© © N O O A~ W N =

o

11

27

28
29
30
31
32

DynPro: A Large-Scale Dataset of Molecular
Dynamics Simulations for Protein Conformational
Ensembles and Transitions

Anonymous Author(s)
Affiliation
Address

email

Abstract

Protein dynamics underpin critical biological processes, yet existing datasets for
Al-driven modeling are limited to short timescales and local fluctuations, failing
to capture broad conformational ensembles, transitions, and complex interactions
essential for drug design and biomedicine. We propose DynPro, a large-scale,
openly shareable dataset comprising enhanced molecular dynamics (MD) simula-
tions for tens of thousands of protein systems. Each system features at least 100 us
of effective simulation time via adaptive sampling techniques, providing atomistic
trajectories, Boltzmann-weighted free energies, and kinetic metadata in mmCIF
format. DynPro enables generative Al to capture long-timescale ensembles and
rare transitions, addressing computational and data bottlenecks. Built from public
PDB structures with advanced MD simulations on HPC clusters ( $50-100M), it
provides a transformative resource for drug design, disease mechanism studies, and
synthetic biology, establishing a new paradigm in Al-driven structural dynamics.

1 Al task definition

The proposed dataset, DynPro, aims to enable AI models to address the fundamental scientific
question: How can we accurately generate broad conformational ensembles and transition pathways
for proteins and their complexes in biologically relevant timescales? This is primarily a generation
task, where AI models (e.g., diffusion-based [1} 2| [3, 4]or autoregressive generative models|[5,
6l [7]]) would predict atomistic trajectories of protein dynamics[8}, 9} [10], including equilibrium
ensembles|[11, [12]], metastable states[13, 14], and rare transitions between conformations[/15} [16].
Secondary tasks could include prediction of free energy landscapes from partial trajectories or
classification of functional states (e.g., active vs. inactive conformations)[17, [18]. By providing
ground-truth data from long-timescale simulations, DynPro would empower models to simulate
protein flexibility far beyond current capabilities, akin to how AlphaFold[19,20] revolutionized static
structure prediction. The task is critical for fields like structural biology and drug design, where
protein dynamics underpin functions such as enzyme catalysis, signaling, and ligand binding.

2 Dataset rationale

Access to DynPro would transform Al model development by providing the "ImageNet" equivalent
for protein dynamics—high-quality, diverse training data for generative models. At scale, DynPro
lets models learn to extrapolate from short seeds to long-horizon ensembles and rare transitions,
converting days of MD per target into minutes of inference, which shifts the cost profile of dynamics
from compute-bound to data-bound. This would accelerate downstream science in:
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* Drug design at population scale: Ensemble-aware docking and generative design over previously
undruggable targets, capturing cryptic pocket emergence, allosteric pathways, and ligand-induced
vs. conformational-selection mechanisms. Expected outcomes: higher virtual screening hit rates,
better selectivity, and earlier go/no-go decisions.

* Synthetic Biology:Rapid evaluation of engineered loops, domain swaps, and sensor designs by
predicting flexibility windows and switching kinetics, turning months of iterative MD into a
compile-time check.

* Cross-Disciplinary Impact:Systematic inclusion of membrane proteins, intrinsically disordered
regions, multi-protein assemblies, and nucleic-acid complexes—domains historically starved of
long-timescale data—yields foundation models that generalize beyond soluble monomers.

By open-sharing DynPro, we anticipate rapid adoption, fostering competitions for dynamics prediction
and integrating with tools like OpenFold[21] or DiffDock[22] for end-to-end pipelines.

3 Acceleration potential

Current datasets for protein dynamics are bottlenecks due to insufficient timescale, diversity, and
coverage of conformational space. ATLAS[23] (100 ns) captures only local fluctuations, while
MISATOI24] ( 19,443 protein—ligand complexes) is confined to nanosecond dynamics. Critically,
protein—protein complexes—central to signaling and cellular function—remain without large-scale,
long-timescale datasets. DynPro addresses this by providing ps-to-ms timescale simulations with
enhanced sampling to ensure broad conformational coverage. Data types include:

* Trajectories: Multi-resolution output, featuring compressed coordinates at ns intervals for the
complete dataset and ps-resolution raw data for rapid conformational transitions.

* Scale: Tens of thousands of systems (according to PDB database cluster of 30% similarity of
42,096 structures), each with at least 100 ps simulation time (via enhanced sampling).

* Resolution:All-atom with explicit solvent/ions (and lipid bilayers where relevant), standardized
force-field stacks, and pinned engine versions for reproducibility.

* Labels:Boltzmann-weighted free energies for conformations, kinetic rates for transitions. To
facilitate integration with related models, data will be formatted in mmCIF for static snapshots,
with .nc or .xtc extensions for trajectories.

This dataset is the bottleneck because existing ML models for dynamics|25} 26} 27] suffer from
poor generalization to long-timescale events, leading to inaccurate predictions of druggable states or
protein interactions.

4 Data-creation pathway

Data will be generated using enhanced and accelerated sampling methods such as adaptive sampling,
metadynamics, replica exchange, or Gaussian accelerated MD on computing clusters[28]]. All simula-
tions will be conducted at the all-atom level to capture detailed atomic interactions and dynamics.
Sources include protein-ligand complexes starting from PDB structures (e.g., expanding MISATO),
protein-protein complexes from PDB or predicted via AlphaFold-Multimer [29]], focusing on biologi-
cally relevant interfaces from the STRING [30] database, and nucleic acid structures complexes from
PDB or predicted models, emphasizing functional motifs like binding sites or regulatory elements.
Simulations will use AMBER [31]] or GROMACS [32]] with state-of-the-art force fields , ensuring
comprehensive coverage of conformational transition states via collective variables that facilitate bar-
rier crossing and exploration of metastable states. For each system, aggregate simulation trajectories
will exceed 100 us to achieve sufficient sampling of rare events and equilibrium distributions.

5 Cost & Scalability

Generating 1 us of enhanced sampling per system costs $10-20 on cloud HPC. For 50,000 systems
of 100 us, total budget is $50-100 million, scalable via parallelization. Cost reductions could come
from emerging technologies like Al-accelerated MD . Phased rollout (e.g., 1,000 systems initially)
allows iterative validation.
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