ROC and
AUC-PTRT suggesting that it is less sensitive to distributional shifts. In contrast, ALLM4TS exhibits broader
performance variability, particularly in VUS-PR and VUS-ROC, indicative of its sensitivity to dataset-specific
noise. These observations suggest that both methods benefit from large-scale pretraining, where pretrained
multimodal embeddings can capture richer temporal and semantic representations compared to traditional
baselines. However, the observed variability in ALLM4TS and the performance gaps relative to more
traditional baselines such as PCA suggest that significant improvements are still possible. For example, future
work can explore modality-specific adapters, allowing LLM-based detectors to fine-tune their representations
based on the temporal, spatial, and contextual properties of anomalies. The inherent instruction-following
capability and generalization across diverse tasks of LLM-based methods can enable new human-in-the-loop
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Figure 4: Model Selection Performance Grouped by Time Series Dimensionality. VUS-PR (left)
and AUC-ROC (right) for three dimensionality groups (<10, 10–30, >30). Discussion is in §4.2

anomaly detection and data analysis applications. To fully harness their potential, however, LLM-based
detectors must demonstrate high adaptability to varying anomaly patterns and heterogeneous application
domains. This necessitates robust model selection mechanisms that dynamically configure detection models
to match the specific context and anomaly profile of incoming data.

4.2 Analysis of Model Selection Performance Across Evaluation Metrics

Table 2 presents the performance of the top-1 recommended anomaly detector for each model selection
method across 13 evaluation metrics. FMMS and Orthus consistently outperform MetaOD across nearly all
metrics, with Orthus achieving the best performance in 8 out of 13 metrics and FMMS leading in 5 metrics.
MetaOD often performs on par with or worse than the Random baseline, suggesting limited transferability
of its non-temporal meta-feature design to time-series settings. Orthus performs well in AUC-ROC and
R-based-F1, which indicates its strong capacity to minimize false positives and maintain high anomaly-ranking
accuracy. Meanwhile, FMMS performs well in Recall and Event-based-F1, suggesting it is more effective at
capturing distributed and event-based anomalies. However, both Orthus and FMMS demonstrate significant
gaps relative to the Near-optimal baseline, with a mean deficit of about 15% to 30% across key metrics.
Their considerable underperformance in AUC-PR and VUS-PR, as compared to the Near-optimal baseline,
means they select detectors that miss many true anomalies that best detectors would have caught. We also
observe that PCA surpasses all three model selectors (MetaOD, FMMS, Orthus) on 9 out of 13 metrics,
although its overall performance remains well below the Near-optimal and Oracle references. This further
reinforces that existing model-selection approaches are far from reliable and that principled selection remains
an open challenge in MTS-AD. The ensemble baseline performs even worse, trailing FMMS and MetaOD
across all metrics, and achieving only comparable performance on AUC-ROC and VUS-ROC. These results
highlight the limitations of the existing unsupervised model selection mechanisms, which currently lack
the ability to adapt to varying characteristics of diverse time series data. Promising directions include
meta-learning-based adaptation, continual learning, and self-supervised representations that could enable
finer control and improved performance in non-stationary environments.

Additionally, Figure 4 shows performance grouped by time series dimensionality. FMMS and Orthus
outperform MetaOD in both VUS-PR and AUC-ROC across all dimensionality groups. FMMS achieves
its best performance for high dimensionalities (d > 30), while Orthus performs consistently well across all
dimensionalities, highlighting its robustness across a wider range of settings. Beyond dimensionality, we
also analyze selector performance with respect to anomaly ratio and anomaly sequence length. As shown in
Table 3 (left), selector performance generally declines as the anomaly ratio increases. Both MetaOD and
FMMS exhibit a monotonic decrease in AUC-ROC (MetaOD: 0.640→0.545; FMMS: 0.758→0.608), while
Orthus peaks at moderate ratios (5–10%, 0.730) before dropping at > 10% (0.640). Although standard
deviations are sizable and adjacent bins may overlap, the overall trend indicates that higher anomaly density
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Table 3: Model Selection Performance by Anomaly Characteristics. Entries are mean±std of
AUC-ROC across datasets grouped by anomaly ratio (left) and anomaly sequence length (right). and
denote the best and second-best methods for the group, respectively. The best group is bolded for each
selector. Discussion is in §4.2.

Anomaly Ratio Anomaly Sequence Length

Group MetaOD FMMS Orthus Group MetaOD FMMS Orthus

<3% 0.640 ± 0.206 0.758 ± 0.189 0.653 ± 0.269 <50 0.671 ± 0.200 0.833 ± 0.148 0.848 ± 0.136
3–5% 0.615 ± 0.168 0.676 ± 0.166 0.691 ± 0.187 50–100 0.542 ± 0.197 0.671 ± 0.156 0.705 ± 0.201
5–10% 0.592 ± 0.148 0.641 ± 0.202 0.730 ± 0.185 100–200 0.619 ± 0.160 0.694 ± 0.181 0.641 ± 0.252
>10% 0.545 ± 0.151 0.608 ± 0.175 0.640 ± 0.184 >200 0.576 ± 0.181 0.638 ± 0.203 0.666 ± 0.184
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Figure 5: Ranking Comparison of Model Selection Methods. (Left) Precision@3, Recall@3, and
NDCG@3 for each method. (Right) Recall@k as a function of k. Discussion is in §4.3.

tends to make model selection more challenging across methods. In contrast, Table 3 (right) reveals that
selector performance is more strongly affected by anomaly sequence length. All three methods perform better
on datasets with shorter anomaly sequences, whereas performance degrades for longer segments. This reflects
the difficulty of ranking detectors when anomalies span extended durations, where evaluation metrics (e.g.,
AUC-ROC, Precision@k) are less sensitive to subtle localization errors. Shorter anomalies tend to produce
more distinct and localized deviations from normal behavior, making it easier for detectors to identify them
and for selectors to distinguish between well-performing and poorly performing detectors.

4.3 Comparison of Ranking Capability of Model Selection Methods

Figure 5 presents a comparative analysis of unsupervised model selection methods in terms of their ability to
rank top-performing anomaly detectors. Top-3 results (Figure 5, left) show that Orthus achieves the highest
scores for all three ranking metrics, indicating its superior ability to identify relevant anomaly detectors early in
the ranked list. FMMS ranks second, while MetaOD is a distant third, performing only marginally better than
random selection. However, even Orthus’s NDCG@3 score of about 33% implies that its top-selected anomaly
detector is often positioned far from the true top ranks, which highlights the need for continued progress
toward more reliable adaptive model selection strategies across diverse time series contexts. In terms of overall
ranking quality (Figure 5, right), Orthus and FMMS alternate in achieving better Recall@k rates across broad
ranges of k values, while MetaOD remains consistently lower. We also evaluate selector performance across
ranking depths by reporting Precision@k and NDCG@k as a function of k (Figure 6). Orthus achieves the
highest Precision@k at small k, indicating a stronger ability to prioritize high-performing detectors in the very
top positions. FMMS also performs competitively in this regime but exhibits a more gradual decline, reflecting
stable ranking quality across intermediate depths. In contrast, MetaOD consistently lags behind other methods
across all k, underscoring its limited effectiveness in the anomaly detection setting. For NDCG@k (right
panel), Orthus maintains an advantage at small to mid-k, while FMMS eventually matches or surpasses it for
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Figure 6: Ranking Comparison of Model Selection Methods. (Left) Precision@k as a function of k.
(Right) NDCG@k as a function of k.

Table 4: NDCG@5 by Anomaly Sequence Length. Entries are mean±std of NDCG@5 grouped by
anomaly sequence length. and denote best and second-best methods within each group, respectively.
The best NDCG@5 is bolded for each selector. Discussion is in §4.3.

Anomaly Seq. Length MetaOD FMMS Orthus

<50 0.093 ± 0.097 0.364 ± 0.257 0.391 ± 0.286
50–100 0.000 ± 0.000 0.378 ± 0.248 0.519 ± 0.286
100–200 0.150 ± 0.019 0.448 ± 0.264 0.519 ± 0.197
>200 0.214 ± 0.000 0.357 ± 0.227 0.384 ± 0.218

larger values (k > 6). These findings suggest that current selectors are more effective at producing a shortlist
of strong detectors than at reliably identifying a single best one, aligning with practical deployment needs.

To further examine robustness, we report NDCG@5 stratified by anomaly sequence length. As shown in
Table 4, Orthus consistently outperforms FMMS and MetaOD across all groups. The gap is most significant
for anomalies of length 50–100, where MetaOD fails to retrieve any of the top-5 detectors. Both FMMS and
Orthus achieve their strongest performance on moderate-length anomalies (100–200), with NDCG@5 scores
of 0.448 and 0.519, respectively. In contrast, MetaOD performs poorly on short anomalies (<50) and only
marginally improves on long ones (>200), underscoring its limited robustness. These results reinforce the
need for more adaptive selectors that can maintain ranking quality across varying anomaly characteristics.

To assess generalizability, we also compute domain-specific AUC-ROC scores for each model selector across
four representative application domains (Table 5). Results indicate notable variation across domains. FMMS
achieves the strongest performance in IT infrastructure (where it outperforms the other two selectors), but
underperforms in healthcare. Orthus also achieves the strongest performance in IT infrastructure and shows
good results in spacecraft telemetry and healthcare (outperforming the other two selectors in both these
domains), while its weakest performance by a large margin is on industrial process data. MetaOD excels in
industrial process (where it outperforms the other two selectors), but underperforms in spacecraft telemetry
and IT infrastructure. These findings highlight that selector effectiveness is domain-dependent, reinforcing
the need for domain-aware model selection strategies.

4.4 Inference Time Analysis of Model Selection Methods

Inference time is a critical consideration for practical deployment of anomaly detection systems, as the
ability to rapidly detect and respond to anomalies can significantly impact the effectiveness of downstream
decision-making processes in safety-critical applications. To assess the efficiency of each model selection
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Table 5: Domain-level Model Selection Performance. Entries are mean±std of AUC-ROC across four
representative application domains. and denote the best and second-best methods for the domain,
respectively. The best group is bolded for each selector. Results show clear variability across domains,
highlighting the importance of domain-aware selection strategies.

Domain MetaOD FMMS Orthus

Healthcare 0.654 ± 0.122 0.617 ± 0.161 0.661 ± 0.168
IT Infrastructure 0.636 ± 0.221 0.790 ± 0.152 0.770 ± 0.176
Industrial Process 0.792 ± 0.198 0.774 ± 0.160 0.344 ± 0.343
Spacecraft Telemetry 0.514 ± 0.247 0.564 ± 0.223 0.703 ± 0.224
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Figure 7: Average Inference Time of Model Selection Methods. Discussion is in §4.4.

method, we analyze their average inference times on mTSBench. Figure 7 shows that FMMS is generally
the fastest selector across most datasets, with runtimes typically under 2 s, except for larger datasets like
CIC-IDS-2017 (47.05 s), MITDB (19.51 s), and CreditCard (17.75 s), where other selectors also experience
increased latency. Orthus consistently achieves a strong balance between inference efficiency and detection
accuracy, with typically moderate runtimes (e.g., 9.94 s on SWAN-SF and 7.22 s on PSM) and even best
efficiency on larger datasets (e.g., 1.09 s on MITDB), while maintaining strong performance. MetaOD
exhibits faster inference in certain cases (e.g., GHL, Genesis), but shows higher variability and scales poorly
on larger datasets, e.g., MITDB (21.66 s) and CIC-IDS-2017 (49.40 s). These findings show the challenge
of achieving both fast and high-quality recommendations as time series grow in length and complexity.

5 Practical Takeaways

Across datasets in mTSBench, the evaluated unsupervised selectors consistently underperform optimal or
oracle baselines, indicating that effective model selection remains challenging in MTS-AD. This gap reflects
several recurring limitations observed in our evaluation. For example, selectors rely primarily on coarse,
dataset-level meta-features, which provide limited information about temporal structure, long-range depen-
dencies, or cross-signal interactions that are critical for distinguishing detector behavior across heterogeneous
time series. Moreover, detector performance varies substantially with both time-series properties (e.g.,
dimensionality, noise characteristics, and cross-channel coupling) and anomaly characteristics (e.g., density,
duration, and temporal dispersion), yet these factors are not explicitly represented in existing selector features.
As a result, selectors trained on aggregate statistics as meta-features exhibit limited ability to adapt to
dataset-specific characteristics, contributing to the observed gap relative to oracle performance in mTSBench.
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Our results also suggest several considerations for interpreting unsupervised model selection outcomes. The
persistent gap between selector performance and oracle baselines indicates that identifying a single best
detector is difficult under dataset heterogeneity and limited prior information. Accordingly, top-1 selector
outputs should be interpreted with caution and may be better viewed as coarse rankings of candidate detectors
rather than definitive choices. In such settings, relying on well-established detectors or considering a small
set of high-ranked candidates can provide more stable behavior when domain knowledge is limited.

6 Conclusion

We introduce mTSBench, the largest, most comprehensive benchmark for MTS-AD and model selection.
Through systematic evaluation across 344 labeled time series from diverse application domains, mTSBench
highlights the substantial variability in anomaly detection performance and the critical need for robust model
selection strategies. Empirical results demonstrate that existing unsupervised model selection methods,
while promising, fall significantly short of optimal performance within mTSBench, exposing critical gaps
in handling complex temporal dependencies and cross-signal interactions. To address these limitations,
mTSBench provides a unified evaluation suite to facilitate reproducible research and accelerate progress
in robust anomaly detection and adaptive model selection, enabling more resilient multivariate time series
analysis across domains like healthcare, industrial monitoring, and cybersecurity. These findings motivate new
research directions in context-aware model selection, adaptive selectors that dynamically respond to temporal
shifts, and integration with foundation models to enhance cross-domain generalization and robustness.

Broader Impact Statement

This work introduces a standardized benchmark for model selection in MTS-AD, encouraging the development
of more robust, adaptive, and generalizable anomaly detection systems. The societal impact spans various
high-stakes domains, including healthcare, industrial monitoring, cybersecurity, and financial systems, where
reliable anomaly detection can enhance safety, efficiency, and decision-making. Model selection in MTS-AD
has the potential to improve early warning mechanisms, reduce downtime in safety-critical systems, and
support human decision-making in complex temporal environments. However, we recognize that deploying
model selection methods without robust validation could lead to unintended consequences, such as false
alarms or missed critical events. While our benchmark highlights generalization gaps in existing methods, it is
important that future research also considers fairness, transparency, and robustness to data distribution shifts,
particularly in sensitive domains. It is also important that future research considers computational efficiency
and energy requirements, especially as LLM-based and deep learning selectors become more prevalent.
Balancing accuracy, efficiency, and resource usage will be essential for responsible and scalable deployment of
model selection methods. By open-sourcing mTSBench, we aim to facilitate access to rigorous evaluation
tools, foster reproducibility, and accelerate research in time series analysis. We anticipate this work will
support practitioners in deploying more effective and trustworthy anomaly detection pipelines, while also
inspiring new methods that adapt to complex, real-world data.
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mTSBench: Appendices
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• Appendix A. Categorization of anomaly detection methods.
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• Appendix C. Time series quality case studies.
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• Appendix E. Additional results on the impact of anomaly length.
• Appendix F. Implementation details and anomaly detector runtimes.
• Appendix G: Discussion of limitations.

A Anomaly Detectors

mTSBench includes 24 anomaly detectors applicable to multivariate time series (MTS), as shown in Table A.1,
spanning four major areas: outlier detection, classic machine learning (ML), deep learning, and large
language models (LLMs). These can be grouped into six method families based on their underlying detection
strategies. Distance-based methods identify anomalies based on their proximity to cluster centers or
nearest neighbors. Distribution-based methods model statistical properties and detect deviations from
expected distributions. Reconstruction-based methods learn compact representations of the input and
flag large reconstruction errors as anomalies. Tree-based methods rely on recursive partitioning of the
feature space to isolate anomalies, leveraging the principle that anomalies are easier to separate due to their
sparsity. Forecasting-based methods predict future time-series values from prior data and detect anomalies
as significant deviations from the forecast. Foundation model-based methods utilize pre-trained LLMs
to perform anomaly detection.

Table A.1: Overview of Anomaly Detection Methods in mTSBench, encompassing a diverse range
of techniques, including foundation models, distance-based, forecasting-based, and reconstruction-based
approaches, ensuring a comprehensive representation of different methodological paradigms.

Learning Anomaly Detection Method Area Method Family

Unsupervised

CBLOF (He et al., 2003) Outlier Detection Distance
COPOD (Li et al., 2020) Outlier Detection Distribution
EIF (Hariri et al., 2019) Classic ML Tree
HBOS (Goldstein & Dengel, 2012) Classic ML Distance
IForest (Liu et al., 2008) Outlier Detection Tree
KMeansAD (Yairi et al., 2001) Classic ML Distance
KNN (Ramaswamy et al., 2000) Classic ML Distance
LOF (Breunig et al., 2000) Outlier Detection Distance
PCA (Aggarwal, 2017) Classic ML Reconstruction
RobustPCA (Paffenroth et al., 2018) Classic ML Reconstruction

Semi-supervised

ALLM4TS (Bian et al., 2024) LLM Foundation Model
Transformer (Xu et al., 2022) Deep Learning Reconstruction
AutoEncoder (Sakurada & Yairi, 2014) Deep Learning Reconstruction
CNN (Munir et al., 2018) Deep Learning Forecasting
Donut (Xu et al., 2018) Deep Learning Reconstruction
FITS (Xu et al., 2023) Deep Learning Forecasting
LSTMAD (Malhotra et al., 2015) Deep Learning Forecasting
MCD (Rousseeuw & Van Driessen, 1999) Classic ML Reconstruction
OCSVM (Schölkopf et al., 1999) Outlier Detection Distribution
OFA (Zhou et al., 2023) LLM Foundation Model
OmniAnomaly (Su et al., 2019) Deep Learning Reconstruction
TimesNet (Wu et al., 2023) Deep Learning Forecasting
TranAD (Tuli et al., 2022) Deep Learning Forecasting
USAD (Audibert et al., 2020) Deep Learning Reconstruction
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Table B.1: Overview of the 19 MTS datasets used in mTSBench. For each dataset, we record
its domain, number of time series (#TS), dimensionality (#Dim), average time series length, number of
anomalous points (#AnomPts) and anomalous sequences (#AnomSeqs) per time series, and license.

Dataset Domain #TS #Dim Length #AnomPts #AnomSeqs License

CIC-IDS-2017 (Canadian Institute for Cybersecurity, 2017) Cybersecurity 4 73 >100K 0–8656 0–2546 Citation Required
CalIt2 (Hutchins, 2006) Smart Building 1 2 >5K 0 21 CC BY 4.0
CreditCard (Dal Pozzolo et al., 2018) Finance / Fraud Detection 1 29 >100K 219 10 Citation Required
Daphnet (Bachlin et al., 2009) Healthcare 26 9 >50K 0 1–16 CC BY 4.0
Exathlon (Jacob et al., 2021) IT Infrastructure 30 20 >50K 0–4 0–6 Apache 2.0
GECCO (Rehbach et al., 2018) Industrial Process 1 9 >50K 0 37 Citation Required
GHL (Filonov et al., 2016) Industrial Process 14 16 >100K 0 1–4 Contact Authors
Genesis (von Birgelen & Niggemann, 2018) Industrial Process 1 18 >5K 0 2 CC BY-NC-SA 4.0
GutenTAG (Schmidl et al., 2022) Synthetic Benchmark 30 20 >10K 0 1–3 MIT
MITDB (Goldberger et al., 2000) Healthcare 47 2 >500K 0 1–720 ODC-By v1.0
MSL (Hundman et al., 2018) Spacecraft Telemetry 26 55 >5K 0 1–3 BSD 3-Clause
Metro (Helwig et al., 2015) Transportation 1 5 >10K 20 5 CC BY 4.0
OPPORTUNITY (Roggen et al., 2010) Human Activity Recognition 13 32 >25K 0 1 CC BY 4.0
Occupancy (Candanedo & Feldheim, 2016) Smart Building 2 5 >5K 1–3 9–13 CC BY 4.0
PSM (Abdulaal et al., 2021) IT Infrastructure 1 26 >50K 0 39 CC BY 4.0
SMAP (Hundman et al., 2018) Spacecraft Telemetry 48 25 >5K 0 1–3 BSD 3-Clause
SMD (Su et al., 2019) IT Infrastructure 18 38 >10K 0 4–24 MIT
SVDB (Greenwald et al., 1990) Healthcare 78 2 >100K 0 2–678 ODC-By v1.0
SWAN-SF (Angryk et al., 2020) Astrophysics 1 38 >50K 5233 1382 MIT

B Time Series Datasets

As summarized in Table B.1, mTSBench contains 344 multivariate time series from 19 datasets, covering
a range of domains, anomaly types, and time series characteristics to ensure a diverse and representative
benchmark. In Figure B.1, we visualize four example time series to illustrate the variability in sequence
length and anomaly patterns. For example, some time series (e.g., Metro) contain short and rare anomalies,
while others (e.g., CalIt2 and Occupancy) exhibit longer or more frequent anomalous segments. Brief
descriptions of the 19 datasets are provided below.

CIC-IDS-2017 (Canadian Institute for Cybersecurity, 2017) contains network traffic data, including benign
behavior and a wide range of attack scenarios such as DDoS, brute-force, and infiltration. This dataset
provides labeled flow-based features extracted from raw PCAP files, enabling evaluation of intrusion detection
systems.

CalIt2 (Ihler et al., 2006) consists of data recording the number of people entering and exiting the main
door of the CalIt2 building at UCI over 15 weeks, 48 time slices per day. The goal is to detect events, such as
conferences, indicated by unusually high people counts during specific days or time periods.

CreditCard (Dal Pozzolo et al., 2018) contains anonymized variables derived from a subset of 284,807 online
credit card transactions (including 492 fraudulent transactions) that occurred during two days in September
2013. Due to extreme class imbalance, this dataset is well-suited for evaluating anomaly detection methods
in high-stakes, imbalanced classification scenarios.

Daphnet (Bachlin et al., 2009) consists of annotated readings from three acceleration sensors placed on the
hip and leg of Parkinson’s disease patients who experience freezing of gait (FoG) during walking tasks, such
as straight line walking and walking with numerous turns.

Exathlon (Jacob et al., 2021) is a benchmark for explainable anomaly detection in high-dimensional time
series, based on real Apache Spark stream processing traces. Executions were intentionally disturbed by
introducing six types of anomalous events (bursty input, bursty input until crash, stalled input, CPU
contention, driver failure, and executor failure).

GECCO (Rehbach et al., 2018) was originally introduced in the GECCO Challenge 2017. This dataset
contains sensor readings from water treatment plants and distribution systems, capturing parameters such as
water quality, flow rates, and pressure.
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CalIt2 GECCO

Occupancy Metro
Figure B.1: Examples of MTS Segments in mTSBench spanning diverse domains and temporal patterns.
From top left to bottom right: CallIt2 (smart building sensors), GECCO (water quality monitoring),
Occupancy (smart building sensors), and Metro (transportation systems). Shaded red regions indicate
ground-truth anomalies, highlighting the variability in anomaly characteristics across datasets.

GHL (Filonov et al., 2016) records the operational status of three reservoirs, including variables such as
temperature and water level. Anomalies correspond to shifts in maximum temperature or pump frequency.

Genesis (von Birgelen & Niggemann, 2018) contains sensor readings collected from a portable pick-and-place
demonstrator, a cyber-physical system that sorts two different materials (conductive and non-conductive)
from a magazine into their corresponding target locations. The dataset contains five primary continuous
signals, thirteen discrete signals, and a single Unix timestamp. Two out of 42 production cycles contain
anomalous behavior.

GutenTAG is a synthetic anomaly detection benchmark dataset. We adapted the implementation
from (Wenig et al., 2022) to create a customized version of the original GutenTAG dataset, consisting
of 30 multivariate time series, each comprising 20 dimensions. The dataset is partitioned into training,
validation, and testing sets with shapes (1000, 20), (4000, 20), and (10000, 20), respectively. The underlying
signals are derived from six base oscillation types: CBF, ECG, Random Mode Jump, Sawtooth, Dirichlet,
and MLS. Each base type is used in 100 dimensions, resulting in a total of 600 unique dimensions across the
dataset. Anomalies are drawn from 10 types: amplitude, extremum, frequency, mean, pattern, pattern_shift,
platform, trend, variance, and mode-correlation and injected into a randomly chosen subset of 1, 2, 5, 10, or
all 20 dimensions for each time series. Each anomaly-affected dimension contains 1 to 3 anomalies of length
50 to 200 points, located randomly between 10% and 90% of the time series. The type of anomaly is selected
randomly from the set of types compatible with the base oscillation in that dimension.

MITDB (Goldberger et al., 2000) consists of 48 half-hour excerpts of two-channel ambulatory ECG
recordings collected from 47 individuals by the BIH Arrhythmia Laboratory during the years 1975 to 1979.
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Note that the time series in this dataset contain trivial anomalies that are similar to one another, and the
performance of detectors on MITDB should be interpreted with caution.

MSL (Hundman et al., 2018) originates from NASA’s Mars Science Laboratory mission, and includes
telemetry data from the Curiosity rover.

Metro (Helwig et al., 2015) contains hourly traffic volume data from a highway in Minneapolis–St Paul,
collected by a single loop detector over several years, and includes features such as weather conditions,
time-based attributes, and traffic volume counts.

OPPORTUNITY (Roggen et al., 2010) is a benchmark dataset for human activity recognition, encompassing
tasks such as classification, segmentation, sensor fusion, and feature extraction. The dataset consists of
motion sensor recordings collected as users performed routine daily activities.

Occupancy (Candanedo & Feldheim, 2016) consists of indoor environmental sensor readings, including
temperature, humidity, light, and CO2 levels, collected from a monitored room to predict occupancy status.
The data is labeled and time-stamped, supporting tasks such as binary classification, energy efficiency
modeling, and real-time occupancy prediction.

PSM (Abdulaal et al., 2021) contains data collected over 21 weeks from multiple application server nodes at
eBay. It includes 26 variables that describe server machine metrics such as CPU utilization and memory.

SMAP (Hundman et al., 2018) originates from NASA’s Soil Moisture Active Passive satellite mission, and con-
tains telemetry data collected from the satellite’s sensors, capturing various operational aspects of the satellite.

SMD (Su et al., 2019) is composed of time series data collected over a five-week period from server machines
in a data center. This dataset captures metrics such as CPU usage, memory consumption, disk I/O, and
network traffic, making it a representative dataset for monitoring IT infrastructure systems.

SVDB (Greenwald et al., 1990) contains 78 half-hour ECG recordings featuring a combination of supraven-
tricular and ventricular ectopic beats within a normal sinus rhythm. Similar to MITDB, detector performance
on this dataset should be interpreted with caution.

SWAN-SF (Angryk et al., 2020) comprises multivariate time series data derived from solar photospheric
vector magnetograms in the SHARP data series, designed for space weather analytics and solar flare prediction.

C Time Series Data Quality Case Studies

Dataset quality plays a critical role in the reliable evaluation of anomaly detection methods. Inaccurate or
inconsistent labels, such as normal points mislabeled as anomalies or vice versa, can systematically distort
evaluation results, penalizing detectors that correctly identify true anomalies while favoring methods that
produce random or misaligned predictions. Consequently, detector performance measured on low-quality
datasets may not reflect the true capabilities of the underlying models. To mitigate the influence of such
noise, mTSBench includes a large and diverse collection of 344 labeled time series, reducing the impact of
individual low-quality instances and enabling more robust, aggregate performance analysis across datasets.

In addition, to better understand how time-series characteristics and labeling quality affect anomaly detection,
Figure C.1 contrasts datasets with ambiguous versus well-justified anomaly annotations. In Exathlon
and GHL, the labeled anomalous segments exhibit limited visual deviation from surrounding behavior,
making it difficult to identify clear temporal or cross-dimensional patterns that justify their annotation. Such
ambiguity suggests the presence of label noise or dataset-specific annotation criteria, which may penalize
detectors that capture meaningful but unlabeled deviations. In contrast, GutenTAG and Daphnet exhibit
anomalies that align with clear and interpretable signal changes visible in the plots. In GutenTAG, the
anomalous interval in the ninth dimension (counting from top) shows a marked increase in oscillation
frequency relative to both preceding and subsequent segments. Similarly, in Daphnet, the labeled anomalies
correspond to pronounced changes in frequency and fluctuation patterns compared to normal behavior in
multiple dimensions. These examples illustrate how differences in label quality and anomaly salience can
substantially influence detector performance and underscore the importance of careful dataset curation when
benchmarking anomaly detection and model selection methods.
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Exathlon GHL

GutenTAG Daphnet
Figure C.1: Representative time series from mTSBench highlighting differences in label quality (red
shaded regions denote ground-truth anomalies). In Exathlon and GHL, anomalous segments lack clear
visual justification. In contrast, anomalies in GutenTAG (ninth dimension) and Daphnet correspond to
pronounced changes in frequency and fluctuation patterns.

IForest
CNN
OFA
OmniAnomaly
PCA
Ground truth

Daphnet

IForest
CNN
OFA
OmniAnomaly
PCA
Ground truth

Exathlon
Figure C.2: Ground Truth versus Predicted Anomalies. In Daphnet (top), predictions from all five
detectors overlap with the ground-truth anomaly interval. In Exathlon (bottom), only the CNN detector
exhibits partial overlap with the ground-truth anomaly.

We further illustrate the impact of labeling quality by comparing ground-truth anomalies with predictions from
five representative detectors, PCA, OmniAnomaly, OFA, CNN, and IForest, in Figure C.2. For Daphnet,
where the labeled anomalous interval aligns with clear signal changes in the plot, predictions from all five
detectors overlap with the ground-truth anomaly. In addition, PCA, OmniAnomaly, and OFA produce
predictions that closely match the annotated interval, whereas CNN and IForest generate anomalous regions
that only partially overlap with the labeled boundaries and extend well outside the ground-truth anomaly. In
contrast, for Exathlon, where anomaly annotations are visually ambiguous, only CNN shows partial overlap
with the labeled anomaly. However, this overlap is difficult to interpret, as CNN also predicts anomalies
across much of the window, making it challenging to distinguish meaningful detections from spurious ones.

These examples illustrate how poor or ambiguous labeling can obscure differences between stronger and
weaker detectors, limiting the interpretability of anomaly detection results. Improving label quality is itself
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challenging, as the datasets span diverse domains and often require expert knowledge for reliable reannotation.
An alternative approach is to examine agreement across multiple detectors: when several methods identify
similar anomalous regions, as in Daphnet, annotations are more likely to reflect true underlying irregularities.
However, such an agreement is neither guaranteed nor sufficient, as it may reflect shared inductive biases
among detectors or favor specific anomaly characteristics. This motivates our use of mTSBench, which
aggregates results over 344 time series, reducing the influence of a small number of unknown low-quality
datasets and enabling more robust, large-scale evaluation.

D Model Selection Methods for Time Series Anomaly Detection

mTSBench contains three unsupervised model selection methods for MTS-AD, described below.

MetaOD (Zhao et al., 2021) is a meta-learning framework that estimates a model’s performance on a new
dataset by leveraging knowledge from its prior performance on training datasets. MetaOD operates in two
phases: offline training and online model selection. During offline training, it evaluates the models on all
datasets, constructing a performance matrix that records each model’s performance on each dataset. MetaOD
extracts meta-features from the datasets, capturing intrinsic properties such as statistical summaries and
landmark features. To reduce dimensionality, the extracted meta-features are processed through Principal
Component Analysis (PCA), producing latent representations that initialize a dataset matrix. Simultaneously,
a model matrix is initialized with values from a normal distribution, and matrix factorization is applied
to approximate the relationship between datasets and models. This factorization is optimized using a
rank-discounted cumulative gain (DCG) objective to uncover latent interactions. After matrix factorization,
a regression model is trained to map the meta-features to the optimized latent representations of datasets. In
the online phase, when a new dataset is introduced, its meta-features are extracted and reduced through
PCA to generate latent representations. These representations are then passed through the trained regression
model to compute the dataset’s position in the latent space. By combining this latent representation with
the precomputed model matrix, MetaOD estimates the performance of each model on the new dataset, and
selects the model with the highest estimated performance score as the most suitable for the task.

FMMS (Zhang et al., 2022b) (Factorization Machine-based Unsupervised Model Selection) employs fac-
torization to transfer model performance on prior known datasets into a second-order regression function
that describes the relationship between the dataset’s meta-features and its performance matrix. FMMS
incorporates the meta-feature matrix, the interactions between features, and regression parameters to predict
model performance. The regression function is optimized using a cosine distance loss to ensure accurate
predictions. During inference, meta-features of the test dataset are passed through the trained regression
function to estimate model performance. The model with the highest predicted performance is selected.

Orthus (Navarro et al., 2023) extracts a set of 22 univariate time series meta-features, summarized using
five statistics: {min, first quartile, mean, third quartile, max}. This results in a total of 110 meta-
feature values. Orthus splits the model selection problem into two scenarios: when the test data is novel
and when the test data is similar to the training data. To determine the scenario, test data is projected in
meta-feature space using Uniform Manifold Approximation and Projection (UMAP). If the test data belongs
to a cluster that does not contain any points from training data, it is considered novel, and recommendations
are estimated via URegression, which applies Singular Value Decomposition to the performance matrix and
fits a Random Forest regressor to predict the decomposed components from meta-features. During inference,
the test data’s meta-features are used to estimate performance across models, selecting the one with the
highest predicted performance. Otherwise, if the test data is similar to the training data, UMAP is applied
to the performance matrix to form clusters, each with its own regressor. The test meta-features are evaluated
across all cluster-specific regressors, and the top-performing model is selected.

E Impact of MTS Anomaly Length on Detection Performance

To investigate the impact of anomaly length on detection performance, we evaluate the models across time
series with extreme anomaly durations. Specifically, we focus on two cases: (1) long anomalies, where the
average anomaly length exceeds 2500 data points, and (2) short anomalies, where the average anomaly
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Figure E.1: AUC-ROC (↑) of Anomaly Detectors (x-axis) Evaluated on MTS with Extremely
Long Anomalies in mTSBench (y-axis). Top row presents the average AUC-ROC over these MTS.
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Figure E.2: AUC-ROC (↑) of Anomaly Detectors (x-axis) Evaluated on MTS with Extremely
Short Anomalies in mTSBench (y-axis). Top row presents the average AUC-ROC over these MTS.

length is less than 20 data points. As shown in Figure E.1, semi-supervised methods MCD and OCSVM
achieve the highest average AUC-ROC on long anomalies, outperforming deep learning and LLM-based
approaches, despite their simplicity. For short anomalies (Figure E.2), USAD performs best, likely due to
its architecture’s sensitivity to localized, transient deviations. These findings highlight the robustness of
classic semi-supervised methods across anomaly duration extremes. Notably, LLM-based detectors do not
exhibit clear advantages over more traditional techniques in either regime.

26



Published in Transactions on Machine Learning Research (02/2026)

F Implementation Details

Anomaly Detection Methods. In real-world deployments, users often rely on off-the-shelf anomaly
detectors without the time, supervision, or expertise required for data-specific tuning. Effective model
selection is therefore critical: given a pool of detectors, the goal is to automatically choose the one likely to
perform best for a new time series. To reflect this practical constraint, we use default settings for all anomaly
detectors, details of which can be found in the mTSBench repository. Model selectors operate solely by
ranking detector performance, ensuring that their contribution is isolated from detector optimization. This
setup allows us to evaluate selectors under realistic, low-supervision conditions where anomaly characteristics
may vary widely across domains. In practice, anomaly detection is often used in real-world unsupervised
settings, where true labels are not available. In such cases, threshold tuning is impractical. To reflect practical
settings, we avoid method-specific threshold tuning and adopt a fixed quantile-based strategy: the top 7.5%
of anomaly scores are labeled as anomalies, regardless of the detector or dataset. While this may not yield
the best absolute performance per method, it ensures consistent comparisons across detectors and datasets
and reflects a realistic and fair evaluation scenario, especially for benchmarking unsupervised methods.

Model Selection Methods. MetaOD employs PCA to compute meta-features, with the number of
components originally set to 3. However, for datasets with fewer than three dimensions (excluding label
and timestamp), the number of components is adjusted accordingly. This method produces a ranked list
of detectors. Similarly, FMMS generates a ranking of anomaly detection methods. FMMS leverages data
and meta-features from matrix factorization methods (Fusi et al., 2018); however, the code for computing
these meta-features is not publicly available, nor there exist sufficient explanations of their computation
process. To ensure consistency, we utilize the same meta-features as MetaOD, with no other modifications to
the FMMS method. Meta-features for MetaOD and FMMS are derived by extracting statistical properties
of the datasets and characteristics from various outlier detection models, including structural features and
outlier scores. They capture critical dataset characteristics to identify similar datasets, thereby enhancing
model selection for anomaly and outlier detection tasks. In contrast, Orthus evaluates six detectors with
various configurations and employs 22 univariate time series meta-features, which are summarized into five
statistical values {min, Q1, mean, Q3, max} for each feature, resulting in a total of 110 meta-features. To
accommodate smaller anomaly detection algorithm sets, we adjust the number of neighbors and components
to lower values. Moreover, all model selection methods in mTSBench require a performance matrix. Rather
than constructing this matrix at the individual time series level, which assumes access to labeled data for
every time series, we adopt a more practical approach by building the matrix at the dataset level. We argue
that in realistic settings, obtaining labeled instances for every time series solely to build a performance matrix
is impractical. Moreover, if such labels were available, more direct strategies for choosing detectors could be
employed. Accordingly, we construct a performance matrix of shape 19 × 24, representing 19 datasets and 24
detectors, for training the model selectors. Detector rankings used to evaluate model selection performance
are derived from their VUS-PR scores on the test set.

Computational Resources. All experiments were conducted on a high-performance computing cluster
using a single Intel CPU node with 36 cores at 2.3 GHz. Figure F.1 (top) shows the average runtime of
each anomaly detector over 344 multivariate time series in mTSBench (for semi-supervised methods, the
runtime includes both training and inference times). Among the 24 methods, IForest is the most efficient,
followed by ALLM4TS and MCD, while AnomalyTransformer exhibits the highest computational cost, and
OFA is the second most expensive. We further include a heatmap reporting the mean runtime of all detectors
across the 19 datasets (Figure F.1 bottom). The results show no consistent correlation between dataset
group and runtime efficiency. Instead, detector behavior is highly variable: a method that is efficient on one
dataset may incur substantially higher cost on another. For example, PCA records its longest mean runtime
on CIC-IDS-2017, where several other methods, e.g., IForest, remain comparatively efficient. Conversely,
IForest’s largest runtimes are concentrated on SWAN-SF, Occupancy, and MITDB.

G Limitations

While mTSBench represents the most comprehensive benchmark for MTS-AD and model selection to date,
several limitations remain. The current benchmark focuses on selecting a single best-performing detector
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Figure F.1: Average Runtime (↑) of Anomaly Detectors (x-axis) over mTSBench Datasets (y-axis).
Top bars indicate per-detector average runtime over all 344 MTS in mTSBench.

per time series. Future work may explore ensemble-based selectors or context-aware mixtures of experts. In
addition, although the use of default hyperparameter values mirrors practical, low-supervision deployments,
it may underrepresent the potential of methods that benefit from tuning. Nevertheless, mTSBench provides
an interface to modify detector configurations, enabling future work to explore the impact of tuning under
more controlled settings. We also note that the datasets used in the experiments, like many publicly available
time-series datasets used in anomaly detection studies, may be affected by issues documented in prior
work (Wu & Keogh, 2023), such as mislabeled ground truth, unrealistic anomaly density, trivial anomaly
patterns, and run-to-failure bias. For example, some ECG datasets (e.g., MITDB and SVDB) contain multiple
occurrences of the same arrhythmia class; however, individual events in typical ECG data differ in morphology,
amplitude, duration, and multivariate expression across leads. Other dataset problems include potential
unlabeled anomalous segments (e.g., in MSL and Genesis), high-magnitude anomalies in certain channels
(e.g., in PSM, SMD, and SMAP), and simplified patterns in some synthetic datasets. These properties
reflect common challenges in anomaly annotation and are not unique to mTSBench. Users may select or
exclude datasets based on their requirements and tolerance for labeling noise. We point out these potential
issues to support the responsible use of mTSBench and to emphasize the need for future work on more
diverse, reliably annotated, and representative datasets for MTS-AD. Lastly, while mTSBench includes two
LLM-based detectors, which, to the best of our knowledge, are the only publicly available such methods for
MTS-AD, the space of foundation model-based approaches is rapidly evolving. Extending the benchmark to
include fine-tuned LLMs or multimodal foundation models remains a promising direction for future research.
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