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Abstract

Protein dynamics underpin critical biological processes, yet existing datasets for1

AI-driven modeling are limited to short timescales and local fluctuations, failing2

to capture broad conformational ensembles, transitions, and complex interactions3

essential for drug design and biomedicine. We propose DynPro, a large-scale,4

openly shareable dataset comprising enhanced molecular dynamics (MD) simula-5

tions for tens of thousands of protein systems. Each system features at least 100 µs6

of effective simulation time via adaptive sampling techniques, providing atomistic7

trajectories, Boltzmann-weighted free energies, and kinetic metadata in mmCIF8

format. DynPro enables generative AI to capture long-timescale ensembles and9

rare transitions, addressing computational and data bottlenecks. Built from public10

PDB structures with advanced MD simulations on HPC clusters ( $50-100M), it11

provides a transformative resource for drug design, disease mechanism studies, and12

synthetic biology, establishing a new paradigm in AI-driven structural dynamics.13

1 Al task definition14

The proposed dataset, DynPro, aims to enable AI models to address the fundamental scientific15

question: How can we accurately generate broad conformational ensembles and transition pathways16

for proteins and their complexes in biologically relevant timescales? This is primarily a generation17

task, where AI models (e.g., diffusion-based [1, 2, 3, 4]or autoregressive generative models[5,18

6, 7]) would predict atomistic trajectories of protein dynamics[8, 9, 10], including equilibrium19

ensembles[11, 12], metastable states[13, 14], and rare transitions between conformations[15, 16].20

Secondary tasks could include prediction of free energy landscapes from partial trajectories or21

classification of functional states (e.g., active vs. inactive conformations)[17, 18]. By providing22

ground-truth data from long-timescale simulations, DynPro would empower models to simulate23

protein flexibility far beyond current capabilities, akin to how AlphaFold[19, 20] revolutionized static24

structure prediction. The task is critical for fields like structural biology and drug design, where25

protein dynamics underpin functions such as enzyme catalysis, signaling, and ligand binding.26

2 Dataset rationale27

Access to DynPro would transform AI model development by providing the "ImageNet" equivalent28

for protein dynamics—high-quality, diverse training data for generative models. At scale, DynPro29

lets models learn to extrapolate from short seeds to long-horizon ensembles and rare transitions,30

converting days of MD per target into minutes of inference, which shifts the cost profile of dynamics31

from compute-bound to data-bound. This would accelerate downstream science in:32
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• Drug design at population scale: Ensemble-aware docking and generative design over previously33

undruggable targets, capturing cryptic pocket emergence, allosteric pathways, and ligand-induced34

vs. conformational-selection mechanisms. Expected outcomes: higher virtual screening hit rates,35

better selectivity, and earlier go/no-go decisions.36

• Synthetic Biology:Rapid evaluation of engineered loops, domain swaps, and sensor designs by37

predicting flexibility windows and switching kinetics, turning months of iterative MD into a38

compile-time check.39

• Cross-Disciplinary Impact:Systematic inclusion of membrane proteins, intrinsically disordered40

regions, multi-protein assemblies, and nucleic-acid complexes—domains historically starved of41

long-timescale data—yields foundation models that generalize beyond soluble monomers.42

By open-sharing DynPro, we anticipate rapid adoption, fostering competitions for dynamics prediction43

and integrating with tools like OpenFold[21] or DiffDock[22] for end-to-end pipelines.44

3 Acceleration potential45

Current datasets for protein dynamics are bottlenecks due to insufficient timescale, diversity, and46

coverage of conformational space. ATLAS[23] (100 ns) captures only local fluctuations, while47

MISATO[24] ( 19,443 protein–ligand complexes) is confined to nanosecond dynamics. Critically,48

protein–protein complexes—central to signaling and cellular function—remain without large-scale,49

long-timescale datasets. DynPro addresses this by providing µs-to-ms timescale simulations with50

enhanced sampling to ensure broad conformational coverage. Data types include:51

• Trajectories: Multi-resolution output, featuring compressed coordinates at ns intervals for the52

complete dataset and ps-resolution raw data for rapid conformational transitions.53

• Scale: Tens of thousands of systems (according to PDB database cluster of 30% similarity of54

42,096 structures), each with at least 100 µs simulation time (via enhanced sampling).55

• Resolution:All-atom with explicit solvent/ions (and lipid bilayers where relevant), standardized56

force-field stacks, and pinned engine versions for reproducibility.57

• Labels:Boltzmann-weighted free energies for conformations, kinetic rates for transitions. To58

facilitate integration with related models, data will be formatted in mmCIF for static snapshots,59

with .nc or .xtc extensions for trajectories.60

This dataset is the bottleneck because existing ML models for dynamics[25, 26, 27] suffer from61

poor generalization to long-timescale events, leading to inaccurate predictions of druggable states or62

protein interactions.63

4 Data-creation pathway64

Data will be generated using enhanced and accelerated sampling methods such as adaptive sampling,65

metadynamics, replica exchange, or Gaussian accelerated MD on computing clusters[28]. All simula-66

tions will be conducted at the all-atom level to capture detailed atomic interactions and dynamics.67

Sources include protein-ligand complexes starting from PDB structures (e.g., expanding MISATO),68

protein-protein complexes from PDB or predicted via AlphaFold-Multimer [29], focusing on biologi-69

cally relevant interfaces from the STRING [30] database, and nucleic acid structures complexes from70

PDB or predicted models, emphasizing functional motifs like binding sites or regulatory elements.71

Simulations will use AMBER [31] or GROMACS [32] with state-of-the-art force fields , ensuring72

comprehensive coverage of conformational transition states via collective variables that facilitate bar-73

rier crossing and exploration of metastable states. For each system, aggregate simulation trajectories74

will exceed 100 µs to achieve sufficient sampling of rare events and equilibrium distributions.75

5 Cost & Scalability76

Generating 1 µs of enhanced sampling per system costs $10-20 on cloud HPC. For 50,000 systems77

of 100 µs, total budget is $50-100 million, scalable via parallelization. Cost reductions could come78

from emerging technologies like AI-accelerated MD . Phased rollout (e.g., 1,000 systems initially)79

allows iterative validation.80
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